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ABSTRACT

People can reason intuitively, efficiently, and accurately about everyday physical events. Recent
accounts suggest that people use mental simulation to make such intuitive physical judgments.
But mental simulation models are computationally expensive; how is physical reasoning
relatively accurate, while maintaining computational tractability? We suggest that people make
use of partial simulation, mentally moving forward in time only parts of the world deemed
relevant. We propose a novel partial simulation model, and test it on the physical conjunction
fallacy, a recently observed phenomenon [Ludwin-Peery et al. (2020). Broken physics: A
conjunction-fallacy effect in intuitive physical reasoning. Psychological Science, 31(12), 1602-
1611. https://doi.org/10.1177/0956797620957610] that poses a challenge for full simulation
models. We find an excellent fit between our model’s predictions and human performance on a
set of scenarios that build on and extend those used by Ludwin-Peery et al. [(2020). Broken
physics: A conjunction-fallacy effect in intuitive physical reasoning. Psychological Science, 31(12),
1602-1611. https://doi.org/10.1177/0956797620957610], quantitatively and qualitatively
accounting for deviations from optimal performance. Our results suggest more generally how
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we allocate cognitive resources to efficiently represent and simulate physical scenes.

To interact successfully with the world around us, we
need to be able to reason flexibly about how events
could unfold - from estimating our chances of
success in a round of Pickup Sticks, to gauging the
safety of putting just one more dish on top of an
already teetering stack, to realizing when a child is
about to fall off the balance beam. People implicitly
make predictions about the properties of objects
(Leslie et al, 1998), and how they will interact
(Kominsky et al, 2017), starting as early as infancy
(Baillargeon, 2004; Spelke et al., 1992). Yet despite a
great deal of theoretical and empirical research, how
exactly the mind reasons about the unfolding of phys-
ical events remains an open question.

Some have suggested that people possess a
mental physics engine, similar in structure to the pro-
grams that run and render physical simulations in
modern video games (Battaglia et al., 2013; Hamrick
et al., 2016; Téglas et al., 2011). As with many other
structured generative cognitive models (Gerstenberg
& Tenenbaum, 2017; Tenenbaum et al., 2006, 2011;

Ullman & Tenenbaum, 2020), mental game engines
support predictions, inference, and generalization.
They explain how people are able to make intuitive
physical judgments with speed and generality by pro-
posing a mental architecture that uses approximate
physical principles to predict what might happen
next in an arbitrary scenario (Ullman et al., 2017).
Models of mental game engines have the potential
to elucidate the developmental trajectory of physical
reasoning from infancy to adulthood (Baillargeon,
2004), and to help bridge gaps between human phys-
ical judgments and current competencies in artificial
intelligence (Lake et al, 2017).

The mental simulation account has not gone
unchallenged (e.g., Marcus & Davis, 2013). Earlier the-
ories contended that physical judgments might be
better explained by heuristics or rules (Gilden &
Proffitt, 1994; Runeson et al., 2000). Later frameworks
suggested people intuitively hold pre-Newtonian the-
ories of physics, leading them to consistent miscon-
ceptions and biases (e.g., McCloskey et al, 1980,
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1983). Many of these biases may be due to modes of
presentation, elicited when people are presented
with static images or verbal descriptions (Kaiser
et al, 1992; Smith et al., 2018). More recently, the
notion of a mental game engine has been challenged
both empirically and theoretically as being computa-
tionally unrealistic, and not accurately accounting for
people’s inaccuracies in direct intuitive physics tasks
(Davis & Marcus, 2015; Ludwin-Peery et al., 2021;
Marcus & Davis, 2013).

The apparent conflict between different accounts
of intuitive physics may be amiably resolved by recog-
nizing that mental simulations need not be perfect.
Previously proposed mental simulation models of
physical reasoning are approximate and probabilistic,
quickly running through and aggregating over the
outcomes of a set of simulations (Battaglia et al,
2013; Smith & Vul, 2013), perhaps only considering a
handful at a time (Hamrick et al., 2015; Vul et al.,
2014). Beyond these noisy simulations, it has been
suggested that mental physics engines take prin-
cipled short-cuts to maintain computational tractabil-
ity (Ullman et al., 2017). This explanation is in keeping
with the more general argument that human reason-
ing is subject to constraints of computation (Lieder &
Griffiths, 2020); such short-cuts are used in engin-
eered physics engines as well, for similar tractability
reasons.

One particularly important general approximation
may be that of partial simulation. In partial simulation,
physical scenes can be handled much more efficiently
by only representing and moving forward in time the
objects and events that are deemed relevant to the
physical judgment at hand. While variations on
partial simulation have been proposed in the past
(Hegarty, 2004; Ullman et al,, 2017), they have not
been instantiated as generative computational
models. Here, we present a specific formal model of
such partial simulation, and investigate it qualitatively
and quantitatively. We argue that partial simulation is
key to efficient implementations of useful common-
sense physical reasoning.

We take as a case study the physical conjunction
fallacy. A conjunction fallacy occurs when the prob-
ability of two events AN B happening is judged as
being greater than one of the events (A or B) happen-
ing on their own (a logical impossibility). People
exhibit a conjunction fallacy in a variety of domains,
and the phenomenon has attracted a great deal of

research and debate (Hertwig & Gigerenzer, 1999;
Tversky & Kahneman, 1982). Recently, evidence of
the conjunction fallacy was found in judgments of
physical events (Ludwin-Peery et al., 2020). If physical
reasoning relies on a veridical simulation of physical
events, the conjunction fallacy should be impossible.
So, by the reasoning of Ludwin-Peery et al. (2020), if
the conjunction fallacy is real, physical reasoning
cannot be relying on mental simulations. But crucially,
this logic holds only for “full” simulation, in which
every object in the world is accounted for, and its
dynamics fully unfolded.

Here, we propose a partial simulation model of
simple two-dimensional scenes (Figure 1). Using
stimuli and methods that mirror those used by
Ludwin-Peery et al. (2020), we collected novel
human data to compare against our partial simulation
model. With a single cross-validated parameter (the
probability of simulating one of the objects when it
is not explicitly cued), we find that our model qualitat-
ively and quantitatively accounts for people’s physical
reasoning, including the existence, effect size, and
functional form of the physical conjunction fallacy.
The empirical data collection, analysis, and model
comparisons were all pre-registered (see our OSF
repository for details).

2. Model

In our framework of partial simulation, people only
include relevant objects in their mental simulation.
Such an implicit decision about what is relevant and
what is not relies on the pragmatics of the probability
judgements people make. Here, we consider prob-
ability judgments involving collisions between
simple 2D objects, of the sort used in Ludwin-Peery
et al. (2020) (see Figure 1). In these animated scen-
arios, a gray cannonball is shown en route to hitting
a pink sphere that is falling downwards. The pink
sphere can end up either falling into a pit, or
landing on a green area (the “grass”). People are
shown only the first half-second of a scenario unfold-
ing, and are then asked to make various probability
judgements about how it will resolve. (For our full
set of video stimuli, see the Video Stimuli sub-folder
of our OSF repository.)

We label p(H) the probability of the cannonball
Hitting the pink sphere, and p(G) the probability of
the pink sphere landing on the Grass. The probability
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p(G): "How likely is it that the pink sphere will end up on the grass?”

Observer simulates
cannonball:

p(S)

p(H)

——

o1

cannonball hits
| A

cannonball misses

p(G) = p(S)[f)(m - p(GI H) + i(]-p(] 1)) - p(G| “H)]

l

Observer does NOT
simulate cannonball :
1-p(S)

x

}p(G |-H)

p(G) = (1-p(8)) - p(G | -H)

p(G) = p(S)[p(H) - p(GIH) + (1-p(H)) - p(G|-H)] + (1-p(S)) - p(G | -H)

Figure 1. Model sketch using snapshots of stimuli. In our scenarios, a gray cannonball moves towards a pink sphere that is falling
downwards. When asked to judge a situation that does not explicitly invoke an object, people may or may not simulate that
object. Specifically, when asked to judge p(G) How likely is it that the pink sphere will end up on the grass?, people may simulate
the motion of the cannonball (S = 1) or not (5§ = 0), with some probability, p(S). If people simulate the cannonball (left), they
must consider the case in which the cannonball hits the pink sphere, and the case in which it misses. When not simulating
(right), people need to reason about only one situation, equivalent to the case of the cannonball missing. Together, these possibilities
lead to Equation (1), the predicted probability judgement of the pink sphere ending up on the grass. If p(S) < 1, p(G) deviates from an
optimal simulation, possibly leading to a conjunction fallacy. [To view this figure in colour, please see the online version of this

journal.]

of both of these events occurring (the cannonball hits
the sphere, and the sphere lands on the grass) is the
conjunction p(H N G). Ludwin-Peery et al. (2020)
found a physical conjunction fallacy, specifically that
people judge p(H N G) to be greater than p(G). We
label the magnitude of this probability difference as
P4t = p(H N G) — p(G). When P4 > 0, a conjunction
fallacy will be observed.

Crucially, our model also involves a term, S, which
denotes whether an object (in this case, the

cannonball) will be simulated at all. Judgments that
directly involve an object (e.g., the cannonball in the
judgment, How likely is it that the cannonball will hit
the pink sphere?) necessarily set S=1 for that object.
However, judgements that do not directly involve
an object may have S=0. We denote the probability
that an object is simulated as p(S = 1), or p(S) for
short. Because the judgment p(G) - How likely is it
that the pink sphere will end up on the grass? - does
not explicitly invoke the cannonball, the probability
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that the cannonball is simulated (or not) could vary
across different people, probability judgments, and
scenes.

If a person simulates the motion of the cannonball
(S=1), then they must consider the cases in which it
hits or misses the pink sphere. If the cannonball is
not simulated (S =0), the situation is equivalent to
the cannonball missing the sphere, p(G|—H). See
also Figure 1. Putting the two options together we
have:

p(G) = p(S) - [p(H) - p(G |H) + (1 — p(H))
PG I=HI+ (1 —pO)-plG|-H). (1)

The probability of the cannonball hitting the pink
sphere and the sphere landing on the grass is:

p(H N G) = p(G|H) - p(H). )

Because simulating the cannonball is required to cal-
culate p(H), and the cannonball is explicitly noted in
the phrasing of the question, we assume that the con-
junction requires full simulation of both the sphere
and the cannonball (S=1).

By expressing p(G) as Equation (1) and p(H N G) as
Equation (2), our model can predict when, why, and to
what degree a conjunction fallacy will be observed
(where Pgf =p(HN G)—p(G), and a conjunction
fallacy occurs when Pgr > 0). Recall that neglecting
to simulate the cannonball (i.e,, $=0) effectively sets
p(H) = 0. Therefore, when the cannonball is on a col-
lision course with the pink sphere, participants should
underestimate p(G) relative to p(H N G), leading to an
increase in Pg4r. When a hit from the cannonball would
make it likely for the pink sphere to end up on the
grass — as when the pink sphere starts either over
the hole or over the grass on the side further from
the cannonball - failing to simulate the cannonball
will again lead to an increase in Pgf, for similar
reasons. And when the pink sphere’s starting position
is such that no hit from the cannonball (i.e., a straight-
down drop) would result in it landing in the grass,
differences between judgments that result from
different degrees of simulation should become com-
pressed, thereby decreasing Pgr. So, our model
makes the non-obvious predictions that Pgr will
increase with more direct-hit trajectories (i.e,, as p(H)
increases; see Figure 2(B,C)), and decrease as the
pink sphere’s starting position moves further away
from the centre of the hole (i.e., as p(G | —H) increases;

see Figure 2(D)). Together, this results in an inverse U-
shape with the position of the sphere that is modu-
lated by the likelihood of a collision (see Figure 2(E)).

What's more, Equation (1) allows us to make inter-
mediate predictions about p(G) in particular, provid-
ing a more detailed quantification of possible
drivers of the physical conjunction fallacy. Here, our
model makes asymmetric predictions: When the
pink sphere is over the grass to the side further from
the cannonball, we expect a slight under-prediction
of p(G), because any collisions will cause it to be
more likely to land on the grass - but overall, the
probability of the pink sphere landing on the grass
is high regardless of whether or not a hit from the
cannonball was simulated. On the other hand, when
the pink sphere is over the grass on the side closer
to the cannonball, we expect a relative over-predic-
tion of p(G), because any failure to simulate the can-
nonball makes it more likely that the pink sphere
will drop straight down onto the grass rather than
getting knocked into the hole.

These qualitative trends are not noted in or
explained by the previous findings (Ludwin-Peery
et al., 2020). Importantly, the set of stimuli used by
Ludwin-Peery et al. (2020) was made up of scenes in
which the pink sphere was either partially or directly
over the hole - circumstances in which a conjunction
fallacy is most strongly predicted by our partial simu-
lation model. Here, we use a range of scenes that
more fully tiles this space, in order to test a range of
our model’s predictions.

We use Equations (1) and (2) to build a partial simu-
lation model, treating p(S) as a free parameter. We fit
this model to aggregate data (over all trials and par-
ticipants) by performing a grid search over values of
p(S) from 0 to 1, by increments of 0.01. The best-fit
values are those that produce the lowest root mean
squared error (RMSE) between the actual probability
difference  that participants produced (i.e,
Pgir = p(HN G) — p(G)), and model predictions for
this probability difference, which are computed
using the identities described above ( Equations (1)
and (2)) based on human ratings of p(H), p(G|H),
and p(G|—H). As we discuss in the Method section
below, we assess people’s judgments of each com-
ponent probability (p(H N G), p(G), p(H), p(G | H), and
p(G| —H)) separately on distinct trials. Thus, we can
investigate the extent to which these identities hold
with a single free parameter, and whether this best-
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Figure 2. Stimuli sketch and model predictions. (A) Participants saw 15 scenes (3 trajectories x 5 starting positions) in which a cannon-
ball could collide with a pink sphere. (B) Our model predicts that Py (i.e., p(H N G) — p(G)) will increase with more direct-hit trajec-
tories, (C) be more compressed when the pink sphere starts over the grass on the side closer to the cannonball, and (D) show an
inverse U-shape with the position of the sphere. (E) Combining these three produces quantitative predictions of the magnitude of
the conjunction fallacy effect (or lack thereof) across all scenes. We have also highlighted the approximate space of stimuli used
by Ludwin-Peery et al. (2020). Predictions and zero-level of Pyr were calculated using the p(S) value fit to data as described
below, but qualitative trends are invariant to this parameter setting. [To view this figure in colour, please see the online version

of this journal.]

fit value of p(S) allows the model to make accurate
predictions of human behaviour.

3. Method
3.1. Participants

Participants were recruited from Amazon Mechanical
Turk via CloudResearch. Participants were paid $4.15,
and the study took an average of 23.5min to com-
plete. As stated in our preregistration and mirroring
the power analysis in Ludwin-Peery et al. (2020), our
final sample consisted of N=60 participants (21

female; M(SD)qqe = 38(9.7) years). An additional 41
participants were dropped and replaced due to
failure to pass built-in check questions; see Procedure
below for details. (This drop rate is comparable to that
in Ludwin-Peery et al., 2020, and is not atypical for
Mechanical Turk studies; see Zhou & Fishbach, 2016.)

3.2. Materials

Using the Pymunk API for the Chipmunk 2D physics
engine (Lembcke, 2013), we created short animations
in which a gray cannonball could potentially hit a pink
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sphere, similar to Ludwin-Peery et al. (2020). In these
scenes, both objects are above a field of grass with a
hole in it (see Figure 1). The animations played for
600 ms, and stopped before the cannonball would
hit or miss the pink sphere. The scenes varied by (1)
The starting positions of the objects relative to the
hole, and (2) The trajectory of the gray cannonball.
We created a total of 15 videos (5 starting positions
X 3 trajectories) to use in our main experiment,
based on results from pilot data (see Figure 2(A),
and our OSF repository for details). The starting pos-
ition was determined by the pink sphere’s initial
location relative to the hole. The starting position of
the gray cannonball relative to the pink sphere was
identical across scenes. The five starting locations
varied by increments of 60 pixels, such that the pink
sphere started either (1) over the grass to the left!
of the hole, (2) over the left corner between the
grass and the hole, (3) directly over the hole, (4)
over the right corner between the grass and the
hole, or (5) over the grass to the right of the hole.
The trajectory of the gray cannonball was determined
by how it would hit or miss the pink sphere: (1) a
direct hit, (2) an indirect hit, or (3) a near miss.2

3.3. Procedure

After consenting to participate, participants read a
detailed description of the task and watched some
example videos, to acquaint them with the physical
properties of the objects in these scenes. Participants
then answered nine simple comprehension questions
about the task, which were very similar to those used
by Ludwin-Peery et al. (2020). (See our OSF repository
for details about these comprehension checks.) Partici-
pants who were unable to answer all nine of these ques-
tions correctly after three attempts were excluded from
subsequent analysis and replaced (N =19).

Next, participants viewed all fifteen scenes five
times in a blocked design. The order of scenes
viewed within each block was randomized across par-
ticipants, and half of the videos in each block were
mirrored horizontally. In each of the five blocks, par-
ticipants were asked to make a different probability
judgment for all fifteen scenes:

(1) p(H N G): “How likely is it that the cannonball will
hit the pink sphere, and then the pink sphere will
end up on the grass?”

(2) p(G): “How likely is it that the pink sphere will end
up on the grass?”

(3) p(H): "How likely is it that the cannonball will hit
the pink sphere?”

(4) p(G|H): “Suppose the cannonball hits the pink
sphere. How likely is it that the pink sphere
would then end up on the grass?”

(5) p(G|—H):"Imagine that the cannonball was not in
the scene at all. How likely is it that the pink
sphere would end up on the grass?”

For each probability judgment, participants first
played the video clip — which they had the option
of watching as many times as they needed - and
then provided their rating by dragging a slider on a
scale from 0 to 100 (starting position of 50). The last
frame of the clip remained on screen when partici-
pants were making their judgments. (This is identical
to the procedure used by Ludwin-Peery et al., 2020.)

To ensure that the two judgments that contribute
to the conjunction fallacy metric were not biased by
other judgments, the p(H N G) and p(G) blocks were
presented first (order counterbalanced), followed by
the p(H), p(G|H), and p(G|—H) blocks (order
counterbalanced).

After completing the main experiment (which
consisted of a total of 15 x 5 = 75 probability judg-
ments), participants provided demographic infor-
mation, and had the opportunity to give qualitative
feedback about the task. In this section, we asked par-
ticipants if they experienced any technical difficulties.
Participants were then debriefed, and thanked for
participating.

We used (pre-registered) exclusion criteria to
drop and replace participants who: failed to
answer comprehension questions (as mentioned
earlier, N=19); indicated that they were not able
to see every video presented to them throughout
the experiment (N=8); or rated p(G|—H) ( Imagine
that the cannonball was not in the scene at all.
How likely is it that the pink sphere would end up
on the grass?) as higher than 25% for any of the
three scenes in which the pink sphere started
directly over the hole (N=14). Also, prior to analys-
ing data in the aggregate, we dropped individual
data points that were more than two standard devi-
ations away from the mean for that rating on a par-
ticular scene.


https://osf.io/g25ny/?view_only=f2604a80bf8d4097ae7e7123730bda1c
https://osf.io/czs2t/?view_only=f2604a80bf8d4097ae7e7123730bda1c

4, Results

We computed the magnitude of the probability differ-
ence by first calculating p(H N G) — p(G) for each par-
ticipant on each of the 15 scenes, and then averaging
across participants. This gave one aggregated Pgy
value for each scene.

4.1. Model-free analyses

First, we performed a one-sample t-test comparing
the average Pgr magnitude to O, in order to assess
whether there was a conjunction fallacy when
analysing our data in the aggregate. The average
difference between judgments of p(H N G) and p(G)
was —0.059, which was significantly less than 0
(tsg) = —3.91, p < 0.001, two-tailed). Over all of the
scenarios tested here, participants did not show a
conjunction fallacy; instead, participants appropri-
ately rated the conjunction as less likely than its con-
stituent. This does not conflict with the findings of
Ludwin-Peery et al. (2020), as we presented partici-
pants with a mixture of trials where we would and
would not expect the conjunction fallacy to appear.
Indeed, in the subset of trials that roughly maps on
to the stimuli set used by Ludwin-Peery et al. (2020)
(all three trajectories in starting position 2, and the
direct-hit trajectory in starting position 3; see Figure
2(E)), we do find an overall conjunction fallacy
(Pgir = 0.090; t(s9) = 4.19, p < 0.001, two-tailed).

Qualitatively, our model predicts that the
magnitude  of the  probability difference
Pgr = p(HN G) — p(G) will increase linearly with

more direct-hit trajectories, and show an inverse U-
shape with position. As can be seen in (Figure 3(A)),
both of these predictions were confirmed. We statisti-
cally tested these predictions by performing a 2-way
repeated measures ANOVA, with the starting position
(5 levels) and trajectory (3 levels) of each scene
predicting Pg. Both main effects were significant
(Starting position: Fi4216y = 527, p < 0.001,
m, = 0.66; Trajectory: F21¢ = 31.5, p < 0.001,
*rﬁ, = 0.54), as was the interaction
(Fg216) = 3.4 p = 0.001,1]3, = 0.11). Polynomial con-
trasts were also performed on starting position and
trajectory. Supporting our predictions, the best-fit
polynomial was quadratic for starting position
(tqosy = 12.8, p < 0.001), and linear for trajectory
(tsqy = 7.8, p < 0.001).

COGNITIVE NEUROPSYCHOLOGY (&) 7

4.2. Model-based analyses

As described in the Model section above, we treated
p(S) as a free parameter and found the value that pro-
duced the lowest RMSE between participant-pro-
duced Pgir and model-predicted Pg¢. The best-fitting
value of p(S) was 087, which yielded low error
(RMSE = 0.13). Correlations between model predic-
tions and human values for P4 showed an excellent
fit (ry3 = 0.91, p<0.001; see Figure 3(A-C)). We
found good reliability of this best-fit value for p(S) in
1000 bootstrapped samples of parameter estimates
(95% Cl = [0.79, 0.95]). We also looked separately at
our model’s ability to predict participant-produced
p(G), given the same best-fit value of p(S) found
above. Again, we found an outstanding fit between
model predictions and human performance
(RMSE = 0.069; r;13 = 0.94, p<0.001; see Figure 3(D-
F)).

Finally, we investigated our model’s ability to
predict participant-Pg at the individual level, both
by participant and by scene. To do this, we computed
RMSE between model predictions for Pgr and partici-
pant-produced Pg using cross-validated values for
p(S), in three different ways: (1) Aggregating over all
participants, fitting a single p(S) to half of the
scenes; (2) Allowing p(S) to vary by participant,
finding best-fit p(S) values for each participant on
half of the scenes; and (3) Allowing p(S) to vary by
scene, finding best-fit p(S) values on each scene for
half of the participants. We then compared aggregate
RMSE to participant RMSE and trial RMSE, in order to
assess the extent to which our model could explain
individual differences in P (where ARMSE = individ-
ual RMSE - aggregate RMSE). We found that individ-
ual participant fits only outperformed aggregate fits
on 62% of the 1000 cross-validation runs (average
ARMSE = 0.163; 95% Cl=[—0.384,0.999]); and
trial fits only outperformed aggregate fits 8% of the
time (average ARMSE = —0.072; 95%
Cl=[—0.116, — 0.014]). These results can come
about for three reasons, which are not mutually exclu-
sive. First, model fits on the aggregate data were
already near ceiling, making it difficult to detect
whether a model fit to individual data improves the
fit. Second, individuals may indeed vary in their likeli-
hood of simulating the full scene trial by trial. Third,
our design required relatively few trials per partici-
pant, leading to limited data for the purposes of
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Figure 3. Empirical results and comparison to model. (A) Mean participant P4 values (p(H N G) — p(G)) by scene, with best-fit poly-
nomials for each trajectory and Bayesian 95% credible interval of the polynomial fit. Error bars = +/— the standard error. When
P4 = 0, a conjunction fallacy is present; when Py << 0, it is absent. (B) Mean model predictions for Py values using the best-fit
p(S) value = 0.87, with best-fit polynomials for each trajectory, and Bayesian 95% credible interval of the polynomial fit. Error bars
= +/— the standard error. (C) The correlation between participant data and model predictions for Py, with bootstrapped 95% confi-
dence interval around the best-fit line (r(13) = 0.91). (D) Mean participant p(G) values by scene, with best-fit polynomials for each
trajectory and Bayesian 95% credible interval of the polynomial fit. Error bars = +/— the standard error. (E) Mean model predictions
for p(G) values using the best-fit p(S) value = 0.87, with best-fit polynomials for each trajectory, and Bayesian 95% credible interval of
the polynomial fit. Error bars = +/— the standard error. (F) The correlation between participant data and model predictions for p(G),
with bootstrapped 95% confidence interval around the best-fit line (r(13) = 0.94). [To view this figure in colour, please see the online
version of this journal.]

individual model fits. Future work can explore the role
of individual differences or scene effects with more
trials.

Taken together, our results suggest that the phys-
ical conjunction fallacy can be qualitatively and quan-
titatively explained by most people performing full
simulation most of the time, and occasionally per-
forming partial simulation by not moving an uncued
object forward in time.?

5. Discussion

Intuitive physical reasoning is a fundamental part of
everyday life, from mundane activities, to flexible
responses in novel situations, to planning complex
actions. The mental physics engine framework pro-
poses that the accuracy and efficiency of intuitive
physics can be explained by an approximate simu-
lation of possible outcomes. Counter-proposals
argue that mental physics engines are theoretically
and empirically dubious. Recent evidence found
that physical reasoning is subject to logical fallacies
that violate the axioms of probability. If mental

physics engines are polished mirrors of reality, such
fallacies are impossible. But we see through a glass,
darkly. Mental engines do not have to be perfect.
Like anything human and taxed by computational
resource limitations, they almost certainly are not.
Here, we focussed on a particularly useful approxi-
mation that may be operating in mental physics
engines - partial simulation. We took as a case study
the physical conjunction fallacy, and found that it
could be well explained by some people failing to
simulate part of a scene. We presented a model that
instantiated this theory, and found a good correlation
between our model’s predictions and people’s
responses. Beyond simple correlations, our model
uses a single variable to explain several empirical
findings: why the conjunction fallacy is of the particu-
lar magnitude that it is; why it presents for some scen-
arios and not others; why it depends linearly on the
trajectory of one object, and quadratically on initial
position of a second object. Such empirical findings
can seem disparate and puzzling, but turn out to
come naturally from a single, simple, partial simu-
lation. Of course, this work is not the first to



propose partial simulation as a cognitive strategy in
intuitive physics (Hegarty, 2004; Ullman et al,, 2017).
However, our formalization of this phenomenon is
the first that quantitatively explains how the effects
of partial simulation could be brought to bear in
everyday reasoning.

It is important to emphasize that we are not con-
testing the findings from Ludwin-Peery et al. (2020)
- quite the opposite, as their results reflect exactly
what we would expect to see under our partial simu-
lation account. We are encouraged by this scientific
discourse, which exemplifies the tenets of open
research. Ludwin-Peery et al. (2020) raised a reason-
able objection to mental simulation theories, and pre-
sented compelling empirical evidence to support
their objection. They made the deliberate decision
to make their study materials and data openly avail-
able through online repositories, which helped us
immensely in developing our model and experiments.
Ultimately, the synthesis of this cycle (proposals
leading to challenges leading to revised proposals)
is precisely the process that is going to help drive
forward the development of our computational
models and theories of cognition. We are excited for
the scientific understanding of intuitive physics that
we expect to emerge from these debates: A model
of physical reasoning that includes “shortcuts” the
mind might take to overcome cognitive limitations,
that can in turn explain the set of errors and biases
that we display when reasoning about physical
events.

Our partial simulation model provides insight into
the cognitive processes that underlie physical
reasoning abilities, and explains possible sources of
error in these judgments. But, we are not attempting
to directly explain the origins of the conjunction
fallacy per se. While we use the physical conjunction
fallacy as a case study here, the conjunction fallacy
is a pervasive phenomenon - and many of its
instantiations are unlikely to require mental simu-
lation. However, we do believe our model and
others like it may be able to help account for pat-
terns in other kinds of physical judgments. This
includes the potential to explain deviations from
perfect prediction found in developmental studies,
such as when young children fail to take the pres-
ence of a barrier into account when making predic-
tions regarding the final trajectory of a moving
object (e.g., Hood et al, 2000).
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In this paper, we used one type of scenario from
Ludwin-Peery et al. (2020) in which a cannonball
could collide with a pink sphere. But in fact, Ludwin-
Peery et al. (2020) found evidence of a physical con-
junction fallacy across other kinds of scenes, as well
(e.g., block towers; a ball bouncing off a backboard
and into a bucket; etc.). And other forms of “partial
simulation” might explain more classical errors of
physical reasoning - e.g., the fact that people
believe an object dropped from an airplane will fall
straight down (McCloskey et al., 1983), which has tra-
ditionally been considered an error in the reference
frame of the plane, might instead be explained as a
simulation that ignores horizontal velocity. Testing
the extent to which a more general form of our
model applies across a variety of scenarios could
help us understand the ubiquity of partial simulation
in physical reasoning more broadly.

While our model provided excellent fit to our
empirical data, there are also interesting points of
divergence. For instance, although model predictions
and participant responses both reflected a similar
qualitative asymmetry in the compression of Py
between trajectories for starting positions over the
grass on the near versus far side of the hole, our
model predicts that there should be little to no con-
junction fallacy for starting positions 0 and 1 (see
Figure 3(B)). Yet in our empirical data, we see that in
the aggregate, participants did in fact commit a con-
junction fallacy in these cases (see Figure 3(A)). It is
possible - even likely - that cognitive processes
other than partial simulation could explain errors in
physical reasoning. For example, lower-level percep-
tual features of scenes (e.g., the salience of particular
objects relative to others) may influence attention
and subsequent memory for starting positions and
trajectories, which could systematically bias prob-
ability judgments. It could also be that perceptual
cues contribute to implicit decisions about whether
or not to simulate. Digging deeper into the cases in
which our model diverges from people’s judgments
is a fruitful avenue for future research.

Our findings have promising implications for Al
models of physical reasoning. A flexible system for
reasoning about physical events is a fundamental
aspect of desired machine intelligence (Kuipers,
1986). Yet our current state-of-the-art engineered
systems come nowhere near human competence on
these tasks. Recent algorithms have demonstrated
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circumscribed success in modelling specific situations
like how a stack of objects will fall (Groth et al., 2018)
or how fluids will pour (Sanchez-Gonzalez et al., 2020).
But these same models often fail to generalize outside
of the scenarios they were trained on Bear et al.
(2021), and it is a challenge to get them to make
useful predictions in the real world (Kloss et al.,
2020). These systems may be hitting a particular
stumbling block, in that they are engineered to
make veridical predictions of all aspects of a
dynamic scene, often to the point of predicting
images at the pixel level (Babaeizadeh et al., 2021).
By contrast, efficient simulation means choosing the
right idealization (Davis & Marcus, 2015; Fisher,
2006). In practice, systems that predict and plan
over appropriately reduced representations are also
more efficient (Agia et al.,, 2021; Silver et al., 2021).
Al systems that reason more reasonably about
physics could benefit from incorporating the same
shortcuts that humans might be using, including
limited samples (Battaglia et al., 2013; Hamrick et al.,
2015), simplified shape representations (Smith et al.,
2019; Ullman et al., 2017), or partial simulation as
studied here.

In line with recent work on grounded common-
sense reasoning (Bisk et al., 2020; Yi et al, 2019), the
current findings highlight the importance of building
formal frameworks that take seriously the combi-
nation of language, pragmatics, and physics. Under
our model of partial simulation, people might not
simulate an object when that object is not invoked
by pragmatics. It is striking that, despite the promi-
nent role of the cannonball in our scenes, participants
sometimes deemed it irrelevant enough to the prob-
ability judgment at hand that they did not simulate it
at all. This suggests that people may be making rich
inferences from the pragmatics of the question
itself, drastically constraining the space of simulations
that could thus result. Of course, when and why
people might fully versus partially simulate a scene
remains an open question. Partial simulation likely
relies on some interplay between particular scene fea-
tures, and pragmatic inferences. To really understand
the role of language in implicit simulation decisions
and physical judgments more broadly, we will need
models that translate the pragmatics of the question
into the relevant simulation. This has long been a
challenge for mental physics engines: When asked
whether a tower will fall, what exactly do people

think is meant by “fall”? (See Battaglia et al., 2013.)
Even in the absence of linguistic cues, people may
use implicit practical considerations of what is rel-
evant enough to mentally move forward. How con-
siderations of relevance are made are, however,
outside the scope of this paper. Deviations from
optimal physical reasoning can come about from a
partial simulation, rather than a failure to simulate
things at all. Our model and behavioural findings
support this claim, and help explain a specific
pattern of deviations in a well-described physical
reasoning situation. If we had world enough, and
time, full simulation were no crime. Partial simulation
can lead to errors in judgment, but on the whole can
get things reasonably right, reasonably fast. Much like
concluding sentences, simulations don’t have to be
perfect; they can just be good enough.

Notes

1. Across all of the scenes we created, the cannonball starts
over the grass to the left side of the hole, and its trajec-
tory is left-to-right. Therefore, the grass on the left side
of the hole is the "near” side with respect to the cannon-
ball, and the grass on the right side of the hole is the
“far” side. As we describe in the Procedure below, we
also mirrored half of the trials horizontally; in these
cases, the right side of the hole was closer to the
cannonball.

2. Separately collected pilot data certainty ratings tie these
hit/miss characterizations directly to psychological cer-
tainty judgements.

3. Because we had limited data for the purposes of individ-
ual model fits, we cannot say the degree to which
p(S) = 0.87 represents 87% of participants simulating
across all trials, or 87% of the trials being fully simulated
by all participants, or some mixture of the two. Rather,
we can only infer that a partial simulation model in
which full simulation occurs at the group level 87% of
the time provides the best quantitative fit to our empiri-
cal data.
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