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Modeling open quantum systems—quantum systems coupled to a bath—is of value in condensed-matter the-
ory, cavity quantum electrodynamics, nanosciences, and biophysics. The real-time simulation of open quantum
systems was advanced significantly by the recent development of chain mapping techniques and the use of matrix
product states that exploit the intrinsic entanglement structure in open quantum systems. The computational cost
of simulating open quantum systems, however, remains high when the bath is excited to high-lying quantum
states. We develop an approach to reduce the computational costs in such cases. The interaction representation
for the open quantum system is used to distribute excitations among the bath degrees of freedom so that
the occupation of each bath oscillator is ensured to be low. The interaction picture also causes the matrix
dimensions to be much smaller in a matrix product state of a chain-mapped open quantum system than in the
Schrodinger picture. Using the interaction representation accelerates the calculations by one to two orders of
magnitude over the existing matrix-product-state method. In the regime of strong system-bath coupling and
high temperatures, the speedup can be as large as three orders of magnitude. The approach developed here is
especially promising to simulate the dynamics of open quantum systems in high-temperature and strong-coupling

regimes.
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I. INTRODUCTION

The density-matrix renormalization-group (DMRG)
method [1] has become a standard tool to study low-
dimensional systems, especially one- and two-dimensional
spin systems [2,3]. The essence of the DMRG method is
to retain the most significant states associated with the
relevant properties of a quantum system and discard the
less important ones using singular values decomposition.
The time-dependent version of DMRG (t-DMRG) [4-6] is
promising to describe quantum dynamics and it can achieve
high accuracy at moderate computational cost. The DMRG
and t-DMRG methods are most easily understood using
the language of the matrix-product-state (MPS) [7-10]
representation of quantum states.

The MPS representation was developed to describe one-
dimensional systems, including the Ising model and its
variants [2] and the Bose-Hubbard model [11]. Using t-
DMRG to study the condensed-phase quantum dynamics
of electron or energy transfer, for example, requires that
the electron-vibration Hamiltonian be mapped onto one di-
mension, although the electron-vibration Hamiltonian has an
intrinsic star-shaped topology [12,13]—the electronic sys-
tem interacts with all of the vibrational modes present (see
Fig. 1). The requirement of t-DMRG for a one-dimensional
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(1D) configuration is fulfilled by arranging the bath modes
along a line and placing the electronic system at the end of
the line, as shown in Fig. 1. This configuration is known
as the star geometry [14,15]. Using the star geometry does
not change the content of an electron-vibration Hamiltonian,
and it places the electronic system and the bath modes into a
one-dimension topology, introducing long-range interactions
between the electronic system and the bath modes (Fig. 2).
Despite the long-range interactions, the star geometry was
proven to be efficient when calculating the Green’s functions
of a special open quantum system (for example, the Anderson
impurity models where the impurity, a magnetic atom, is the
quantum system and the conduction electrons are the bath) at
zero temperature in the context of MPS [16].

For open quantum systems other than the impurity
model, the star geometry is not necessarily efficient numeri-
cally, because it involves long-range interactions. Long-range
interactions are believed to make MPS simulations compu-
tationally expensive because the bond dimensions (i.e., the
number of important singular values of the density matrix)
in a MPS grows, in general, rapidly as a function of time.
In addition, the effect of finite temperatures on the numerical
efficiency of the star geometry and the chain geometry is not
clear. The recently developed approach of using a thermal-
ized spectral density [17,18] to describe finite temperature
open quantum systems maps a finite-temperature bath to an
effective zero-temperature bath, and it is not clear whether the
star geometry remains efficient in this thermofield description
of finite-temperature effects. A strategy that is different from
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FIG. 1. Configurations of the star and chain geometries. The
lines represent the interactions between sites. The star geometry does
not change the vibronic Hamiltonian per se and it is a 1D representa-
tion of the Hamiltonian. The ordering of bath modes is crucial to the
efficiency of the star geometry. Ordering by the magnitudes of bath-
mode frequencies is commonly used [22]. The chain Hamiltonian is
obtained from the vibronic Hamiltonian by a unitary transformation
U and it contains interaction terms between two adjacent bath modes.

using the star geometry, the chain geometry mapping [19,20],
was proposed to avoid the long-range interactions present in
the star geometry. The chain geometry differs from the star
geometry in the topology of the bath modes (vibrations). In
the chain geometry, the bath modes are mapped to a 1D
chain of oscillators with nearest-neighbor interactions, and the
quantum system interacts only with the first bath mode in the
1D chain. The short-time dynamics of open quantum systems
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FIG. 2. Configuration of the interaction-picture chain Hamilto-
nian. In the interaction-picture chain Hamiltonian, the mode-mode
terms are removed and the system interacts with all of the modes.
An important feature of the interaction-picture Hamiltonian is that
the interaction strengths of the system and bath modes are time-
dependent and spatially localized. Here, we use the thickness of
lines to indicate the interaction strengths. At early times, the system
interacts strongly with the first several modes. At later times, the
strongest interactions move to further parts of the 1D chain. The
interactions are always localized in a narrow band of vibrational
modes (see Fig. 5). In contrast, in the star geometry, the interactions
are not spatially localized.

can be described largely by a few modes in close proximity to
the system [21]. Many quantum dynamical simulations have
been performed using the chain geometry, and it is believed
that the chain geometry usually (has a lower computational
cost) than the star geometry since the bond dimensions of
MPS in the chain geometry are small (because the long-range
interactions are absent).

Although the bond dimensions in the chain geometry are
believed to be smaller than in the star geometry, the com-
putational cost of open-quantum-system simulations with a
boson bath also depends on another quantity—the number
of eigenstates of each bath mode (i.e., the local dimension).
When kgT (T is temperature) is large compared to the energy
spacing of the bath modes, the local dimension for each bath
mode must be large enough to ensure numerical convergence
of the simulations. Similarly, in the strong system-bath cou-
pling regime, large local dimensions for the bath modes are
also necessary for numerical convergence. The large local di-
mensions may slow simulations that use a chain geometry. For
example, in the chain geometry, if the dimension of the Hilbert
space for a bath mode (local dimension) is 100 (see Sec. IV
for an example), an interaction term /c,l(lgjgl;n_l + H.c.), where
bfl is the creation operator for the nth mode in the chain,
generates an evolution operator with a corresponding matrix
of the size 10* x 10*, causing time-consuming matrix opera-
tions. Furthermore, large local dimensions of bath modes also
significantly affect the size of the tensors in a MPS because the
dimension of one of the indices in a MPS tensor is equal to the
local dimension of the corresponding site (here, a bath mode).
The large tensors in MPS then make the required singular
value decomposition a difficult task. In summary, when using
the chain geometry, the dimensions of the evolution matrices
or of the Hamiltonian matrices become large at high tempera-
tures or in the strong-coupling regime, and the corresponding
numerical simulations in these regimes become impractical.
This large-matrix problem does not exist in the star geometry
because the system is often described by a smaller Hilbert
space than the bath modes, and the interaction terms in the
star geometry couple the system to each bath mode, making
the matrix size much smaller than in the chain geometry. How-
ever, the bond dimensions in the star geometry grow rapidly
with time since long-range interactions induce strong entan-
glement, which makes long-time simulations challenging. The
small dimension of the interaction terms in the star geometry
motivate us to transform the interaction terms in the chain
geometry to resolve the large-matrix difficulty that impedes
the chain-geometry simulations, especially in the regimes of
high temperatures and strong system-bath interactions.

Now, we describe an approach to overcome the com-
putational challenges of the chain and star geometries by
transforming the chain Hamiltonian to the interaction picture.
In the interaction picture, the transformed Hamiltonian does
not contain the mode-mode interaction terms, thus produc-
ing much smaller evolution matrices. The transformed chain
Hamiltonian features a star geometry with time-dependent
system-bath couplings. In contrast to the star geometry in
the Schrodinger picture, the time-dependent couplings are
spatially localized, producing slower growth of entanglement.

We use the transformed chain geometry in the interac-
tion picture to describe the spin-boson model and compare
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the resulting dynamics, bond dimensions, and computational
costs to the treatment with the Schrodinger-picture chain and
star geometries. Efficient methods were published recently
that go beyond the direct simulations of the system and
discretized bath that are used in the present study. Instead,
they use the pseudomode—effective-mode description of baths
[23,24] or use a novel description of non-Markovianity of
open systems [25], which significantly extends the accessible
simulation time of open systems. The relationship between
the interaction-picture transformation reported here and those
alternative methods is an interesting topic for further explo-
rations.

The paper is organized as follows. Section II derives
the full and the truncated (finite chain length) form of the
chain-geometry Hamiltonian in the interaction picture. The
truncated form is used for the spin-boson model simulations.
Section IV compares the results obtained with the chain-
geometry Hamiltonian in the interaction picture, the chain
geometry in the Schrodinger picture, and the star geometry.
These studies demonstrate the speed and accuracy of the
interaction-picture chain geometry approach. Using scaling
analysis, we show that the interaction-picture chain geom-
etry approach is 1-2 orders of magnitude faster than the
other two schemes if the vibrational mode excitations are
high. The strategy developed here allows the use of t-DMRG
and tensor networks to simulate strongly coupled vibronic
systems in the high-temperature regime (kg7 > hw., where
w, is the characteristic frequency of the bath), such as the
strong-coupling-enabled nonthermal coupled electron-exciton
transport (quantum ratcheted reactions [26]) and ambient-
temperature excitation energy transfer reactions, for example.
This method is also suitable to model ultrastrong coupling
and deep-strong-coupling regimes (for a description of these
regimes, see Refs. [27,28]) in light-matter interactions [29].
Section V summarizes features of the computational scheme
(chain geometry in the interaction picture) and discusses pos-
sible improvements to this scheme.

II. THEORY AND METHODOLOGY

A. Orthogonal polynomial mapping of the Hamiltonian

The Hamiltonian in Eq. (1) describes a quantum system
coupled to a bath (i.e., an open quantum system) with i = 1,

H = H;+ Hy, + H, (1

Q)
=H +A,® @ + a,)h(w)dw
Qo

[l
+/ aa,0do. )
Qo
&' and &, are the creation and annihilation operators for a
boson mode of frequency w. h(w) is the coupling strength
between the system and the bath mode of frequency w. The
frequencies ¢ and €2; are the upper and lower limits of
the bath frequencies. When 7' > 0K, the spectral density has
a temperature-dependent form J(w, 8) = sgn(w)J (Jo|)[1 +
coth(Bw/2)]/2 with B = 1/kgT, and the lower limit €2y is
extended to —oo because negative-frequency bath modes
are needed to construct the Boltzmann distribution of bath

states [17,30]. Thus, at finite temperatures, #(w) also becomes
temperature dependent: h(w, B) = +/J(w, B). When the tem-
perature is 0K, h(w) = +/J(w) where J(w) is the spectral
density with 0 < @ < oo because no negative-frequency bath
modes are needed to construct the Boltzmann distribution.

The Hamiltonian in Eq. (2) with a continuous distribution
of bath frequencies can be transformed to a discrete nearest-
neighbor form [Eq. (3)] by a unitary transformation U, (w) =
h(w)p,(w), where p,(w) is a set of real, continuous, orthog-
onal, and normalized polynomials generated by the weight
function A%(x) [19,31],

H = H, + koA, ® (by + b))

Hg,

o0 o0
+ Y wubiby+ Y ka(biby +He) . (3)

n=0 n=1

Ay

En is a linear combination of @,,. In the transformed Hamilto-
nian, the system only interacts with the zeroth mode (b, bg).

The linear transformation U relates &} and b} :
o] o]
a, = Un@)b} =Y h(w)pu()b]. )
n=0 n=0

where IAJ:Q and 5,1 are the creation and annihilation operators

for mode n of the chain. The orthonormal polynomials p, ()

satisfy the recurrence relation

Puy1(x) = (Cox — Ap)pu(x) — Bypp—1(x), n=0,1,2...,
)

with p_;(x) = 0 [31,32]. The coefficients A,, B,, C, are re-
lated to the coupling strength «,, and frequency w, [31]:
Wy Kp 1
An = ) Bn = ) Cn == )
Kn+1 Kn+1 Knt1

n=0,1,2,....

(6)

Using the recurrence relation [Eq. (5)], we can compute
pn(x) given the frequencies w,, couplings «,, and the first two

polynomials p_; (x) =0, po = 1/k¢ = 1/,/]5220' h%(x)dx. The
recurrence relations, the relationships among w,, «,, A,, B,

and C,, and the properties of the orthogonal polynomials are
described in Refs. [19,31].

B. Chain Hamiltonian in the interaction picture

H in Eq. (3) is the chain Hamiltonian that contains cou-
plings between two adjacent bath modes. H in Eq. (2) is the
star Hamiltonian. The time evolution of the system and bath
is governed by H or H. In the Schrodinger picture, the time
evolution is

[ (1))s = e |y (0))s . (7)

By transforming the chain Hamiltonian to the interaction pic-
ture, the coupling terms between adjacent bath modes are
removed and only the system-bath couplings and the system
operator remain, as we will show. The dimensions of the
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Hamiltonian matrices that describe these system-bath cou-
pling terms are much smaller than the mode-mode coupling
terms in the Schrodinger picture, since the dimension of the
system Hilbert space is often small [33-35] (equal to 2 for
a spin system, for example, while the dimension of a single
bath mode can be around 100 [36]). Therefore, we expect that
the computational cost of simulating the interaction-picture
Hamiltonian in Eq. (3) with MPS can be much lower than that
in the Schrodinger-picture chain geometry.

1. Chain Hamiltonian in the interaction picture

In the interaction picture with respect to H,, the wave
function is |y (t)); = €™ | (¢))g and the evolution operator
U; (¢, 0) = el ¢=H! hag the time evolution

d . . O
EU,(r, 0) = &' (—iH + iH,)e ™"

— eiﬁht(_il:'[ + iﬁh)efil‘?bteiﬁhtefiﬂt (8)

= —ie™ (H, + Hgp)e ™ 0, (2, 0). )

Eq. (9) describes the interaction-picture HamiltonianH; =
eiﬁbl (Hs + ﬁsb )e—iﬁbt. i i

It is difficult to begin with ' (H, + Hg,)e ' to obtain
an expansion of H; in terms of 13,1 and 13:2 Instead, we first turn
to the star geometry and define the interaction-picture star-
geometry Hamiltonian H;(¢) [Eq. (2)] as

H; (t) = eiHht (Hv + Hy, )eiiHbr

=H +A® @ e + a,e” " Hh(w)dw. (10)
Qo
H;(t) and H;(t) are related by the chain mapping transforma-

tion U, [Eq. (4)] [19]. Therefore,

Q] 0 . © A .
H(t)=H,+ A, ® f [Z Un(@)be™ + ) U,,(co)bne_""’:|h(w)dw

S n=0

n=0

o0 Q ) . Q) .
=H,+A,® ) |b} W (@)pp(@)e™ dow + by, W (0)pp(w)e ™ dw (11)
n=0 ! 20 $2
o0
= H,+ A, ® Y _[d; ()b} + du(t)b,]. (12)
n=0

Here, d,(t) = ng) " B2 (@) pn(w)e™ ™ dw and d(t) is the complex conjugate of d,(¢). By definition, d,(¢) is the Fourier transform

of p,(w) with the weight function h?(w) for Qy < @ < Q.

The evolution operator in the interaction picture is U (¢ +
51,1) = et Hiovds

Ut +6t,t) :exp{ —i|:HS8t + Ag

® Y ldu(w,t.81)b, + H.c.]] } (13)

n=0

where d,(w,t,8t) = éi‘ hz(a))pn(w)(ftt-w e~ ds)dw and
4t is the size of a single evolution step.

2. Truncated form of the chain Hamiltonian in the interaction
picture

The Hamiltonian in Eq. (12) describes a semi-infinite
chain. In simulations, the semi-infinite chain will be truncated
in one of two ways. One approach is to keep the first N terms
in the summation of Eq. (12).

The other truncation scheme is easier in the sense that
the integrals in Eq. (12) are not needed. It begins with the

(

truncated form of the original chain Hamiltonian (this Hamil-
tonian is denoted as the C form) Eq. (3):

H = H, + koAs ® (b + b))

Hgp,

N N
+ Y oubiby+ Y ka(Biby g +He.). (14)

n=0 n=1

H,

To transform this Hamiltonian into the interaction picture with
respect to Hj,, we first diagonalize H,. The diagonalization
uses the fact that H), can be written as

H, = b'Mb, (15)

where b" = (5, ..., bL), b = (by, ..
zos tridiagonal matrix [20] M is

., by)T, and the Lanc-

Wy  Ki
K1 w1 K2
M = : (16)
WN—-1 KN
KN wN

KN—1
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M can be diagonalized by the unitary transformation: M =
PTAP, where A = diag(Xo, . .., Ay) is a diagonal matrix with
the elements equal to the frequencies of the independent bath
modes. Defining a = (4o, ..., ., ...,ay)" =P -b, which
implies b = P' - a, we transform H to the star Hamiltonian
H (denoted as the S form)

N N
H=H; +A;® ZKO(PJ,k&k + Peody) + Z Aay .,
k=0 k=0
(17)

where Py is the first column of P and Pg ¢ 18 the first row of
P7.

The next steps are to transform the Hamiltonian [Eq. (17)]
to the interaction picture with respect to the bath Hamiltonian
Zszo Akaz&k and then write the ladder operators &kl &Z in
terms of the chain geometry ladder operators, namely b, and
b . The resulting truncated star Hamiltonian in the interaction
picture is

N
Hy= Hi+A;® Y ko(P) e ™ ay + Proe™ af).
k=0
(18)

Using &y = Y n_ Poub, and & = 3N Pj’,ﬁ; to transform
a, &Z to b, and 132 in Eq. (18) leads to the chain-geometry
Hamiltonian in the interaction picture (denoted as the IC
form),

N N
H = H+A;®Y > ko(P§Pene ™'by+Hc)

k=0 n=0
(19)
N
= H,+A,® Y _[d,(t)b, +H.c] (20)
n=0

= Hy+Ho(t) + Hs 1 (t) + - - + Hy n(0), 2

where we define d,(t) = Y}, KOPOT!kPk,ne’W’. In Eq. (21),
we also defined H, ,(t) = A; ® [d,,(t)lan + H.c.]. This trun-
cated Hamiltonian of Eq. (21) in the interaction picture
is used in the simulations of Sec. IV. The transformation
from Eq. (17) to Eq. (21) and the time-dependent cou-
plings associated with the bath modes are reminiscent of the
space-dependent couplings and the chain transformation in
Ref. [37], where the real-space coordinate of the bath modes
plays a similar role as time in Eq. (21).

The one time step evolution operator for the IC Hamilto-
nian [Eq. (21)] is

U(t + (St, t) — e*i[H.;BFFZ”:OHx,,,(f+51/2)8t] (22)

— efi{H;ar+Ax®Z£Loldu<f+5’/2)5n“’+H~°]}. (23)

Here, we use the midpoint Hamiltonian H; , (¢ + 8¢/2) to ap-
proximate the time-dependent Hamiltonians on the interval
[z, + 6t].

The evolution operator in Eq. (23) is then Troterrized to
second order in the time step,

U(t +68t,t) ~ o~ HHAA®Ido(+6t /4)bo+H.c.} 51/2
oA (481 /b1 +H.c)) 81/2

e—i{A@[dN(t+at/2)19N+H.c.]} 51/2

e—i{AA®[dN(t+5t/2)EN+H.c.]} §t/2 .
e~ HAs®ld (1481 /)by +H.c.]} 5t/2
o~ 1y +A®Ido (46t /4)bo+H.c.1}81/2 (24)

The advantage of using the interaction picture evolution oper-
ator [Eq. (24)] is that the dimensions of the evolution matrices
are much smaller than those in the original Schrodinger pic-
ture for the chain geometry. The original Schrodinger-picture
chain Hamiltonian Eq. (14) contains terms, such as 13n13n_1,
and the dimension of Bn and 13,1_1 has to be large enough
to ensure convergence. In the interaction picture, in contrast,
the Hamiltonian only contains H; and interaction terms of
the form Ay, ® [d,(1)b, + H.c.]. Since the dimension of the
system is often much smaller than the dimension of the bath
vibrational modes (Bn, BE), the sizes of the evolution operator
matrices in the interaction picture are much smaller than in the
Schrodinger picture for the chain.

C. Time evolution of matrix product states

After obtaining the chain Hamiltonian and the correspond-
ing evolution operator in the interaction picture, one is ready
to use a matrix product state to represent the wave function
of the system and bath and apply the evolution operator to the
MPS to compute dynamics. We briefly review the use of ma-
trix product states and the time-evolution algorithm use here,
namely, the time-evolution block-decimation method [7,38].

Given a state Y (oy, 0y, - . ., oy)) with N 4 2 spatially lo-
calized states |oy), |0g), |o1), ..., |oy) onsites 5,0, 1, ..., N,
respectively (here s denotes a system), the MPS representation
of this state is

W)=Y TSI,

{oi} {a;}

S, TN oy -+ on).  (25)

Here {o;} contains oy, 0p,...,0y and {a;} contains
ao, ..., ay. We refer to the labels of the sites’ local states
05, 00, ..., 0y as physical legs. The diagonal matrices S,
in Eq. (25) are the singular values obtained by Schmidt
decomposing the state |/) into a sum of direct product states
in two subspaces spanned by |oy, ..., 0;) and |04, .. ., ON),
respectively.

The Hamiltonian of Eq. (21) includes long-range interac-
tions. To evolve the state using the star Hamiltonian, one can
use swap gates [14,39] to exchange positions of adjacent sites.
A swap gate exchanges the two physical legs of two adjacent
tensors. This exchange can be combined with an individual
time evolution term and does not introduce additional com-
putational cost if one properly orders the individual evolution
terms and swap gates in the Trotter expansion of the entire
evolution operator in Eq. (26) is the evolution operation used
in practical calculations. It is formed by the combination of
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individual evolution terms and swap gates:

U@+ 6t,1)

= S jeIHsHHso(+3t/0)151/2
X Sl,seile’] (t+8t/4)5t/252,567’H’“2(t+8t/4)5[/2

83 e Ha 181 /31/2 —iHy 1 (45t /4)5t /2

X SNfl,se

@ THsN 81 /4)51/2 —iH, N (451 [4)51 /2

—iHy N (481 /4)81/2 &

| g iMa 1 /0)2

x Ssn-1€

X S‘ Ze*iH.\-,z(t+8t/4)8t/2§ lefiH.;_l(t+6t/4)61/2
s, s,

x 8 e THHuol+3t/4)131/2, (26)
Taking the first evolution step e~ /IHsHHs0(+31/H16/2 in Bq. (26)
as an example, we show how this individual evolution term
together with the swap gate S, ¢ is incorporated in the relevant
tensors of Eq. (25). The further evolution steps are applied
in a similar way. This evolution term has four indexes be-
cause the Hamiltonian in the exponent is actually the sum
of two tensor products of operators in the spaces of the sys-
tem and the zeroth vibrational mode, namely H; ® 1, and
Ay ® [do(t + 6 /4)130 + H.c.]. The components of this individ-
ual evolution term can be written as a rank-4 tensor M;;:’ "in
which i and i’ are the indexes of the states in the system space,
while j and ;' are the indexes of states in the Hilbert space
of the zeroth vibrational mode. The composite indexes (i,
j') and (i, j) are the row and column indexes for the matrix
representation of this individual evolution operator. To apply
this individual evolution operator to the MPS of Eq. (25), we
first contract the tensors 7% = FZSS%’“O FZ;"“,I St ar-
The contracted tensor describes the effective two-site wave
function of the system site and the zeroth vibrational site.
Note that o, and oy are the indexes i and j that we used
before. Thus @Z;j/ = ©g7?. The next step is to contract
the evolution term with the effective two site wave function
Ouf =DM, /04, and apply the swap gate 8,0 to exchange
the two physical legs i’ and j’: @5/ — @]" and swapped
effective wave function is then Schmidt decomposed: @{l’l" =
> o FaoSarBiy 0y = 20, T5054,B3 - The tensor B, is then

a;,a
contracted with the inverse of Sd,a; tO obtain the tensor

ro =2 By (S ars Where (S0, = 8afa i

aop,ai ap,a) aya’
~ =~ ~
The gamma tensors I‘,ﬁo, r gg,a] and singular values §,, then
replace the previous corresponding counterparts, which com-
pletes a single evolution step.

D. Scaling analysis

The three Hamiltonian schemes introduced in Sec. II have
different computational costs. We present a qualitative scaling
analysis to show the improved computational efficiency of
the interaction-picture chain geometry (IC), compared to the
chain geometry (C) scheme. We use dic and d¢ to denote the
energy levels (local dimensions) required for the IC schemes
and the C scheme. Dic and D¢ are the bond dimensions
(i.e., the number of important singular values) required for
the IC and C scheme. In the MPS simulations of a typical
open quantum system (e.g., the spin-boson model), the most

expensive step is the singular value decomposition (SVD) for
tensors of size (d1D;, d>D,), where d; and d, are the left
and right local dimensions, while D; and D, are the left and
right bond dimensions. For simplicity, we assume D; = D,
and d; < d,. The computational cost for such a SVD step
is O((d\D)*dyD) = O(d?d,D?). In the IC scheme, d; is the
dimension of the system. For example, d; = 2 for a spin.
Therefore, a SVD step in the IC scheme scales as (’)(4dICDI3C).
Such a step in the C scheme scales as O(dZD}) if we as-
sume that the left and right local dimensions are identical.
Section IV shows that the bond dimensions in the IC and
C schemes usually satisfy a linear relationship: D;c = kD,
where k is generally larger than 1. Considering this linear re-
lation, a SVD step in the C scheme scales as O((d;¢ /k)3D?C .
This means that, as long as dé > 4k3d;c, the IC scheme will
be faster than the C scheme, at least for the SVD proce-
dures. This condition is satisfied in many systems of physical
and chemical interests. An example is the system studied in
Sec. IV, which shows that k is 2-3 and d¢/d;c =~ 8-10 in
the adiabatic cases. The scaling in the star geometry (S) is
higher than in the IC scheme, regardless of the interaction
strength because the entanglement (and hence the bond di-
mensions) grows rapidly with time (see Sec. IV). For general
open quantum systems of interest in chemistry, the systems
often involve a few electronic states (e.g., as in electron and
energy transfer systems [40]), or can be mapped to a chain of
coupled two-state systems [41,42], and the bath is composed
of vibrational degrees of freedom with local dimensions that
are much larger than the electronic degrees of freedom.

III. COMPUTATIONAL DETAILS

To demonstrate the efficiency of the method developed in
Sec. II, we use the chain Hamiltonian Eq. (21) in the in-
teraction picture and the corresponding Trotterized evolution
operators with swap gates [Eq. (26)] to study a zero-bias
spin-boson Hamiltonian. We compare the computational costs
of this interaction-picture scheme to the chain and star ge-
ometries in the Schrodinger picture. The zero-bias spin-boson
Hamiltonian is

Q

(@), + a,)h(w)dw

Qo

H=0A6.46,®

Q)
+ / &Z)&wa) dow,
Q0
where A is the coupling between two states |1) and || ) and
o, and o, are the Pauli matrices. We assume that the initial
state of the spin-boson model is a product state | (r = 0)) =
1) ®10)g ®10); ® ---|0)y. This choice follows from the
initial equilibrium finite-temperature bath state in p(0) =
ps @ e Py (B =1/kgT) that is mapped to the state of a
zero-temperature bath by defining a temperature-dependent
spectral density [17]. Following Ref. [43], we choose the
Drude spectral density of the bath

Nwew

J(@) = ———
@ = o

27)

where 7 is the coupling strength and w, is the characteristic
frequency of the bath modes. The reorganization energy of the
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TABLE I. Parameters. 19, @y, and Tj are unitless quantities that
scale the system-bath coupling, the frequency of the bath, and the
temperature of the bath, respectively.

Parameter Physical quantity

A Electronic coupling

n =noA System-bath coupling

W, = WA Characteristic bath frequency

kgT = ToA Bath temperature

Qo and Cutoff frequencies for the spectral density

spin-boson model is % fooo J(w)/wdw = 2n because the two
spin states are coupled to the bath in opposite ways through
the o, operator. The parameters used for the simulations of
Sec. IV are shown in Table I. The ordering of sites in the
star geometry plays a crucial role in the growth of the bond
dimensions with time. In the star geometry, we order the bath
sites based on the absolute values of their frequencies, with
the lowest-frequency mode closest to the system (the spin).
This ordering is used widely in MPS simulations of vibronic

systems [6,22,44].

IV. RESULTS AND DISCUSSIONS

A. Spin-boson model in strong-coupling regimes

We now show the efficiency of the interaction-picture
chain-geometry scheme (IC) using the spin-boson Hamil-
tonian in a strong-coupling regime at moderate to high
temperatures. The dimensionless characteristic frequency wy
is set to be 0.25, 1.0, or 4.0, corresponding to the adia-
batic, intermediate, and nonadiabatic regimes, respectively.
The population dynamics at low temperatures, or in the
weak-coupling regimes, are not studied here because they
are relatively easy to simulate due to the low excitation of
bath modes and the low entanglement, if no phase transition
occurs.

1. Adiabatic regime: o, < A

In the adiabatic regime, the electronic coupling A is large
compared to the characteristic frequency w, of the bath. We
use a small characteristic frequency wy = 0.25 and a mod-
erate temperature 7o = 1.0 so that w, = wpA = 0.25A and
T = ThA = A. We plot the computed population evolution
of the spin |1) state in Fig. 1. The dynamics are calculated
by the three different schemes: the interaction-picture chain
geometry (IC), the Schrodinger-picture chain geometry (C),
and the star geometry (S). Each scheme uses various cutoffs
for the dimension of the Hilbert space (local dimension) of
the bath modes to show the convergence trends. The threshold
for the singular values in the numerical simulations is 1073
for all the simulations in this paper, unless otherwise noted.
The maximum number of singular values is restricted to 1000.
We also perform the simulations with a tighter threshold 10~
(not shown). No significant difference between the simulation
results with the two different thresholds was found, which in-
dicates the results are converged with respect to the threshold
of 1073 for singular values. The dimensionless time step 8¢ in
all of the simulations is 5 x 1072, unless otherwise noted.

1.0
\ @==|C10 ==|C100°°° C80 ==S60
0.9 H IC20%++ C10 *** C100==S80
| IC60°°° C20 S10 S100
\"4 (.d)
0.7 F a .o. ..o. 00°%%0000000000000000000000000000000
)7~<(.:£l:).'...DCD.......C.C....
pT 0.6 B J‘l;, ; ...........
:~~ C .
05 (d) ~~..----¢
04r
no = 4.0, wp = 0.25, Tp = 1.0
0.3 ; : : ,
0 1 2 3 4 5
tA /T

FIG. 3. Evolution of the |1) state population. “C,” “IC,” and “S”
denote the chain geometry in the Schrodinger picture, the chain
geometry in the interaction picture, and the star geometry in the
Schrodinger picture, respectively. The numbers 10, 20, etc. are the
maximum numbers (cutoff) of energy levels for each single bath
mode. (a) C10 is not converged. (b) C20 is not converged. (c) C60,
IC10-80, and S60-100 are converged except for the tail of S60.
(d) S10 and (e) S20 are not converged. For the results in S and
C, better convergence is achieved with larger local dimensions. The
cutoff frequencies for the spectral density, 2o and €2;, are F6.36A.

As shown in Fig. 3, the simulations for the chain geometry
or the star geometry (denoted C and S) in the Schrédinger
picture deviate from the converged results obtained in the
interaction-picture chain geometry (denoted IC), unless a suf-
ficiently large cutoff for the bath-mode Hilbert space (the local
dimension) is used. We find that a cutoff of 10 for the local
dimension is sufficient for the IC scheme to converge and a
cutoff of 60-80 is required to ensure convergence in the C
scheme. The cutoff of 80 needed for the S scheme is much
less favorable than both IC and C schemes.

To further explore the differences among the three
schemes, Fig. 4 shows the growth of bond dimensions during
the simulations of Fig. 3, with different cutoffs for the local
dimensions. The results in the adiabatic regime show that
the growth in the bond dimensions has different patterns in
the three schemes. The slowest bond-dimension growth oc-
curs in the interaction-picture chain geometry (IC) and the
Schrodinger-picture chain geometry (C). The fastest growth
occurs in the star geometry. Compared to the Schrodinger
picture chain geometry, the interaction-picture chain scheme
exhibits a similar growth pattern of the bond dimensions,
but involves much smaller matrices as discussed in Sec. I.
This slow growth of bond dimensions occurs because the
time-dependent interactions in the IC scheme exhibit a
traveling-wave pattern as shown in Fig. 5. Furthermore, the
interactions are delocalized among multiple modes, and each
interaction is weaker than the system-bath interaction in the
Schrodinger-picture chain.
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o = 40, Wy = 0257 TO =1.0
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o
o
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FIG. 4. Growth of bond dimensions in the IC, C, and S schemes.
The meanings of the labels (IC10, etc.) are given in the caption of
Fig. 3. The horizontal axis is the index of the bond between every
neighboring two sites on the MPS. The vertical axis is the number
of singular values, i.e., the bond dimension. The last bond (index
200) is the bond between the spin and the first bath mode. In each
panel, curves in different colors represent the bond dimensions at
different times and the bond dimensions grow from zero at the time
zero to a larger value at the time tA/m = 5. The arrow points to
the direction of the growth (also the direction of time). The bond
dimensions grow as time proceeds (the direction of the arrow) and
the growth of bond dimensions in the S scheme is much faster than
in the IC and C schemes.

2. Intermediate regime: . ~ A

In the intermediate regime, the magnitude of the charac-
teristic frequency w, of the bath modes is comparable to the
electronic coupling. We set wyp = 1.0 so w. = wpA = A. If
the same temperature value 7p = 1.0 is chosen as in the adia-
batic case, we expect that the occupations in the bath modes
will be lower than in the adiabatic case because a higher fre-
quency (wo = 1.0) is set in the intermediate regime. To make
the comparisons between the different schemes more distinct,
the dimensionless temperature is set to Ty = 2.0, which is
higher than the temperature studied in the adiabatic regime.
This higher temperature is more costly for the simulations
than the low-temperature regimes because high-lying states

__ 150

= —tA/r=0a

E: 125 F tA/m=11b u
£ 100} — AT =2 ¢

2 —tA/m =34 . .

e t increasing

H B =—tA/r=4¢

5 | —iam=5s L e
o

2 25F

£

0 1
80 100 120 140 160 180 200
Bath Mode Index

FIG. 5. Absolute value of the complex-valued interaction
strengths d,(t), where n is the index for the bath modes. The blue
line (labeled by a) is d,(t = 0) and the spin only interacts with the
first mode (index 200) at this moment. The rest of the colors (labeled
by b.,..., and f) are the interaction strength at later times. The time-
dependent |d,(¢)| exhibits a traveling-wave pattern and at different
moments the largest interaction strength occurs at different modes.
Qualitatively, the large interaction strength at r = 0 is distributed
into multiple modes at later times. This explains the low bath mode
excitation and the slow growth of bond dimensions in the interaction
picture. The lower and upper limits €2y and €2, of the spectral density
determine the velocity of the traveling wave.

of the bath are populated. The computed population dynamics
are shown in Fig. 6. In the IC scheme, a converged result is
found with a small cutoff for the local dimensions of the bath
modes. This result is similar to the situation in the adiabatic
regime. However, the C and S schemes in the intermediate
coupling regime converged more rapidly with respect to local

1.0
@==|C10eee C10==S10
0.9 [C20¢ee C20 == S20
wmw |C4Qeee C4Q == S4
0l Qe+ C40 == 540
0.7
pr
06
05F
04r
No = 40, Wo = ]_0, TO =2.0
0.3 I I I I
0 1 2 3 4 5
tA/m

FIG. 6. Evolution of state |1) population. The threshold for sin-
gular values is 10~*. The dimensionless time step 8¢ is 5 x 107>, The
cutoff frequencies €2y and €2; for the spectral density are F12.74A.
(a) C10 is not converged. (b) IC10, IC20, IC40, C20, and C40; all
are converged. (c) S10 is not converged. (d) S20 is not converged. (e)
S40; almost converged except for the part from A /7 = 3.5to 5.
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FIG. 7. Growth of bond dimensions in the Schrodinger-picture
chain geometry (middle panel), the interaction-picture chain geom-
etry (top panel), and the Schrodinger-picture star geometry (bottom
panel), in the intermediate regimes.

dimensions than in the adiabatic regime. This milder require-
ment for local dimensions occurs because the frequencies of
the modes are comparable to the off-diagonal coupling of the
spin (the system) and fewer energy levels of the modes are
excited than in the adiabatic (small frequencies) case. The
low mode excitations are also caused by the fact that the ratio
between the characteristic frequency and the temperature in
the intermediate regime (wo/7Tp = 0.5) is twice of that in the
adiabatic regime (wy/Ty = 0.25). Although the requirement
for local dimensions is less demanding for all the schemes
compared to the adiabatic case, the IC scheme considerably
outperforms the C and S schemes, benefiting from the reduced
matrix and tensor sizes by requiring a smaller cutoff of local
bath dimensions in the intermediate regime. The IC scheme
can become more efficient as the temperature grows. A
considerable number of electron-transfer [45], singlet-fission
[46], and excitation-energy-transfer (EET) systems [12,47]
fall in this intermediate regime, where the magnitude of the
electronic coupling is comparable to vibrational frequencies.
We expect that the IC scheme can accelerate MPS simulations
for chemical systems of interest in this regime [48].

The entanglement of each bond is explored in Fig. 7, which
shows the growth of bond dimensions for the simulations of
Fig. 6. As in the adiabatic cases, the IC and C schemes have
similar growth patterns of bond dimensions as long as the
results in the C scheme have converged (e.g., C20 and C40),
although the IC scheme has slightly faster growth of bond
dimensions (twice as fast as in C). The similarity of the C and
IC scheme on the growth pattern of bond dimensions shows
the similar kinds of energy flow through the bath chain, which
is due to the traveling-wave pattern of the time-dependent

1.0

@=|C10°°° C10==S510
[C20°e° C20==S20
\ [C4Q¢ee° C40==540

0.8 \

0.7F \
N\ 2

Pt
0.6 | \ o2 am

09r

| .................... (XX XX
0.5 -0
04}
Mo = 40, wo = 4-07 TO =4.0
03 : : : '
0 1 2 3 4 5
tA /T

FIG. 8. Time evolution of the state |1) population in the nona-
diabatic regimes. The threshold for singular values is 1073, The
dimensionless time step 87 is 1.25 x 1072, (a) S40 and S20, not con-
verged. (b) S10, not converged. This is because the bond dimension
in the S scheme grows extremely rapidly and the current threshold
(1073) for the singular values is not enough for accuracy. (c) IC10,
IC20, IC40, C10, C20, and C40. The dynamics in the IC and C
schemes are converged using a small local dimension (10), while the
S scheme does not yield converged results regardless of the number
of vibrational levels used here. The cutoff frequencies €2y and €2, for
the spectral density are F+31.83A.

interactions in the IC scheme (see Fig. 5). For the S scheme,
although the dynamics are converged, the bond dimensions
still grow rapidly because of the intrinsic structure of the MPS
in the star geometry. This finding indicates that the structure
of MPS in the S scheme is not optimal, since the spin interacts
with all of the modes at any time.

3. Nonadiabatic regime: @, > A

In the nonadiabatic regime, we set the characteristic fre-
quency o, of the bath modes to be w.=4A and the
temperature to be T = TyA = 4.0A. In this regime, the sim-
ulations do not require too many bath-mode energy levels
for the calculations to converge. No significant deviations
are shown in the IC and C schemes, regardless of the local
dimension cutoffs. However, the S scheme shows deviations
due to the rapid growth of entanglement for the star geometry
(see Fig. 8 and Fig. 9). Although the IC and C schemes do
not show significant differences as we vary local dimensions
(for the temperature used), we expect the IC scheme can ben-
efit in speed from the smaller matrices and the smaller local
dimensions in the IC scheme. The smaller matrices in the IC
scheme may also improve the speed of numerical simulations
for low-temperature regimes where the classical Marcus rate
theory does not apply and the nonadiabatic rate is sensitive to
details of the spectral density [49].

B. Computational efficiencies in the interaction picture

The numerical simulations described here show that the IC
scheme requires fewer bath energy levels than the C scheme
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FIG. 9. Growth of bond dimensions in the nonadiabatic regimes
for the Schrodinger-picture chain geometry (middle panel), the
interaction-picture chain geometry (top panel), and the Schrodinger-
picture star geometry (bottom panel).

to obtain converged results in the adiabatic, strong-coupling,
high-temperature regimes. Using the scaling relations of
Sec. IID, we analyze the simulations of Fig. 4 (i.e., the adi-
abatic spin-boson model). We find that Dyc & 2D¢, dc = 80,
and dic = 10. As a result, the scaling of a single SVD step
in the C scheme is O(80°DZ) = O(51200D%.) and the scal-
ing in the IC scheme is O(4 x 10 x SD%) = (9(320D%). The
findings indicate that the IC scheme is roughly 1600 times
faster than the C scheme for the SVD operations. If we as-
sume D¢ &2 2Dyc, the C scheme is faster than the IC scheme
[(9(4dICDI3C) < O(déD%)] only if dé < 32dyc. This relation
means that if the local dimension for a bath mode is larger

than 6 (%\/3_2), one should use the interaction-picture chain
geometry (IC scheme), at least for the two-site propagation
methods (e.g., TEBD and TDVPI1). In addition, upon the
interaction-picture transformation, the requirement for local
dimensions of the bath modes are reduced, improving the
tensor contraction efficiency. The computational advantages
of the interaction picture depend on the propagation methods
that are used to compute the dynamics. The improvement is
more substantial for two-site methods. The one-site methods
(e.g., TDVP1) may benefit less from the interaction-picture
transformation because these methods depend on only one
local dimension, while the two-site methods depend on the
product of two local dimensions.

For the star geometry (the S scheme), the SVD step also
scales as O(4ng§), but Ds is often a large number. As a
result, the S scheme is always slower than the IC scheme.

V. CONCLUSIONS AND OUTLOOK

By transforming the chain Hamiltonian to the interaction
picture, we developed a numerical approach that outper-
forms the conventional chain-geometry and star-geometry
approaches in the regimes of moderate-to-strong couplings
and intermediate-to-high temperatures. The efficiency of
this approach is demonstrated by simulating the spin-boson
model and comparing the growth of bond dimensions to
the conventional approaches. The results indicate that the
interaction-picture approach gains increased efficiency in sim-
ulating open quantum systems with boson environments using
the t-DMRG method, especially when the population of the
excitated boson states are high. Possible extensions of this
interaction-picture approach could include anharmonic baths,
the combination with the optimized-boson-basis (OBB) or the
local-basis-optimization (LBO) approach [36,50,51] to fur-
ther accelerate singular value decomposition, and the use of
the polaron transformation [52-55] to further reduce entan-
glement in the interaction picture.
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