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ABSTRACT: Solute descriptors have been widely used to model  smies () rjj O1 u TR T T—
chemical transfer processes through poly-parameter linear free - O ~ 7 A

energy relationships (pp-LFERs); however, there are still 7’7\ J
substantial difficulties in obtaining these descriptors accurately | PaDEL
-
and quickly for new organic chemicals. In this research, models
(PaDEL-DNN) that require only SMILES of chemicals were built
to satisfactorily estimate pp-LFER descriptors using deep neural .
networks (DNN) and the PaDEL chemical representation. The Features PaDEL-DNN Surrogate Metric Model Other Datasets
PaDEL-DNN-estimated pp-LFER descriptors demonstrated good
performance in modeling storage-lipid/water partitioning coefficient (log K S hpld/water), bioconcentration factor (BCF), aqueous
solubility (ESOL), and hydration free energy (freesolve). Then, assuming that the accuracy in the estimated values of widely
available properties, e.g., logP (octanol—water partition coefficient), can calibrate estimates for less available but related properties,
we proposed logP as a surrogate metric for evaluating the overall accuracy of the estimated pp-LFER descriptors. When using the pp-
LFER descriptors to model log Kqrage-lipid/waterr BCF, ESOL, and freesolve, we achieved around 0.1 log unit lower errors for chemicals
whose estimated pp-LFER descriptors were deemed “accurate” by the surrogate metric. The interpretation of the PADEL-DNN
models revealed that, for a given test chemical, having several (around S) “similar” chemicals in the training data set was crucial for
accurate estimation while the remaining less similar training chemicals provided reasonable baseline estimates. Lastly, pp-LFER
descriptors for over 2800 persistent, bioaccumulative, and toxic chemicals were reasonably estimated by combining PaDEL-DNN
with the surrogate metric. Overall, the PADEL-DNN/surrogate metric and newly estimated descriptors will greatly benefit chemical
transfer modeling.

KEYWORDS: chemical similarity, chemical transfer modeling, evaluation metric, model interpretation, octanol—water partition coefficient,
PaDEL, pp-LFER descriptors, RDKit

H INTRODUCTION chemical transfer process of polarization-induced interactions
Although chemical modeling using available molecular (eE), dipole—dipole/induced—dipole interactions (sS), hydro-
representations such as molecular ﬁngerprmts or molecular gen-bond interactions (aA and bB), and cavity formation
images has shown enormous potentlals, 3 the application of energy (VV).6

these models remains limited due to either little mechanistic

meanings of these molecular features or too many input logSP =e¢E+sS+aA+bB+vV+ec (1)
features. A lack of mechanistic meanings of input features

restricts the derivation of clear relatlonshlps between the where SP represents a specific chemical transfer process; E, S,
features and the output predictions.””> Too many features A, B, and V are the solute descriptors—or pp-LFER
would complicate the modeling process, especially if the descriptors—that quantify the excess molar refraction,
modeling is based on experimental data which are almost dipolarity/polarizability, hydrogen-bond donating, hydrogen-

always limited. The solute descriptors used in poly-parameter
linear free-energy relationships (pp-LFER, eq 1) provide a
promising solution to addressing the above limitations,
particularly when it comes to chemical transfer processes.
There are only five pp-LFER descriptors for each chemical,
each with a clear mechanistic meaning.” This makes it much
easier to develop/interpret models and identify driving forces
for a chemical transfer process. For example, the paired
parameters in eq 1 can quantify the contributions in a specific

bond accepting, and excess molar volume of a solute,
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separately; ¢, s, 4, b, and v are fitting coefficients; and ¢ is a
constant.

The contribution of these interactions can also be quantified
by interpreting the obtained machine learning models, such as
when predicting single or binary aqueous adsorption.””
Indeed, plenty of studies have used the pp-LFER descriptors
to model physicochemical processes and gained considerable
insights. As chemical transfer between two phases taken as an
example, the pp-LFER descriptors have been successfully used
in modeling partitioning between water and various organic
solvents,” adsorptions of organic chemicals onto different
adsorbents,'’ partitioning between blood and body tissue/
fluid,"" and bioconcentration from water to aquatic organ-
isms.'” The pp-LFER descriptors have also shown promising
applications in diverse fields ranging from chemical separation,
chemical engineering, and toxicology, to pharmacology.]3

Although the pp-LFER descriptors have found numerous
applications, only around 2000 chemicals have experimental
values for all of the five descriptors.14’15 The E, S, A, and B (V
can be easily obtained) are generally obtained by measuring
multiple partition coeflicients or solubility of chemicals in
different biphase systems, based on which researchers continue
to expand the database of the pp-LFER descriptors for a few
chemicals per year.'®’” However, these experimental ap-
proaches are time consuming and can hardly catch up with the
rapidly increasing number of organic chemicals."*'” The lack
of available pp-LFER descriptors has greatly limited their
applications to emerging chemicals.'*

To increase the availability of pp-LFER descriptors, studies
have tried to estimate them by various models, among which
group-contribution and quantum chemical calculation meth-
ods are the most widely employed. The group-contribution
method builds predictive models by allocating the values of pp-
LFER descriptors to certain local functional groups or the fine
structure of a molecule; however, this approach mostly focuses
on discrete constitutional molecular information with little
attention to global molecular characteristics (e.g., topological,
electrostatic, and geometric information), so estimates by this
approach are not always satisfactory.”””" Besides, this approach
generally covers limited types of functional groups as they are
constrained by chemicals having known pp-LFER descriptors,
so new functional groups in complex chemicals cannot be
included. The second approach uses quantum chemical
calculations to build predictive models and has achieved
superior predictions.””*"** However, direct estimation by
quantum chemical calculations is mostly focused on E, A, and
B, while S needs to be obtained through complex modeling or
even experiments.”>*>* The quantum chemical approach also
needs substantial computational skills which are not easily
accessible for many researchers and are time consuming for
high-precision calculations. Therefore, a simple predictive
model that can accurately estimate the pp-LFER descriptors
but requires only the most basic chemical information is highly
desirable."*

Another problem with estimated pp-LFER descriptors is that
most available models do not provide convenient ways to
determine the accuracy of their estimates, while poorly
estimated descriptors may not provide reliable modeling
results. For example, ABSOLV, a commercial software that
was built based on existing pp-LFER descriptors and only
requires SMILES as the input, can predict solute descriptors;
however, using these predicted descriptors without accuracy
evaluation to model logP for some munition compounds
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yielded much higher prediction errors (RMSE: 3.56, N = 8)
than using experimentally measured descriptors (RMSE:
0.37).° On the other hand, plenty of studies on quantitative
structure—activity relationships (QSARs) have tried to address
a similar problem by defining applicability domains (ADs)
using methods such as convex hull, distance-based (leverage
and K-nearest neighbor), probability density distribution-
based, and random forest-based methods.”” However, four
ADs are needed for E, S, A, and B if following the traditional
AD strategy, which would lead to an unavoidable dilemma that
a chemical may be within the ADs for some of the descriptors
but not for all. When this happens, it becomes challenging to
evaluate the applicability of the obtained pp-LFER descriptors
for new chemicals. Moreover, the underlying assumption of
some ADs may not apply to the pp-LFER descriptors. For
example, the commonly used leverage approach generally
assumes a normal data distribution, which is apparently
violated for the A and B terms because values for these two
descriptors are close to zero for most chemicals (Figure S1).
In this work, we developed predictive models (PaDEL-
DNN) that only require SMILES (simplified molecular-input
line-entry system) of chemicals to accurately estimate pp-
LFER descriptors using a deep neural network (DNN) and an
open-source chemical package (PaDEL).”® A pp-LFER data set
containing all five descriptor values for 1978 chemicals was first
compiled. During modeling, three commonly used chemical
representations—molecular fingerprints (MFs), RDKit,”” and
PaDEL—were first compared regarding the model accuracy.
Dimension reduction was then performed on the best chemical
representation by three different approaches—two commonly
used correlation coefficient-based methods and one LASSO
method. Another four chemical transfer data sets, namely,
log Korage-lipid /waten ESOL, freesolve, and BCF, with 327-1128
chemicals were collected for further model evaluation, where
the newly estimated pp-LFER descriptors by the PaDEL-DNN
were used to model the above four chemical data sets, and the
comparison between the above-obtained results and reported
modeling results served as an indirect metric to evaluate the
PaDEL-DNN models. Moreover, instead of evaluating every
individual estimated pp-LFER descriptor, we for the first time
proposed to evaluate the overall accuracy of the estimated pp-
LFER descriptors by one “surrogate metric,” such as the
octanol—water partition coefficient (logP), which correlates
well with many chemical transfer processes such as
bioconcentration or adso1‘ption.12’3’0 The surrogate metric
was validated by comparing the modeling performance on the
four chemical data sets with/without applying the surrogate
metric. Next, post hoc interpretation was performed on the
PaDEL-DNN models to explore how training chemicals
contributed to predictions and to provide insights for further
improving the PADEL-DNN models. Lastly, the PaDEL-DNN
models and the surrogate metric were coupled to estimate the
pp-LFER descriptors for over 4000 PBT (persistent,
bioaccumulative, and toxic) chemicals. As PBT chemicals
have almost no experimental properties reported but the
evaluation of their risks is necessary, the estimated pp-LFER
descriptors will help obtain many other properties.

B MATERIALS AND METHODS

Data Collection. We compiled a data set (referred to as
the LFER data set hereafter) that contains 1978 chemicals with
known experimental values for all of the five descriptors.'*"®
Four additional chemical data sets were also collected,
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Figure 1. Workflow of this research. After collecting the LFER data set (a), three different types of chemical representations were derived for all
1978 chemicals (b). (c) These chemicals were then randomly split into training and test data sets in a ratio of 8:2. (d) For the training data set,
three types of dimension reduction methods were employed to reduce the number of features in the input. (¢) Dimension-reduced training data set
was employed to compare the performance of three ML algorithms (support vector machine (SVM), tree, and DNN), and DNN was identified to
be the best. (f) Optimized PaADEL-DNN models were first evaluated on the above test data sets and then the other four external data sets. (g)
Scheme of the surrogate metric (predicted vs real values). The two parallel red lines are the 3XSD threshold; the data points in the black dashed
eclipse are all of the chemicals from a chemical data set; and the points within the green dashed rectangular represent chemicals that have the pp-
LFER descriptors accurately estimated. (h) Modeling performance on the four external data sets using either only the accurately estimated pp-
LFER descriptors (in threshold) or all estimated pp-LFER descriptors regardless of the estimation accuracy (all chemicals).

including logK o ace Jpidwater (N =327),*" estimated SOLubility
(ESOL, N = 11283 free solvation (freesolve, N = 639),*” and
bioconcentration factor (BCF, N = 1034).'>°%**% In addition,
a list of 4020 PBT chemicals was collected from the
literature.*™** A summary of all of the above data sets is in
Table S1.

Model Development and Validation. During the model
development (see the workflow in Figure 1), molecular
fingerprints with lengths ranging from 512 to 2560 bits and
the RDKit molecular representation (referred to as RDKit
hereafter) with 1249 features were derived using the RDKit
package.”” The PaDEL molecular representation with 1444
features (referred to as PaDEL hereafter) was derived using the
PaDEL package (more details in Text $1.1).>® The chemicals
in the LFER data set were then randomly split into training
and test data sets in a ratio of 8:2. The best model was first
selected by performing fivefold cross-validation on training
data sets and then evaluated on test data sets (details in Texts
S1.2 and 1.3). When estimating the pp-LFER descriptors for
the chemicals in the log Koragetipid/waten ESOL, freesolve, BCF,
or PBT data sets, all 1978 chemicals were employed as the
training data set to maximize the model performance.”

Although ML algorithms are good at extracting useful
information from high-dimensional inputs, a simpler input is
still quite attractive because it may not only increase the
efficiency of model training but also simplify the interpretation
and application of the model. Thus, three methods were used
to reduce the input dimension (reduce the number of input
features) of the deep neural network (DNN) model. The first
method (referred to as the input—input coefficient) dropped
highly correlated input features according to their correlation
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coefficients (p), by selecting only one feature from any pair of
features whose p-value was greater than a certain threshold
(0.6—0.8 depending on the descriptors). The second method
(referred to as the input—output coefficient) selected features
that correlated well—correlation coefficient > 0.6—0.9—with
the pp-LFER descriptors. The third method (referred to as the
LASSO coefficient) dropped features according to the
coefficients of LASSO, which uses L1 regularization to ensure
the sparsity of models while achieving small prediction errors
(details in Text $2).*”*" Using these three sets of reduced
inputs, we followed the aforementioned model development
and validation procedure to develop dimension-reduced
PaDEL-DNN models, and the reduced PaDEL-DNN models
were also employed to estimate the pp-LFER descriptors for
the four chemical data sets.

Modeling Chemical Transfer Processes. In addition to
directly evaluating the PaDEL-DNN models on the reserved
test data sets, we indirectly evaluated them on the additional
four chemical data sets. Briefly, we used the PaDEL-DNN-
estimated solute descriptors to model the aforementioned four
chemical data sets, and modeling results could indirectly
indicate the prediction performance of the PaDEL-DNN
models on new chemicals, as a low modeling error would
suggest good estimation of the pp-LFER descriptors by the
PaDEL-DNN models. Because pp-LFER models have been
well developed for log Kiorageiipid /water > we inputted the
estimated pp-LFER descriptors into reported pp-LFER
equations to calculate log Kgrage-lipid/water fOF (1) all reported
305 chemicals, (2) a subgroup of S1 chemicals, and (3)
another 22 complex chemicals (more details in Text $3.1).*"
We then examined the accuracy of the obtained
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Figure 2. Performance of DNN models in predicting the pp-LFER descriptors. (2, b) Models based on three different chemical representations. (c,
d) Models with different input dimension reduction methods. M1—M3 represent the PADEL-DNN models using dimension-reduced inputs based
on the input—input, input—output, and LASSO methods, respectively. MF = molecular fingerprints, Train = training data sets, and Test = test data

sets.

log Korage-lipid/water Values. This accuracy was further compared
with those by ABSOLV (also estimates the pp-LFER
descriptors first and then calculates the log Kiorage-tipid/water

and by three other common methods—KOWWIN, SPARC,
and COSMOtherm, which predict log Kqrage-lipid/water directly
using chemical structures like SMILES.

Unlike 10g Kyoragelipid/water  there are no well-established
models for ESOL, BCF, or freesolve using the pp-LFER
descriptors. Therefore, new models were first built for these
three processes using the small data set-friendly Gaussian
process regression (GPR).” The inputs for these three data
sets were the five PaDEL-DNN-estimated pp-LFER descrip-
tors, and the output was the corresponding property—ESOL,
BCF, or freesolve. During the modeling, the data set was first
randomly split into training and test data sets (8:2). The best
model was selected based on fivefold cross-validation on
training data sets and was then evaluated on reserved test data
sets by examining the RMSE and R? values (more details in
Text S3.2). These models were then paired with the surrogate
metric to validate the PaDEL-DNN models, as discussed
below.

Surrogate Metric. For chemicals with estimated pp-LFER
descriptors, a reported multilinear regression (MLR, eq 2,
Texts S$4.1,4.2)"" equation was employed to estimate their
log P values using the obtained pp-LFER descriptors.
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log P = 0.562-E — 1.054-S + 0.034-A — 3.46-B
)

The differences between the estimated and reported logP
values were used as a surrogate metric to evaluate the overall
accuracy of the estimated pp-LFER descriptors. The reported
standard deviation (SD) for log P is around 0.2 log unit based
on eq 2,” so around (3 X SD, Text $4.3) was used here as the
threshold for acceptable accuracy. If the absolute estimation
errors for log P for certain chemicals are smaller than the
threshold, the obtained pp-LFER descriptors are deemed
“accurate”, otherwise “inaccurate.” The basic concept behind
the surrogate metric is that accurate pp-LFER descriptors
would most likely predict logP well while inaccurate
descriptors would not. For test chemicals from the LFER
data set, this idea can be easily verified (Texts S4.4 and 4.5).
For chemicals from the other four chemical transfer data sets,
the surrogate metric was validated indirectly because their pp-
LFER descriptors are mostly unknown. As the BCF data set is
taken as an example, PADEL-DNN was first used to estimate
the pp-LFER descriptors for all chemicals in the data set. Then,
we used the pp-LFER descriptors as inputs and modeled BCF
values only for the chemicals whose pp-LFER descriptors were
deemed accurate (referred to as “Accurate Estimations”).
Meanwhile, the same number of chemicals (referred to as

+ 3.814-V + 0.088

https://doi.org/10.1021/acs.est.1c05398
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“Random Estimations”) as in the Accurate Estimations was
randomly chosen from the BCF data set to perform the same
modeling. This was to exclude the influence of fewer chemicals
involved in modeling. If the modeling errors for the Accurate
Estimations were considerably smaller than those for the
Random Estimations, it is likely that the surrogate metric has
identified chemicals with accurate pp-LFER descriptors.

Post Hoc Interpretation of PaDEL-DNN Models. The
chemical similarity is generally thought the key to the
performance of QSARs and machine learning models;**~*
however, traditional chemical similarity mostly focuses on the
overall structural similarity, while some pp-LFER descriptors
are largely determined by certain functional groups (e.g., A and
B are mostly determined by O/N-containing groups). Finding
a suitable similarity metric—measures to quantify similarity
among chemicals—is a critical step in understanding how the
PaDEL-DNN models use the chemical similarity to make
estimates. To this end, the obtained models were analyzed in
two steps (details in Texts S5.1 and S5.2): (1) finding the
optimal similarity metric through developing K-nearest
neighbor models (K ranging from 3 to 50, meaning the top
3-S50 most similar chemicals to a test chemical) through a
suitable similarity metric and examining their performance.
The better the used similarity metric, the lower the prediction
errors and (2) exploring the importance of similar (K-nearest
neighbors) versus less similar training chemicals in the model
performance using the selected similarity metric.*’

Application of PaDEL-DNN Models to PBT Chemicals
(Details in Text S6). The PaDEL package was first used to
generate the PaDEL representation for over 4000 PBT
chemicals. The PaDEL representation was then inputted to
the PaDEL-DNN models to estimate pp-LFER descriptors for
these PBT chemicals. The surrogate metric was further
employed to evaluate the overall quality of these new
estimates.

B RESULTS AND DISCUSSION

Comparison of Three Chemical Representations. The
obtained DNN models based on the PaDEL representation
(PaDEL-DNN) provided the best estimations for all of the pp-
LFER descriptors, followed by the models based on the RDKit
representation (RDKit-DNN, 21—34% higher RMSE than
PaDEL-DNN), and then the models based on molecular
fingerprints (MF-DNN, 41—116% higher RMSE than PaDEL-
DNN, Figure 2). The R® for the estimated pp-LFER
descriptors decreased from PaDEL-DNN to RDKit-DNN
and then MF-DNN for all of the descriptors. Meanwhile, all of
these models provided low variance and consistent modeling
results for both the training and test data sets, suggesting the
robustness and generalization ability of these models.

For the MF-DNN models, the general trend is that the
longer the fingerprints the better the estimations, but the
improvement becomes negligible when the length exceeds
1536 bits (Table S2). This agrees well with our previous
findings that used molecular fingerprints to model aqueous
reaction rate constants for organic pollutants with OH
radicals." The molecular fingerprint consists of either 1s or
Os to indicate whether a structure or functional group exists.
The conversion from SMILES to molecular fingerprints is not
entirely reversible, and a considerable amount of chemical
information may be lost during the conversion. This resembles
the commonly used group-contribution method, which
attributes the desired property to contributions from functional
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groups or substructures of a molecule.”® In other words,
molecular fingerprints can only represent local constitutional
information of chemical structures but lack global parameters*’
for describing possible interactions among local chemical
features. This may be the reason for the worst performance by
ME-DNN.

Compared with MF-DNN, RDKit-DNN showed improved
estimations for the E term and considerable improvements for
S, A, and B terms (Figure 2a,b). The RDKit representation is
essentially a combination of 1D functional groups/structures
and common 2D/3D descriptors such as “Asphericity” and
“Topological Polar Surface Area” (Table $3)."**°' 1D
descriptors count the number of different functional groups
or structures in molecules, for example, the number of heavy
atoms or hydrogen donating/accepting groups, while 2D and
3D descriptors cover some global parameters considering
possible intramolecular interactions between various functional
groups.

The PaDEL representation shares some features with RDKit,
such as the functional group/structure counting, but includes
many other unique features such as “Van der Waals volume,”
“Vertex adjacency information,” and “Zagreb index.”*® The
PaDEL-DNN achieved significant improvements over the best
RDKit-DNN models with the RMSEs/R” of 0.1/0.98 and 0.1/
0.95 for E and B, separately (Figure S3). These are
considerably better than the most recent quantum chemical
calculation-based multilinear regression (QC-MLR, RMSE of
0.17 and 0.12) or ABSOLV (RMSE of 0.15 and 0.15).° The
estimates for S (RMSE: 0.2) were also better than ABSOLV
(RMSE: 0.22) and the same as the QC-MLR (RMSE: 0.2).°
The estimates for A were comparable among the three
methods (RMSE: 0.09—0.07). Similarly, other studies also
found that the PaDEL representation achieved good
predictions for physical properties.**

Reduced PaDEL-DNN Models Based on Dimension-
Reduced Inputs. To simplify model interpretation and
application, three new reduced PaDEL-DNN models (M1—
M3) were built to reduce the input dimension by applying the
input—input, input—output, and LASSO dimension reduction
methods, separately. It was found that dimension reduction by
the input—input (M1) or input—output (M2) coefficients
almost always increased the estimation errors (Figure 2c,d).
Only the LASSO method (M3) achieved comparable perform-
ance with the PADEL-DNN models (Figure 2). However, one
problem emerged when M3 was employed to estimate the pp-
LFER descriptors for the chemicals in the four chemical
transfer data sets. For example, only 132 out of the 153
reduced PaDEL features can be obtained for all of the
chemicals in the log K orge-tipid/water data set—the other 21 of
the 153 features cannot be calculated for some chemicals.
Because the training and test data sets must have the same
number of input features to ensure proper model training/
estimation, M3 has to be trained by reducing the number of
input features from 153 to 132. As each feature in dimension-
reduced inputs likely captures certain critical chemical
information (otherwise, they would not have been selected),
any missing feature would inevitably lead to key information
loss and hence worse estimates for solute descriptors.
Therefore, using the M3-estimated pp-LFER descriptors to
calculate 10g Korage-tipid/water achieved worse performance than
using the PaDEL-DNN models’ estimated pp-LFER descrip-
tors (MSE increased from 0.117 to 0.155).
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based on the pp-LFER descriptors estimated by the PADEL-DNN models

versus by ABSOLV. “Total” and “subgroup” indicate the chemical group with 305 and 51 chemicals, separately. ABSOLV-Re represents the results
excluding extremely poor predictions. (b) Modeling performance (RMSE) for different data sets using the PaDEL-DNN-estimated pp-LFER
descriptors. Train and Test represent the training and test data sets after data splitting without applying the surrogate metric. Accurate Estimations
and Random Estimations have the same number of chemicals but consider chemicals having accurate pp-LFER descriptors and randomly selected

chemicals from each data set, respectively.

We further indirectly evaluated the PADEL-DNN models by
examining how well the PaDEL-DNN-estimated pp-LFER
descriptors can model external chemicals in additional four
chemical data sets. This approach differs significantly from
many QSARs studies that focus only on one data set for the
model development/validation and reduce the input dimen-
sion as much as possible. Many chemicals in the four chemical
data sets have no experimental pp-LFER descriptors but may
be well estimated by the PaADEL-DNN models. However, if we
only consider chemicals in the LFER data set during the input
dimension reduction, some selected features may not always be
available for other chemicals. As a result, rebuilt models (M3)
may perform well on the LFER data set but not on other data
sets due to missing features. As for the PaADEL-DNN models
that used all of the features in the PaDEL representation, some
features may seem repetitive for the LFER data set, but they
may serve as backups for missing features, which provide the
PaDEL-DNN models some tolerance to missing values. In fact,
the worse performance of the reduced PaDEL-DNN models is
similar to the reported model for diabetic retinopathy
detection, where the built model achieved satisfactory
performance during the model development but did not
perform well in real-world clinical settings when some essential
input information was missing due to nonideal environmental
factors.”

Overall, satisfactory models need to consider not only the
data sets used for the modeling but also possible nonideal
conditions during model applications. Otherwise, a model that
achieves excellent accuracy on the training/test data sets may
become less favorable during real applications. Therefore, all
features in the PaDEL representation are used in the following
sections.

Comparison with ABSOLYV in Estimating the pp-LFER
Descriptors for New Chemicals. The above comparison
among different models was mostly based on known pp-LFER
descriptors or the reserved test data sets. The primary usage of
models is however to make predictions for unknowns; thus, it
becomes important to examine how the models perform on
new chemicals. Unfortunately, the lack of experimental
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descriptors for chemicals makes it impossible to directly
compare different models based on RMSEs or R%. We propose
to address this problem through indirect comparison—
examining the modeling performance of the estimated pp-
LFER descriptors on known chemical transfer processes. The
more accurate the estimated pp-LFER descriptors, the lower
the errors for the subsequently modeled chemical transfer
processes. Following this idea, the PADEL-DNN models were
compared with the ABSOLV based on the prediction errors for
log Kiorage-lipid water USing the pp-LFER descriptors estimated by
either model. We first estimated the pp-LFER descriptors for
305 chemicals using the PaADEL-DNN models. The estimated
descriptors were then employed to calculate their
log I(Smrage_hpid/water values and compared with the experimental
values.”> The overall RMSE for the calculated
log Korage-lipid/water Was 0.34 log unit, much smaller than
when using the ABSOLV-estimated pp-LFER descriptors
(RMSE = 0.61). When the comparison was made on a
subgroup of 305 chemicals (mostly H-bond donor substances
which were harder to predict, N = S1) or additional 22
complex chemicals with more than one functional group, the
PaDEL-DNN-estimated pp-LFER descriptors still showed
considerable improvement (RMSE = 0.35 or 0.89) over the
ABSOLV-estimated pp-LFER descriptors (RMSE = 0.91 or
1.29).*" Note that these errors are also mostly smaller than
those for directly calculated log Korage-tipid/water by KOWWIN,
SPARC, or COSMOtherm, with the RMSE of 0.6, 0.54, and
0.45, respectively, for all 305 chemicals; 0.84, 0.42, and 0.35,
respectively, for S1 chemicals; and 1.6, 1.25, and 0.71,
respectively, for 22 chemicals.’’

In addition, prediction errors in log Krage-lipid/water USing the
PaDEL-DNN-estimated pp-LFER descriptors showed lower
variance (Figure 3a) than those by ABSOLV in both 305-full
and S1-subgroup log Krge-lipid/water data sets. Even with the
worst predictions being excluded, prediction errors by PaDEL-
DNN (RMSE = 0.33 and 0.32 log unit for the total and
subgroup separately) were still much smaller than those by
ABSOLV (RMSE = 0.54 and 0.71, ABSOLVE-Re in Figure
3a). These comparisons well suggest the potential of PaDEL-
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Table 1. RMSEs of the Models Using the PaDEL-DNN-Estimated pp-LFER Descriptors with/without Applying the Surrogate
Metric and Comparison with Reported Model Performance”

data set (# of chemicals) train test

10g Kjoragetpid/mater (305) * 0.34

ESOL (1128) 0.63 + 0.01 0.62 + 0.04
BCF (1034) 0.72 + 0.01 0.70 + 0.04
Freesolve (639) 0.92 + 0.05 091 + 0.14

surrogate metric random selection reported results

0.3 (274) 0.5 0.45—0.61>'
0.51 + 0.01(865) 0.63 + 0.01 0.5 and 0.6
0.60 + 0.01(767) 0.72 + 0.02 0.77 and 0.84>°
0.85 + 0.03(549) 0.92 + 0.03 1.2 and 1.5%

“Note: Train and Test represent training and test data sets after data splitting without applying the surrogate metric. *: There is a reported model

for log K,

torage-lipid /water}

thus, no chemicals were used to train models, and all 305 chemicals were used in the test data set.

DNN to accurately estimate pp-LFER descriptors and the
capability of these newly estimated pp-LFER descriptors to
model chemical transfer processes, as discussed below.

Modeling Three Chemical Transfer Processes Using
Estimated pp-LFER Descriptors. To further evaluate the
modeling capability of the PaDEL-DNN-estimated pp-LFER
descriptors, we used them to model bioconcentration factor
(BCF), ESOL, and freesolve. BCF is a useful parameter for
evaluating the potential risk of chemicals in the aquatic
environment. However, BCF is generally obtained through
time-consuming experiments and is only available for a very
small portion of chemicals. ESOL aims to estimate the aqueous
solubility of a chemical directly from its structure, while
freesolve aims to estimate the hydration free energy of small
molecules in water. ESOL and freesolve have become
benchmark data sets for evaluating chemical descriptors.”>**
Because all of these processes involve the transfer of chemicals
between two phases, the pp-LFER descriptors should be able
to capture molecular-level interactions in these processes. For
example, it was found that models incorporating the pp-LFER
descriptors can well predict BCF (N = 305, R* = 0.72), and the
prediction was much better than models without incorporating
the pp-LFER descriptors (R* from 0.52 to 0.71 for a subgroup
of 305 chemicals with log P values between 4 and 5)."

The above BCF modeling was however only applied to a
limited number of chemicals due to the lack of pp-LFER
descriptors. With the PaDEL-DNN model-estimated pp-LFER
descriptors, we expanded the modeling of BCF to a new data
set of 1034 chemicals, and the results showed consistently
good performance on training and test data sets (RMSE = 0.72
+ 0.01 vs 0.70 = 0.04). Such performance is quite satisfactory
and even better than that of the most often used CAESAR
(RMSE = 0.84, N = 851) or Meylan (RMSE = 0.77, N = 851)
models.*>*® The PaDEL-DNN-estimated pp-LFER descriptors
also achieved satisfactory prediction for ESOL and freesolve
(Table 1). For ESOL, the performance (RMSE = 0.63—0.62)
is comparable with the widely used benchmark prediction
(RMSE = 0.6) using complex graphic neural networks. The
prediction errors for training and test data sets (RMSE = 0.92
+ 0.05 and 0.91 + 0.14) of the freesolve were also considerably
smaller than the benchmark result (RMSE =~ 1.2) and ab initio
predictions (RMSE 1.5).>> The consistent prediction
between training and test data sets suggests the generalization
ability of models using the estimated pp-LFER descriptors.
Besides, the simplicity (only five variables) and clear physical
meanings of the pp-LFER descriptors will make the model
interpretation convenient, which cannot be easily achieved
using other chemical descriptors.

Surrogate Metric. For new chemicals, knowing the
accuracy of the estimated pp-LFER descriptors is highly
desirable no matter which model is used. The surrogate metric
may provide a convenient, effective way to evaluate the
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accuracy of estimated pp-LFER descriptors. To validate this
approach, we first used it to evaluate the performance of the
estimated pp-LFER descriptors in modeling log Kiqrage-lipid/water
for 305 chemicals. Based on the surrogate metric, we obtained
“accurate” and “inaccurate” pp-LFER descriptors for 274 and
31 chemicals, respectively; using these descriptor values to
estimate 10g Kiorage-lipid/water Dad an RMSE value of 0.3 (N =
274) and 0.5 (N = 31) log unit, respectively. It is clear that
using the accurate pp-LFER descriptors yielded more accurate
1Og1<storage-lipicl/ ‘water values.

We then tested the surrogate metric on BCF, ESOL, and
freesolve data sets (Figure 3b). In this test, only chemicals with
accurate pp-LFER descriptors were selected for the modeling.
The fivefold cross-validation results showed that all of the
RMSEs were considerably reduced (Table 1, Surrogate
metric). The prediction for BCF can compare well with the
reported integrated models.”> The prediction for ESOL was
better than the benchmark prediction and almost equal to the
ab initio prediction (SD = 0.5).”> The modeling for freesolve
data set also achieved improvement after applying the
surrogate metric. Meanwhile, for randomly chosen chemicals,
there were negligible changes in the prediction accuracy (Table
1, Random selection) compared with those using all available
chemicals. These comparisons strongly suggest that the
surrogate metric can indeed select chemicals whose pp-LFER
descriptors are accurately estimated, so using these estimated
descriptors can improve the prediction accuracy of the models.
Overall, these results support the proposed surrogate metric to
evaluate the overall quality of the estimated pp-LFER
descriptors.

Post Hoc Interpretation of the PaDEL-DNN Models.
Although considerable improvements have been achieved in
estimating the pp-LFER descriptors through combining
PaDEL-DNN with the surrogate metric, it is crucial to
understand how the PaDEL-DNN models make predictions
using the learned chemical information. In QSARs applica-
tions, the chemical similarity between a target chemical and the
chemicals employed in the QSARs development is generally
believed to be the key to good model performance.”* This is
also true in chemical-related machine learning models.”*® The
calculated chemical similarity mostly considers the entire
molecules; however, such an overall similarity does not always
apply to the pp-LFER descriptors because E relies on the entire
chemical structure while S, A, and B are highly related to
specific functional groups, such as polar or hydrogen-bond
accepting or donating groups. In other words, the level of
similarity between two chemicals may vary from one pp-LFER
descriptor to another. However, the traditional molecular
fingerprints-based chemical similarity (e.g, Tanimoto sim-
ilarity’”) between two chemicals is the same regardless of the
pp-LFER descriptors. To find a good similarity metric for all of
the pp-LFER descriptors, we compared different similarity
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Figure 4. Post hoc interpretation of the PaDEL-DNN models. (a) Estimation errors for the pp-LFER descriptors based on three K-nearest
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errors for the pp-LFER descriptors by the retrained PADEL-DNN models with five chemicals excluded from the training data set for each test
chemical. “All” estimation errors are based on the full PADEL-DNN models.

strategies by examining the performance of three K-nearest
neighbor models (details in Text SS.1).

The first model (output of the hidden layer, Figure 4a) used
the output of the last hidden layer’*” of the PaDEL-DNN
models to select K-nearest neighbors. The output of the last
hidden layer is directly related to the prediction target and is
generally believed to capture the essential knowledge of a
DNN model.*” The second model (PaDEL) and the third
model (Molecular Fingerprint) selected K-nearest neighbors
based on the PaDEL representation and the Tanimoto
similarity between molecular fingerprints,”’ respectively. The
results (Figure 4a) indicated that the first model performed the
best for all of the tested K numbers and all of the pp-LFER
descriptors. The second method performed better than the
third one, which agrees with the better performance of the
PaDEL representation than molecular fingerprints during the
DNN modeling. The better performance of the PaDEL
representation here is probably because it considered both
local and global chemical information, which is beneficial for
estimating the pp-LFER descriptors.

The performance of the first K-nearest models, although not
as good as the PaDEL-DNN models, is still quite satisfactory
considering the simplicity of the models. This good perform-
ance demonstrated that the output from the last hidden layer
of the PaDEL-DNN models was indeed highly related to the
pp-LFER descriptors. In other words, these PaDEL-DNN
models have learned critical chemical information for
estimating the pp-LFER descriptors. With the increasing
number of K-nearest chemicals for the first models (Figure
4a), estimation errors first decreased slightly or remained
stable and then increased. This trend could be because a good
prediction needs enough chemical information, whereas too
many chemicals would inevitably introduce some noise or less
relevant information to make the prediction worse. Around five
nearest chemicals may be the optimum for the first K-nearest
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models considering both the accuracy and the model
complexity.

The good performance of the first K-nearest models raised
another question about whether other less similar training
chemicals also contributed to the estimation or not. To address
this question, the influence function idea”” was applied to the
PaDEL-DNN models. This approach traces a model’s
prediction back to the training data set by comparing model
predictions with/without certain training data records, thereby
identifying the training records that are most responsible for
given predictions.47 For each test chemical, we focused on the
K-nearest training chemicals and compared the predictions by
the PaDEL-DNN models with/without those nearest training
chemicals. One PaDEL-DNN model per pp-LFER descriptor
was retrained after excluding five nearest chemicals in the
training data set for each test chemical. As a control to account
for the possible influence of a slightly smaller training data set,
the PaDEL-DNN models were also retrained by excluding five
random chemicals. When the five nearest chemicals were
excluded, the estimation errors by the retrained PaDEL-DNN
models (Figure 4b) were considerably greater than those by
the original PaDEL-DNN models. However, the dropping of
five random chemicals showed negligible influence on the
estimation errors. These results suggest that the five nearest
chemicals are important in estimating the pp-LFER descriptors
and the PaDEL-DNN models indeed relied on similar
chemicals to make accurate predictions. Nevertheless, the
retrained PaDEL-DNN models (exclude five nearest) still
maintained considerable prediction capability. In other words,
the PaDEL-DNN models rely on both the most similar
chemicals and all other chemicals in training data sets to make
predictions. A large number of less similar training chemicals
provide a reasonable baseline estimate, while a few most
similar chemicals can considerably improve the overall
accuracy. Therefore, the PADEL-DNN models indeed learned
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essential chemical information from all of the training
chemicals.

Application of the PaDEL-DNN Models to PBT
Chemicals. As mentioned in the Introduction section, there
is a large gap between the limited number of the pp-LFER
descriptors and the ever-increasing number of organic
chemicals. The well-trained PaDEL-DNN models together
with the surrogate metric can help narrow this gap, by not only
accurately estimating the pp-LFER descriptors but also
evaluating the overall goodness of the estimates. Thus, we
used the PaDEL-DNN models and the surrogate metric to
predict and evaluate the pp-LFER descriptors for over 4000
PBT chemicals. Most of these chemicals have few experimental
properties available notwithstanding the pp-LFER descriptors.
The lack of known physicochemical properties makes it
difficult to assess their possible environmental behaviors or
risks. Accurate estimates of the pp-LFER descriptors for these
PBT chemicals would greatly help address these problems.
After we applied the PADEL-DNN models and the surrogate
metric to these chemicals (Text S6), the estimated pp-LFER
descriptors are within the threshold of 0.5 log units for 1798
chemicals and are between 1 and 2 times the threshold (1 log
unit) for additional 1095 chemicals. We believe that future
modeling would benefit tremendously from these estimated
pp-LFER descriptors.

To make the PaDEL-DNN models easily accessible to users
who may not have ample modeling experiences, we developed
a web predictor (Figure S14, code and user guide uploaded to
GitHub). For a new chemical, predictions can be achieved by
simply inputting the SMILES and clicking “Submit,” and
predictions and surrogate metric results for the pp-LFER
descriptors will be displayed in a table.

Despite the promising results from the PADEL-DNN models
and the surrogate metric, there are still three major limitations:
(1) This research only covered neutral chemicals while there
are a large number of ionizable chemicals. However, it is
difficult to build predictive models for charged chemicals
because (a) the available E, S, A, and B values are mostly for
neutral chemicals; (b) there are different opinions for charged
chemicals regarding the E, S, A, B, and V values. Some
researchers believe that the influences of charge in chemicals
can be described by adding the J7/J* terms,”' whereas others
think that the presence of charge will also change the values of
E, S, A, B, and V.* (c) There are many missing values among
the features of charged chemicals when deriving PaDEL/RDkit
chemical representations. For most models, we need to have
the same number of input features for all of the chemicals, but
because of the missing values, we will have to discard some
important features for neutral chemicals to ensure the uniform
length of inputs when combining neutral and charged
chemicals in one model. (2) Although the PaDEL-DNN
models and the surrogate metric could accurately estimate the
pp-LEER descriptors for many new chemicals, descriptors for
many other chemicals still cannot be accurately estimated. The
post hoc model analysis found that the PADEL-DNN models
relied on chemicals with similar functional groups when
making predictions. The LFER data set, although covering
nearly 2000 chemicals, is still limited in the diversity of
chemical structures. Selectively performing experiments/
computation on some chemicals will be needed for further
expanding the applicability of the PaDEL-DNN models. (3)
Although the surrogate metric was used to replace traditional
ADs and achieved some promising results, one should realize
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that the surrogate metric evaluates the overall prediction for
solute descriptors rather than one by one. A good prediction of
solute descriptors based on the surrogate metric does not mean
that all of the descriptors are equally well predicted. In
addition, the end point (e.g,, logP) of the surrogate metric is
different from the prediction target (e.g., solute descriptors).
Although they are similar, there are always some differences
among them such that the accuracy evaluation based on the
surrogate metric cannot entirely replicate the prediction
accuracy in the target.

B SIGNIFICANCE

In this research, the pp-LFER descriptors were accurately
predicted by the PaDEL-DNN models—requiring only
SMILES—and the surrogate metric. During modeling, it was
found that PaDEL and RDKit representations achieved better
performance than the molecular fingerprints. Also, proper
input dimension reduction may not affect the model
performance on the LFER data set but would make worse
estimates on external data sets. This suggests that eliminating
input covariables as many as possible may limit the
applicability of the built models. Future chemical-related
modeling should consider both local and global chemical
information and should be able to handle chemicals beyond
the initial data sets.

The PaDEL-DNN-estimated pp-LFER descriptors demon-
strated promising modeling performance on four chemical
transfer data sets. The simplicity and interpretability as well as
the satisfactory modeling performance make the pp-LFER
descriptors promising chemical descriptors in modeling many
other processes. The proposed surrogate metric reduced the
RMSEs by around 0.1 log units for chemical transfer modeling,
We believe that the surrogate metric provides a new, simple
way to evaluate the model performance when applying a model
to new targets that do not have available data for a direct
evaluation.

The interpretation of the PaDEL-DNN models provided
useful insights into how PaDEL-DNN wused the training
chemical information to estimate test chemicals. By under-
standing the contribution of the bulk, less similar chemicals
versus that of a few most similar chemicals to the model
predictions, we provided a new direction for improving the
model performance, that is, in addition to increasing the
sample size of training data sets, we need to employ a carefully
selected similarity metric to select some nearest chemicals
(increasing the chemical similarity) in the training data set for
a target chemical. Overall, this research will greatly expand
chemical modeling not only in the environmental field but
likely in many other disciplines.
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