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embedding problem for integral elllipsoids

Daniel Cristofaro-Gardiner, Richard Hind and Kyler Siegel

Abstract. The third named author has been developing a theory of
“higher” symplectic capacities. These capacities are invariant under tak-
ing products, and so are well suited for studying the stabilized embed-
ding problem. The aim of this note is to apply this theory, assuming
its expected properties, to solve the stabilized embedding problem for
integral ellipsoids, when the eccentricity of the domain has the opposite
parity of the eccentricity of the target and the target is not a ball. For
the other parity, the embedding we construct is definitely not always
optimal; also, in the ball case, our methods recover previous results of
McDuff, and of the second named author and Kerman. There is a simi-
lar story, with no condition on the eccentricity of the target, when the
target is a polydisc: a special case of this implies a conjecture of the
first named author, Frenkel, and Schlenk concerning the rescaled poly-
disc limit function. Some related aspects of the stabilized embedding
problem and some open questions are also discussed.
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1. Introduction

1.1. The main results

Let X7 and X5 be four-dimensional symplectic manifolds. There has recently
been considerable interest in understanding the stabilized symplectic embed-
ding problem, namely the question of whether or not there exists a symplectic
embedding

Xl XCN‘i)XQ XCN. (1)

Indeed, certain techniques which are available for studying four-dimensional
embedding problems do not have a clear analogue in higher dimensions, and
so it is interesting to understand how different the stabilized problem is from
the four-dimensional one. For more about the problem, we refer the reader
to [7,8,14,15,21], the references therein, and the discussion below.

The embedding problem (1) is already quite subtle when X; and X»
are simple shapes, like ellipsoids

2 2
Blaty = { T+ T <1 f ce
a b
balls B(c) := E(c, c), polydiscs
mlz|? mleaf?

= < < 2
P(a,b) { <l 1}c¢:,

and cubes C(c) := P(c,c). (Here, CV is equipped with its standard symplectic
form.) For example, what is known about the stabilized ellipsoid-into-ball
problem has a curious mix of rigidity and flexibility: much about this question
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remains unknown. In contrast, the stabilized polydisc-into-ball problem is
completely solved [29, Thm. 1.3.5] (for another approach, see [13]) and the
answer is described by a very simple function, namely a piecewise linear
function with two pieces.

The starting point for our investigations here is the stabilized ellipsoid-
into-ellipsoid problem. This is a special case of Problem 44 in the influential
problem list [22, Ch. 14] by McDuff and Salamon, which asks for a solution to
the symplectic embedding problem for 2n-dimensional symplectic ellipsoids:
we can view stabilized ellipsoids as 2n-dimensional ellipsoids with most ar-
guments infinite. Consider the function cé\fe”(a), defined to be the infimum,
over A, such that there exists an embedding

E(1,a) x CN <& ). B(1,b) x CV, (2)

where we write \- E(a,b) for E(Aa, Ab). This function for a,b > 1 completely
determines the stabilized ellipsoid-into-ellipsoid problem, and we would ide-
ally like to compute it.

At present, this looks out of reach. As mentioned above, even the case
b = 1 seems quite subtle; in fact, it is the focus of a conjecture by McDuff
[21]. And, when b > 1, almost nothing is currently known. However, it turns
out that when a and b are integers, there is a lot more traction.

Theorem 1.1. Assume that b > 1 is an integer, and let a > b+ 1 be any
integer with parity the opposite of b. Then, for N > 1

2a
a+b—1

We discuss the hypothesis @ > b + 1 here in Sect. 1.2.2, where we show
that it is essentially necessary.

A key aspect of our proof of the above theorem, which is one of the
motivations for writing this note, involves the obstructions required to prove
it. Symplectic embedding problems are profitably studied by symplectic ca-
pacities; see, e.g., [3]. The third named author has recently defined a new
sequence of symplectic capacities g which play a starring role here. These
capacities gy are invariant under taking products with C and so give obstruc-
tions to the stabilized problem. As we will see in the proof of Theorem 1.1,
the gy are very well adapted to proving Theorem 1.1, and the obstructive
side of the proof follows quite quickly once we can marshal them to our ben-
efit. The constructive side of the proof comes from a variant of the stabilized
folding construction pioneered by the second named author.

Cé\,[ezz (a) =

Disclaimer 1.2. Our high-level discussion of symplectic capacities in Sect. 2
follows [28], which in turn assumes the existence of rational symplectic field
theory with its expected functoriality properties as outlined in [9]. Apart
from simple special cases, such a formalism is known to require a virtual
perturbation framework such as the theory of polyfolds; for the current status
of this and related projects, we refer the reader to, e.g., [1,10,16,18,19,26]
and the references therein.

The proofs of our main results on embedding obstructions in Sect. 3 take
the properties of the capacities g summarized in Theorem 2.1 as a black box,
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together with some computations from [28] which we recall in Sect. 3.1.2. Our
proof of Theorem 1.1 furthermore requires the formula for gi(E(1, a)) which
will appear in the forthcoming work [25]. The latter reference also constructs
an ersatz version of these capacities in the special case of ellipsoids without
appealing to virtual perturbations; these give equivalent obstructions for sta-
bilized embeddings between four-dimensional ellipsoids, and the method also
readily adapts to the case of ellipsoid domain and polydisk target. Our proof
of Proposition 1.7 further depends on the formalism of [29], which is based
on [28] and the forthcoming [30].

In dimension four, when b is integral, there is an equivalence of embed-
dings

E(1,a) < AP(1,b), E(1,a) <> AE(1,2b), (3)

that is, one of these embeddings exists if and only if the other does, see for
example [6, Rmk. 1.2.1]. Therefore, it is natural to compare Theorem 1.1
with the stabilized ellipsoid-into-polydisc problem. Here, we get a somewhat
parallel, but in fact stronger result. Define cé\’[poly(a) to be the infimum, over
A, such that an embedding

E(1,a) x €N S X P(1,b) x €V (4)
exists.
Theorem 1.3. Let a > 2b — 1 be any odd integer. Then, for N > 1
2a
N
cb,poly(a’) = m-

We remark that, in contrast to Theorem 1.1, there is no requirement here
that b is an integer. As with the previous theorem, the hypothesis a > 2b—1
is discussed in Sect. 1.2.2, where it is shown to be necessary.

1.2. Applications and remarks

1.2.1. Steps and the rescaled embedding function. One of our motivations
for studying Theorem 1.3 is that it readily implies a conjecture of the first
author, Frenkel, and Schlenk about the stabilized ellipsoid-into-polydisc func-
tion, namely Conjecture 1.4 in [6], which we now explain.

First, we explain the motivation behind that conjecture. As alluded to
above, at present, fully computing the function c{)\fpoly(a) for N > 1 seems
quite difficult. However, there is a related function, called the rescaled limit
function é{xpoly, see (5), that looks more tractable and in particular could be
computed given a resolution of the aforementioned Conjecture 1.4.

To elaborate, the function cg’poly(a) for b € Z>5 was previously com-
puted by the first author, Frenkel and Schlenk in [6]. It was shown that the
function ¢ ,,;, (@) is given by the volume constraint /g, except on finitely
many intervals. On all but one of these intervals, the function cg’poly(a) is
given by a “linear step”: it is piecewise linear, with a single non-smooth
point, called its corner, where its graph changes from lying on a line through
the origin to being horizontal. On the remaining interval, it is also piecewise
linear with a single non-smooth point, but the linear piece does not lie on
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a line through the origin—it has an intercept, and so we call it the “affine
step”. For more detail, see [6].

Conjecture 1.4 asserts that the linear steps from above are “stable”. Of
course, for any a, we have ci\jpoly(a) < cgmoly (a), by taking the product with
the identity mapping. The conjecture, then, is that for a in the domain of the
linear steps, we have cé\fpoly(a) = cg’poly(a). To state that conjecture precisely,

we define, for k € {0,1,2,...,[v/2b]}, the numbers

(2b + k)2 o (2b 42k + 12
w0 =2 T

We always have uy(k) < vp(k) except if k% = 2b; for uy(k) < a < vp(k), the
graph of c{,\fpoly(a) is precisely the linear steps mentioned above.

up(k) =

Corollary 1.4. (Conj. 1.4 of [6]) Assume that b is an integer and
up(k) < a < wp(k).

Then

Cg7poly (CL) = CéYpoly (a) = Cgb,ell(a’) = cé\lf),ell (a’)

The final two equalities here, concerning the ellipsoid-into-ellipsoid func-
tion, were not actually part of Conjecture 1.4; however, they fall out imme-
diately from our proof.

We now state the relevance of this to the rescaled limit function. The
background is that [6] defined® the rescaled functions

é{)\,[poly(a) = QbC{)\,[poly (a+2b) —2b, a>0, (5)

to capture the qualitative behavior of the obstructive part of the embedding
function Cg,poly that goes beyond Gromov’s non-squeezing theorem. It was
shown in [6, Eq. 1.3] that the functions égjpoly(a) converge, as b — oo, uni-
formly on bounded sets to a pleasing answer, namely the “infinite regular
staircase” described by the function ¢ (a) : [0,00) — R whose graph consists
of infinitely many linear steps of width 2; see [6, Fig. 1.7] and Fig. 1 below.
For more about the motivation for studying the rescaled function, we refer
the reader to the discussion in [6, Sec. 1.2].

Corollary 1.5. The rescaled limit function is stable. That is, for any N € Z>q
and integral b, we have

blglgo élja\fpoly (a) = Coo (a)a a € [07 OO)
uniformly on bounded sets.

We will explain the proofs of these corollaries in Sect. 3.2.

L Actually, only the N = 0 case of these functions was defined, but the definition extends
verbatim to general N, and that will be our working definition here.
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FIGURE 1. The rescaled limit function. Each step has width
two, and consists of a line of slope one and a horizontal line

1.2.2. The first step. We next remark that, in the context of Theorem 1.1,
the lower bound on a is essentially necessary. Indeed, if @ < b, then inclusion
gives an embedding which Gromov’s non-squeezing theorem shows is optimal.
That is, c{:’[e”(a) =1 for all N > 0. There is a similar story for Theorem 1.3
for a < 2b — 1, but it requires a more interesting embedding. With a little
more work, we can extend the range of ¢ to work out at least part? of the
“first step” of the embedding functions considered in this note.

Proposition 1.6. Let b € R>q. Then:
e The function cé\fe” starts as follows:
— We have cé\fe”(a) =1, 1<a<hb.
— We have cé\’fe”(a) =% b<a<|b]+1
e The function c,])\fpoly starts as follows. Let ag be the smallest odd integer
that is no less than 2b — 1.
— We have c{fpoly(a) =1, 1<a< a%l +b.
— We have céYpoly(a): 2l 4bh<a<ap.

2
aot26—1h

Note that there is no restriction above that a or b be integral, in contrast
to the theorems in the previous section.

1.2.3. The case b = 1. In view of Theorem 1.1, it is natural to ask about the
case b = 1. This was previously studied by McDuff [21], who proved an anal-
ogous result for any integer congruent to two, modulo three; we can recover
this result with our methods, as well; see Example 1 in Sect.3.1. Compar-
ing our result to McDuff’s, it is interesting to note the switch from three
periodicity to two periodicity as b increases from one. There is a substantial

2In fact, Proposition 1.6 likely describes the entirety of the first step, although we do not
address this here.



Higher symplectic capacities Page 7 of 25 49

mystery about the structure as b ranges from 1 to 2, see Sect. 4.3, which we
plan to investigate in follow-up work.

1.2.4. The other parity. In view of the above results, it is natural to ask:
what happens for a an integer of a parity not covered by our theorems. We
certainly do not have a satisfactory answer to this at present. However, using
the more general calculus of [29], together with the aid of the computer, we
can show for example:

Proposition 1.7. For 6 < a < 100 an even integer, the conclusion of Theo-
rem 1.1 holds for b =2, that is for N > 1, we have

2a
Cé\feu(a) = a1l

Similarly, for 6 < a < 100 an even integer, the conclusion of Theorem 1.3
holds for b =1, that is for N > 1, we have

2a

C{V (a) = m

»poly
Remark 1.8. The assumption a > 6 in Proposition 1.7 is necessary. Indeed,
for a, less than the squared silver ratio o ~ 5.83, c%poly(a) is an infinite

staircase [11]. In particular, we have ¢{’, ;. (a) < ¢ . (a), and &} ;. (a) is

strictly less than f—fl for a = 2,4. The same applies for cé\fe”, since we have

Cg,ell = C(l),poly'

For more examples, suppose that a = 2b + 2k + 2 is an even integer.
Referring to Sect. 1.2.1, we see that vy(k) < a < up(k + 1) which for & > 2
implies that cgmoly(a) = \/%, that is, there is a volume filling embedding
from E(1,a) into a scaling of P(1,b) (the point a = 2b + 4 lies in the affine
step). By (3), this is equivalent to the existence of a volume filling embedding
from E(1,a) into a scaling of E(1,2b). Now, volume filling embeddings in
dimension 4 improve on the folding construction giving Theorem 1.1 when
a < b+ 1+ 2vb. Hence, the conclusion of Theorem 1.1 is false when a and b
are even and b+4 < a < b+ 1+ 2v/b.

Structure of the note

In Sect. 2, we review the construction of the higher symplectic capacities of
the third named author; our discussion here includes some informal elements
to help convey the intuition. Then, in Sect. 3, we give the proofs of our results.
The final Sect. 4 discusses some natural follow-up questions to this work.

2. New capacities

We first briefly review the capacities gy defined for k € Z>q in [28]. These
are part of a more general family of capacities gy indexed by elements in the
symmetric tensor algebra SQ[t] = @, (®FQ[t])/Sk. We give here only an
impressionistic sketch, omitting some of the more technical details. In addi-
tion to the computations described in Sect. 3.1.2, the key structural properties
we will need are summarized in the following:
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Theorem 2.1. [28] For any Liouville domain X and k € Z>1, we have gi(X) €
R~ with the following properties:

(1) symplectomorphism invariance: if X' is another Liouville domain which
is symplectomorphic to X, we have gi(X) = gr(X')

(2) scaling: if X’ is the Liouville domain obtained by scaling the Liouville
form of X by a constant ¢ € Rsq, we have gi(X') = cgr(X)

(3) monotonicity: if X’ is another Liouville domain and there exists a sym-
plectic embedding X <> X', then we have g,(X) < g(X')

(4) stabilization: we have gr(X x B%(S)) = gi(X), provided that S >
g1 (X).?

Note that (3) actually implies (1).

2.1. The first approximation

Suppose that X is a Liouville domain. We work with almost complex struc-
tures J on the symplectic completion X which are admissible in the sense
of symplectic field theory (SFT). Fix a point p € X along with a local J-
holomorphic divisor D passing through p. To first approximation, g (X) is
simply the minimal energy of a punctured J-holomorphic sphere u : ¥ — X
with some number [ > 1 of positive ends asymptotic to Reeb orbits in 9.X,
such that u passes through p and is tangent to D to order k£ — 1. We denote
this tangency constraint by <7 *~1p> (see [24] and the references therein for
more details).

To see why this should be monotone with respect to symplectic embed-
dings, the basic point is that given such a curve u in X and a symplectic
embedding X’ < X, we can neck-stretch along 9X’. This forces u to break
into a pseudoholomorphic building consisting of

® a curve uyp (possibly disconnected) in the completed symplectic cobor-
dism X \ X’ with the same positive asymptotics as u
e a curve upo in X’ which inherits the tangency constraint <7+~ 1p>.

Since upet is a candidate minimizer for g (X’) and it has energy at most that
of u, this shows that gi(X’) < gp(X).

2.2. Behavior under stabilization

One role of the local tangency constraint in the definition of g is to cut
down the dimension of families of curves, thereby giving access to curves
of higher Fredholm index. There are certainly other natural geometric con-
straints which lower the index, the most obvious being to impose k distinct
point constraints. In fact, doing so leads to the “rational symplectic field
theory capacities” (RSFT) first considered in [17].

However, point constraints behave in a rather complicated way under
dimensional stabilization. The RSFT capacities are therefore perhaps not well
suited for stabilized problems (although they may have other applications yet

3Strictly speaking, X x B2?(S) is not a Liouville domain, since it has corners, although
these can be removed by an arbitrarily small smoothing. See [28, §5.4] for a more precise
formulation. Property (1) is of course automatic given property (3).
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to be discovered). For example, note that each point constraint is codimension
2 when dim X = 4, but is generally codimension 2n — 2 when dim X = 2n.
This means that the same curve with the same point constraints has negative
total index after stabilizing by CV with N large enough.

By contrast, local tangency constraints behave quite well with respect
to stabilization. This is closely related to the observation of Hind and Kerman
from [14] that punctured rational curves with exactly one negative end have
stable Fredholm index. The stabilization property in Theorem 2.1 is also
closely related to the stabilization theorems appearing in the works [7,8,21].

2.3. The naive chain complex

Unfortunately, the definition given in Sect. 2.1 is not particularly robust, since
it might depend on the choice of almost complex structure J. Indeed, if we
try to deform J to some other almost complex structure J’, somewhere along
the way the curve u might degenerate into a pseudoholomorphic building and
then disappear. Therefore, to get something which is truly a symplectomor-
phism invariant, we have to be a bit more “homological”. This is where the
chain complexes coming from Floer theory or symplectic field theory become
essential.
The idea is to associate with X a filtered chain complex C'(X), where

e as a vector space, C'(X) is the (graded) polynomial algebra on the (not
necessarily primitive) Reeb orbits of 90X

e the differential is defined by counting rigid-up-to-translation connected
rational curves in R x 0X with several positive ends and one negative
end

e the filtration is by the symplectic action functional, or equivalently by
the periods of Reeb orbits.

Similarly, given an exact? symplectic cobordism W with positive end Ot W =
0X and negative end 0~W = 90X’, we define a chain map from C(X) to
C(X') by counting rigid possibly disconnected rational curves in W, such
that each component has several positive ends and one negative end. By
Stokes’ theorem, both the differential and the cobordism map are action-
nondecreasing and hence preserve the filtrations.

However, the above prescription does not work on face value due to
transversality issues. Namely, to show that the differential squares to zero
and that the cobordism map is a chain map, the typical strategy is to an-
alyze analogous moduli spaces of dimension one and show that (after com-
pactifying) their boundaries give precisely the desired relations. However, it
is well known that the relevant SFT moduli spaces are rarely transversely
cut out for any choice of generic J. Multiply covered curves tend to appear
with higher-than-expected dimension, and this spoils our strategy.

2.4. Input from symplectic field theory

One way is get around this issue is to count curves in a “virtual” sense, by
introducing suitable abstract perturbations which allow more room to achieve

4There is also a nice story extending the theory to non-exact symplectic cobordisms, but
we will ignore this for simplicity.
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transversality. This is the basic strategy being pursued to define SFT in full
generality by various groups, with much recent progress but consensus not
yet achieved (see, e.g., [1,10,16,18,19,26] and the references therein).

In the setting of SFT, the desired invariant C'(X) can be written as
CHyin(X). Here, CHy;,(X) is the linearized contact homology of X, which
is roughly the chain complex generated by Reeb orbits of 0X with differen-
tial counting cylinders in the symplectization R x dX.° Linearized contact
homology only involves curves with one positive end, but by incorporating
curves with several positive ends, we get an L., structure, consisting of -
to-1 operations for all [ > 1 satisfying various compatibility conditions. We
can conveniently package this L., structure into one large chain complex
CHyi,(X), the bar complex.

2.5. From spectral invariants to capacities

Getting back to the high-level viewpoint, we have a filtered chain complex
C(X) for each Liouville domain X, and filtration-preserving chain maps Z :
C(X) — C(X') for any (exact) symplectic embedding X’ <> X. Now, for
any class « in the homology of C(X), define ¢, (X) to be the minimal action
of any closed element of C(X) which represents «. By a simple diagram
chase, we have c[zj(q)(X’) < ca(X), where [Z] denotes the homology-level
map induced by Z.

At first glance, this construction appears to give a new family of sym-
plectic capacities indexed by homology classes of C'(X). However, there is
still one issue, which is that we need a canonical way to reference these ho-
mology classes. Indeed, in principle, the homology level map [Z] might be
quite nontrivial, so how do we know when two numbers ¢, (X) and cz(X’)
can be compared to each other?

This is where the tangency constraints come in. The claim is that by
counting possibly disconnected curves in X with each component u; satisfying
a <T"~lp> constraint for some k; € Z~(, we get a chain map

ex<T*>: O(X) — SQ[H.

For example, a term > ®t?> ®t° in SQ[t] corresponds to counting curves with

three components which satisfy constraints <73p>, <7?p>, and <7 °p>,

respectively. Moreover, these maps are natural in the sense that the compo-

sition ex' <7 *> o = agrees with ex <7 *> up to filtered chain homotopy.
Now, for any b € SQ[t], we define the capacity gy(X) € R-o by

go(X) :=inf{ca(X) : [ex<T°*>](a) = b}.

This defines a symplectomorphism invariant which scales like symplectic area,
and for any symplectic embedding X’ <> X, we have gp(X’) < go(X). In
the case that X is Liouville deformation equivalent to a ball, one can show
that ex<7°®> is actually a chain homotopy equivalence, so every spectral
invariant of C'(X) corresponds to some choice of b.

5More precisely, we only allow “good” Reeb orbits, and we count cylinders which are
additionally “anchored” in X.
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Finally, to define the simplified capacities gg, let 7 : SQ[t] — Q[t]
denote the projection to tensors of length 1 (e.g., t> + > ® t?> ® t> maps to
t?). We define

gu(X) = inf ~ ge(X).

m
b: 7y (b)=tk—1

In essence, this means we look for the collection of Reeb orbits in 0.X of mini-
mal action which is closed with respect to the differential of C'(X), and which
bounds a connected rational curve in X satisfying a <7 *~1p> constraint (but
disregarding any disconnected curves bounded by the same collection).

2.6. The case of ellipsoids

To get some intuition for gy (X), we note that when X is an irrational ellipsoid
E(ai,...,a,), the differential on C'(X) vanishes for degree parity reasons.
This means that C'(X) already agrees with its homology, and the map

ex<T*>: O(X) — SQt]

is in fact an isomorphism. Then, gy (X) is simply the action of the unique ele-
ment (ex<7°*>)"" (b) € C(X) which corresponds to b. However, recall that
the map ex<7°*> is defined by counting curves in F(ay,...,a,) satisfying
local tangency constraints, so it could be quite nontrivial even in the case
n = 2. Indeed, in the very special case of the nearly round ball E(1,1 + €),
a closely related problem is to count rational curves in CP? satisfying local
tangency constraints, which was recently solved in [24]. For other ellipsoids,
including those in higher dimensions, and for more general Liouville domains,
computing gp seems to involve some very interesting and challenging enumer-
ative problems.

We discuss the computation of the capacities gi for four-dimensional
ellipsoids in Sect. 3.1.2, based on the forthcoming work [25]. As for the larger
family of capacities gy, a general recursive algorithm for their computation
is given in [29], and this will be utilized in the proof of Proposition 1.7.

3. Optimal embeddings

3.1. The main theorems

We now prove our main results. To prove Theorem 1.1, we need a new con-
struction and new obstructions. These two parts of our argument are logi-
cally independent of each other and can be done in either order. To prove
Theorem 1.3, we can use an existing construction and so we just need the
obstructions.

3.1.1. The construction. We begin with the construction.

Proposition 3.1. For all a > 1 and S > 0, let 47 < p < § and A =
1 — £, There exists a symplectic embedding of E(a,1,S) into an arbitrary

neighborhood of
{(z1,22) | mlz]* < X+ gy 7lz2f® < f(m|2])} % C,
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where
? 2\ — /2 when 0 << 2u2 00
)= 1—(1_)1)_(3\7__‘_2:‘4'1)When 2,u2/\1§t§)\+u.

Remark 3.2. Using the work of Pelayo-Vu Ngoc [27, Theorem 4.4], we can
extend to S = oo and embed the interior of the ellipsoid into the domain
itself, rather than into a neighborhood.

We defer the proof for a moment, first stating some key corollaries we
will need.

Corollary 3.3. Forany N > 1 anda > 1,1 <b <2, there exists a symplectic
embedding

intE(a, 1) x CN < ‘(lébjjl)) (E(b,1) x CV).

Here, “int” denotes the interior.

Proof of Corollary 3.3. 1t clearly suffices to prove this when N = 1. In Propo-
sition 3.1, set u = 47 so A =1 — £ = p. In this case, f(t) = 2\ —¢/2 for
all 0 <t <2\ = )\ —|— p and we see that the domain {(21,22) | 7|z1|? <
A+ p,|22]? < f(w|21]?)} is simply P(2),2X) N E(4),2)). This sits inside
E(cb,c) when ¢ > ?éi—t?l))

This deals with the case when a > 1. When a = 1, we still have an
embedding into an arbitrarily small neighborhood, and so can still apply [27]
for the precise result. O

Corollary 3.4. Let b € R>o. Then, for any N > 1 and a > b — 1, there exists
a symplectic embedding

2a

intE(a,1) x CN <& — =
intE(a,1) x Iy

~(BE(b,1) x ).

5, and
so the graph of f(t) is convex. Hence, f(t) is bounded above by the linear
function between (0,2)) and (A + p, A) and our domain is a subset of P(\ +
1, 220) N E(2(A 4 ), 2)).

In the context of Proposition 3.1, set 1 = a+b 1 We note that —=
pu < 5 exactly when 2 < b < a+1. Then7 A= a+b71 and we find a symplectlc

embedding

s ab 2a 2ab 2a
EB(a,1)xC= (P<a+b—1’a+b—1>mE<a+b—1’a+b—1>> xC

2a
——FE(b,1 .
Ca+b—1 (b,1) xC

Proof of Corollary 3.4. Note that when a > 1, we have ﬁ <1

We now give the promised proof of the proposition.
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Proof of Proposition 3.1. Before the proof, we fix some notation.

Write A C. B to mean that the set A lies in an € neighborhood of B,
or z €. B to mean that a point z lies ¢ close to B.

Let 7 : C3 — C be the projection onto the z; plane.

In the z; plane, we fix sets Wy = [0, 1] x [0, p] and W; = [24, 2i+1] x [0, A]
for i > 1.

Finally, D(a) denotes the round closed disk in the plane centered at the
origin of area a, and A; are the subsets of the z3 plane given by 41 = D(S+¢)
and A; = D(i(S +¢))\D((: — 1)(S +¢)) for i > 2. O
Proof. The condition p > aLH is equivalent to p > 1 — % = ), and the
condition p < § is equivalent to 2\ > 1. Both of these inequalities will be
used in our construction.

We apply a slightly generalized version of Lemma 2.2 from [12]. This
says that, given ¢, there exists a large K and a symplectomorphism ¢ from
E(a,1,8) to a set Fi with the following properties. For z € C, we write

F, :7T_1(Z) N Fg.

(1) m(Fi) Co UiZy (120 = 1,23] x {0}) UiZe Wis

(2) if 2 = (u,v) €. Wy then F, C. D(1 — “£) x Ay;

(3) if z €. [20 — 1,24] x {0} and 7 is odd, then F, C. D(\) x Aj;

(4) if z €. [20 — 1,2i] x {0} and i is even, then F, C. (D(2A\)\D()\)) x A;;
(5) if z = (2i+wu,v) €. W; and i is odd, then F, C. D((14+u)\)x (4;UA;11);
(6) if z = (20 + u,v) €. W; and i > 2 is even, then F, C. D((2 — u)\) X

(A7 U Ai+1)~
Apart from slight changes of notation, the modification from Lemma 2.2
consists in increasing the area of Wy (the original lemma fixed = A = wiﬂ)

and a refined description of the fibers over Wy. The estimate in item (2)
follows easily, because m~(Wp) is the set {r|z1]? < pu} C E(a,1,S) and
restricted to this set ¢ takes the form ¢(z1,29,23) = (¥(z1), 22, 23) where
we may assume for all 0 < u < 1 that ) maps points with 7|z]? < pu
(outside of which the fiber lies in 7|z2|? < 1 — “£) to an € neighborhood of
the set [0,u] x [0, u]. Then, if ¥(21) = (u,v), we have 7|21|?> > pu — € and so
mlzpP <1 — % e,

The next step is to follow Step 3 of the proof from [12, page880] and
apply a symplectic immersion 7 : w(Fg) — C. This can be arranged to restrict
to an embedding on each of the W; and each of the intervals [2i — 1, 27] x {0},
so that the W; with ¢ odd map into a neighborhood of [—1, 0] x [0, A], the W;
with 4 even map into [0, 1] x [0, u], and the e neighborhoods of the intervals
[2i — 1,2i] x {0} map close to the origin, remaining disjoint from the image
of the W;. The condition on W; with i even is possible, since A < pu.

Let to3 be the identity map on the (23, z3)-plane. Then, we note that
(7 X t23) : Fx — C3 is an embedding. Indeed, the fibers of m over W; and
W; intersect only if |i — j| < 1 [since otherwise by items (5) and (6) their z3
coordinates lie in different Ag], and in particular are disjoint if ¢ and j have
the same parity. Also, the fibers over neighborhoods of different intervals
[2i — 1,2i] x {0} are disjoint by items (3) and (4).

We refine the immersion 7 slightly to also satisfy the following.
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o if z = (20 +wu,v) € W; and 7 is odd, then 7(2) €. [-1 + u,0] x [0, A];
o if z = (u,v) € Wy, then 7(2) €. [0,u] x [0, y]
o if z = (2i +u,v) € W; and i > 2 is even, then 7(z) €. [0, “ﬂ—’\] x [0, ).

The following describes the fibers of the image of 7 X 193.

Lemma 3.5. Let (21, 22, 23) lie in the image of T X 123 and z1 = (u,v).
If -1 <u <0, then F, C. D((2+u)\) x C;
if0<u< )\%:‘l;ll, then F, C. D(2\ — up) x C;
if 322 <u<1, then F, C. D(1— ") x C.

Proof. The description of the fibers when u < 0 follows directly from item
(5) in the description of Fk and the properties of 7. Also, if % <u <1,
then by our description of 7 restricted to the W;, we see that (u,v) is the
image of a point in Wy, and so, the property follows from item (2). (Note
that 7); > )\2_;\;_11 because A < 1 and p > \.)

Ifo<u< %, then either (u,v) = 7(u/,v") where (u',v") € Wy and
u' > u, or (u,v) = 7(2i + ', v") where (2i +u',v") € W; for i > 2 even and

u' > 4. In the first case, by item (2), the z3 coordinate of the fiber lies in

D(1 — “£) and in the second case, by (6), the z; coordinate of the fiber lies
in D(2)\ ujt). Thus, the lemma follows from the fact that 2\ —up > 1 — £
exactly when u < /\2_;\;_11 (using the assumption that 2)\ > 1). O

Finally, we apply the map o X 123, where o is an embedding of a neigh-
borhood of ([—1, 0] x [0, A]) U ([0, 1] % [0, u]) in the z; plane to a neighborhood
of the disk D(A + ). We can choose o to satisfy the following.

o ifuc[-ftt]and 0 <t < )\QJ:‘ L then o(u,v) €. D(2tp) for all v;
e ifuce [—w,t] and 221 <t < 1, then o(u,v) €. D((2\ —
1) + (I = X+ p)t) for all v.

Such a map o exists, because the intersection of ([—1, 0] x [0, A])U([0, 1] x
[0, u1]), the image of 7, with {u € [-£t,t]} has area 2ut and the intersection

of the image ofT with {u € [_2/\—1‘*‘7(1—)‘”’ t]} has area (2A —1)+ (1 — X+ p)t.

When t = /\-H 1 , we have that “t 2)‘71%(17)‘”

condition on the image of all (u, v).

Claim. The image of o X 123 lies in an e neighborhood of {(z1, 22) |
7|21)? < X+ p, m|22)? < f(w|21]?)} x C, concluding the proof.

Proof of the claim. We check the fibers of 7 over points w € D(A + ).
First, if w is in the image of a point in one of the segments [2i — 1, 2i] x {0}
then w is close to 0 and the zy coordinate of the fiber lies in D(2)).

, and so, we are imposing a

Next, suppose that 7|w|? = s+¢& where s < 2M>\2+)\;;11' Then, w = o(u,v)
where either u > i or u < —zx (since by our conditions on o points with
u € [~35,3,] are mapped into D(s)). By Lemma 3.5, in the first case, the

2z coordinate of the fiber lies € close to D(2A — 3), and in the second case,

the 2o coordinate of the fiber also lies in an & neighborhood of D((2 — 5%)A).
Hence, 7|z2|? < 2\ — |21 |?/2.
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Finally, suppose that 7|w|? = s + & where 2u22=1 < s < X\ + p. Then,

Ap—1
s—(2A—1) _@A=Du+A-N)s

we see that w = o(u,v) where either u > ="5=% or u < A
This again follows from our conditions on o. Indeed, if

CAx=Dp+(1-XN)s s—(21—1)

ue | — 3 )
A1 =X+ p) 1—A+p
then, rewriting, u € [—2)‘_1+(1_)‘)t7t] with ¢t = % The bounds on s
imply that /6:‘};_11 <t <1 and so by the second bullet point in our description

of o points with w in this range are mapped into D((2A— 1)+ (1 = A+ p)t) =
D(s).

Concluding by Lemma 3.5, if u > %’\;ﬂl)
the fiber lies € close to D(1 — %ﬁj)%) =D(1—- %), recalling
that A =1 — £ If u < —35, then the 23 coordinate of the fiber lies e close to

D2\ — W) which we check is also D(1 — (1_)1)3\712;‘4'1)) Hence,

, then the z5 coordinate of

2
rlzal2 <1 (1—A)(Ir|j|+;»+1) L. 0
With the claim proven, we have completed the proof of the proposition.
O

3.1.2. Some obstructions. We now turn our attention to the obstructive side.
Notably, this will be quite short, because we can cite work on these higher
capacities that has previously been done or is forthcoming. Namely, here,
we only recall the following computations for the capacities of ellipsoids and
polydisks from [28, §6.3]:

gx(P(1,a)) = min(k,a + [£527) fora>1, k>1odd (6)
g(E(1,a)) =k fora>1,1<k<a. (7)

It seems plausible that the computation for P(1,a) is also valid for k even.
This would follow if we knew that the capacities g; are nondecreasing with
k, although this is not yet clear.

We will also need the following more general expected formula for ellip-
soids, which will be proved in [25]. For 1 < a < 3/2, we have

14ia fork=143i withi>0
gr(E(l,a)) =< a+ia fork=2+3i withi>0 (8)
2+1ia for k =3+ 3i with ¢ > 0.

For a > 3/2, we have

k for 1<k < |al
gr(E(l,a)) =< a+1 for k = [a] + 2 with ¢ > 0 9)
[a] +i for k= [a] +2i+ 1 with i >0.
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3.1.3. The proofs. We now give the promised proofs.

Proof of Theorem 1.1. Let a,b, and N be as in the statement of the theorem.
Then, by Corollary 3.4, we have

2a
a+b—1
To prove the opposite inequality, we use the higher capacities gi. That is,
take k = a. Then, by (7) and (9), we have

Cé\,[ezz (a) <

o(E(La) =a, gr(E(1,b) = Lg‘l

Hence, by the scaling, monotonicity, and stabilization properties of the gz in
Theorem 2.1, we have

2a
> b
“a+b-—1
hence the theorem. O

C{;\,fezz (a)

Remark 3.6. Note that in the above proof, we only need the inequality
g.(E(1,b)) < “t2=L and in the case that b is even (and hence, a > b+ 1
is odd), this can be deduced directly from (6). Indeed, by (3), there is an

embedding E(1,b) < P(1,b/2), whence we have
8u(B(1L8)) < 0a(P(1L,b/2) = b/2 + [(a — 1)/2] =TT 271

Proof of Theorem 1.3. The proof is similar to the previous one. Let a, b, and
N be as in the statement of the theorem.

The bound

2a

a+2b—1
follows from the existence of a variant of the embedding from above, which
was previously shown to exist in [6, Lem.1.3].

To show that no better embedding exists, we use the above capacities.
Namely, let k& = a. Then, by (6) and (7), we have

C{)\,[poly (a‘) <

or(E(L,a) = a, guPuw»=b+“;?

The theorem now follows by the same argument as above. O

Ezxample 1. Tt is interesting to compare the above methods with the case
b = 1. For this, we recall for the convenience of the reader an argument from
[28, §1.4]. There, a variant of the embedding used in the previous theorems,
constructed in [12], gives

3a
a+1
On the other hand, if a is an integer congruent to two, modulo three, then
taking k = a as above yields

le\,fell (a) <

1+a

gr(E(1,a) xC") =a,  gr(F(1,1) xC") = ;
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Hence, combining these inequalities, we get that for a congruent to two mod-
ulo three

3a
cjl\,fell(a) = arl

This recovers the result of McDuff [21, Thm. 1.1].

3.2. The rescaled embedding function

We now provide the proofs of the promised corollaries regarding the conjec-
ture of the second named author, Frenkel, and Schlenk.

Proof of Corollary 1.4. We will first prove the statement about c{)Ypoly7 after
which the result about cé\fe” will follow easily.

The function cé\’[poly(a) is nonincreasing in N. We want to show that
it is in fact constant in N for a in the intervals given by the theorem. The
computation of ¢ ;. (a) from [6], together with Theorem 1.3 from above,
shows that it does not depend on N for the exterior (middle) corner of each
linear step.

Now, note that if an embedding

S

E(l,a) x C" < AP(1,b) x C"

exists, then for any a’ > a, by scaling, there is an embedding

!/

E(1,d') x C" < LAP(1,b) x C™.
a
N N
ThU.S, cb,poly(a/) < b,poly
cN(a') for a’ > a cannot lie above the line through (a,yo) and the origin. For
future reference, we call this the subscaling property. We can now prove the
corollary.
Consider any linear step for cg,poly(a). Recall that this consists of a

linear part, then an exterior corner, and then a horizontal part. Consider the
linear part. We want to show that this stabilizes. We know that cé\fpoly(a) <

(a). Therefore, given yo = c™(a), the graph of

a/
—C,
a

cg,p Oly(a). If there were any a value for which strict inequality held, then by
the linearity property above, at the exterior corner ag of the step, we would
have cé\jpoly(ao) < cgpoly(ao). However, above we saw in Theorem 1.3 that
the exterior corner is stable. Hence, the whole linear part must stabilize. As
for the horizontal part, we know that we must have c{)\’[poly < cg’poly, but on
the other hand the function Cz];\,,pozy is nondecreasing, and so must be constant
here. Thus, the whole step stabilizes, so all the linear steps do.

In view of Theorem 1.1, the exact same argument implies the result
about c%’e”, since for N = 0, there is an equivalence of embeddings (3). O

Proof of Corollary 1.5. Corollary 1.4 shows that, after the initial part of the
graph, where cé\fpoly(a) = 1, the graph has [v/2b] + 1 linear steps that are
all stable. The length of these steps is given by the formula ¢, (k) from [6,
p.6]. In particular, as explained there, the length of the k' step converges
to 2 as b tends to infinity. Since the steps are centered at the odd numbers,
increase in number without bound as b increases, and our rescaled function
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is centered, so that the initial part of the graph with height one, that is, the
part determined by Gromov’s non-squeezing theorem, does not appear, the
result follows. O

3.3. The first step

We now prove Proposition 1.6.
Proof of Proposition 1.6. The key is the following lemma.

Lemma 3.7. Let ag be the smallest odd integer that is mo less than 2b — 1.
There is a symplectic embedding

int <E (1,“021+b>) < P(1,b). (10)

Proof. We first explain why it suffices to prove the lemma for b rational.
Given an irrational b, we can choose rational numbers b, converging to b
from below. Then, if the lemma is true for each b,, and the b,, are sufficiently
close to b, composing with the inclusion P(1,b,) C P(1,b) gives embeddings
int (E (1, %51 +b,)) < P(1,b), hence the desired embedding (10) by [4,
Cor. 1.6].

We thus henceforth assume that b is rational. Then, by for example
[4][Thm. 2.1], it is equivalent to find an embedding

int (E(1,5)) U int <E (1, o 1)) < P(1,b). (11)

Indeed, the argument for [4, Thm. 2.1] implies that both (10) and (11) are
equivalent to ball packing problems of the P(1,b), where in the first case,
the size of the balls is given by the weight sequence defined in [4, §2] for
(a0 — 1)/2 4 b, and in the second case, the size of the balls is given by the
union of the weight sequence for b and for (ag — 1)/2. Since (ap — 1)/2 is an
integer, the first (ag — 1)/2 of the weights for (ag —1)/2+ b will be 1, so (10)
and (11) are equivalent to the same ball packing problem.
We know that ag < 2b+ 1, and hence

(lo*l

<b. (12)

We can therefore find an embedding as in (11) as follows. We think the mo-
ment image of P(1,b) as a union of two triangles, joined along the diagonal
that does not contain the origin. The triangle with legs on the axes con-
tains an FE(1,b) factor by inclusion. As for the other triangle, it is affine
equivalent to the first, via multiplication by —I5, where I5 is the two-by-two
identity matrix. Hence, by the Traynor trick, see for example [31] and [2,
Lem. 1.8], it also contains a copy of an int(F(1,b)), disjoint from the interior
of the first E(1,b). Now, by (12), this latter int(E(1,b)) contains a copy of
int (E(1, (agp — 1)/2)) . O

We can now prove the proposition. We first prove the second bullet
point. By Lemma 3.7, we know that c{)\fpoly < 1, for a in the given range.

However, by Gromov’s non-squeezing theorem, we also know that cévpoly >1,
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for a in this range. As for the rest of the second bullet point, this follows
from the subscaling property of c{)\fpoly, as in the proof of Corollary 1.4 above,
given the lower bound on c{,\fpoly(ao) coming from Theorem 1.3.

We now prove the first bullet point. The result for 1 < a < b follows,
because inclusion gives an embedding for @ in this range, which is optimal
by Gromov’s non-squeezing theorem. Similarly, for b < a < [b] + 1, scaling
gives an embedding as in the subscaling property, which is optimal by the
([b] +1)*" Ekeland—Hofer capacity; see, e.g., [3][§2.3.1, §4.1.1] for the relevant
formula. 0

3.4. The other parity

The proof of the remaining proposition, Proposition 1.7, requires the g, and
computer assistance as well. It turns out that the simplified capacities g; do
not suffice in these cases. For example, for E(1,6) x C SN P(1,1) x CV,
one can check that the simplified capacities give only A > 5/3, whereas we
have in fact cf’fpoly(G) =12/7 for N € Z>1.

On the other hand, we have the more general capacities gy, which could
in principle give sharp obstructions for all a € R>1 and b € Z>7 in (2) and (4).
This is related to the discussion at the end of [28, §6.3], where it is observed
that the simplified capacities g do not generally give sharp obstructions for
E(1,a) x CN NP\ E(1,1) x CV, but the capacities gy necessarily give sharp
obstructions at least for a < 7%. Moreover, the formalism from [29] gives
an explicit recursive algorithm to compute the capacities g for all convex
toric domains, although, unfortunately, it appears to be somewhat difficult
to compute with “by hand”.

Proof of Proposition 1.7. We begin with the computation of c{\fpoly(a) for
a = 6,8,...,100. By [12], we have the upper bound c{\{poly(a) < (f—_fl, so it
suffices to establish the lower bound c{\fpoly (a) > % Suppose that we have
a symplectic embedding E(1,a) x CN¥ <5 X P(1,1) x CV.

Following the notation and exposition of [29], the idea is as follows. By
[29, Cor. 1.2.3], there is a filtered Lo homomorphism Q : Vp(x x) — VE(1,q)
which is unfiltered £, homotopic to the identity. Here, V' is an explicit DGLA
with generators «; ; for 4,5 € Z>1 and §; ; for 7,j € Z>¢ not both zero. The
filtered DGLA Vp(y z) is just V as an unfiltered DGLA, and its filtration is

specified by
Apooy(@ig) = Apooay(Bij) = Ai+ Aj.
Similarly, the filtered DGLA V(1 o) is just V' as an unfiltered DGLA, with
filtration specified by
Ap,a0)(@ij) = Apa,a)(Bi;) = max(i, aj).
Recall that an Lo, homomorphism @ : Vpxx) — Vi(1,4) consists of a se-
quence of maps Q' : QlVP(A,A) — Vi@, for 1 =1,2,3,..., and these must

satisfy an infinite sequence of certain quadratic relations.
Any element of the form 8;, j, ©--- ® B4, j, defines a cycle in the bar

complex Vp(x n). In particular, Q(3i, j, ® -+ @ 3;, ;,) must be homologous
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to Biy i © - © B4, 5, In VE(l)a). Moreover, there is a filtered £, homomor-
phism @1 4 : Vg1,q) — VE??,(;)’ where Vg?i‘va) denotes the homology of Vi1 4)
(viewed as a filtered Lo, algebra with trivial £, operations), and hence,
(7<I>11a 0Q)(Biy,j, @+ © Biy 4, ) is homologous to ®14(Fi, j; © -+ © Biyj,) In
(1)

Now, suppose that we have a = p/q with p + ¢ = 2d for some p, q,d €
Z>1. Consider some dy,ds € Z> satisfying di +d> = d, and suppose that we
have

<I>d (T B0 © @ B1) # 0. (13)
Then, we claim that we have \ > %, which gives the desired lower bound.

Indeed, for a general input of the form ﬁil,jl © -+ © Biy e, it follows by
degree considerations that @f,a(@'hjl © -+ O Big.j,) s either trivial, or else
it is the unique element up to scaling in VEC(T a) of its given degree. In the
latter case, its action is given by the {th Ekeland—Hofer capacity of F(1,a),
ie., cPH(E(1,a)), for | = anzl(im + jm) + k — 1. Also, the action of the
1nput is given by

k k
A (Biy gy © - O Biy ji.) = Z Arn) (Bin gim) = Z (A, + Ajim)-
m=1 m=1

Specializing to the case of input ©%3; 0 ® @8, and | = 2d — 1,

usmg a =p/qand p+ q= 2d, it is straightforward to check that we have

EH(E(1,a)) = p. Since <I>1 o © Q is filtration-preserving and @d((adlﬁl 0®

®d2ﬂoyl) is a summand of the image of [0% 8, 9 ® ©®® ;1] under [y 4 0 Q)
we must have A(d; + d3) > p, and hence

P 2p 2a
>£ -2 _
~d p+q a+1
as claimed.

Let us now specialize to the case that a is an even integer. Then, we
have a = p/q for p = 2a and ¢ = 2, and hence, p + ¢ = 2d for d = a + 1.
By computer calculations, (13) holds for d; =3 and do =d —d; = a — 2 for
a = 6,...,100. Geometrically, this corresponds to a nonvanishing count of
rational curves in CP! x CP'\ ;- E(1, a) of bidegree (d, d2) with one negative
puncture asymptotic to the p = 2a fold cover of the short simple Reeb orbit.
Curiously, the analogous counts for d; = 1,2 vanish.

The computation of cé\feu(a) for a = 6,8, ...,100 is similar. In this case,

we suppose that we have a symplectic embedding E(1,a) x CV < A E(1,2)x
CV, and we take our input cycle to be of the form ©%8s1 ® ©473p g, for
d = a — 2. By computer calculation, we have

Y (©B21 © ©3Bp1) #0 (14)

for a = 6,8,...,100. The action of the output is that of the Ith Ekeland—
Hofer capacity of E(1,a) for | = 5+ 2d, and we have ¢ (E(1,a)) = 2a.
Meanwhile, the action of the input is

Apa2)(©°f21 © O 3B10) =6+ (d—3)=a+1,
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whence the lower bound A\ >

(f_f_‘l readily follows. 0

4. Discussion
We close by discussing some natural follow-up questions to our work.

4.1. Beyond the rescaled function

One can of course ask whether the function cl])\"poly (a) can in any sense be
computed completely. As explained in [6, Lem.1.3], and mentioned previously
here, a previous folding construction of the second named author gives the
bound

2a
a+2b—1"
This bound cannot be optimal for all a. For example, as we have seen in this
paper, there are sometimes four-dimensional embeddings beating this bound,
and these can be stabilized by taking the product with the identity. For a
sufficiently large with respect to b, though, in particular for

a> (V2b+1)? (15)

the above folding bound beats the four-dimensional volume obstruction, and
so must give a better construction than any stabilized four-dimensional one.
The main question at the moment here is as follows.

c{)\,rpoly (CL) <

Question 4.1. Is it the case that either ¢}, (a) = ¢} o, (a), or

2a

c{’v (a) = a+2b—1?

»poly
If this is true, it looks hard to prove. For example, if a < (\/% +1)2,
then the volume bound is strictly below the folding bound from above. On
the other hand, for b € Z>, it is known that there are entire intervals of
the subset a < (v/2b + 1) for which the volume bound is optimal for cgwoly:
for example, for b = 2, [6, Thm.1.1] states that there is an interval on which
cg)poly is given by the volume starting at a = 7.84, but on the other hand by
(15), the folding curve is above the volume curve up until a = 9. Finding the
holomorphic curves needed to show that this volume bound stabilizes would
be a completely new phenomenon.
The same question, but concerning cé\f o1 1s also open and just as inter-
esting.

4.2. The opposite parity

It is also natural to ask what happens for the stabilized embedding problem
for ellipsoids, when the parity of the domain and target are the same. For
example, one might hope that an analogue of our Proposition 1.7 holds in
the case b > 2. If this is true, however, it is not so clear how to prove it: our
preliminary computer search to generalize the method required to prove it
has not turned up promising candidates. It would be very interesting to find
a candidate of curves to solve this problem, or to find another embedding.
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4.3. The region from b =1to b =2
For b > 2, our Corollary 3.4 produces an embedding, such that

2a

ben@) £ T

Meanwhile, for 1 < b < 2, Corollary 3.3 shows

N a(b +2)
¢ a) < —. 16
b7ell( ) = (a+1)b ( )
It is interesting to ask when this bound is sharp, for instance whether there
are sequences of a where this holds. We now list some facts, suggesting that
the answer may not be straightforward.

Note that when b = 1, the bound gives

3a

C{\,’eu(@) < panEE

which as mentioned above is sharp when a = 2 modulo 3, [21]. There is
another sequence starting at a = 2 where (16) is an equality. By work of the
first and second named authors, [7], we have cf{ell(a) =¢f y(a) foralll <a <
74, This region of the graph is an infinite staircase, that is, piecewise linear
with infinitely many singular points accumulating at 74, see [23]. Between
these singular points the graph alternates between being constant and sitting
on a line through the origin. One can check the corners of the stairs, the left
endpoints of the constant intervals, lie on the folding graph

3
a—:—zl :
When b = 2, our bound gives

2a
a+1"

Cé\,{ell (a’) <

The graph of cg’e” also begins with an infinite staircase, see [5,11], and again,
the tips of the stairs lie on the graph % It seems extremely likely that at
such a, we have cé\{e”(a) = cg)e”(a) for all N, so the bound (16) is again
sharp.

However, when b = 3/2, the situation is mysterious. Now, our bound
gives

7 a
< — .
“3a+1

N
C3/2,ell(a)

Here again, work of the first named author and Kleinman shows that ¢ /2.6l (a)
has an infinite staircase [5], but now, the tips of the stairs lie on the graph
ffl. Moreover, the g show that 05276”(61) > (f_ﬁl at integer a. It is unclear
whether an improved construction can show this lower bound is indeed sharp,
or whether enhanced obstructions can be used to show that even though the
folding graph (16) lies strictly above the infinite staircase, it is still asymp-

totically sharp.
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4.4. A combinatorial rule?

While the functions cg’e” and cg’poly themselves are known to be quite com-
plicated (see for example [23,32]), t'hey are governed by simple to state com-
binatorial rules. For example, McDuff shows in [20] that cgye” is completely
determined by the combinatorics of the sequence N (a,b), whose kth term is
the (k + 1)% smallest entry among the nonnegative integer linear combina-
tions of a and b. It would be extremely interesting if the functions cé\;” and
C{)Ypoly are also governed by some kind of relatively simple to state combina-
torial rule. It might be easier to find such a rule than to actually compute
these functions explicitly.
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