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Abstract: Concentric ring electrodes are noninvasive and wearable sensors for electrophysiological
measurement capable of estimating the surface Laplacian (second spatial derivative of surface po-
tential) at each electrode. Previously, progress has been made toward optimization of inter-ring dis-
tances (distances between the recording surfaces of a concentric ring electrode), maximizing the
accuracy of the surface Laplacian estimate based on the negligible dimensions model of the elec-
trode. However, this progress was limited to tripolar (number of concentric rings n equal to 2) and
quadripolar (n = 3) electrode configurations only. In this study, inter-ring distances optimization
problem is solved for pentapolar (n = 4) and sextopolar (1 = 5) concentric ring electrode configura-
tions using a wide range of truncation error percentiles ranging from 1st to 25th. Obtained results
also suggest consistency between all the considered concentric ring electrode configurations corre-
sponding to 1 ranging from 2 to 5 that may allow estimation of optimal ranges of inter-ring distances
for electrode configurations with 1 > 6. Therefore, this study may inform future concentric ring elec-
trode design for n > 4 which is important since the accuracy of surface Laplacian estimation has
been shown to increase with an increase in n.
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1. Introduction

Concentric ring electrodes (CREs; tripolar configuration shown in Figure 1A) are
noninvasive and wearable sensors for electrophysiological measurement capable of esti-
mating the surface Laplacian (second spatial derivative of surface potential) at each elec-
trode which is not feasible with conventional disc electrodes (Figure 1B) and constitutes
CRE’s practical relevance to the wearable sensor field [1-10]. Recent examples of
biomedical applications utilizing CREs involve electroencephalograms (source
localization of high-frequency activity [5] and seizure detection [8] in epilepsy patients),
electroenterograms (identification of the intestinal slow waves [2]) and electromyograms
(evaluation of swallowing [11] and respiratory [12] muscle activity). Previously, progress
has been made toward optimization of inter-ring distances (distances between the record-
ing surfaces of a CRE), maximizing the accuracy of the surface Laplacian estimate based
on the negligible dimensions model (NDM) of the electrode [13]. In NDM a single point
of negligible diameter represents the central disc surrounded by concentric circles of neg-
ligible width that represent the concentric rings. In [13] the inter-ring distances optimiza-
tion problem has been solved for tripolar (number of concentric rings n equal to 2) and
quadripolar (n = 3) CRE configurations and 5th and 10th percentiles of absolute value of
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truncation term coefficient for the lowest remaining term order since this coefficient has
been shown to be a predictor of the Laplacian estimation error [13,14]. Obtained results
have been validated using finite element method modeling [13].

Figure 1. Tripolar concentric ring electrode (A) and conventional disc electrode (B).

In this study, the NDM based inter-ring distances optimization problem is solved for
pentapolar (PCRE; Figure 2A; n = 4) and sextopolar (SCRE; Figure 2B; n = 5) CRE config-
urations while also extending the range of percentiles compared to [13] for all the CRE
configurations optimized so far. Specifically, the following steps have been taken: first,
truncation term coefficient functions have been derived for the two aforementioned CRE
configurations. Second, absolute values of truncation term coefficients have been com-
puted for an extensive grid of possible combinations of values of function arguments.
Third, thresholds corresponding to percentiles ranging from 1st to 25th have been calcu-
lated. Finally, these threshold values were used to determine the ranges of optimized in-
ter-ring distances for each CRE configuration via determination and model fitting of a
boundary hyperplane. Extension of the percentile range from [13] is related to the ques-
tion of how small can the distances between the recording surfaces get without partial
shorting due to salt bridges becoming a significant factor affecting the accuracy of Lapla-
cian estimation. This question is still to be answered in the future using physical CRE
prototypes. If prototype assessment results would suggest that physical considerations
render the inter-ring distances within, for example, the 5th percentile region impractical,
then inter-ring distances within the higher percentile region will be used such as, for ex-
ample, the 10th percentile region (which was the only other percentile value considered
in [13]) or higher. However, if prototype assessment results would suggest otherwise then
using even lower percentile values such as the 1st or the 3rd percentiles could be feasible.
To accommodate the range of possible scenarios, this study utilizes the wide 1st to 25th
percentile range not just for PCRE and SCRE cases but also to extend the results of [13] for
tripolar and quadripolar CRE configurations.
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Figure 2. Negligible dimensions models of pentapolar (A) and sextopolar (B) concentric ring elec-
trode configurations.

2. Methods

2.1. Defining inter-ring distances optimization problem for PCRE and SCRE configurations

Following the methodology established in [13] the main steps taken to define the
NDM based inter-ring distances optimization problem for the PCRE configuration (Figure
2A) with the first middle ring radius ar, the second middle ring radius fr, the third middle
ring radius yr, and the outer ring radius r to determine the optimal range of values for



Eng. Proc. 2021, 3, x FOR PEER REVIEW 3 of 6

coefficients a, f, and y such that 0 <a < <y <1 are listed below. Identical steps were
taken for the SCRE configuration with more detail on each step available in [13] for tripo-
lar and quadripolar CRE configurations. First, for each of the four rings the integral of the
Taylor series has been taken along the circle of the corresponding radius. Second, the ma-
trix of truncation term coefficients APCRE was determined (1). Respective matrix ASCRE for
SCRE configuration is given in (2). Third, the null space of APRf was determined up to a
(multiplication by a) constant factor. Fourth, four Taylor series integrals were combined
into a weighted linear combination solved for the Laplacian using the null space vector as
coefficients and allowing cancellation of 4th, 6th, and 8th order truncation terms (as
shown in [15] CRE with 7 rings allows cancellation of truncation terms up to the order of
2n which for the case of PCRE configuration corresponds to the 8th order). Fifth, trunca-
tion term coefficient function c¢”RE (a, B, y, k) was derived for even truncation term order
k > 10 (3). Respective SCRE configuration function c5RE (a, 5, y, 0, k) derived for even
truncation term order k > 12 is given in (4). Sixth, a constrained optimization problem was
defined to minimize absolute values of truncation term coefficients thus allowing mini-
mization of the truncation error and maximization of the accuracy of surface Laplacian
estimation. Seventh, this inter-ring distances optimization problem has been solved for
the lowest remaining truncation term order equal to 10 (since it is the main contributor to
the truncation error [16]) using a wide range of percentile values (1st, 3rd, 5th, 10th, 15th,

" (@, B,7,10)
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20th, and 25th): O<e<f<r<! . Same steps (and percentile values) were applied

to solve the inter-ring distances optimization problem for the SCRE configuration:
: SCRE
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2.2. Solving inter-ring distances optimization problem for PCRE and SCRE configurations

Solving the inter-ring distances problem for PCRE and SCRE configurations follow-
ing the approach from [13] involves using a wide range of truncation error percentiles to
identify points on the boundary hyperplane. For the PCRE configuration, absolute values
of truncation term coefficients based on function ¢’k (o, f, 7, k) from (3) were computed
for all the combinations of values of 0 < a < <y <1 with the increment of 1% (or 0.01) and
k =10. For the SCRE configuration, function ¢Skt (a, B, y, 0, k) from (4) was computed for
all the combinations of values of 0 < @ < <y <6 <1 with the same increment of 1% and k
=12. Percentiles were used to find the values of a, § and y (for PCRE configuration) and
a, B, ¥ and 0 (for SCRE configuration) that corresponded to points on the boundary hy-
perplane separating the absolute values of the 10th order (for PCRE) and of the 12th order
(for SCRE) truncation term coefficients below and above the specific percentile. Resulting
boundary hyperplane points were fitted with a nonlinear regression model of the form
apfy = m for PCRE and afy6 = m for SCRE respectively where m is a real constant. The
choice of these particular models stemmed from their consistency with the models used
for tripolar and quadripolar CREs in [13] that is discussed in the Discussion section of this

paper.
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3. Results
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Obtained results for CRE configurations including PCRE and SCRE as well as an ex-
tension of results for tripolar (no curve or hyperplane fitting necessary) and quadripolar
(nonlinear boundary fitted with the rectangular hyperbola curve af =m) CREs to the same
range of percentiles are presented in Table 1. Table 1 also includes the respective values
of the goodness-of-fit metric R-squared (R?) that represents the percentage of the total var-
iation in the data explained by the model fit for all the CRE configurations except for the
tripolar one. Plot of fitted boundary hyperplane model separating the absolute values of
the 10th order truncation term coefficients below and above the 5th percentile for the
PCRE configuration is presented in Figure 3. The goodness-of-fit metric R? for the fitted
model in Figure 3 was equal to 0.995 or 99.5% (Table 1).

Table 1. Values of the model fitting constant (1) and goodness-of-fit metric R-squared (R?) for a
range of CRE configurations and percentile values.

. Tripolar CRE = Quadripolar CRE PCRE SCRE
Percentile
m R? m R? m R? m R?

1st 0.098 - 0.094 0997 009 0989 0.092 0.986
3rd 0.171 - 0.166 0998 0.165 0994 0.158 0.991
5th 0.2211 - 0.214! 0.998' 0213 0995 0204 0.992
10th 0.3131 - 0.303! 0.998 0.3 0.996 0.288  0.991
15th 0.383 - 0.372 0.998 0367 0995 0352 0.99
20th 0.442 - 0.43 0998 0424 0995 0407 0.989
25th 0.494 - 0.481 0998 0474 0994 0455 0.987

! results reported in [13].
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Figure 3. Fitted boundary hyperplane model (m = 0.213; R? = 0.995) separating the absolute values
of the 10th order truncation term coefficients below and above of the 5th percentile for the PCRE
configuration.

4. Discussion

This study demonstrates that NDM based inter-ring distances optimization approach
from [13] can be extended from tripolar and quadripolar CRE configurations to PCREs
and SCREs. Obtained results are presented in Table 1 and can be interpreted easily for a
specific percentile value. For example, for the 5th percentile, optimal ranges of values of
a, f and y (for PCRE configuration) and «, 8, y and 6 (for SCRE configuration) are deter-
mined by inequalities 0 < ¢ < <y <1 and afy <0.213 and by inequalities 0 <a <<y <6
<1 and apfyd < 0.204 respectively. Moreover, this inter-ring distances optimization ap-
proach can be extended further to any larger number of concentric rings n even though
the number of decision variables increases by one for each additional concentric ring (Fig-
ure 2) further increasing the complexity of the optimization problem. For example, solving
it for the septapolar (n = 6) CRE configuration results in the total number of values of the
14th order truncation term coefficient function computed with the same increment of 1%
used in this study equal to 71,457,453. This is compared to the 156,830 values of c’°RE (a, 5,
¥, 10) and 3,762,786 values of ¢5CRE (a, 8, 7, 6, 12) functions used in this study. Determining
the points on the boundary hyperplane which requires checking every function value for
falling below the specific percentile while at least one of the surrounding values within
the 1% increment along the a, 5, 7, 6 and ¢ (for septapolar CRE) axes falls above this per-
centile, becomes computationally intensive. Fortunately, the result described below pro-
vides an opportunity to roughly estimate optimal ranges for larger values of n.

Another important result of this study is highlighting the consistency between fitted
models with high goodness-of-fit (R? in Table 1) as well as their constants (mm in Table 1)
for CRE configurations with 2 to 4 concentric rings. Specifically, fitted models range from
a < m (tripolar CRE) to aff < m (quadripolar CRE) to afy <m (PCRE) to afyo < m (SCRE).
It is not unreasonable to hypothesize that for the septapolar CRE configuration with an
additional middle concentric ring of radius er such that 0 <a <f <y <6 < e <1 the fitted
model with high goodness-of-fit would be afyde < m, etc. Moreover, even values of con-
stant m for aforementioned fitted models are consistent for a specific percentile. For ex-
ample, for the 5th percentile m ranges from 0.221 (tripolar CRE) to 0.214 (quadripolar CRE)
to 0.213 (PCRE) to 0.204 (SCRE). It is not unreasonable to hypothesize that for the septapo-
lar CRE configuration the value of m will be less than or equal to 0.204. It should also be
noted that in Table 1 values of R? are decreasing for each percentile value with an increase
in n while still remaining high (>0.985) overall. For example, for the same 5th percentile
the value of R? decreases from 0.998 (quadripolar CRE) to 0.995 (PCRE) to 0.992 (SCRE).

5. Conclusions

Ability to accurately estimate the surface Laplacian at each electrode constitutes the
primary biomedical significance of CREs and this study allows maximizing estimation
accuracy for two additional electrode configurations with larger numbers (4 and 5) of con-
centric rings n which is important since it has been shown that accuracy of Laplacian esti-
mation via CREs increases with an increase in n. Other contributions to the technical nov-
elty of this study include extension of the previous optimization results for CRE configu-
rations with fewer concentric rings (n equal to 2 and 3) to a wider truncation error percen-
tile range to demonstrate consistency between all the considered electrode configurations
that may allow estimation of optimal ranges of inter-ring distances for CREs with n > 6.
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