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ABSTRACT

Point-set classification for multiplexed pathology images aims to
distinguish between the spatial configurations of cells within mul-
tiplexed immuno-fluorescence (mIF) images of different diseases.
This problem is important towards aiding pathologists in diag-
nosing diseases (e.g., chronic pancreatitis and pancreatic ductal
adenocarcinoma). This problem is challenging because crucial spa-
tial relationships are implicit in point sets and the non-uniform
distribution of points makes the relationships complex. Manual
morphologic or cell-count based methods, the conventional clinical
approach for studying spatial patterns within mIF images, is lim-
ited by inter-observer variability. The current deep neural network
methods for point sets (e.g., PointNet) are limited in learning the
representation of implicit spatial relationships between categor-
ical points. To overcome the limitation, we propose a new deep
neural network (DNN) architecture, namely spatial-relationship
aware neural networks (SRNet), with a novel design of represen-
tation learning layers. Experimental results with a University of
Michigan mIF dataset show that the proposed method significantly
outperforms the competing DNN methods, by 80%, reaching 95%
accuracy.
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1 INTRODUCTION

Point-set classification for multiplexed pathology images aims to
distinguish between the spatial configurations of cells within mul-
tiplexed immuno-fluorescence (mIF) images of different diseases.
Advances in the field of multiplexed and anti-body based imaging
methods have promoted the development of mIF images, which
facilitates bio marker-specific cell species and sub species identifi-
cation [32]. An example of a multipled immunoflourescene image
is show in Figure 1. A point set from multiplexed pathology im-
ages records the location and the attributes (e.g., surface phenotype
markers) of the cells in a mIF image. For example, Figure 2 shows
a sample point set from a mIF image. The location of each cell
is represented by its pixel coordinates whose origin is at the top
left corner of the image. The cell attributes are the existence of
surface phenotype markers (e.g., Epithelial), where "pos" means
the presence of a phenotype marker and "neg" otherwise. Figure 3
illustrates the spatial distribution of "pos" phenotype markers in a
mlF image of chronic pancreatitis.

Classifying point sets from mlIF images is important because
it provides a novel way for pathologists to diagnose diseases. For
example, in the context of chronic pancreatitis and pancreatic ductal
adenocarcinoma, the point sets from mIF images describe the spatial
relationships between the diseases’ cells, which reveals information
about how the interactions between these cells vary.

This problem is challenging due to the following three reasons.
First, the points are distributed non-uniformly in the space, which
results in complex spatial relationships. Second, the contributions of
different spatial relationships vary between different classification
tasks, which requires that the representation of the relationships be
adjusted to meet the need of specific tasks. Third, spatial relation-
ships between cells of different types are both crucial and implicit
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Figure 1: A sample multiplexed immunofluorescence (mlIF)
image, with the different colours signifying the fluorescence
corresponding to different surface bio-markers on the cells
imaged. Image courtesy Dr. Timothy L. Frankel.
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Figure 2: A point set from a multiplexed pathology image.
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Figure 3: A map of a point set from a sample Chronic Pan-
creatitis mIF image.

in point sets, and the small number of available learning samples
makes it difficult for deep neural networks (DNNs) to learn these
spatial relationships without appropriate neural network architec-
tures.

Manual morphologic or cell-count based methods, which are
the conventional clinical approaches for studying spatial patterns
within mIF images, are limited by inter-observer variability. Sub-
stantial efforts have been made to apply machine learning tech-
niques to automate the pathology diagnosis process alongside the
expansion of digital imaging techniques. In particular, deep neural
networks (DNNs) have been extensively studied in a large number
of pathology diagnosis applications, including pixel/patch-level
region-of-interest detection [4, 7, 9] as well as image-level decision
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[15, 38] for various diseases, which have shown state-of-the-art
results. However, most of the existing DNN-based applications
take images as the input and are inapplicable for our problem. The
disadvantage of working with raw images is that the variation in
staining and artifacts present across all images in a given cohort
may influence analysis. In contrast, point sets offer a simplified
representation of cell locations and neighbourhoods, invariant of
cell borders and cellular morphology. Recently, as point cloud data
from LiDAR scanners have become increasingly popular, the repre-
sentation of point sets has attracted more attention [30]. However,
current methods mainly focus on point sets with few numerical
attributes, such as signal strength, and they do not handle categori-
cal attributes specifically. Hence, they do not take full advantage of
the spatial relationships between points of different categories.

To overcome these limitations, we propose a new DNN archi-
tecture, namely SRNet, with novel design of spatial-configuration
based representation learning layers. Experiments show that the
proposed methods yield much higher accuracy than the competing
DNN methods. Our contributions can be summarized as follows:

e We introduce a deep neural network architecture, SRNet, to
learn a representation of the spatial relationships between
points of different categories that are not captured by the
commonly used statistics such as the cross-K function and
the participation ratio.

e We conduct rich experimental studies to evaluate the ac-
curacy of the proposed methods. The discovered crucial
patterns are verified by domain scientists, confirming the
method’s potential to help pathologists identify novel spatial
relationships between different cell types (e.g., immune cells
and tumor cells) in the micro-environment.

Scope: The scope of this study is limited to analyzing point
datasets representing the location and types of cells derived from
multiplexed immuno-fluorescence (mIF) images to distinguish be-
tween diseases. Analyzing mIF images without converting them to
point sets is outside the scope of this paper. In addition, we do not
evaluate the proposed method with larger datasets due to a lack of
public benchmarks. Field trials to evaluate the clinical value of the
proposed method also fall outside the scope of this study.

Outline: The rest of the paper is organized as follows. Section 2
describes the application domain of the study. Section 3 introduces
the formal definition of the problem and provides a short description
of the dataset. Related work is reviewed in Section 4. Our proposed
methods are described in Section 5. Section 6 presents the evaluation
of the proposed methods. Section 7 concludes the paper and outlines
future work.

2 APPLICATION DOMAIN

Biopsies are the standard procedure in practice for disease diagnosis,
including cancers. In this procedure, a sample of tissue is removed
from the body, chemically treated, sliced into thin sections, placed
on a glass slide, and stained with specific chemicals to enhance
contrast for visual inspection [2]. A pathologist then performs a
macroscopic examination of the specimen and describes various
features such as type of cells present, their distribution, and other
important diagnostic features.
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With developments in whole slide digital imaging and antigen-
based staining technology (e.g., Time-Of-Flight mass cytometry
(CyToF)[8], and Co-detection by Indexing (CODEX)[10]), it is possi-
ble to not only isolate cell nuclei in an image, but also to determine
types and sub-types of each cell type present in the image based
on the cell’s surface chemistry with high throughput, and the po-
tential to scale up to more than 30 markers [16, 24]. These novel
technologies have played an important role in the era of cancer
immunotherapeutic treatment regimens [5, 25], which involves the
treatment of diseases by inducing, enhancing, or suppressing an
immune response in the patient. This treatment regimen has been
gaining increasing attention due to its potential in the treatment of
cancers which are non-responsive to conventional methods such as
radiotherapy and chemotherapy [26, 28]. As this treatment regimen
utilizes the immunoregulatory cells of the patient in eliminating
tumorous cells, there is a growing interest in understanding the
interplay between various cells in a spatially informed manner in
the tumor microenvironment [36, 37]. As an example, for tumor
infiltrating lymphocytes (TILs) to be able to induce cell death, these
cells must have direct or proximal contact with tumor cells [1].
Thus, the distance between tumor and immune cells is an impor-
tant indicator for determining disease progression and treatment
effect.

Emerging research in this area has begun to highlight the im-
portance of spatial organization among cell phenotypes for cancer
diagnosis and prognosis [36]. Currently, visual inspection and cell-
counting by a pathologist are the methods used to describe the
spatial organization of cells, which is fraught with inter-observer
variability and inconsistency between studies. Also, although we
have some information regarding which immune cell features pre-
dict a positive response, there is a lack of reliable methods to iden-
tify which patients will benefit from immunotherapeutic measures
based on their individual immune cell make-up. The development
and adoption of spatially informed methods both for tumor and
disease micro-environment quantification generally would help in
developing optimal treatment plans tailored to each patient. Addi-
tionally, it would be prudent to leverage the power of algorithmic
intelligence in the pathology domain, as it can provide insights
which cannot be captured visually by a pathologist.

3 PROBLEM DEFINITION & DATA
DESCRIPTION

Given a collection of categorical point sets (e.g., cells with different
surface phenotype markers) from multiplexed immuno-fluorescence
(mIF) images and the class labels of the point sets (e.g., different
diseases), the goal of this study is to train a machine learning model
that distinguishes between the point sets of different classes. The
primary objective is to achieve a high classification accuracy.

We define a categorical point set as a collection of points, where
each individual point belongs to a single category and is located in
2-D Euclidean space. This study was conducted on 199 anonymized
point sets derived from mIF images belonging to two disease groups,
namely chronic pancreatitis(i.e., class 1) and pancreatic ductal ade-
nocarcinoma (PDAC) (i.e., class 2), which had 56 and 143 point sets,
respectively. In the original dataset, cell surface makers indicate
nine phenotypes. Each cell might be associated with one or more
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phenotype. To transform the original point sets into categorical
point sets, we considered any point that had a single phenotype
marker as belonging to the category corresponding to that phe-
notype, and we replaced every point that had multiple phenotype
markers with a group of points, having one marker each and then
assigned the points to multiple categories corresponding to the
phenotype of each point’s marker. Generating point sets from mul-
tiplexed pathology images is beyond the scope of this paper, and
we treat point sets as given inputs.

4 RELATED WORK

The history of deep neural network (DNN) methods that directly
take point sets as the input dates back to PointNet [30], which learns
point features independently through multiple fully connected neu-
ral network layers and aggregates them into a shape feature using
a max pooling layer. These methods have been widely used for
3D shape classification and semantic segmentation as the point
clouds collected from LiDAR scanners have become increasingly
popular. PointNet++ [31] defines multi-scale regions and uses Point-
Net to learn their features. It then hierarchically aggregates the
regions’ features, so it can capture local configurations and learn
fine-grained patterns. Similar to PointNet++, the idea of spatially
partitioning points and then recursively aggregating them has been
extensively explored. For example, KD-trees are used in [13, 21] to
spatially partition points based on point density.

Meanwhile, much effort has been made to introduce DNN ar-
chitectures that were originally designed for other data formats
(e.g., imagery and time series). For example, convolutional neural
network (CNN) models are studied in the spectral domain (e.g.,
RGCNN [33]) and the spatial domain (e.g., Pointwise convolution
[18]). Recursive neural network (RNN) models are applied with the
assumption that “order matters” [34], and there are autoencoders
that learn the representation of point sets [17]. However, these
models are not specifically designed to handle multi-categorical
point sets and do not take full advantage of the spatial relationships
between different categories of points.

5 PROPOSED APPROACHES: SRNET

The cross-category spatial neighborhood relationships is an impor-
tant component in the spatial configuration of points. In pathology
diagnosis, the spatial correlations between different types of im-
mune cells may vary with diseases, which inspires us to introduce
a deep neural network (DNN) method, namely spatial-relationship
aware neural network (SRNet), with novel representation layers to
represent point sets with the spatial relationships between different
categories of points in them.

5.1 Spatial-Relationship Quantification

An intuitive way of representing the spatial relationships of point
sets consisting of various categories is to utilize measures quantify-
ing the relationships. In this subsection, we present two measures
for spatial relationships widely used in spatial data mining and
spatial statistics, and how they can be used in classification tasks.

5.1.1 Participation ratio. The participation ratio quantifies the de-
gree to which a category tends to be involved in a co-location
pattern. Co-location patterns [19, 35] refer to set of categorical
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point sets that tend to be located in close proximity, such as a point
set of Nile crocodiles and Egyptian plovers [22].

A co-location pattern [19] has three defining concepts. First, a
co-location pattern is in the form of a set of categories. Second, a
neighborhood clique is a set of points within which every pairwise
distance is smaller than a threshold. Third, an instance of a spatial
co-location pattern is a neighborhood clique composed of one point
from every category in the pattern. The participation ratio (PR) of a
category in a co-location pattern is then defined as the ratio of the
points in the category that are within the instance of the pattern,
which is calculated as:

|c; points in the instances of p|

PR(ci,p) = ; ¢y

|c; points|

where c; is a category and p is a spatial co-location pattern, and | - |
yields the cardinality of a set. The value of a participation ratio is
between 0 and 1. The greater the value, the more likely ¢; points
are located nearby the points of other categories in the pattern p.

For the sake of computational efficiency, in this study we only
consider the spatial co-location patterns composed of two cate-
gories, so Equation 1 can be transformed as:

PR(ci, cj,d) =
|c; points with ¢; in SN(ci, d)| (2)

>

|c; points|

where SN (ci, d) yields a circular spatial neighborhood with a radius
of d around a ¢; point. Given a point set containing points belong-
ing to k categories and a neighborhood distance threshold, there
will be k(k — 1) participation ratios. An important hyperparameter
that affects the value of the participation ratio is the neighborhood
distance threshold. Participation ratios with different neighborhood
distance thresholds imply the relationships between points in dif-
ferent spatial scales, so we compute the participation ratios with a
collection of I neighborhood distance thresholds. Therefore, we can
use a vector of k(k — 1) participation ratios as the representation
of a point set with k categories.

To validate that the spatial relationships quantified by participa-
tion ratios may be useful for distinguishing between the point sets
of different diseases, we plot the probability density distribution of
four participation ratios in the dataset we described in Section 3
using histograms in Figure 4. Each histogram has ten equal-width
bins that represent the range of participation ratio values, and the
area of each bin is the probability density of the bin. As can be
seen, the probability distribution of a participation ratio varies with
category pairs as well as with neighborhood distance thresholds,
and in Figure 4a and 4c, the probability distributions for the two
diseases are notably different. Therefore, PR(APC, Treg, 100) and
PR(APC, Treg, 200) may be used to distinguish the point sets of the
two diseases.

5.1.2  Ripley’s cross-K function. The participation ratio, PR(c;, cj,
d), can be thought of as the expectation that c; points exist in the
spatial neighborhood ¢; point. However, the existence of ¢; points
does not tell the whole story about the distribution of ¢; points in a
c; points’ spatial neighborhood. Ripley’s cross-K function, instead,

Li, et al.
10 10
Class1 Class1

28 Class2 28 Class2
@ @
s s
° 6 ° 6
2 2
54 5 4
© ]
i 8
£ 2 £ 2

0 0,

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

PR(APC, Treg, 100) PR(Epithelial, HelperT, 100)
(@) (b)
10 10
Class1 Class1

28 Class2 28 Class2
@ @
g §
° 6 ° 6
Z Z
54 5 4
© <]
8 8
& 2 & 2

0 0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

PR(APC, Treg, 200) PR(Epithelial, HelperT, 200)
(© GV

Figure 4: Examples of the probability distribution of partic-
ipation ratios.

focuses on the number of ¢; points in ¢; points’ spatial neighbor-
hood. It is defined in the following form:

E(|cj in SN(ci, d)])
E([cj in entire study areal)’

cross-K(cj, ¢j, d) = (3)
where ¢; and c; are two categories, d is a neighborhood distance
threshold, SN (c;, d) yields the circular spatial neighborhood of a
¢; point with a radius of d, and E(-) returns the expectation. The
value of a cross-K function is non-negative. The greater the value,
the more c; points are located nearby the c; points. Similar to
how we represent a point set using its participation ratios, given [
neighborhood distance thresholds, we can also represent a point set
with k categories using a vector contains k(k — 1) cross-K function
values.

5.2 Proposed SRNet Architecture

In the definitions of the participation ratio and the cross-K function,
a core component is the representation of the spatial neighborhood
of points. Given an ordered category pair (c;, cj), and a spatial
neighborhood distance threshold d, the participation ratio uses the
existence of ¢; points and the cross-k function uses the count of ¢;
points to represent the distribution of c; points in the spatial neigh-
borhood of ¢; points. However, in addition to existence and count,
there may be other patterns that describe the spatial relationships
between c; and c; points. Hence, we design a DNN model that uses
a spatial-relationship aware neural network (SRNet) that learns the
spatial distribution of ¢; points in ¢; points’ spatial neighborhood
for every ordered category pair (c;, c;), and then to generate a rep-
resentation of point sets. The point-set representation can then be
fed into a fully connected neural network for classification.
Figure 5 shows the overall architecture of SRNet. The input of
the approach is a categorical point set denoted as X € RN X(D+1),
where N is the number of points and D = 2 is the spatial dimensions.
Each point has one categorical attribute, and there are k categories
in total. Similar to using the participation ratios or the cross-K
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function values to represent point sets, the SRNet uses a DNN layer
(spatial relationship layer) to learn the spatial relationship measures
of all k(k — 1) ordered category pairs. This architecture facilitates
the integration of human expert knowledge by concatenating the
learned spatial relationship measures with the measures provided
by human experts (e.g., the participation ratio, the cross-K function).
The architecture of the spatial relationship layer, shown in Figure 6,
has three main components: a spatial neighborhood layer (Section
5.2.1), a spatial distribution attention layer (Section 5.2.2), and a
weighted average pooling layer. For every ordered category pair
(ci, cj), the spatial neighborhood layer generates a representation
of the spatial distribution of ¢; points in every c; point’s spatial
neighborhood, and the spatial distribution attention layer learns
the attention to be paid to each ¢; point according to the spatial
distribution of ¢; points. Then, the weighted average pooling layer
aggregates the spatial neighborhood representation of every c;
point with different weights to calculate the spatial relationship
measures of pair (c;, ¢;). Finally, the spatial relationship measures of
all ordered category pairs are concatenated to generate the overall
representation of the point set, denoted as Y € R} (k=1)XW yhere
W is the feature dimension of the spatial relationship measures of
a category pair.
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5.2.1 Spatial neighborhood layer. Given an ordered category pair
(ci, ¢j), a spatial neighborhood layer is applied to represent the
spatial distribution of ¢; points within every individual ¢; point’s
spatial neighborhood independently. The input of this layer is a ¢;
point and the c; points in its spatial neighborhood, and its output
is a vector representing the spatial distribution of the c; points.
There are two main steps in this layer, namely, spatial location
representation and spatial distribution summarization (Figure 7).
Spatial location representation focuses on representing the rela-
tive location of a ¢; point in the spatial neighborhood of a ¢; point.
The most commonly used representation of a relative location is
the difference of coordinates. However, it was reported in [27] that
the difference of coordinates failed to convey the information of
various spatial distributions. Recently, Gao et al. proposed a repre-
sentational model that uses the hexagon patterns of the grid cells
to form a high-dimensional vector representation of 2D locations
(x), based on the following theorem whose proof is given in [14].

THEOREM 5.1. Let ¥(x) = (/%) j = 1,2,3)T € C3® where
e = cos® + isin6 and (aj,x) is the inner product of aj and x.
ai, az, as € R? are 2D vectors such that the angle between each pair
is27/3,V], ||laj|l = 2+/a. Let C € C33 be a random complex matrix
such as C* C = 1. Then ¢(x) = C¥(x), M(Ax) = Cdiag(¥(Ax))Cx
satisfies

6 (x + Ax) = M(Ax)$(x) (@)
and
($(x +Ax),$(x)) = d(1 - al|Ax||?) ©)
where ¢(x) is the representation of location x, d = 3 is the dimension
of ¢(x), and Ax is a small displacement from x.

Based on Theorem 5.1, Mai et al. [27] introduced a multi-scale
location representation model by using sine and cosine functions of
different frequencies in ¥(x), inspired by the multi-scale periodic
representation of grid cells in mammals [3]. In this model, ¥(x) is
represented as a concatenation of the position embedding (PE) at S
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scales, PE(x) = [PE1(x);...; PEs(x);...PEs(x)],
PEs(x) = [PEs,l(x);PEs,Z(x)§PEs,3 (x)]: (6)
N (x, aj) (x,a;)
PE; j(x) = [cos( 7 1)) sm( PN )], @
Vji=123,

where a1 = [1,0]7, a2 = [-1/2,V3/2]%, a3 = [-1/2,—V3/2]T are
unit vectors, the angles between every pair of vectors is 27/3,
Amin, Amax are the minimum and maximum grid scales, and g =
Am“x . The matrix multiplication C¥(x) is represented as NN (PE(x)),
Where NN(-) are fully connected ReLU layers. Therefore, the lo-
cation of a ¢j point relative to a c; point can be represented as
NN(PE(Ax)), where Ax is the difference of their coordinates.
Given a collection of relative location representations of ¢ points
in a ¢; point’s spatial neighborhood, a max pooling layer is applied
to summarize the relative locations to get the representation of
the ¢; point’s spatial neighborhood. Pointnet[30] has theoretically
and experimentally demonstrated that with enough neurons, a max
pooling layer is able to learn to summarize a point distribution [30].

5.2.2  Spatial distribution attention layer. To get the representa-
tion of the spatial relationship measures of pair (c;, ¢j), an average
pooling layer is used to aggregate the representation of c¢; points’
distribution in all the spatial neighborhoods of ¢; points. However,
it is questionable whether all ¢; points should contribute equally
to the spatial relationship measures. In their study of the spatial
co-location patterns, Barua and Sander discovered that the spa-
tial distribution of the points belonging to a category within a
co-location pattern affected the statistical significance of the pat-
tern’s participation ratio where all points contributed equally [6].
A potential reason is the existence of spatial auto-correlation. In
other words, the spatial neighborhoods of nearby points are simi-
lar. If all points contribute equally, the spatial neighborhood of a
point away from other points may be overwhelmed by the spatial
neighborhoods of the points in clusters. Therefore, we introduce a
spatial distribution attention layer to determine the attention paid
to each ¢; point when generating the spatial relationship measures
of (cj, cj). The layer first generates the representation of the spatial
distribution of ¢; points in each c; point’s spatial neighborhood in-
dependently using the proposed spatial neighborhood layer. Then
it estimates the attention paid to each c¢; point according to the
representations using multiple fully connected ReLU layers. This
method is similar to the application of farthest point sampling (FPS)
in PointNet++ [31], which selects subsets of representative points
to learn local features. Instead of using a greedy heuristic as in
FPS, the proposed spatial distribution attention layer uses neural
network layers to adjust the attention to points.

6 EXPERIMENT

Our experimental evaluation has two components: (1) a compari-
son of the proposed methods with the state-of-the-art deep neural
network (DNN) point set classification methods; and (2) an analysis
of the importance of the spatial relationship measures.
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6.1 Classification Accuracy Comparison

We have conducted two sets of experiments: (1) comparing our pro-
posed methods: handcrafted features using classic spatial measure
(i-e., participation ratio or cross-k function) and learned features
using SRNet, each combined with a simple neural network classi-
fier, with the state-of-the-art (SOTA) DNN point set classification
methods (i.e., PointNet and PointNet++), (2) comparing handcrafted
features combined with simple classification models with the SOTA
DNN point set classification methods. The experiments are designed
to answer the following questions: 1) did the proposed method yield
more accurate classification results than the competing DNN meth-
ods? 2) how do the spatial relationship measures used to represent
point sets affect classification accuracy? 3) how does the choice
of classification method affect accuracy? Classification accuracy is
measured by AUC-ROC, precision, recall, F1 score, and accuracy.
The candidate methods compared were as follows.

e PointNet[30]: PointNet is a neural network architecture
that directly consumes point sets for applications ranging
from object classification to part segmentation.
PointNet++[31]: PointNet++ is a hierarchical neural net-
work architecture that applies PointNet recursively to cap-
ture local structure and recognize fine-grained patterns and
complex scenes.

e PR + DT/ RF/ NN: The point set representation composed
of the participation ratios (Section 5.1.1) is fed into a decision
tree / random forest / fully connected neural network model
for classification.

e cross-K + DT / RF/ NN: The point set representation com-

posed of the cross-K function values (Section 5.1.2) is fed

into a decision tree / random forest / fully connected neural
network model for classification.

SRNet/ +PR/ +cross-K: The point set representation learned

by the SRNet model proposed in Section 5.2 without human

expert knowledge / with the participation ratio measures /
with the cross-K function measures is fed into a fully con-
nected neural network model for classification.

The implementation of both PointNet and PointNet++ are avail-
able on GitHub 1. The decision tree, the random forest, and the
fully connected neural network methods were implemented using
the Python scikit-learn package [29]. The maximal depth of the
decision tree methods was set to 4, and the maximal depth and the
number of estimators of the random forest methods were set to 3
and 1000. Other hyperparameters were kept as the default values.
The fully connected neural network classifier had two hidden ReLU
layers with 4096 neurons and a sigmoid layer as the output layer.

The SRNet method was implemented using PyTorch, where the
spatial neighborhood of each point was set as a circle with a radius
of 200, and the minimal grid cell size, the maximal grid cell size,
and the number of scales of the multi-scale location representation
layers were set at 1, 100, and 10 respectively. All the spatial neigh-
borhood layers shared the same architecture and parameters. The
fully connected ReLU layers in the spatial neighborhood layers had
four hidden layers, and the hidden layer dimension was set at 256.
The feature dimension of the learned spatial relationship measures

!Link to PointNet repository: https://github.com/charlesq34/pointnet. Link to Point-
Net++ repository: https://github.com/charlesq34/pointnet2.
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Figure 8: The classification accuracy of the methods using
neural network classifiers.

of each ordered category pair was 32. The SRNet and the neural
network classifier were trained using the Adam optimization algo-
rithm with the learning rate of 10™* to minimize the cross entropy
loss of the classification results and the ground truth.

We used the dataset described in Section 3. Since the original
dataset only had 199 point sets, we used 5-fold cross-validation
and augmented the number of point sets by partitioning, flipping,
and rotating the original point sets. To get subsets of a point set
and keep spatial relationship information in each subset, instead of
randomly sampling points, we partitioned the minimum bounding
rectangle (MBR) of the point set horizontally by 20% and 80% and
then 80% and 20%, and used the 80% subsets. The subsets were
then flipped both horizontally and vertically. Finally, the flipped
subsets were rotated by 90 degrees three times. Thus, after data
augmentation, there were 199 X 2 X 4 X 4 = 6368 point sets in total.

Table 1 shows the mean and standard deviation (in parenthe-
ses) of classification accuracy measures of the candidate methods.
The highest accuracy is highlighted in bold. It is evident that the
proposed methods, even a very simple model (e.g., the decision
tree model) with a well-defined spatial relationship measures (e.g.,
the participation ratio), were much more accurate than the com-
peting DNN point set classification methods (i.e., PointNet and
PointNet++).

A comparison of the classification accuracy of the methods using
neural network classifiers (Figure 8), shows that the methods using
classic spatial relationship measures (PR+NN and cross-K+NN)
and those using measures learned by the proposed SRNet (SRNet,
SRNet+PR, SRNet+cross-K) had much higher accuracy than the
competing DNN methods. This indicates that the proposed SRNet
was able to learn spatial relationship measures that were missed
by the competing DNN methods. Moreover, the accuracy of the
SRNet+PR and SRNet+cross-K methods was higher than that of
the PR+NN and cross-K+NN methods, respectively, which means
the proposed SRNet is able to learn features that are not captured
by the participation ratio and the cross-K function but that were
useful for the classification task.

Finally, the classification accuracy of methods using the same
point set representation (e.g., PR+DT v.s. PR+NN) indicates that
complex models yielded more accurate results. However, the effect
of choosing different classification methods on classification accu-
racy was not as significant as the effect of point set representation.
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Figure 9: First two layers of the decision trees trained using
the entire dataset in Section 3

6.2 Analysis of Spatial Relationship Measures

The goal of the second set of experiments was to analyze the cate-
gory pairs whose spatial relationship measures are important for
classifying the point sets of the two diseases, as this provided a way
to discover the interactions between cells that varied with diseases.

In the PR+DT and cross-K+DT methods, the feature vectors
composed of the participation ratios and cross-K function values
were fed into decision tree models. Since in every node of the
decision tree model, a feature is selected greedily to divide samples
into two groups according to a heuristic (e.g., the information gain),
the selected features indicate which category pairs contain high
variation in their spatial relationships. Figure 9 shows the first two
layers of the decision trees trained using the entire dataset described
in Section 3. As can be seen, the spatial relationships between
HelperT cells and CD4 cells and between Treg cells and HelperT
cells were significantly different under the micro environment of
the two diseases.

In the PR+RF and cross-K+RF methods, the feature vectors com-
posed of the participation ratios and cross-K function values were
fed into random forest models. Feature importance in the random
forest models can be measured by the mean impurity decrease,
which also implies the spatial relationships between the category
pairs vary a lot in the point sets of the two diseases. Table 2 lists the
top ten important features in the PR+RF and cross-K+RF models
trained using the entire dataset. As can be seen, both the participa-
tion ratio features and cross-K function features indicate that the
spatial relationships between the HelperT and Treg cells are most
useful for distinguishing the point sets of the two diseases.

For the PR+NN, cross-K+NN, and the SRNet methods, we evalu-
ated the importance of the spatial relationship measures, namely,
the participation ratio, the cross-K function value, and the represen-
tation learned by SRNet, through permutation feature importance.
Permutation feature importance measures the increase in the pre-
diction error of the model after we permute the feature’s values.
In this experiment, the importance of the spatial relationship mea-
sures of an ordered category pair was measured by the classification
accuracy after exchanging the corresponding elements in the rep-
resentation vectors. The lower the accuracy, the more important
the measures of ordered category pair. In the dataset described in
Section 3 the most important ordered category pairs were (HelperT,
Treg), (HelperT, CD4), (CTLs, Treg), and (APC, Treg).
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Table 1: Classification accuracy results.

Method AUC-ROC  Precision Recall F1 score Accuracy

PointNet 0.518 (0.026)  0.352(0.079) 0.518 (0.026)  0.421 (0.120)  0.508 (0.160)
PointNet++ 0.529 (0.089)  0.412(0.138)  0.529 (0.089)  0.421 (0.138)  0.529 (0.089)
PR+DT 0.903 (0.027)  0.955 (0.028) 0.911 (0.036) 0.932(0.016)  0.905 (0.021)
PR+RF 0.979 (0.011)  0.936 (0.025)  0.949 (0.027)  0.942 (0.022)  0.917 (0.031)
PR+NN 0.980 (0.016)  0.948 (0.035)  0.954 (0.041)  0.950 (0.025)  0.929 (0.035)
cross-K+DT 0.852(0.011)  0.911(0.027)  0.914 (0.058)  0.911 (0.027)  0.874 (0.031)
cross-K+RF 0.955 (0.028)  0.852(0.019) 0.967 (0.017)  0.906 (0.015)  0.856 (0.023)
cross-K+NN 0.938 (0.027)  0.908 (0.037)  0.933 (0.046)  0.919 (0.025)  0.883 (0.036)
SRNet 0.939 (0.030)  0.951 (0.038)  0.884 (0.066)  0.914 (0.031)  0.884 (0.039)
SRNet+PR 0.985 (0.015) 0.967 (0.002)  0.962 (0.040) 0.964 (0.020) 0.950 (0.014)
SRNet+cross-K  0.964 (0.022)  0.953 (0.028)  0.909 (0.047)  0.930 (0.028)  0.904 (0.037)
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Table 2: Top 10 important features obtained in the PR+RF
and cross-K+RF methods.

Rank PR+RF feature cross-K+RF feature

1 PR(HelperT, Treg, 1)  cross-K(Treg, HelperT, 100)
2 PR(HelperT, CD4, 1)  cross-K(HelperT, Treg, 200)
3 PR(HelperT, Treg, 50)  cross-K(HelperT, Treg, 50)
4 PR(HelperT, Treg, 200) cross-K(HelperT, Treg, 100)
5 PR(HelperT, Treg, 100)  cross-K(HelperT, Treg, 1)

6 PR(HelperT, Treg, 150)  cross-K(Treg, HelperT, 50)
7 PR(CD4, Treg, 150) cross-K(Treg, HelperT, 1)

8 PR(CD4, Treg, 200) cross-K(HelperT, Treg, 150)
9 PR(CD4, Treg, 100) cross-K(Treg, HelperT, 200)
10 PR(APC, Treg, 100) cross-K(Treg, HelperT, 150)

6.3 Clinical Implications

From a clinical perspective, the results highlight some key cell
phenotype relationships that may directly or indirectly play a role
in the disease micro-environment. Specifically, the relationship
between CTLs and T-regs, and Helper T-cells and T-regs are of
particular interest from an immunological standpoint.Cytotoxic
Lymphocytes(CTLs) are the cells that actively seek out and kill can-
cer cells in the environment on activation of the immune system[11].
On the other hand, under normal conditions, the T-regulatory cells
have a regulating effect on the immune response of the locale [23].
It has been observed that T-regulatory cells play a more functional
role in the cancer micro-environment, and there is potential for
some interplay between the two cell phenotypes from a functional
standpoint. Due to this, there is a tendency for them to co-localize at
a higher frequency with CTLs, and potentially inhibit their function
[12]. This may be due to physiologic suppression of activated CTLs,
or pathological polarization of CD4 positive cells by tumor secreted
factors in the tumor micro-environment[20]. Further investigation
on a larger cohort to confirm the potential discriminatory power
of the pairwise interactions observed in this experiment would be
warranted.

The identification of the cell-pairs opens up a potential for a
novel method to capture the difference in cellular arrangements

across different diseases. This also alludes to the influence of cell-
cell distances and their relative placement in the state of the micro-
environment [36]. Along with reinforcing known relationships,
these features would also serve to offer new insight into potential
cell-cell relationships that were either unknown or little explored
in previous studies. In the age of increasing focus on personalized
treatment paradigms, the utilization of a spatially-aware approach
would assist physicians in making more informed treatment plans.

7 CONCLUSION & FUTURE WORKS

In this paper, we proposed a deep learning point-set classification
method, namely SRNet, for multiplexed pathology images. SRNet
provides a novel way for pathologists to diagnose diseases. Instead
of classifying multiplexed immuno-fluorescence (mlIF) images di-
rectly, we first converted mIF images to point sets representing
the cells on mIF images, and then classified the point sets. An ex-
perimental evaluation showed that the proposed SRNet can learn
spatial relationship measures that are not captured by classic mea-
sures, and the classification accuracy of using the learned measures
significantly outperformed the SOTA deep learning point-set classi-
fication methods, reaching 95% accuracy (about 80% more accurate).
In addition, the proposed methods helped to discover pairs of cell
types that might inspire new pathology findings.

In the future, we will compare the proposed method on point sets
with the methods directly analyzing mIF images without converting
them to point sets. We also plan to identify larger mIF images and
other spatial pathology datasets for larger and broader evaluation
of the proposed method. In addition, the proposed SRNet focuses
on the spatial relationships between two cell types, and we plan to
extend its capability by taking the relationships between multiple
cell types into consideration.
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