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Abstract. The third named author has been developing a theory of
“higher” symplectic capacities. These capacities are invariant under tak-
ing products, and so are well suited for studying the stabilized embed-
ding problem. The aim of this note is to apply this theory, assuming
its expected properties, to solve the stabilized embedding problem for
integral ellipsoids, when the eccentricity of the domain has the opposite
parity of the eccentricity of the target and the target is not a ball. For
the other parity, the embedding we construct is definitely not always
optimal; also, in the ball case, our methods recover previous results of
McDuff, and of the second named author and Kerman. There is a simi-
lar story, with no condition on the eccentricity of the target, when the
target is a polydisc: a special case of this implies a conjecture of the
first named author, Frenkel, and Schlenk concerning the rescaled poly-
disc limit function. Some related aspects of the stabilized embedding
problem and some open questions are also discussed.
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1. Introduction

1.1. The main results

Let X1 and X2 be four-dimensional symplectic manifolds. There has recently
been considerable interest in understanding the stabilized symplectic embed-
ding problem, namely the question of whether or not there exists a symplectic
embedding

X1 × CN s
↪→ X2 × CN . (1)

Indeed, certain techniques which are available for studying four-dimensional
embedding problems do not have a clear analogue in higher dimensions, and
so it is interesting to understand how different the stabilized problem is from
the four-dimensional one. For more about the problem, we refer the reader
to [7,8,14,15,21], the references therein, and the discussion below.

The embedding problem (1) is already quite subtle when X1 and X2

are simple shapes, like ellipsoids

E(a, b) :=
{

π|z1|2
a

+
π|z2|2

b
≤ 1

}
⊂ C2,

balls B(c) := E(c, c), polydiscs

P (a, b) :=
{

π|z1|2
a

≤ 1,
π|z2|2

b
≤ 1

}
⊂ C2,

and cubes C(c) := P (c, c). (Here, CN is equipped with its standard symplectic
form.) For example, what is known about the stabilized ellipsoid-into-ball
problem has a curious mix of rigidity and flexibility: much about this question
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remains unknown. In contrast, the stabilized polydisc-into-ball problem is
completely solved [29, Thm. 1.3.5] (for another approach, see [13]) and the
answer is described by a very simple function, namely a piecewise linear
function with two pieces.

The starting point for our investigations here is the stabilized ellipsoid-
into-ellipsoid problem. This is a special case of Problem 44 in the influential
problem list [22, Ch. 14] by McDuff and Salamon, which asks for a solution to
the symplectic embedding problem for 2n-dimensional symplectic ellipsoids:
we can view stabilized ellipsoids as 2n-dimensional ellipsoids with most ar-
guments infinite. Consider the function cN

b,ell(a), defined to be the infimum,
over λ, such that there exists an embedding

E(1, a) × CN s
↪→ λ · E(1, b) × CN , (2)

where we write λ ·E(a, b) for E(λa, λb). This function for a, b ≥ 1 completely
determines the stabilized ellipsoid-into-ellipsoid problem, and we would ide-
ally like to compute it.

At present, this looks out of reach. As mentioned above, even the case
b = 1 seems quite subtle; in fact, it is the focus of a conjecture by McDuff
[21]. And, when b > 1, almost nothing is currently known. However, it turns
out that when a and b are integers, there is a lot more traction.

Theorem 1.1. Assume that b > 1 is an integer, and let a ≥ b + 1 be any
integer with parity the opposite of b. Then, for N ≥ 1

cN
b,ell(a) =

2a

a + b − 1
.

We discuss the hypothesis a ≥ b + 1 here in Sect. 1.2.2, where we show
that it is essentially necessary.

A key aspect of our proof of the above theorem, which is one of the
motivations for writing this note, involves the obstructions required to prove
it. Symplectic embedding problems are profitably studied by symplectic ca-
pacities; see, e.g., [3]. The third named author has recently defined a new
sequence of symplectic capacities gk which play a starring role here. These
capacities gk are invariant under taking products with C and so give obstruc-
tions to the stabilized problem. As we will see in the proof of Theorem 1.1,
the gk are very well adapted to proving Theorem 1.1, and the obstructive
side of the proof follows quite quickly once we can marshal them to our ben-
efit. The constructive side of the proof comes from a variant of the stabilized
folding construction pioneered by the second named author.

Disclaimer 1.2. Our high-level discussion of symplectic capacities in Sect. 2
follows [28], which in turn assumes the existence of rational symplectic field
theory with its expected functoriality properties as outlined in [9]. Apart
from simple special cases, such a formalism is known to require a virtual
perturbation framework such as the theory of polyfolds; for the current status
of this and related projects, we refer the reader to, e.g., [1,10,16,18,19,26]
and the references therein.

The proofs of our main results on embedding obstructions in Sect. 3 take
the properties of the capacities gk summarized in Theorem 2.1 as a black box,
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together with some computations from [28] which we recall in Sect. 3.1.2. Our
proof of Theorem 1.1 furthermore requires the formula for gk(E(1, a)) which
will appear in the forthcoming work [25]. The latter reference also constructs
an ersatz version of these capacities in the special case of ellipsoids without
appealing to virtual perturbations; these give equivalent obstructions for sta-
bilized embeddings between four-dimensional ellipsoids, and the method also
readily adapts to the case of ellipsoid domain and polydisk target. Our proof
of Proposition 1.7 further depends on the formalism of [29], which is based
on [28] and the forthcoming [30].

In dimension four, when b is integral, there is an equivalence of embed-
dings

E(1, a)
s

↪→ λP (1, b), E(1, a)
s

↪→ λE(1, 2b), (3)

that is, one of these embeddings exists if and only if the other does, see for
example [6, Rmk. 1.2.1]. Therefore, it is natural to compare Theorem 1.1
with the stabilized ellipsoid-into-polydisc problem. Here, we get a somewhat
parallel, but in fact stronger result. Define cN

b,poly(a) to be the infimum, over
λ, such that an embedding

E(1, a) × CN s
↪→ λ · P (1, b) × CN (4)

exists.

Theorem 1.3. Let a ≥ 2b − 1 be any odd integer. Then, for N ≥ 1

cN
b,poly(a) =

2a

a + 2b − 1
.

We remark that, in contrast to Theorem 1.1, there is no requirement here
that b is an integer. As with the previous theorem, the hypothesis a ≥ 2b − 1
is discussed in Sect. 1.2.2, where it is shown to be necessary.

1.2. Applications and remarks

1.2.1. Steps and the rescaled embedding function. One of our motivations
for studying Theorem 1.3 is that it readily implies a conjecture of the first
author, Frenkel, and Schlenk about the stabilized ellipsoid-into-polydisc func-
tion, namely Conjecture 1.4 in [6], which we now explain.

First, we explain the motivation behind that conjecture. As alluded to
above, at present, fully computing the function cN

b,poly(a) for N ≥ 1 seems
quite difficult. However, there is a related function, called the rescaled limit
function ĉN

b,poly, see (5), that looks more tractable and in particular could be
computed given a resolution of the aforementioned Conjecture 1.4.

To elaborate, the function c0
b,poly(a) for b ∈ Z≥2 was previously com-

puted by the first author, Frenkel and Schlenk in [6]. It was shown that the
function c0

b,poly(a) is given by the volume constraint
√

a
2b , except on finitely

many intervals. On all but one of these intervals, the function c0
b,poly(a) is

given by a “linear step”: it is piecewise linear, with a single non-smooth
point, called its corner, where its graph changes from lying on a line through
the origin to being horizontal. On the remaining interval, it is also piecewise
linear with a single non-smooth point, but the linear piece does not lie on
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a line through the origin—it has an intercept, and so we call it the “affine
step”. For more detail, see [6].

Conjecture 1.4 asserts that the linear steps from above are “stable”. Of
course, for any a, we have cN

b,poly(a) ≤ c0
b,poly(a), by taking the product with

the identity mapping. The conjecture, then, is that for a in the domain of the
linear steps, we have cN

b,poly(a) = c0
b,poly(a). To state that conjecture precisely,

we define, for k ∈ {0, 1, 2, . . . , �
√

2b	}, the numbers

ub(k) =
(2b + k)2

2b
, vb(k) = 2b

(
2b + 2k + 1

2b + k

)2

.

We always have ub(k) < vb(k) except if k2 = 2b; for ub(k) < a < vb(k), the
graph of cN

b,poly(a) is precisely the linear steps mentioned above.

Corollary 1.4. (Conj. 1.4 of [6]) Assume that b is an integer and

ub(k) ≤ a ≤ vb(k).

Then

c0
b,poly(a) = cN

b,poly(a) = c0
2b,ell(a) = cN

2b,ell(a).

The final two equalities here, concerning the ellipsoid-into-ellipsoid func-
tion, were not actually part of Conjecture 1.4; however, they fall out imme-
diately from our proof.

We now state the relevance of this to the rescaled limit function. The
background is that [6] defined1 the rescaled functions

ĉN
b,poly(a) := 2bcN

b,poly(a + 2b) − 2b, a ≥ 0, (5)

to capture the qualitative behavior of the obstructive part of the embedding
function c0

b,poly that goes beyond Gromov’s non-squeezing theorem. It was
shown in [6, Eq. 1.3] that the functions ĉ0

b,poly(a) converge, as b → ∞, uni-
formly on bounded sets to a pleasing answer, namely the “infinite regular
staircase” described by the function c∞(a) : [0,∞) → R whose graph consists
of infinitely many linear steps of width 2; see [6, Fig. 1.7] and Fig. 1 below.
For more about the motivation for studying the rescaled function, we refer
the reader to the discussion in [6, Sec. 1.2].

Corollary 1.5. The rescaled limit function is stable. That is, for any N ∈ Z≥0

and integral b, we have

lim
b→∞

ĉN
b,poly(a) = c∞(a), a ∈ [0,∞)

uniformly on bounded sets.

We will explain the proofs of these corollaries in Sect. 3.2.

1Actually, only the N = 0 case of these functions was defined, but the definition extends
verbatim to general N , and that will be our working definition here.
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Figure 1. The rescaled limit function. Each step has width
two, and consists of a line of slope one and a horizontal line

1.2.2. The first step. We next remark that, in the context of Theorem 1.1,
the lower bound on a is essentially necessary. Indeed, if a ≤ b, then inclusion
gives an embedding which Gromov’s non-squeezing theorem shows is optimal.
That is, cN

b,ell(a) = 1 for all N ≥ 0. There is a similar story for Theorem 1.3
for a ≤ 2b − 1, but it requires a more interesting embedding. With a little
more work, we can extend the range of a to work out at least part2 of the
“first step” of the embedding functions considered in this note.

Proposition 1.6. Let b ∈ R≥1. Then:
• The function cN

b,ell starts as follows:
– We have cN

b,ell(a) = 1, 1 ≤ a ≤ b.

– We have cN
b,ell(a) = a

b , b ≤ a ≤ �b	 + 1.

• The function cN
b,poly starts as follows. Let a0 be the smallest odd integer

that is no less than 2b − 1.
– We have cN

b,poly(a) = 1, 1 ≤ a ≤ a0−1
2 + b.

– We have cN
b,poly(a) = 2

a0+2b−1a, a0−1
2 + b ≤ a ≤ a0.

Note that there is no restriction above that a or b be integral, in contrast
to the theorems in the previous section.

1.2.3. The case b = 1. In view of Theorem 1.1, it is natural to ask about the
case b = 1. This was previously studied by McDuff [21], who proved an anal-
ogous result for any integer congruent to two, modulo three; we can recover
this result with our methods, as well; see Example 1 in Sect. 3.1. Compar-
ing our result to McDuff’s, it is interesting to note the switch from three
periodicity to two periodicity as b increases from one. There is a substantial

2In fact, Proposition 1.6 likely describes the entirety of the first step, although we do not
address this here.
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mystery about the structure as b ranges from 1 to 2, see Sect. 4.3, which we
plan to investigate in follow-up work.

1.2.4. The other parity. In view of the above results, it is natural to ask:
what happens for a an integer of a parity not covered by our theorems. We
certainly do not have a satisfactory answer to this at present. However, using
the more general calculus of [29], together with the aid of the computer, we
can show for example:

Proposition 1.7. For 6 ≤ a ≤ 100 an even integer, the conclusion of Theo-
rem 1.1 holds for b = 2, that is for N ≥ 1, we have

cN
2,ell(a) =

2a

a + 1
.

Similarly, for 6 ≤ a ≤ 100 an even integer, the conclusion of Theorem 1.3
holds for b = 1, that is for N ≥ 1, we have

cN
1,poly(a) =

2a

a + 1
.

Remark 1.8. The assumption a ≥ 6 in Proposition 1.7 is necessary. Indeed,
for a, less than the squared silver ratio σ2 ≈ 5.83, c0

1,poly(a) is an infinite
staircase [11]. In particular, we have cN

1,poly(a) ≤ c0
1,poly(a), and c0

1,poly(a) is
strictly less than 2a

a+1 for a = 2, 4. The same applies for cN
2,ell, since we have

c0
2,ell = c0

1,poly.
For more examples, suppose that a = 2b + 2k + 2 is an even integer.

Referring to Sect. 1.2.1, we see that vb(k) ≤ a ≤ ub(k + 1) which for k ≥ 2
implies that c0

b,poly(a) =
√

a
2b , that is, there is a volume filling embedding

from E(1, a) into a scaling of P (1, b) (the point a = 2b + 4 lies in the affine
step). By (3), this is equivalent to the existence of a volume filling embedding
from E(1, a) into a scaling of E(1, 2b). Now, volume filling embeddings in
dimension 4 improve on the folding construction giving Theorem 1.1 when
a < b + 1 + 2

√
b. Hence, the conclusion of Theorem 1.1 is false when a and b

are even and b + 4 < a < b + 1 + 2
√

b.

Structure of the note

In Sect. 2, we review the construction of the higher symplectic capacities of
the third named author; our discussion here includes some informal elements
to help convey the intuition. Then, in Sect. 3, we give the proofs of our results.
The final Sect. 4 discusses some natural follow-up questions to this work.

2. New capacities

We first briefly review the capacities gk defined for k ∈ Z≥1 in [28]. These
are part of a more general family of capacities gb indexed by elements in the
symmetric tensor algebra SQ[t] =

⊕∞
k=1(⊗kQ[t])/Σk. We give here only an

impressionistic sketch, omitting some of the more technical details. In addi-
tion to the computations described in Sect. 3.1.2, the key structural properties
we will need are summarized in the following:
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Theorem 2.1. [28] For any Liouville domain X and k ∈ Z≥1, we have gk(X) ∈
R>0 with the following properties:
(1) symplectomorphism invariance: if X ′ is another Liouville domain which

is symplectomorphic to X, we have gk(X) = gk(X ′)
(2) scaling: if X ′ is the Liouville domain obtained by scaling the Liouville

form of X by a constant c ∈ R>0, we have gk(X ′) = cgk(X)
(3) monotonicity: if X ′ is another Liouville domain and there exists a sym-

plectic embedding X
s

↪→ X ′, then we have gk(X) ≤ g(X ′)
(4) stabilization: we have gk(X × B2(S)) = gk(X), provided that S >

gk(X).3

Note that (3) actually implies (1).

2.1. The first approximation

Suppose that X is a Liouville domain. We work with almost complex struc-
tures J on the symplectic completion X̂ which are admissible in the sense
of symplectic field theory (SFT). Fix a point p ∈ X along with a local J-
holomorphic divisor D passing through p. To first approximation, gk(X) is
simply the minimal energy of a punctured J-holomorphic sphere u : Σ → X̂
with some number l ≥ 1 of positive ends asymptotic to Reeb orbits in ∂X,
such that u passes through p and is tangent to D to order k − 1. We denote
this tangency constraint by <T k−1p> (see [24] and the references therein for
more details).

To see why this should be monotone with respect to symplectic embed-
dings, the basic point is that given such a curve u in X̂ and a symplectic
embedding X ′ s

↪→ X, we can neck-stretch along ∂X ′. This forces u to break
into a pseudoholomorphic building consisting of

• a curve utop (possibly disconnected) in the completed symplectic cobor-
dism ̂X \ X ′ with the same positive asymptotics as u

• a curve ubot in X̂ ′ which inherits the tangency constraint <T k−1p>.

Since ubot is a candidate minimizer for gk(X ′) and it has energy at most that
of u, this shows that gk(X ′) ≤ gk(X).

2.2. Behavior under stabilization

One role of the local tangency constraint in the definition of gk is to cut
down the dimension of families of curves, thereby giving access to curves
of higher Fredholm index. There are certainly other natural geometric con-
straints which lower the index, the most obvious being to impose k distinct
point constraints. In fact, doing so leads to the “rational symplectic field
theory capacities” (RSFT) first considered in [17].

However, point constraints behave in a rather complicated way under
dimensional stabilization. The RSFT capacities are therefore perhaps not well
suited for stabilized problems (although they may have other applications yet

3Strictly speaking, X × B2(S) is not a Liouville domain, since it has corners, although

these can be removed by an arbitrarily small smoothing. See [28, §5.4] for a more precise
formulation. Property (1) is of course automatic given property (3).
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to be discovered). For example, note that each point constraint is codimension
2 when dim X = 4, but is generally codimension 2n − 2 when dim X = 2n.
This means that the same curve with the same point constraints has negative
total index after stabilizing by CN with N large enough.

By contrast, local tangency constraints behave quite well with respect
to stabilization. This is closely related to the observation of Hind and Kerman
from [14] that punctured rational curves with exactly one negative end have
stable Fredholm index. The stabilization property in Theorem 2.1 is also
closely related to the stabilization theorems appearing in the works [7,8,21].

2.3. The naive chain complex

Unfortunately, the definition given in Sect. 2.1 is not particularly robust, since
it might depend on the choice of almost complex structure J . Indeed, if we
try to deform J to some other almost complex structure J ′, somewhere along
the way the curve u might degenerate into a pseudoholomorphic building and
then disappear. Therefore, to get something which is truly a symplectomor-
phism invariant, we have to be a bit more “homological”. This is where the
chain complexes coming from Floer theory or symplectic field theory become
essential.

The idea is to associate with X a filtered chain complex C(X), where
• as a vector space, C(X) is the (graded) polynomial algebra on the (not

necessarily primitive) Reeb orbits of ∂X
• the differential is defined by counting rigid-up-to-translation connected

rational curves in R × ∂X with several positive ends and one negative
end

• the filtration is by the symplectic action functional, or equivalently by
the periods of Reeb orbits.

Similarly, given an exact4 symplectic cobordism W with positive end ∂+W =
∂X and negative end ∂−W = ∂X ′, we define a chain map from C(X) to
C(X ′) by counting rigid possibly disconnected rational curves in W , such
that each component has several positive ends and one negative end. By
Stokes’ theorem, both the differential and the cobordism map are action-
nondecreasing and hence preserve the filtrations.

However, the above prescription does not work on face value due to
transversality issues. Namely, to show that the differential squares to zero
and that the cobordism map is a chain map, the typical strategy is to an-
alyze analogous moduli spaces of dimension one and show that (after com-
pactifying) their boundaries give precisely the desired relations. However, it
is well known that the relevant SFT moduli spaces are rarely transversely
cut out for any choice of generic J . Multiply covered curves tend to appear
with higher-than-expected dimension, and this spoils our strategy.

2.4. Input from symplectic field theory

One way is get around this issue is to count curves in a “virtual” sense, by
introducing suitable abstract perturbations which allow more room to achieve

4There is also a nice story extending the theory to non-exact symplectic cobordisms, but

we will ignore this for simplicity.
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transversality. This is the basic strategy being pursued to define SFT in full
generality by various groups, with much recent progress but consensus not
yet achieved (see, e.g., [1,10,16,18,19,26] and the references therein).

In the setting of SFT, the desired invariant C(X) can be written as
C̄Hlin(X). Here, CHlin(X) is the linearized contact homology of X, which
is roughly the chain complex generated by Reeb orbits of ∂X with differen-
tial counting cylinders in the symplectization R × ∂X.5 Linearized contact
homology only involves curves with one positive end, but by incorporating
curves with several positive ends, we get an L∞ structure, consisting of l-
to-1 operations for all l ≥ 1 satisfying various compatibility conditions. We
can conveniently package this L∞ structure into one large chain complex
C̄Hlin(X), the bar complex.

2.5. From spectral invariants to capacities

Getting back to the high-level viewpoint, we have a filtered chain complex
C(X) for each Liouville domain X, and filtration-preserving chain maps Ξ :
C(X) → C(X ′) for any (exact) symplectic embedding X ′ s

↪→ X. Now, for
any class α in the homology of C(X), define cα(X) to be the minimal action
of any closed element of C(X) which represents α. By a simple diagram
chase, we have c[Ξ](α)(X ′) ≤ cα(X), where [Ξ] denotes the homology-level
map induced by Ξ.

At first glance, this construction appears to give a new family of sym-
plectic capacities indexed by homology classes of C(X). However, there is
still one issue, which is that we need a canonical way to reference these ho-
mology classes. Indeed, in principle, the homology level map [Ξ] might be
quite nontrivial, so how do we know when two numbers cα(X) and cβ(X ′)
can be compared to each other?

This is where the tangency constraints come in. The claim is that by
counting possibly disconnected curves in X̂ with each component ui satisfying
a <T ki−1p> constraint for some ki ∈ Z>0, we get a chain map

εX<T •> : C(X) → SQ[t].

For example, a term t3 
 t2 
 t5 in SQ[t] corresponds to counting curves with
three components which satisfy constraints <T 3p>, <T 2p>, and <T 5p>,
respectively. Moreover, these maps are natural in the sense that the compo-
sition εX′<T •> ◦ Ξ agrees with εX<T •> up to filtered chain homotopy.

Now, for any b ∈ SQ[t], we define the capacity gb(X) ∈ R>0 by

gb(X) := inf{cα(X) : [εX<T •>](α) = b}.

This defines a symplectomorphism invariant which scales like symplectic area,
and for any symplectic embedding X ′ s

↪→ X, we have gb(X ′) ≤ gb(X). In
the case that X is Liouville deformation equivalent to a ball, one can show
that εX<T •> is actually a chain homotopy equivalence, so every spectral
invariant of C(X) corresponds to some choice of b.

5More precisely, we only allow “good” Reeb orbits, and we count cylinders which are
additionally “anchored” in X.
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Finally, to define the simplified capacities gk, let π1 : SQ[t] → Q[t]
denote the projection to tensors of length 1 (e.g., t2 + t3 
 t2 
 t5 maps to
t2). We define

gk(X) := inf
b: π1(b)=tk−1

gb(X).

In essence, this means we look for the collection of Reeb orbits in ∂X of mini-
mal action which is closed with respect to the differential of C(X), and which
bounds a connected rational curve in X̂ satisfying a <T k−1p> constraint (but
disregarding any disconnected curves bounded by the same collection).

2.6. The case of ellipsoids

To get some intuition for gb(X), we note that when X is an irrational ellipsoid
E(a1, . . . , an), the differential on C(X) vanishes for degree parity reasons.
This means that C(X) already agrees with its homology, and the map

εX<T •> : C(X) → SQ[t]

is in fact an isomorphism. Then, gb(X) is simply the action of the unique ele-
ment (εX<T •>)−1 (b) ∈ C(X) which corresponds to b. However, recall that
the map εX<T •> is defined by counting curves in E(a1, . . . , an) satisfying
local tangency constraints, so it could be quite nontrivial even in the case
n = 2. Indeed, in the very special case of the nearly round ball E(1, 1 + ε),
a closely related problem is to count rational curves in CP2 satisfying local
tangency constraints, which was recently solved in [24]. For other ellipsoids,
including those in higher dimensions, and for more general Liouville domains,
computing gb seems to involve some very interesting and challenging enumer-
ative problems.

We discuss the computation of the capacities gk for four-dimensional
ellipsoids in Sect. 3.1.2, based on the forthcoming work [25]. As for the larger
family of capacities gb, a general recursive algorithm for their computation
is given in [29], and this will be utilized in the proof of Proposition 1.7.

3. Optimal embeddings

3.1. The main theorems

We now prove our main results. To prove Theorem 1.1, we need a new con-
struction and new obstructions. These two parts of our argument are logi-
cally independent of each other and can be done in either order. To prove
Theorem 1.3, we can use an existing construction and so we just need the
obstructions.

3.1.1. The construction. We begin with the construction.

Proposition 3.1. For all a > 1 and S > 0, let a
a+1 ≤ μ ≤ a

2 and λ =
1 − μ

a . There exists a symplectic embedding of E(a, 1, S) into an arbitrary
neighborhood of

{(z1, z2) | π|z1|2 ≤ λ + μ, π|z2|2 ≤ f(π|z1|2)} × C,
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where

f(t) =

{
2λ − t/2 when 0 ≤ t ≤ 2μ 2λ−1

λ+μ−1 ;
1 − (1−λ)(t−2λ+1)

1−λ+μ when 2μ 2λ−1
λ+μ−1 ≤ t ≤ λ + μ.

Remark 3.2. Using the work of Pelayo-Vũ Ngo.c [27, Theorem 4.4], we can
extend to S = ∞ and embed the interior of the ellipsoid into the domain
itself, rather than into a neighborhood.

We defer the proof for a moment, first stating some key corollaries we
will need.

Corollary 3.3. For any N ≥ 1 and a ≥ 1, 1 ≤ b ≤ 2, there exists a symplectic
embedding

intE(a, 1) × CN s
↪→ a(b + 2)

(a + 1)b
·
(
E(b, 1) × CN

)
.

Here, “int” denotes the interior.

Proof of Corollary 3.3. It clearly suffices to prove this when N = 1. In Propo-
sition 3.1, set μ = a

a+1 so λ = 1 − μ
a = μ. In this case, f(t) = 2λ − t/2 for

all 0 ≤ t ≤ 2λ = λ + μ and we see that the domain {(z1, z2) | π|z1|2 ≤
λ + μ, π|z2|2 ≤ f(π|z1|2)} is simply P (2λ, 2λ) ∩ E(4λ, 2λ). This sits inside
E(cb, c) when c ≥ a(b+2)

(a+1)b .
This deals with the case when a > 1. When a = 1, we still have an

embedding into an arbitrarily small neighborhood, and so can still apply [27]
for the precise result. �

Corollary 3.4. Let b ∈ R≥2. Then, for any N ≥ 1 and a ≥ b − 1, there exists
a symplectic embedding

intE(a, 1) × CN s
↪→ 2a

a + b − 1
·
(
E(b, 1) × CN

)
.

Proof of Corollary 3.4. Note that when a > 1, we have 1−λ
1−λ+μ < 1

2 , and
so the graph of f(t) is convex. Hence, f(t) is bounded above by the linear
function between (0, 2λ) and (λ + μ, λ) and our domain is a subset of P (λ +
μ, 2λ) ∩ E(2(λ + μ), 2λ).

In the context of Proposition 3.1, set μ = a(b−1)
a+b−1 . We note that a

a+1 ≤
μ ≤ a

2 exactly when 2 ≤ b ≤ a+1. Then, λ = a
a+b−1 and we find a symplectic

embedding

E(a, 1) × C
s

↪→
(

P

(
ab

a + b − 1
,

2a

a + b − 1

)
∩ E

(
2ab

a + b − 1
,

2a

a + b − 1

))
× C

⊂ 2a

a + b − 1
E(b, 1) × C.

�

We now give the promised proof of the proposition.



Higher symplectic capacities Page 13 of 25    49 

Proof of Proposition 3.1. Before the proof, we fix some notation.
Write A ⊂ε B to mean that the set A lies in an ε neighborhood of B,

or z ∈ε B to mean that a point z lies ε close to B.
Let π : C3 → C be the projection onto the z1 plane.
In the z1 plane, we fix sets W0 = [0, 1]×[0, μ] and Wi = [2i, 2i+1]×[0, λ]

for i ≥ 1.
Finally, D(a) denotes the round closed disk in the plane centered at the

origin of area a, and Ai are the subsets of the z3 plane given by A1 = D(S+ε)
and Ai = D(i(S + ε))\D((i − 1)(S + ε)) for i ≥ 2. �
Proof. The condition μ ≥ a

a+1 is equivalent to μ ≥ 1 − μ
a = λ, and the

condition μ ≤ a
2 is equivalent to 2λ ≥ 1. Both of these inequalities will be

used in our construction.
We apply a slightly generalized version of Lemma 2.2 from [12]. This

says that, given ε, there exists a large K and a symplectomorphism φ from
E(a, 1, S) to a set FK with the following properties. For z ∈ C, we write
Fz = π−1(z) ∩ FK .

(1) π(FK) ⊂ε

⋃K
i=1([2i − 1, 2i] × {0})

⋃K
i=0 Wi;

(2) if z = (u, v) ∈ε W0 then Fz ⊂ε D(1 − uμ
a ) × A1;

(3) if z ∈ε [2i − 1, 2i] × {0} and i is odd, then Fz ⊂ε D(λ) × Ai;
(4) if z ∈ε [2i − 1, 2i] × {0} and i is even, then Fz ⊂ε (D(2λ)\D(λ)) × Ai;
(5) if z = (2i+u, v) ∈ε Wi and i is odd, then Fz ⊂ε D((1+u)λ)×(Ai∪Ai+1);
(6) if z = (2i + u, v) ∈ε Wi and i ≥ 2 is even, then Fz ⊂ε D((2 − u)λ) ×

(Ai ∪ Ai+1).
Apart from slight changes of notation, the modification from Lemma 2.2

consists in increasing the area of W0 (the original lemma fixed μ = λ = x
x+1 )

and a refined description of the fibers over W0. The estimate in item (2)
follows easily, because π−1(W0) is the set {π|z1|2 ≤ μ} ⊂ E(a, 1, S) and
restricted to this set φ takes the form φ(z1, z2, z3) = (ψ(z1), z2, z3) where
we may assume for all 0 ≤ u ≤ 1 that ψ maps points with π|z1|2 ≤ μu
(outside of which the fiber lies in π|z2|2 < 1 − uμ

x ) to an ε neighborhood of
the set [0, u] × [0, μ]. Then, if ψ(z1) = (u, v), we have π|z1|2 ≥ μu − ε and so
π|z2|2 ≤ 1 − uμ

a + ε.
The next step is to follow Step 3 of the proof from [12, page880] and

apply a symplectic immersion τ : π(FK) → C. This can be arranged to restrict
to an embedding on each of the Wi and each of the intervals [2i−1, 2i]×{0},
so that the Wi with i odd map into a neighborhood of [−1, 0]× [0, λ], the Wi

with i even map into [0, 1] × [0, μ], and the ε neighborhoods of the intervals
[2i − 1, 2i] × {0} map close to the origin, remaining disjoint from the image
of the Wi. The condition on Wi with i even is possible, since λ ≤ μ.

Let ι23 be the identity map on the (z2, z3)-plane. Then, we note that
(τ × ι23) : FK → C3 is an embedding. Indeed, the fibers of π over Wi and
Wj intersect only if |i − j| ≤ 1 [since otherwise by items (5) and (6) their z3

coordinates lie in different Ak], and in particular are disjoint if i and j have
the same parity. Also, the fibers over neighborhoods of different intervals
[2i − 1, 2i] × {0} are disjoint by items (3) and (4).

We refine the immersion τ slightly to also satisfy the following.
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• if z = (2i + u, v) ∈ Wi and i is odd, then τ(z) ∈ε [−1 + u, 0] × [0, λ];
• if z = (u, v) ∈ W0, then τ(z) ∈ε [0, u] × [0, μ]
• if z = (2i + u, v) ∈ Wi and i ≥ 2 is even, then τ(z) ∈ε [0, uλ

μ ] × [0, μ].

The following describes the fibers of the image of τ × ι23.

Lemma 3.5. Let (z1, z2, z3) lie in the image of τ × ι23 and z1 = (u, v).
If −1 ≤ u ≤ 0, then Fz ⊂ε D((2 + u)λ) × C;
if 0 ≤ u ≤ 2λ−1

λ+μ−1 , then Fz ⊂ε D(2λ − uμ) × C;
if 2λ−1

λ+μ−1 ≤ u ≤ 1, then Fz ⊂ε D(1 − uμ
a ) × C.

Proof. The description of the fibers when u ≤ 0 follows directly from item
(5) in the description of FK and the properties of τ . Also, if λ

μ ≤ u ≤ 1,
then by our description of τ restricted to the Wi, we see that (u, v) is the
image of a point in W0, and so, the property follows from item (2). (Note
that λ

μ ≥ 2λ−1
λ+μ−1 because λ < 1 and μ ≥ λ.)

If 0 < u ≤ λ
μ , then either (u, v) = τ(u′, v′) where (u′, v′) ∈ W0 and

u′ ≥ u, or (u, v) = τ(2i + u′, v′) where (2i + u′, v′) ∈ Wi for i ≥ 2 even and
u′ ≥ uμ

λ . In the first case, by item (2), the z2 coordinate of the fiber lies in
D(1 − uμ

a ) and in the second case, by (6), the z2 coordinate of the fiber lies
in D(2λ − uμ). Thus, the lemma follows from the fact that 2λ − uμ ≥ 1 − uμ

a

exactly when u ≤ 2λ−1
λ+μ−1 (using the assumption that 2λ ≥ 1). �

Finally, we apply the map σ × ι23, where σ is an embedding of a neigh-
borhood of ([−1, 0]× [0, λ])∪ ([0, 1]× [0, μ]) in the z1 plane to a neighborhood
of the disk D(λ + μ). We can choose σ to satisfy the following.

• if u ∈ [−μ
λ t, t] and 0 ≤ t ≤ 2λ−1

λ+μ−1 , then σ(u, v) ∈ε D(2tμ) for all v;

• if u ∈ [− 2λ−1+(1−λ)t
λ , t] and 2λ−1

λ+μ−1 ≤ t ≤ 1, then σ(u, v) ∈ε D((2λ −
1) + (1 − λ + μ)t) for all v.

Such a map σ exists, because the intersection of ([−1, 0]×[0, λ])∪([0, 1]×
[0, μ]), the image of τ , with {u ∈ [−μ

λ t, t]} has area 2μt and the intersection
of the image of τ with {u ∈ [− 2λ−1+(1−λ)t

λ , t]} has area (2λ−1)+(1−λ+μ)t.
When t = 2λ−1

λ+μ−1 , we have that μ
λ t = 2λ−1+(1−λ)t

λ , and so, we are imposing a
condition on the image of all (u, v).

Claim. The image of σ × ι23 lies in an ε neighborhood of {(z1, z2) |
π|z1|2 ≤ λ + μ, π|z2|2 ≤ f(π|z1|2)} × C, concluding the proof.

Proof of the claim. We check the fibers of π over points w ∈ D(λ + μ).
First, if w is in the image of a point in one of the segments [2i − 1, 2i] × {0}
then w is close to 0 and the z2 coordinate of the fiber lies in D(2λ).

Next, suppose that π|w|2 = s+ε where s ≤ 2μ 2λ−1
λ+μ−1 . Then, w = σ(u, v)

where either u > s
2μ or u < − s

2λ (since by our conditions on σ points with
u ∈ [− s

2λ , s
2μ ] are mapped into D(s)). By Lemma 3.5, in the first case, the

z2 coordinate of the fiber lies ε close to D(2λ − s
2 ), and in the second case,

the z2 coordinate of the fiber also lies in an ε neighborhood of D((2 − s
2λ )λ).

Hence, π|z2|2 ≤ 2λ − π|z1|2/2.
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Finally, suppose that π|w|2 = s + ε where 2μ 2λ−1
λ+μ−1 ≤ s ≤ λ + μ. Then,

we see that w = σ(u, v) where either u > s−(2λ−1)
1−λ+μ or u < − (2λ−1)μ+(1−λ)s

λ(1−λ+μ) .
This again follows from our conditions on σ. Indeed, if

u ∈
[
− (2λ − 1)μ + (1 − λ)s

λ(1 − λ + μ)
,
s − (2λ − 1)
1 − λ + μ

]
,

then, rewriting, u ∈ [− 2λ−1+(1−λ)t
λ , t] with t = s−(2λ−1)

1−λ+μ . The bounds on s

imply that 2λ−1
λ+μ−1 ≤ t ≤ 1 and so by the second bullet point in our description

of σ points with u in this range are mapped into D((2λ−1)+(1−λ+μ)t) =
D(s).

Concluding by Lemma 3.5, if u > s−(2λ−1)
1−λ+μ , then the z2 coordinate of

the fiber lies ε close to D(1 − s−(2λ−1)
1−λ+μ

μ
a ) = D(1 − (1−λ)(s−2λ+1)

1−λ+μ ), recalling
that λ = 1 − μ

a . If u < − s
2λ , then the z2 coordinate of the fiber lies ε close to

D(2λ − (2λ−1)μ+(1−λ)s
1−λ+μ ) which we check is also D(1 − (1−λ)(s−2λ+1)

1−λ+μ ). Hence,

π|z2|2 ≤ 1 − (1−λ)(π|z1|2−2λ+1)
1−λ+μ + ε. �

With the claim proven, we have completed the proof of the proposition.
�

3.1.2. Some obstructions. We now turn our attention to the obstructive side.
Notably, this will be quite short, because we can cite work on these higher
capacities that has previously been done or is forthcoming. Namely, here,
we only recall the following computations for the capacities of ellipsoids and
polydisks from [28, §6.3]:

gk(P (1, a)) = min(k, a + �k−1
2 �) for a ≥ 1, k ≥ 1 odd (6)

gk(E(1, a)) = k for a ≥ 1, 1 ≤ k ≤ a. (7)

It seems plausible that the computation for P (1, a) is also valid for k even.
This would follow if we knew that the capacities gk are nondecreasing with
k, although this is not yet clear.

We will also need the following more general expected formula for ellip-
soids, which will be proved in [25]. For 1 ≤ a ≤ 3/2, we have

gk(E(1, a)) =

⎧⎪⎨
⎪⎩

1 + ia for k = 1 + 3i with i ≥ 0
a + ia for k = 2 + 3i with i ≥ 0
2 + ia for k = 3 + 3i with i ≥ 0.

(8)

For a > 3/2, we have

gk(E(1, a)) =

⎧⎪⎨
⎪⎩

k for 1 ≤ k ≤ �a	
a + i for k = �a� + 2i with i ≥ 0
�a� + i for k = �a� + 2i + 1 with i ≥ 0.

(9)
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3.1.3. The proofs. We now give the promised proofs.

Proof of Theorem 1.1. Let a, b, and N be as in the statement of the theorem.
Then, by Corollary 3.4, we have

cN
b,ell(a) ≤ 2a

a + b − 1
.

To prove the opposite inequality, we use the higher capacities gk. That is,
take k = a. Then, by (7) and (9), we have

gk(E(1, a)) = a, gk(E(1, b)) =
a + b − 1

2
.

Hence, by the scaling, monotonicity, and stabilization properties of the gk in
Theorem 2.1, we have

cN
b,ell(a) ≥ 2a

a + b − 1
,

hence the theorem. �

Remark 3.6. Note that in the above proof, we only need the inequality
ga(E(1, b)) ≤ a+b−1

2 , and in the case that b is even (and hence, a ≥ b + 1
is odd), this can be deduced directly from (6). Indeed, by (3), there is an
embedding E(1, b)

s
↪→ P (1, b/2), whence we have

ga(E(1, b)) ≤ ga(P (1, b/2)) = b/2 + �(a − 1)/2� =
a + b − 1

2
.

Proof of Theorem 1.3. The proof is similar to the previous one. Let a, b, and
N be as in the statement of the theorem.

The bound

cN
b,poly(a) ≤ 2a

a + 2b − 1
follows from the existence of a variant of the embedding from above, which
was previously shown to exist in [6, Lem.1.3].

To show that no better embedding exists, we use the above capacities.
Namely, let k = a. Then, by (6) and (7), we have

gk(E(1, a)) = a, gk(P (1, b)) = b +
a − 1

2
.

The theorem now follows by the same argument as above. �

Example 1. It is interesting to compare the above methods with the case
b = 1. For this, we recall for the convenience of the reader an argument from
[28, §1.4]. There, a variant of the embedding used in the previous theorems,
constructed in [12], gives

cN
1,ell(a) ≤ 3a

a + 1
.

On the other hand, if a is an integer congruent to two, modulo three, then
taking k = a as above yields

gk(E(1, a) × Cn) = a, gk(E(1, 1) × Cn) =
1 + a

3
.
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Hence, combining these inequalities, we get that for a congruent to two mod-
ulo three

cN
1,ell(a) =

3a

a + 1
.

This recovers the result of McDuff [21, Thm. 1.1].

3.2. The rescaled embedding function

We now provide the proofs of the promised corollaries regarding the conjec-
ture of the second named author, Frenkel, and Schlenk.

Proof of Corollary 1.4. We will first prove the statement about cN
b,poly, after

which the result about cN
b,ell will follow easily.

The function cN
b,poly(a) is nonincreasing in N . We want to show that

it is in fact constant in N for a in the intervals given by the theorem. The
computation of c0

b,poly(a) from [6], together with Theorem 1.3 from above,
shows that it does not depend on N for the exterior (middle) corner of each
linear step.

Now, note that if an embedding

E(1, a) × Cn s
↪→ λP (1, b) × Cn

exists, then for any a′ > a, by scaling, there is an embedding

E(1, a′) × Cn s
↪→ a′

a
λP (1, b) × Cn.

Thus, cN
b,poly(a′) ≤ a′

a cN
b,poly(a). Therefore, given y0 = cN (a), the graph of

cN (a′) for a′ > a cannot lie above the line through (a, y0) and the origin. For
future reference, we call this the subscaling property. We can now prove the
corollary.

Consider any linear step for c0
b,poly(a). Recall that this consists of a

linear part, then an exterior corner, and then a horizontal part. Consider the
linear part. We want to show that this stabilizes. We know that cN

b,poly(a) ≤
c0
b,poly(a). If there were any a value for which strict inequality held, then by

the linearity property above, at the exterior corner a0 of the step, we would
have cN

b,poly(a0) < c0
b,poly(a0). However, above we saw in Theorem 1.3 that

the exterior corner is stable. Hence, the whole linear part must stabilize. As
for the horizontal part, we know that we must have cN

b,poly ≤ c0
b,poly, but on

the other hand the function cN
b,poly is nondecreasing, and so must be constant

here. Thus, the whole step stabilizes, so all the linear steps do.
In view of Theorem 1.1, the exact same argument implies the result

about cN
2b,ell, since for N = 0, there is an equivalence of embeddings (3). �

Proof of Corollary 1.5. Corollary 1.4 shows that, after the initial part of the
graph, where cN

b,poly(a) = 1, the graph has �
√

2b� + 1 linear steps that are
all stable. The length of these steps is given by the formula �b(k) from [6,
p.6]. In particular, as explained there, the length of the kth step converges
to 2 as b tends to infinity. Since the steps are centered at the odd numbers,
increase in number without bound as b increases, and our rescaled function
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is centered, so that the initial part of the graph with height one, that is, the
part determined by Gromov’s non-squeezing theorem, does not appear, the
result follows. �

3.3. The first step

We now prove Proposition 1.6.

Proof of Proposition 1.6. The key is the following lemma.

Lemma 3.7. Let a0 be the smallest odd integer that is no less than 2b − 1.
There is a symplectic embedding

int
(

E

(
1,

a0 − 1
2

+ b

))
s

↪→ P (1, b). (10)

Proof. We first explain why it suffices to prove the lemma for b rational.
Given an irrational b, we can choose rational numbers bn converging to b
from below. Then, if the lemma is true for each bn and the bn are sufficiently
close to b, composing with the inclusion P (1, bn) ⊂ P (1, b) gives embeddings
int

(
E

(
1, a0−1

2 + bn

)) s
↪→ P (1, b), hence the desired embedding (10) by [4,

Cor. 1.6].
We thus henceforth assume that b is rational. Then, by for example

[4][Thm. 2.1], it is equivalent to find an embedding

int (E(1, b)) ∪ int
(

E

(
1,

a0 − 1
2

))
s

↪→ P (1, b). (11)

Indeed, the argument for [4, Thm. 2.1] implies that both (10) and (11) are
equivalent to ball packing problems of the P (1, b), where in the first case,
the size of the balls is given by the weight sequence defined in [4, §2] for
(a0 − 1)/2 + b, and in the second case, the size of the balls is given by the
union of the weight sequence for b and for (a0 − 1)/2. Since (a0 − 1)/2 is an
integer, the first (a0 − 1)/2 of the weights for (a0 − 1)/2 + b will be 1, so (10)
and (11) are equivalent to the same ball packing problem.

We know that a0 ≤ 2b + 1, and hence
a0 − 1

2
≤ b. (12)

We can therefore find an embedding as in (11) as follows. We think the mo-
ment image of P (1, b) as a union of two triangles, joined along the diagonal
that does not contain the origin. The triangle with legs on the axes con-
tains an E(1, b) factor by inclusion. As for the other triangle, it is affine
equivalent to the first, via multiplication by −I2, where I2 is the two-by-two
identity matrix. Hence, by the Traynor trick, see for example [31] and [2,
Lem. 1.8], it also contains a copy of an int(E(1, b)), disjoint from the interior
of the first E(1, b). Now, by (12), this latter int(E(1, b)) contains a copy of
int (E(1, (a0 − 1)/2)) . �

We can now prove the proposition. We first prove the second bullet
point. By Lemma 3.7, we know that cN

b,poly ≤ 1, for a in the given range.
However, by Gromov’s non-squeezing theorem, we also know that cN

b,poly ≥ 1,
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for a in this range. As for the rest of the second bullet point, this follows
from the subscaling property of cN

b,poly, as in the proof of Corollary 1.4 above,
given the lower bound on cN

b,poly(a0) coming from Theorem 1.3.
We now prove the first bullet point. The result for 1 ≤ a ≤ b follows,

because inclusion gives an embedding for a in this range, which is optimal
by Gromov’s non-squeezing theorem. Similarly, for b ≤ a ≤ �b	 + 1, scaling
gives an embedding as in the subscaling property, which is optimal by the
(�b	+1)st Ekeland–Hofer capacity; see, e.g., [3][§2.3.1, §4.1.1] for the relevant
formula. �

3.4. The other parity

The proof of the remaining proposition, Proposition 1.7, requires the gb and
computer assistance as well. It turns out that the simplified capacities gk do
not suffice in these cases. For example, for E(1, 6) × CN s

↪→ λ · P (1, 1) × CN ,
one can check that the simplified capacities give only λ ≥ 5/3, whereas we
have in fact cN

1,poly(6) = 12/7 for N ∈ Z≥1.
On the other hand, we have the more general capacities gb, which could

in principle give sharp obstructions for all a ∈ R≥1 and b ∈ Z≥1 in (2) and (4).
This is related to the discussion at the end of [28, §6.3], where it is observed
that the simplified capacities gk do not generally give sharp obstructions for
E(1, a) ×CN s

↪→ λ · E(1, 1) ×CN , but the capacities gb necessarily give sharp
obstructions at least for a ≤ τ4. Moreover, the formalism from [29] gives
an explicit recursive algorithm to compute the capacities gb for all convex
toric domains, although, unfortunately, it appears to be somewhat difficult
to compute with “by hand”.

Proof of Proposition 1.7. We begin with the computation of cN
1,poly(a) for

a = 6, 8, . . . , 100. By [12], we have the upper bound cN
1,poly(a) ≤ 2a

a+1 , so it
suffices to establish the lower bound cN

1,poly(a) ≥ 2a
a+1 . Suppose that we have

a symplectic embedding E(1, a) × CN s
↪→ λ · P (1, 1) × CN .

Following the notation and exposition of [29], the idea is as follows. By
[29, Cor. 1.2.3], there is a filtered L∞ homomorphism Q : VP (λ,λ) → VE(1,a)

which is unfiltered L∞ homotopic to the identity. Here, V is an explicit DGLA
with generators αi,j for i, j ∈ Z≥1 and βi,j for i, j ∈ Z≥0 not both zero. The
filtered DGLA VP (λ,λ) is just V as an unfiltered DGLA, and its filtration is
specified by

AP (λ,λ)(αi,j) = AP (λ,λ)(βi,j) = λi + λj.

Similarly, the filtered DGLA VE(1,a) is just V as an unfiltered DGLA, with
filtration specified by

AE(1,a)(αi,j) = AE(1,a)(βi,j) = max(i, aj).

Recall that an L∞ homomorphism Q : VP (λ,λ) → VE(1,a) consists of a se-
quence of maps Ql : 
lVP (λ,λ) → VE(1,a) for l = 1, 2, 3, . . . , and these must
satisfy an infinite sequence of certain quadratic relations.

Any element of the form βi1,j1 
 · · · 
 βik,jk defines a cycle in the bar
complex V̄P (λ,λ). In particular, Q̂(βi1,j1 
 · · · 
 βik,jk) must be homologous



   49 Page 20 of 25 D. Cristofaro-Gardiner et al.

to βi1,j1 
 · · · 
 βik,jk in V̄E(1,a). Moreover, there is a filtered L∞ homomor-
phism Φ1,a : VE(1,a) → V can

E(1,a), where V can
E(1,a) denotes the homology of VE(1,a)

(viewed as a filtered L∞ algebra with trivial L∞ operations), and hence,
(Φ̂1,a ◦ Q̂)(βi1,j1 
 · · · 
 βik,jk) is homologous to Φ̂1,a(βi1,j1 
 · · · 
 βik,jk) in
V̄ can

E(1,a).
Now, suppose that we have a = p/q with p + q = 2d for some p, q, d ∈

Z≥1. Consider some d1, d2 ∈ Z≥0 satisfying d1 +d2 = d, and suppose that we
have

Φd
1,a(
d1β1,0 
 
d2β0,1) �= 0. (13)

Then, we claim that we have λ ≥ 2a
a+1 , which gives the desired lower bound.

Indeed, for a general input of the form βi1,j1 
 · · · 
 βik,jk , it follows by
degree considerations that Φk

1,a(βi1,j1 
 · · · 
 βik,jk) is either trivial, or else
it is the unique element up to scaling in V can

E(1,a) of its given degree. In the
latter case, its action is given by the lth Ekeland–Hofer capacity of E(1, a),
i.e., cEH

l (E(1, a)), for l =
∑k

m=1(im + jm) + k − 1. Also, the action of the
input is given by

AP (λ,λ)(βi1,j1 
 · · · 
 βik,jk) =
k∑

m=1

AP (λ,λ)(βim,jm) =
k∑

m=1

(λim + λjm).

Specializing to the case of input 
d1β1,0 
 
d2β0,1 and l = 2d − 1,
using a = p/q and p + q = 2d, it is straightforward to check that we have
cEH
l (E(1, a)) = p. Since Φ̂1,a ◦ Q̂ is filtration-preserving and Φd(
d1β1,0 



d2β0,1) is a summand of the image of [
d1β1,0 
 
d2β0,1] under [Φ̂1,a ◦ Q̂],
we must have λ(d1 + d2) ≥ p, and hence

λ ≥ p

d
=

2p

p + q
=

2a

a + 1
,

as claimed.
Let us now specialize to the case that a is an even integer. Then, we

have a = p/q for p = 2a and q = 2, and hence, p + q = 2d for d = a + 1.
By computer calculations, (13) holds for d1 = 3 and d2 = d − d1 = a − 2 for
a = 6, . . . , 100. Geometrically, this corresponds to a nonvanishing count of
rational curves in CP1 ×CP1\ 1

λ ·E(1, a) of bidegree (d1, d2) with one negative
puncture asymptotic to the p = 2a fold cover of the short simple Reeb orbit.
Curiously, the analogous counts for d1 = 1, 2 vanish.

The computation of cN
2,ell(a) for a = 6, 8, . . . , 100 is similar. In this case,

we suppose that we have a symplectic embedding E(1, a)×CN s
↪→ λ·E(1, 2)×

CN , and we take our input cycle to be of the form 
3β2,1 
 
d−3β1,0, for
d = a − 2. By computer calculation, we have

Φd
1,a(
3β2,1 
 
d−3β0,1) �= 0 (14)

for a = 6, 8, . . . , 100. The action of the output is that of the lth Ekeland–
Hofer capacity of E(1, a) for l = 5 + 2d, and we have cEH

l (E(1, a)) = 2a.
Meanwhile, the action of the input is

AE(1,2)(
3β2,1 
 
d−3β1,0) = 6 + (d − 3) = a + 1,
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whence the lower bound λ ≥ 2a
a+1 readily follows. �

4. Discussion

We close by discussing some natural follow-up questions to our work.

4.1. Beyond the rescaled function

One can of course ask whether the function cN
b,poly(a) can in any sense be

computed completely. As explained in [6, Lem.1.3], and mentioned previously
here, a previous folding construction of the second named author gives the
bound

cN
b,poly(a) ≤ 2a

a + 2b − 1
.

This bound cannot be optimal for all a. For example, as we have seen in this
paper, there are sometimes four-dimensional embeddings beating this bound,
and these can be stabilized by taking the product with the identity. For a
sufficiently large with respect to b, though, in particular for

a ≥ (
√

2b + 1)2, (15)

the above folding bound beats the four-dimensional volume obstruction, and
so must give a better construction than any stabilized four-dimensional one.
The main question at the moment here is as follows.

Question 4.1. Is it the case that either cN
b,poly(a) = c0

b,poly(a), or

cN
b,poly(a) =

2a

a + 2b − 1
?

If this is true, it looks hard to prove. For example, if a < (
√

2b + 1)2,
then the volume bound is strictly below the folding bound from above. On
the other hand, for b ∈ Z≥2, it is known that there are entire intervals of
the subset a < (

√
2b + 1)2 for which the volume bound is optimal for c0

b,poly:
for example, for b = 2, [6, Thm.1.1] states that there is an interval on which
c0
b,poly is given by the volume starting at a = 7.84, but on the other hand by

(15), the folding curve is above the volume curve up until a = 9. Finding the
holomorphic curves needed to show that this volume bound stabilizes would
be a completely new phenomenon.

The same question, but concerning cN
b,ell is also open and just as inter-

esting.

4.2. The opposite parity

It is also natural to ask what happens for the stabilized embedding problem
for ellipsoids, when the parity of the domain and target are the same. For
example, one might hope that an analogue of our Proposition 1.7 holds in
the case b > 2. If this is true, however, it is not so clear how to prove it: our
preliminary computer search to generalize the method required to prove it
has not turned up promising candidates. It would be very interesting to find
a candidate of curves to solve this problem, or to find another embedding.
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4.3. The region from b = 1 to b = 2

For b ≥ 2, our Corollary 3.4 produces an embedding, such that

cN
b,ell(a) ≤ 2a

a + b − 1
.

Meanwhile, for 1 ≤ b ≤ 2, Corollary 3.3 shows

cN
b,ell(a) ≤ a(b + 2)

(a + 1)b
. (16)

It is interesting to ask when this bound is sharp, for instance whether there
are sequences of a where this holds. We now list some facts, suggesting that
the answer may not be straightforward.

Note that when b = 1, the bound gives

cN
1,ell(a) ≤ 3a

a + 1
,

which as mentioned above is sharp when a ≡ 2 modulo 3, [21]. There is
another sequence starting at a = 2 where (16) is an equality. By work of the
first and second named authors, [7], we have cN

1,ell(a) = c0
1,ell(a) for all 1 ≤ a ≤

τ4. This region of the graph is an infinite staircase, that is, piecewise linear
with infinitely many singular points accumulating at τ4, see [23]. Between
these singular points the graph alternates between being constant and sitting
on a line through the origin. One can check the corners of the stairs, the left
endpoints of the constant intervals, lie on the folding graph 3a

a+1 .
When b = 2, our bound gives

cN
2,ell(a) ≤ 2a

a + 1
.

The graph of c0
2,ell also begins with an infinite staircase, see [5,11], and again,

the tips of the stairs lie on the graph 2a
a+1 . It seems extremely likely that at

such a, we have cN
2,ell(a) = c0

2,ell(a) for all N , so the bound (16) is again
sharp.

However, when b = 3/2, the situation is mysterious. Now, our bound
gives

cN
3/2,ell(a) ≤ 7

3
a

a + 1
.

Here again, work of the first named author and Kleinman shows that c0
3/2,ell(a)

has an infinite staircase [5], but now, the tips of the stairs lie on the graph
2a

a+1 . Moreover, the gk show that cN
3/2,ell(a) ≥ 2a

a+1 at integer a. It is unclear
whether an improved construction can show this lower bound is indeed sharp,
or whether enhanced obstructions can be used to show that even though the
folding graph (16) lies strictly above the infinite staircase, it is still asymp-
totically sharp.
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4.4. A combinatorial rule?

While the functions c0
b,ell and c0

b,poly themselves are known to be quite com-
plicated (see for example [23,32]), they are governed by simple to state com-
binatorial rules. For example, McDuff shows in [20] that c0

b,ell is completely
determined by the combinatorics of the sequence N(a, b), whose kth term is
the (k + 1)st smallest entry among the nonnegative integer linear combina-
tions of a and b. It would be extremely interesting if the functions cN

b,ell and
cN
b,poly are also governed by some kind of relatively simple to state combina-

torial rule. It might be easier to find such a rule than to actually compute
these functions explicitly.

Acknowledgements

We thank Felix Schlenk for his encouragement, and for helping the first and
third named authors better understand constructions of embeddings between
stabilized ellipsoids. We would also like to thank the referee for carefully
reading our paper and for many useful comments.
Our paper is dedicated to Claude Viterbo on the occasion of his 60th birthday.
We are immensely grateful to Claude for his visionary leadership of our field.
This research was completed, while the first named author was on a von Neu-
mann fellowship at the Institute for Advanced Study; he thanks the Institute
for their support. The first named author is partially supported by NSF grant
DMS-1711976 and the second named author by Simons Foundation Grant no.
633715.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Bao, E., Honda, K.: Semi-global Kuranishi charts and the definition of contact
homology. (2015). arXiv:1512.00580

[2] Choi, K., Cristofaro-Gardiner, D., Frenkel, D., Hutchings, M., Ramos, V.: Sym-
plectic embeddings into four-dimensional concave toric domains. J. Topol. 7,
1054–1076 (2014)

[3] Cieliebak, K., Hofer, H., Latschev, J., Schlenk, F.: Quantitative symplectic
geometry. Dyn. Ergod. Theory Geom. Dedic. Anatole Katok 54, 1–44 (2007)

[4] Cristofaro-Gardiner, D.: Symplectic embeddings from concave toric domains
into convex ones. J. Differ. Geom. 112, 199–232 (2019)

[5] Cristofaro-Gardiner, D., Kleinman, A.: Ehrhart functions and symplectic em-
beddings of ellipsoids. J. Lond. Math. Soc. 101, 1090–1111 (2020)

[6] Cristofaro-Gardiner, D., Frenkel, D., Schlenk, F.: Symplectic embeddings of
four-dimensional ellipsoids into integral polydiscs. Algebraic Geom. Topol. 17,
1189–1260 (2017)

[7] Cristofaro-Gardiner, D., Hind, R.: Symplectic embeddings of products. Com-
ment. Math. Helv. 93, 1–32 (2018)

http://arxiv.org/abs/1512.00580


   49 Page 24 of 25 D. Cristofaro-Gardiner et al.

[8] Cristofaro-Gardiner, D., Hind, R., McDuff, D.: The ghost stairs stabilize to
sharp symplectic embedding obstructions. J. Topol. 11, 309–378 (2018)

[9] Eliashberg, Y., Givental, A., Hofer, H.: Introduction to symplectic field theory.
Visions in mathematics: GAFA 2000 Special volume, pp. 560–673 (2000)

[10] Fish, J.W., Hofer, H.: Lectures on polyfolds and symplectic field theory. (2018).
arXiv:1808.07147

[11] Frenkel, D., Müller, D.: Symplectic embeddings of four-dimensional ellipsoids
into cubes. J. Symplectic Geom. 13, 765–847 (2015)

[12] Hind, R.: Some optimal embeddings of symplectic ellipsoids. J. Topol. 8, 871–
883 (2015)

[13] Hind, R.: Stabilized symplectic embeddings. In: Angella, D., Medori,
C., Tomassini, A. (eds) Complex and Symplectic Geometry. Springer
INdAM Series, vol 21. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-62914-8 7

[14] Hind, R., Kerman, E.: New obstructions to symplectic embeddings. Invent.
Math. 196, 383–452 (2014)

[15] Hind, R., Kerman, E.: Correction to: New obstructions to symplectic embed-
dings. Invent. Math. 214, 1023–1029 (2018)

[16] Hofer, H., Wysocki, K., Zehnder, E.: Polyfold and Fredholm Theory. Springer,
Berlin (2021)

[17] Hutchings, M.: Rational SFT using only q variables.https://floerhomology.
wordpress.com/2013/04/23/rational-sft-using-only-q-variables (2013)

[18] Hutchings, M., Nelson, J.: Cylindrical contact homology for dynamically con-
vex contact forms in three dimensions. J. Symplectic Geom. 14, 983–1012
(2016)

[19] Ishikawa, S.: Construction of general symplectic field theory. (2018).
arXiv:1807.09455

[20] McDuff, D.: The Hofer conjecture on embedding symplectic ellipsoids. J. Differ.
Geom. 88, 519–532 (2011)

[21] McDuff, D.: A remark on the stabilized symplectic embedding problem for
ellipsoids. Eur. J. Math. 4, 356–371 (2018)

[22] McDuff D., Salamon D.: Introduction to symplectic topology (third edition).
In: Oxford Graduate Texts in Mathematics (2017)

[23] McDuff, D., Schlenk, F.: The embedding capacity of 4-dimensional symplectic
ellipsoids. Ann. Math. 175, 1191–1282 (2012)

[24] McDuff, D., Siegel, K.: Counting curves with local tangency constraints. J.
Topol. (2021) (to appear)

[25] McDuff, D., Siegel, K.: Symplectic capacities, unperturbed curves, and convex
toric domains. arXiv:2111.00515

[26] Pardon, J.: Contact homology and virtual fundamental cycles. J. Am. Math.
Soc. 32, 825–919 (2019)
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