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Human gut microbial dynamics are highly individualized, making it challenging to link microbiota to health and to design univer-
sal microbiome therapies. This individuality is typically attributed to variation in host genetics, diets, environments and medi-
cations but it could also emerge from fundamental ecological forces that shape microbiota more generally. Here, we leverage
extensive gut microbial time series from wild baboons—hosts who experience little interindividual dietary and environmental
heterogeneity—to test whether gut microbial dynamics are synchronized across hosts or largely idiosyncratic. Despite their
shared lifestyles, baboon microbiota were only weakly synchronized. The strongest synchrony occurred among baboons living
in the same social group, probably because group members range over the same habitat and simultaneously encounter the
same sources of food and water. However, this synchrony was modest compared to each host's personalized dynamics. In sup-
port, host-specific factors, especially host identity, explained, on average, more than three times the deviance in longitudinal
dynamics compared to factors shared with social group members and ten times the deviance of factors shared across the host
population. These results contribute to mounting evidence that highly idiosyncratic gut microbiomes are not an artefact of
modern human environments and that synchronizing forces in the gut microbiome (for example, shared environments, diets
and microbial dispersal) are not strong enough to overwhelm key drivers of microbiome personalization, such as host genetics,

priority effects, horizontal gene transfer and functional redundancy.

ammalian gut microbiotas are highly complex, dynamic
ecosystems. From these dynamics emerge a set of
life-sustaining services for hosts, which help them digest
food, process toxins and resist pathogens. Despite their importance,
our understanding of how gut microbial communities change over
time within hosts, especially the collective dynamics of microbiotas
from hosts in the same population, is poor'”. This gap exists in part
because we lack time-series data that track gut microbiotas longi-
tudinally across many hosts living together in the same population.
As a result, it has been difficult to answer key questions. For exam-
ple, when host populations encounter shifting environments and
resources, does each host’s microbiota respond similarly—that is,
in synchrony—or idiosyncratically to these changes? Further, what
factors predict synchronized versus idiosyncratic microbiota?
Answering these questions is important because synchronized
gut microbial communities, if and when they occur’, could help
explain shared microbiota-associated traits in host populations, such
as patterns of disease susceptibility**. A high degree of synchrony
may also suggest that similar ecological principles govern changes

in microbial composition across hosts’. Further, there is theoreti-
cal justification to expect coordinated microbial dynamics, as host
populations and their microbiotas can be considered a ‘microbiome
metacommunity’ (for example, refs. ©?). Metacommunity theory
predicts that synchrony will arise across microbiotas if their hosts
experience similar environmental conditions and/or high rates of
microbial dispersal between hosts'*"". In support, fruit bats living in
the same colony exhibit coordinated fur microbiota, due to shared
environments and microbial dispersal'.

However, even in the presence of such synchronizing forces,
there are many reasons to expect that hosts in a microbiome meta-
community will exhibit idiosyncratic (individualized) microbial
compositions and dynamics. First, idiosyncratic dynamics are
expected when the same microbes in different hosts respond in dif-
ferent ways to environmental fluctuations, chance events or interac-
tions with other microbes'*~"*. These forces are probably important
in microbiotas where priority effects, functional redundancy and
horizontal gene flow can cause the same microbe to play different
ecological roles and exhibit different environmental responses in
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different hosts'*"". Second, several cross-sectional studies, in both
humans and animals, find that individual hosts exhibit distinc-
tive gut microbiotas and host identity explains a large fraction of
population-wide microbiome taxonomic variation"*-*. Further,
some longitudinal studies in humans and animals find personal-
ized gut microbial dynamics'****. This personalization is usually
attributed to interpersonal differences in diet, medications and life-
style?”**!, If correct, then idiosyncratic microbiome dynamics may
be simply explained by a lack of shared environmental drivers rather
than distinct microbiome responses to shared environments (but
see ref. ). In contrast, if personalized dynamics persist even when
hosts share the same environment, then (1) host-specific dynamics
may not be solely attributable to interpersonal differences in life-
styles; (2) predicting the dynamics of microbial taxa in individual
hosts may prove difficult; and (3) microbiome interventions that
rely on manipulating taxa may face challenges beyond heterogene-
ity in lifestyles and instead may be related to conserved ecological
principles across microbiomes.

Results and discussion

Baboon gut microbiota show seasonal and annual cycles.
We tested for gut microbial synchrony using 17,265 16S ribo-
somal RNA gene sequencing-based microbiome profiles from
600 baboons living in 12 social groups over a 14-yr span®* (Fig.
la and Supplementary Fig. 1). The baboons were members of the
well-studied Amboseli baboon population®’, who experience shared
diets, environments and opportunities for between-host microbial
dispersal. All groups used an overlapping ~60km? range (Fig. 1b
and Supplementary Video 1; ref. *?) and all baboons experienced
the same seasonal changes in rainfall and temperature. Seasonal
weather patterns drive a rotating set of baboon foods, including
grass corms in the dry season and growing grass blades and grass
seed heads in the wet season*>**** (Fig. 1¢,d).

We began by visualizing annual and interannual fluctuations
across all 17,265 samples over the 14-yr span of the data. Consistent
with prior research on primates**~*, we found population-wide,
cyclical shifts in microbiome community composition across sea-
sons and years (Fig. 2). This wet-dry seasonal cyclicity was primar-
ily observable in the first principal component (PC1) of a principal
component analysis (PCA) of centred log-ratio (clr)-transformed
amplicon sequence variant (ASV) read counts (Fig. 2a,b and
Supplementary Figs. 2-4; PC1 explains 16.5% of the variance in
microbiome composition). PC1 exhibited its lowest values during
the dry season and highest values during the wet season, mirroring
monthly rainfall (Fig. 2b and Supplementary Fig. 4). PC1 was also
linked to annual rainfall across years, exhibiting especially low val-
ues throughout 2008 and 2009, corresponding to the worst drought
in the Amboseli ecosystem in 50yr (Fig. 2a,b). We also observed
small but statistically significant seasonal differences in PC2 and
PC3 (8.4% and 3.7% of variation in community composition; Fig.
2c and Supplementary Figs. 2-4) and in measures of alpha diversity
(Fig. 2c and Supplementary Figs. 4 and 5), as has been reported in
other ecosystems”. Together, these seasonal changes are probably
caused by seasonal shifts in plant phenology and its effects on diet
(Fig. 1d), as well as the effects of rainfall and other weather vari-
ables on bacterial exposures from the environment (for example,
soil communities and sources of drinking water).

In terms of individual microbiome taxa, 17% of phyla (2 of 12)
and 38% of families (13 of 34) exhibited significant changes in abun-
dance between the wet and dry seasons (Fig. 2c and Supplementary
Table 1; linear models with false discovery rate (FDR) thresh-
old =0.05). These changes were significant for the phyla Firmicutes
and Tenericutes (Fig. 2c,d and Supplementary Fig. 6) and were
especially pronounced for the families Helicobacteraceae,
Coriobacteriaceae, Burkholderaceae, Bacteroidales RF16 group,
vadinBE97, Spirochaetaceae and Campylobacteraceae (Fig. 2c and
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Supplementary Fig. 7). Of the ASVs, 28% also exhibited significant
changes in abundance across seasons (97 of 341 ASVs; linear mod-
els with FDR threshold=0.05 for #=393 models; Supplementary
Fig. 8 and Supplementary Tables 2 and 3). However, most ASVs,
families and phyla did not change in abundance, suggesting that
many taxa play consistent roles in the gut throughout the year,
including Kiritimatiellaeota, Elusomicrobia, Ruminococcacaceae,
Clostridiaceae 1 and Rikenellaceae (Fig. 2¢, Supplementary Figs. 6
and 7 and Supplementary Table 1).

Baboon gut microbial dynamics are individualized. While the
microbiome metacommunity exhibited cyclical, seasonal shifts in
composition, microbiome dynamics across different baboons were
only weakly synchronized. Instead, consistent with prior observa-
tions of microbiome personalization*-*°, patterns of temporal
autocorrelation indicated that each baboon exhibited largely indi-
vidualized gut microbiome compositions and dynamics (Fig. 3). In
support, ASV-level Aitchison similarity was much higher for sam-
ples collected from the same baboon within a few days of each other
than for samples from different baboons over the same time span,
regardless of whether those animals lived in the same or a different
social group (Fig. 3a,b; Kruskal-Wallis: P <2.2x107' for all com-
parisons). Likewise, a PERMANOVA of Aitchison similarities between
4,277 samples from the 56 best-sampled baboons (Supplementary
Fig. 9) revealed that host identity explained 8.6% (P <0.001) of the
variation in community composition, much larger than the varia-
tion explained by sampling day or month (R*=2.5% and 1.4%),
group membership (2.2%) or the first three PCs of diet (0.04-2.4%;
Supplementary Table 4 and Supplementary Fig. 10).

Aitchison similarity among samples from the same baboon fell
steeply for samples collected a few days to a few months apart, indi-
cating that individualized dynamics are strongest for samples col-
lected close in time (Fig. 3a—c). At longer time scales (for example,
months and years), self-similarity was modest but samples from the
same baboon were significantly more similar to each other than
they were to samples from different baboons, even for samples col-
lected several years apart (Fig. 3a,c and Supplementary Figs. 11 and
12). Following the initial steep decline in self-similarity, community
similarity rose again at 12-month intervals, both within and between
hosts, reflecting synchronized, seasonal microbial dynamics across
the host population. These small, 12-month peaks in similarity were
visible even for samples collected >5yr apart, indicating that indi-
vidual hosts and the population at large return to similar microbi-
ome community states on 12-month cycles over several years (Fig.
3c). Hence, the patterns in Fig. 3a,c show both idiosyncratic and
synchronized microbial dynamics: over short time scales, hosts are
much more similar to themselves than they are to others but, on
annual scales, all hosts are weakly synchronized across seasons.

The greater influence of individualized dynamics compared
to synchronized dynamics can also be captured by comparing
microbiome dynamics for deeply sampled hosts sharing the same
habitat at the same time (Fig. 3d and Supplementary Fig. 13). For
instance, during the 2008-2009 hydrological year, we collected
nearly one sample per month from 17 baboons. When we aligned
these time series, we observed little convergence to similar values
within any given month and little evidence of shared changes in
the top three PCs of ASV-level microbiome composition over time
(Fig. 3d). Consequently, the microbiome of each baboon took a
different path over the ordination space over the same 1-yr span
(Supplementary Fig. 13 and see Supplementary Fig. 14 for similar
results during 2007-2008).

Microbiome taxa varied in their contributions to individualized gut
microbiome compositions (Fig. 3e and Supplementary Fig. 15). For
the 56 best-sampled hosts (Supplementary Fig. 9), several phyla and
families exhibited substantial variation in host mean clr-transformed
abundance (across repeated samples for that host) compared to

NATURE ECOLOGY & EVOLUTION | VOL 6 | JULY 2022 | 955-964 | www.nature.com/natecolevol


http://www.nature.com/natecolevol

NATURE ECOLOGY & EVOLUTION TICLES

Social groups

Weaver's (2000-2012)
Kelly's (2012-2012) —2.65 -
Laza's (2012-2012)
Linda's (2000-2011)
Narasha's (2011-2013)
Mica's (2011-2013)
Viola's (2000-2013)
Omo's (2000-2011)
Acacia's (2012-2013)
Nyayo's (2000-2011)
Hokey's (2010-2013)
Snap's (2010-2012)

-2.70

Host animal
Latitude (° S)

-2.75

-2.80

37.00 37.05 37.10 37.15 37.20
Longitude (° E)

Hydrological year

Monthly rainfall ©®
(mm)
@ 3@
SRR R-]

2000 2001
d 1.00 4
0.75 A
0.50 -
0.25 -
0 ZNSWEL.IT - '
1.00 2000 2001 2002 2003 2004 2005 2006
0.75 1 Diet categories
0'50 B e
= B corm
.gc__)) 0.25 - Pods
e 0 ' Seeds
= 2000 2001 2010
S 1.00 - " R i T " r“p Gum
% 0.75 | | 4 | ! -y Blossom
8 050 1 B ‘ Non-grass leaves
f=4
S 025 . Grass (seed head)
S 0.
2 04 ! Y d . Grass leaves
; 1.00 | 2000 2001 2004 2005 Fruit (Azima)
5 Fruit (Trianthema)
@ 0757 [ Frit (Tribulus)
0.50 1 || Frit (other)
0.25 [ other
o 4
2000 2001
1.00
0.75 -
0.50 -
0.25 -
0 d

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Hydrological year

Fig. 1| Baboons in Amboseli experience shared environments at multiple scales. a, Our microbiota time series consisted of 17,265 16S rRNA gene
sequencing gut microbial profiles. Each point represents a microbiota sample, plotted by the date it was collected (x axis). Each row (y axis) corresponds
to a unique individual host. Samples were collected from 600 wild baboons living in five original social groups (indicated by dark colours marked with
black dots in the legend) and seven groups that fissioned/fused from these original groups (no black dots). b, All baboon groups ranged over a shared
~60 km? area and the social groups had largely overlapping home ranges. Ranges are shown as 90% kernel densities over the sampling period specific to
each group; five original social groups are shown with solid borders, fission and fusion products with dashed borders. ¢, Monthly rainfall amounts (blue
bars, in mm) with yellow and green stripes along the x axis representing dry and wet seasons, respectively, with the width of the green stripes reflecting
the number of months within the focal year that had at least 1Tmm of rainfall. d, Temporal shifts in diet from the years 2000 to 2013, shown as the relative
abundance of diet components in the five original social groups over 30-d sliding windows before each sample collection date. Colours correspond to the
13 most common food types, while the grey bars correspond to other or unknown food types. Coloured boxes around each panel in d reflect each of the
five original, most extensively sampled social groups (colours as in a and b). The white bars indicate time periods where no diet data were collected.
Credit for base map in b: Google, TerraMetrics.
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Fig. 2 | Baboons show population-wide, cyclical shifts in microbiome community composition across seasons and years. a, Changes in microbiome PC1
mirror monthly rainfall across all 14 yr. The grey points show values of PC1 for each of the 17,265 samples (y axis) on the dates they were collected (x axis).
The black line and grey band are a plate regression spline and 95% simultaneous confidence interval for daily changes in microbiome PC1. Blue bars show
monthly rainfall (right-hand y axis) and the yellow and green bars along the x axis represent dry and wet seasons, respectively, with the width reflecting
the number of months within the focal year with at least Tmm of rainfall. b, Changes in microbiome PC1 on an annual scale across all 14 yr (n=17,265
samples). The box plots (box and whiskers indicate the median, 25th/75th percentile and 1.5 interquartile range (IQR)) show the distribution of PC1in
wet (green) and dry (yellow) seasons. The black line and grey band are a plate regression spline and 95% simultaneous confidence interval for annual
changes in microbiome PC1. Blue points show total annual rainfall (right-hand y axis). ¢, The effect of season varies across 52 features of the microbiome,
including six community features (top panel) and 46 taxa (bottom panel; 12 phyla, light blue vertical bar; 34 families, turquoise vertical bar; for 341 ASVs,
Supplementary Fig. 13). Each horizontal bar shows the effect of season from linear mixed models for each feature. Asterisks indicate features that changed
significantly between the wet and dry seasons (n=17,265 samples; FDR threshold=0.05). See Supplementary Figs. 6 and 7 for feature-specific smooths
and Supplementary Fig. 8 and Supplementary Table 3 for results for ASVs. d, Bar plots showing the relative abundance of ASVs coloured by the four most
common microbial phyla (above) and the seven most common families (below) across all 17,265 samples. Green and yellow bars along the x axes represent
wet and dry seasons, respectively, with the width corresponding to the number of samples in the focal hydrological year and season. Of the ASVs, 22.9%
(78 of 341) could not be assigned to a known family (‘unclassified’, shown in grey). The abundance of ASVs unclassified to family in the lower plot is ~35%
because one unclassified ASV was the second most abundant ASV in the dataset, with a mean abundance of 16.9% across all samples (ASV no. 2, phylum
Kiritimatiellaeota, order WCHB1-41; Supplementary Table 2).

their mean clr-transformed abundance across all hosts. These taxa To test whether individualized gut microbial dynamics could be
included the phyla Cyanobacteria, Spirochaetes, Lentisphaerae explained by microbial dispersal limitation between hosts, we used
and Elusimicrobia and the families Spirochaetaceae, vadinBE97, the Sloan Neutral Community Model for Prokaryotes to estimate
Elusimicrobaceae and Muribaculaceae (Fig. 3¢ and Supplementary = metacommunity-wide migration probabilities, 1, for ASVs in each
Fig. 15). These highly variable taxa exhibited below-average abun-  season and hydrological year*>*!. Parameter m provides a measure of
dances compared to less variable taxa (Supplementary Fig. 16). dispersal limitation because it represents the probability that ‘vacan-
Hence, idiosyncratic dynamics may be more often linked to uncom-  cies” in a local community (a host’s microbiome) will be replaced
mon than common taxa, perhaps because uncommon taxa have by dispersal from the microbiome metacommunity (other hosts),
greater functional variability across hosts. as opposed to reproduction within a focal hosts community**'.
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Fig. 3 | Baboons exhibit largely idiosyncratic gut microbial compositions and dynamics. a, Temporal autocorrelation in baboon gut microbiome
communities for samples collected on the same day and up to 5yr (1,825d) apart. Points show mean ASV-level Aitchison similarity (y axis) between
samples as a function of the number of days between sample collection (x axis; small tick marks correspond to months). Lines depict moving averages
(window size =7 d) and their ribbons show 95% confidence intervals. The grey region on the left indicates samples collected within Tmonth of each other.
Brown points show average Aitchison similarity between samples collected from the same baboon (n=392,817 distinct sample pairs from 547 hosts

with two or more samples); green points show similarity between samples from different baboons living in the same social group (n=16,391,761 distinct
sample pairs); orange points show similarity between samples from different baboons living in different social groups (n=77,520,289 distinct sample
pairs). b, Average Aitchison similarity between pairs of samples collected within 10 d of each other. Samples from the same baboon are significantly more
similar than samples collected from different baboons in the same or different social groups (Kruskal-Wallis; P=2.22 x107'¢; n distinct sample pairs =5,791
for within-host comparisons; 218,340 for different host same group; 779,054 for different host different group). Box and whiskers indicate the median,
25th/75th percentile and 1.5x% IQR. ***P < 0.0001. ¢, Temporal autocorrelation in Aitchison similarity on monthly scales for samples collected up to 10 yr
apart (n distinct sample pairs=496,057 for within-host comparisons; 23,433,667 for different host same group; 114,170,919 for different host different
group). d, Microbiome dynamics for 174 samples from 17 baboons for which we had at least one sample from 10 months or more during the 2008-2009
hydrological year (November 2008 to October 2009). Panels show each individual's mean values for microbiome PC1, PC2 and PC3; each coloured line
represents a distinct host. See Supplementary Fig. 14 for similar results during another densely sampled time period. Gaps indicate that the focal host did
not have a sample in a given month. e, Some taxa have more idiosyncratic abundances than others. Each horizontal bar shows a given taxon’s minimum and
maximum absolute log fold-change in abundance across the 56 best-sampled hosts (hosts are represented as points within the bars; see Supplementary
Fig. 9 for information on the 4,277 samples from the 56 best-sampled hosts). Absolute fold-changes were calculated, for a given taxon in a given host, as
the taxon's average clr-transformed abundance across all samples from that host, relative to the taxon’s grand mean in all hosts in the population. Hosts
with large absolute fold-changes for a given taxon therefore have abundances of that taxon that are either well above or below average compared to its
abundance in the host population at large (hosts with points close to zero exhibited taxonomic abundances typical of the population at large). For many
taxa, hosts varied in their absolute log-ratio values, indicating that they also deviated substantially from each other in the abundance of those taxa. Taxa
(y axis) are ordered (from top to bottom) by their highest absolute log-ratio value across the 56 best-sampled hosts. Blue bars represent microbial phyla;
green bars represent families. See Supplementary Fig. 15 for a longitudinal version of this analysis for the most and least idiosyncratic phyla and families.

We found little evidence that dispersal limitation contributed to idio-  are generally lower than those others’ found for marine sponges
syncratic compositions and dynamics. The probability that a given = sampled from the same location (1 across sponge species: minimum,
ASV lost from a host’s microbiota would be replaced by an ASV  0.36; median, 0.78; maximum, 0.86) but much higher than for mice
from another host in the population was nearly 40% (average host and nematodes, both in natural and laboratory populations (mice,
population-wide m across seasons and years was 0.373 with range  m,;,=0.11 and m,;,=0.18; nematode, m,;;=0.03 and m,,, =0.01).
0.332-0.416; Supplementary Fig. 17). These migration probabilities =~ Hence, dispersal limitation is low for baboon microbiota in Amboseli.
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Interestingly, when we redefined the microbiome metacom-
munity to be the host’s social group, instead of the whole host
population, migration probabilities were similar (average m across
groups was 0.355 with range 0.347 to 0.365; coloured points on
Supplementary Fig. 17). Hence, despite several studies that find
microbiome compositional differences between hosts living in dif-
ferent social groups, including in the Amboseli baboons'**~*¢, social
groups are not major barriers to microbial colonization between
baboons, perhaps because of their overlapping home ranges, similar
diets and network connections via male dispersal (Fig. 1).

Shared environments lead to modest synchrony across hosts. To
quantify the relative magnitude of idiosyncratic versus synchro-
nized dynamics across the host population, social groups and hosts
and to test whether synchrony varies for a set of common microbial
taxa, we used generalized additive models (GAMs) to capture the
nonlinear, longitudinal changes in 52 microbiome features (three
PCs of ASV-level community variation, three metrics of ASV-level
alpha diversity and clr-transformed relative abundances of 12 phyla
and 34 families). For each feature, we ran three GAMs to measure
the deviance explained in gut microbial dynamics by successive sets
of parameters, reflecting the nested nature of our variables (Fig. 4a,
x axis of Fig. 4c and Supplementary Table 5). The population-level
model (model P) captured factors experienced by the whole host
population, including average rainfall and maximum daily tempera-
ture in the 30d before sample collection and random-effect splines
to capture monthly and annual cyclicity in microbiome features (for
example, Fig. 2a,b; see Supplementary Fig. 18 for effects of time
of day, which was not included). The group-level model (model
P+ G) included all the predictor variables in model P and added a
random-effect spline for each social group and variables to capture
temporal changes in each group’s diet, home range use and group
size (Fig. 4a,c). The host-level model (model P+ G+ H) included all
of the predictor variables in model P+ G and added a random-effect
spline for each host and variables for host traits, including sex, age
and social dominance rank (Fig. 4a,c).

Consistent with our autocorrelation analyses (Fig. 3), comparing
the deviance explained for each microbiome feature across the three
models revealed stronger idiosyncratic than synchronized dynam-
ics for most microbiome features (Fig. 4b,c). Host-specific factors,
especially host identity, explained, on average, ten times the devi-
ance in the longitudinal dynamics of microbiome features, com-
pared to factors shared across all hosts and more than three times
the deviance by factors shared with group members. Specifically,
model P only explained on average 3.3% (range 0.46-14.0%) of
the deviance across all 52 microbiome features (pink bars in Fig.
4b and Supplementary Table 6), compared to 8.1% on average after
adding group-level factors to the population-level model (increase
from model P to model P+ G; range 2-25%; green bars in Fig. 4b
and Supplementary Table 6) and 30.1% of the deviance after includ-
ing host-level dynamics (model P+ G+ H; range 11.0-62.2%) for
the same set of features (yellow bars in Fig. 4b and Supplementary
Table 6). Importantly, the added deviance for model P+ G+ H com-
pared to model P or model P 4+ G was not caused by including more
parameters. Randomizing host identity and host-level traits across
samples, while keeping each sample’s annual, seasonal and group
identity intact, led to a substantial drop in deviance explained com-
pared to the real data (Supplementary Fig. 19).

Of the 52 microbiome features, 44 exhibited greater gains in devi-
ance by adding host-level factors to model P + G, compared to add-
ing group-level factors to model P. Of these 44 features, 22 features
gained >20% deviance explained between model P+ G and model
P+G+H (Fig. 4b and Supplementary Table 6). Three of the most
common phyla, Actinobacteria, Bacteroidetes and Firmicutes all
gained >20% deviance explained between model P+ G and model
P+ G+ H (Actinobacteria, 27.1%; Bacteroidetes, 24.6%; Firmicutes,
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25.2%; Fig. 4b and Supplementary Table 6). The most idiosyncratic
features (those that gained >30% deviance explained by adding
host-level factors), were microbiome PC2, the phylum Euryarchaeota
and the families Campylobacteraceae, Methanomethylophilaceae
and Desulfovibrionaceae (Fig. 4b and Supplementary Table 6). Even
the most synchronous feature, microbiome PC1 (14% deviance
explained by the P model), gained 23.2% deviance explained when
adding host-level factors to the P+ G model.

Removing covariates from model P+G+H one at a time,
while keeping all other covariates intact, revealed that host iden-
tity explained nearly all of the deviance in our models (Fig. 4c and
Supplementary Table 6; average loss in deviance explained by remov-
ing host identity was 17.3% versus 0.2% deviance for all other fac-
tors). Beyond host identity, the next most important factor was the
geographic area where the group travelled in the 30d before sample
collection, which explained 1% of the deviance, on average, across all
52 features (Supplementary Fig. 20 and Supplementary Table 6). All
other individual predictor variables had only minor effects on devi-
ance explained (Supplementary Fig. 20 and Supplementary Table 6).

To investigate whether some of the idiosyncrasy we observed was
due to host genetic effects, we tested for a relationship between the
deviance explained by each GAM and the narrow-sense heritability
(h?) of microbiome taxon abundance as estimated previously”>. We
found that higher levels of deviance explained by model P+G+H
were predicted by higher taxon heritability (Pearson’s correlation
R=0.37, P=0.016; Fig. 5a). In contrast, we found no such effect
at the population or group level, as expected since genotype is a
property of individual hosts, not groups or populations (model
P+G, R=0.047, P=0.76; model P, R=0.0085, P=0.96; Fig. 5b).
We explained substantially more deviance by adding the host level
to model P+ G for microbiome taxa with h*>0.05 than we did for
taxa with very low h? values (model P+ G+H, minimum 16.0,
median 32.6, maximum 53.4 versus model P+ G, minimum 4.6,
median 11.1, maximum 26.8; Fig. 5b). Hence, some idiosyncrasy in
gut microbiome dynamics is probably a consequence of differences
in host genotype. However, because /? estimates cannot be mapped
directly onto estimates of deviance explained in GAMs, direct esti-
mates of genetic versus environmental effects on host dynamics
remain an important topic for future work.

The strongest synchrony is among social group members.
Previous research finds that hosts in the same social group have
more similar gut microbiota than hosts in different groups"*>=**.
Likewise, in our current dataset, several taxa exhibited abundances
that were, on average, higher or lower within a given group com-
pared to their average abundance in the host population at large
(Supplementary Figs. 21 and 22). Hence, we tested whether shared
social group membership is linked to greater microbiome synchrony
than hosts in different groups. In support, the patterns of temporal
autocorrelation in Fig. 3a showed that hosts in the same group have
more similar microbiomes than those in different groups, especially
for samples collected within 10d of each other (Fig. 3b; Kruskal-
Wallis, P<2.2x107'¢). Likewise, samples from the same group
occupy similar ordination space over time (Supplementary Video
2). While small, these group-level similarities were detectable, even
for samples collected >2yr apart (Fig. 3c and Supplementary Fig.
11a). The addition of group-level splines to our GAM:s led to gains
in deviance that explained >10% for 15 of 52 microbiome features,
including all three microbiome PCs, five phyla and seven families
(Fig. 4b,c and Supplementary Table 6).

Gut microbial congruence among group members could also be
linked to shared behaviours and environments: baboons in the same
group eat the same foods at the same time, travel as a unit across
the landscape and may be grooming partners that are frequently in
physical contact’>**-* (Fig. 1b,d). Indeed, after host identity, the next
most important variable in model P+ G+H was the group’s home
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Fig. 4 | Multilevel modelling identifies idiosyncratic microbial dynamics. a, We fit three hierarchical GAMs to 52 microbiome features measured in

4,277 samples from the 56 best-sampled baboons, all of whom lived in the five social groups sampled the longest (between 2002 and 2010; median, 72.5
samples per host; minimum, 48 samples; maximum, 164 samples; Supplementary Fig. 9). Each model contained successive sets of predictor variables
reflecting population-level factors (pink), group-level factors (green) and host-level factors (yellow). The factors at each level are listed at the bottom of

c and defined in Supplementary Table 5). b, Illustration, for each microbiome feature (response variable), of the deviance explained by model P and the
successive sets of predictor variables added in model P+ G and model P+ G+ H, respectively (Supplementary Table 6; percentage deviance is a measure
of goodness-of-fit for nonlinear models and is analogous to the unadjusted R? for linear models). ¢, The loss in deviance explained is shown for model

P+ G+H as we successively removed each predictor variable in turn from model P+ G + H, keeping the model otherwise intact (Supplementary Table 7).
Losses in deviance are shown in green and we only provide numeric values for losses in deviance >15%. Gains in deviance are shown in pink; we only show

numeric values for gains >0.1%.

range in the 30d before sample collection (Supplementary Fig. 20
and Supplementary Table 7). Despite previous evidence that groom-
ing partners have similar microbiota®’, we did not find evidence for
this pattern in our data (Supplementary Fig. 23). Samples collected
from individuals with strong grooming bonds were not more similar
than samples from animals with weak or no grooming relationships
(Supplementary Fig. 24). However, the lack of a grooming effect in
this dataset should be interpreted with caution. Our prior research
on this topic*’ characterized microbial communities using shotgun
metagenomic sequencing from >90% of social network members,
all within 30d of each other. Such data provide higher taxonomic
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resolution and more accurate estimates of abundance than 16S data
and may more accurately capture transmission between hosts.

Conclusions

We find that gut microbial dynamics are both weakly synchronized
across hosts and strongly idiosyncratic to individual hosts. Like mem-
bers of a poorly coordinated microbial orchestra, microbial commu-
nities in different baboons are only weakly ‘in concert’ across the host
population. Instead, gut microbial dynamics are idiosyncratic at the
level of individual hosts and each baboon ‘player’ approaches the
gut microbial ‘song’ differently. Our results contribute to mounting
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Fig. 5 | Microbiome taxon heritability is associated with idiosyncratic
dynamics. a, Deviance explained (y axis) by the phylum and family level
GAMs (from Fig. 4) plotted against the focal taxon's heritability estimate
(h?% x axis). Pink, green and yellow denote model P, model P+ G and
model P+ G+ H, respectively. Each regression line is plotted with its

95% confidence interval. b, Deviance explained (y axis) across the model
hierarchy (pink, model P; green, model P+ G; yellow, model P+ G+ H)

for each taxonomic feature (at the phylum and family level; x axis). The

x axis is ordered by increasing heritability with light blue and turquoise
squares representing phyla and families, respectively. Horizontal dashed
lines show the average deviance explained per model for taxa with low
heritability estimates (h?<0.05; light grey); medium heritability estimates
(0.05<h?<0.1; dark grey); and high heritability estimates (h*> 0.1; black).

evidence that forces proposed to synchronize gut microbial meta-
communities—shared environments, diets and between-host micro-
bial dispersal—can create modest synchrony among hosts, especially
for hosts living in the same social unit. However, these forces are
typically not strong enough to overwhelm powerful and well-known

962

NATURE ECOLOGY & EVOLUTION

drivers of microbiome personalization, including host genetic effects,
individual-level priority effects, horizontal gene transfer and func-
tional redundancy'®". Interestingly, these idiosyncratic dynamics
were strong even for microbial phyla and families, whose dynamics
reflect multiple microbial functions and interactions that potentially
buffer them against large fluctuations in abundance. We expect that
the personalized dynamics we observed will be even stronger for finer
taxonomic levels, especially bacterial species or strains that exhibit a
high degree of functional variability across hosts.

Understanding if hosts in the same social group or population
exhibit shared microbiome dynamics may be useful to researchers
interested in predicting individual microbiome changes, linking
microbiome dynamics to health outcomes and designing broadly
effective microbiome interventions. These objectives have already
been difficult to achieve, in part because of gut microbial person-
alization in humans and animals. For instance, predictive models
of gut microbiome dynamics from one person fail when they are
applied to other people”. Our results support the idea that micro-
biome predictions and interventions focused on specific taxa will
require personalized approaches. Even then, ‘universal’ microbiome
therapies that work the same way for all hosts may be unattain-
able. Instead, interventions will probably work best when they are
designed for host groups or populations that have shared compo-
sitions and dynamics. Functional redundancy and horizontal gene
flow may also mean that functions will be more predictable than
taxa and prediction and intervention efforts that focus on microbi-
ome functional traits (for example, metabolite levels; the presence
of specific pathways) will probably be less affected by gut microbi-
ome personalization. Together, our results provide insights about
the extent and ecological causes of microbiome personalization and
they indicate that personalized compositions and dynamics are not
an artefact of modern human lifestyles.

Methods

All data collection procedures adhere to the regulations of the Institutional
Animal Care and Use Committees of Duke and Notre Dame universities and to
the laws of Kenya. A complete description of our methods is in the Supplementary
Methods 1A-C.

Study subjects. Our subjects were individual wild baboons studied by the
Amboseli Baboon Research Project (ABRP) in Kenya®. Baboons are terrestrial
primates that live in stable social groups, typically with 20 to 130 members. The
600 baboons in our dataset lived in 12 social groups between April 2000 and
September 2013 (5 original groups and 7 groups that were fission/fusion products
from these original groups; Fig. 1a). ABRP collects detailed longitudinal data

on rainfall and temperature; social group membership, ranging patterns and

diet; and host traits such as age, sex, social relationships and dominance rank
(Supplementary Methods 1A). The Amboseli ecosystem is a semi-arid savanna
with a 5-month-long dry season spanning June to October, during which very little
rain falls. The remaining 7 months (November to May) constitute the wet season,
which has highly variable rainfall (mean annual rainfall between 2000 and 2013
was 319 mm; range 140-559 mm).

Sample collection. Most of the microbiota data we use here were published
previously® but we include data from 1,031 additional samples that were
generated at the same time using the same methods (they were not included in the
heritability analysis of ref. ** because we lack pedigree information for these hosts).
The addition of these 1,031 samples led to a total of 17,265 samples in our study.
These samples were collected from baboons who ranged in age from 7.4 months to
27.7 years, spanning these animals’ natural lifespans (Supplementary Fig. 1a). Each
baboon was sampled a median of 19 times and 124 baboons were sampled at least
50 times (Supplementary Fig. 1b). On average, these samples spanned 4.3 yr of a
baboon’s life (range 4 d to 13.2yr; Supplementary Fig. 1c), with a median of 35d
between consecutive samples (Supplementary Fig. 1d).

DNA extraction and sequencing. DNA was extracted from each sample using
MoBio and QIAGEN PowerSoil kits and subjected to 16S rRNA sequencing on
the Illumina HiSeq 2500 platform (896,911,162 total sequencing reads; mean was
51,913.6 reads per sample; range 1,021-477,241; Supplementary Fig. le). We used
DADAZ2 (ref. *°) for sequence quality processing following the default protocol for
large datasets. To allow us to compare the dynamics of individual taxa in different
hosts, we filtered to taxa found in at least 20% of samples, resulting in 341 ASV's
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(mean 162 ASV's per sample; range 19-311 ASV's; Supplementary Fig. 1f and
Supplementary Table 2). This filtering captured 92% of the reads and many of

the same compositional properties of the dataset when filtered to 5% prevalence
(Supplementary Fig. 25). DNA concentration and ASV diversity were not predicted
by time since sample collection (Supplementary Fig. 1g,h). As is typical for wild
microbiota, 22.9% of the 341 ASV's could not be assigned to a known family (78

of 341) and 5.5% of ASV's could not be assigned to a known phylum (19 of 341;
Supplementary Table 2). To address the compositional nature of our data, read
counts were clr-transformed independently in each sample (including independent
transforms for samples from the same individual), before all analyses™®.

Statistical analyses. To test whether shared environmental conditions and host
traits lead to similar gut microbial compositions and synchronized dynamics
across the microbiome metacommunity, we first characterized patterns of temporal
autocorrelation in ASV-level Aitchison similarity within and between hosts over
time. Our expectation was that, if hosts or social groups exhibit idiosyncratic
composition and dynamics, then samples collected close in time from the same
baboon or from baboons in the same group, should be more similar than they

are to samples collected from different baboons living in different groups.
Alternatively, if gut microbial dynamics are strongly synchronized, then samples
collected close in time across the metacommunity should be compositionally
similar and samples collected from the same host should not be substantially more
similar than samples from different baboons. These analyses were run in R (v.4.0.2;
ref. *°) using custom-written functions (code and analysed data are available on
Open Science Framework/GitHub as noted in Code availability).

To test whether dispersal limitation could explain microbiome idiosyncrasy,
we estimated metacommunity-wide microbial migration probabilities in each
season and year using the Sloan Neutral Community Model for Prokaryotes**.
This model assumes that each local community, defined as the ASV-level
microbial composition of a single host in a given season-year, is the outcome of
stochastic population dynamics and microbial immigration from other hosts in the
microbiome metacommunity (other local communities). Briefly, local communities
have a constant size 7 and individual microbes within each local community die
at a constant rate. These deaths create vacancies that can be occupied, either by
individuals immigrating from the microbiome metacommunity (with probability
m) or by daughter cells from any taxon within the local community (from
reproduction within the same host, with probability 1 — ). Taxa that are common
in the metacommunity have a higher chance of occupying vacancies than do rare
taxa. Without immigration from the microbiome metacommunity, ecological drift
leads each host’s microbial diversity to reduce to a single taxon. Thus, the migration
probability, m, represents the metacommunity-wide probability that any taxon,
randomly lost from a given host/local community, will be replaced by dispersal
from the microbiome metacommunity, as opposed to reproduction within hosts***!.
Following ref. 7, m can be interpreted as a measure of dispersal limitation, such that
low migration probabilities signify high dispersal limitation. We estimated season and
hydrological year-specific values for m by defining the microbiome metacommunity
as either the hosts’ social group or the whole host population. We fit neutral models
using nonlinear least-squares regression as implemented in the R package tyRa™.

To quantify the relative magnitude of idiosyncratic versus synchronized
dynamics for community metrics and common families and phyla, we used GAMs
to capture the nonlinear, longitudinal dynamics of 52 features, including the
first three PCs of ASV-level composition, three indices of alpha diversity (ASV
richness, the exponent of ASV-level Shannon’s H and the inverse Simpson index
for ASVs, as computed by the function reyni from the R package vegan®) and
the clr-transformed abundances of 12 phyla and 34 families present in >20% of
samples. We analysed phyla and families (as opposed to genera or ASVs) because
phyla and families are highly prevalent across samples (mean prevalence is 85.6%
for the 12 phyla and 73.7% for the 34 families), offering excellent power to compare
their dynamics between different baboons. However, phyla and families might
exhibit stronger synchrony than lower-level taxa because, compared to species or
strains, the dynamics of families and phyla reflect multiple microbial processes
and interactions, which are expected to buffer them against large fluctuations
in abundance. Further, the processes and interactions that a given phylum or
family collectively encompasses may be more consistent across hosts than those
carried out by an individual species or strain (although this consistency will vary
depending on the phylum, family or process in question'*).

Our GAMs allowed us to calculate the percentage deviance in each feature’s
dynamics attributable to factors that could contribute to synchronized dynamics at
different scales (percentage deviance is a measure of goodness-of-fit for nonlinear
models and is analogous to the unadjusted R? for linear models). We considered
deviance explained by factors at three scales: those experienced by the whole host
population (for example, rainfall and temperature), those differentiated by social
groups (for example, group identity, group home range location and diet) and those
differentiated at the level of individual hosts (for example, host identity, sex, age
and social dominance rank; see later for complete model structures). If microbiome
community dynamics are largely idiosyncratic, then population- and group-level
factors will not explain considerable deviance in microbiota change over time
and, instead, a large fraction of the deviance will be attributable to host identity,
controlling for shared environments, behaviours and traits. Alternatively, if shared

environments and behaviours across the population and within social groups
synchronize gut microbiota, then population- and group-level factors should explain
substantial deviance in community dynamics. To ensure sufficiently dense sampling
for identifying host- and group-level dynamics, all three GAMs were run on a subset
of the full dataset, consisting of 4,277 16S rRNA gene sequencing profiles from the 56
best-sampled baboons living in the five social groups sampled the longest (between
2002 and 2010; median, 72.5 samples per host; minimum, 48 samples; maximum,
164 samples; Supplementary Fig. 9). GAM:s were fit using the R package mgcv®'-*,

To test whether host genetic effects contribute to gut microbial idiosyncrasy, we
performed a post hoc analysis of the relationship between the deviance explained
in the GAMs for each microbial taxon and the heritability of that taxon’s relative
abundance”. If host effects on microbiome dynamics are in part explained by host
genotype, we predicted that taxon heritability should be positively correlated with
deviance explained at the host level (model P+ G + H) but not at the group or
population level (model P and model P+ G).

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

The 16S rRNA gene sequences are deposited on EBI-ENA (project ERP119849) and
Qiita (study 12949; ref. *). Note that our research permission from Kenya Wildlife
Service prohibits third-party sharing of the biological samples themselves.

Code availability
Analysed data and code are available on the JRB’s Open Science Framework/
GitHub repository at https://doi.org/10.17605/OSEIO/ERDXA
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