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Mammalian gut microbiotas are highly complex, dynamic 
ecosystems. From these dynamics emerge a set of 
life-sustaining services for hosts, which help them digest 

food, process toxins and resist pathogens. Despite their importance, 
our understanding of how gut microbial communities change over 
time within hosts, especially the collective dynamics of microbiotas 
from hosts in the same population, is poor1,2. This gap exists in part 
because we lack time-series data that track gut microbiotas longi-
tudinally across many hosts living together in the same population. 
As a result, it has been difficult to answer key questions. For exam-
ple, when host populations encounter shifting environments and 
resources, does each host’s microbiota respond similarly—that is, 
in synchrony—or idiosyncratically to these changes? Further, what 
factors predict synchronized versus idiosyncratic microbiota?

Answering these questions is important because synchronized 
gut microbial communities, if and when they occur1, could help 
explain shared microbiota-associated traits in host populations, such 
as patterns of disease susceptibility3,4. A high degree of synchrony 
may also suggest that similar ecological principles govern changes 

in microbial composition across hosts5. Further, there is theoreti-
cal justification to expect coordinated microbial dynamics, as host 
populations and their microbiotas can be considered a ‘microbiome 
metacommunity’ (for example, refs. 6–9). Metacommunity theory 
predicts that synchrony will arise across microbiotas if their hosts 
experience similar environmental conditions and/or high rates of 
microbial dispersal between hosts10,11. In support, fruit bats living in 
the same colony exhibit coordinated fur microbiota, due to shared 
environments and microbial dispersal1.

However, even in the presence of such synchronizing forces, 
there are many reasons to expect that hosts in a microbiome meta-
community will exhibit idiosyncratic (individualized) microbial 
compositions and dynamics. First, idiosyncratic dynamics are 
expected when the same microbes in different hosts respond in dif-
ferent ways to environmental fluctuations, chance events or interac-
tions with other microbes12–15. These forces are probably important 
in microbiotas where priority effects, functional redundancy and 
horizontal gene flow can cause the same microbe to play different 
ecological roles and exhibit different environmental responses in 
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Human gut microbial dynamics are highly individualized, making it challenging to link microbiota to health and to design univer-
sal microbiome therapies. This individuality is typically attributed to variation in host genetics, diets, environments and medi-
cations but it could also emerge from fundamental ecological forces that shape microbiota more generally. Here, we leverage 
extensive gut microbial time series from wild baboons—hosts who experience little interindividual dietary and environmental 
heterogeneity—to test whether gut microbial dynamics are synchronized across hosts or largely idiosyncratic. Despite their 
shared lifestyles, baboon microbiota were only weakly synchronized. The strongest synchrony occurred among baboons living 
in the same social group, probably because group members range over the same habitat and simultaneously encounter the 
same sources of food and water. However, this synchrony was modest compared to each host’s personalized dynamics. In sup-
port, host-specific factors, especially host identity, explained, on average, more than three times the deviance in longitudinal 
dynamics compared to factors shared with social group members and ten times the deviance of factors shared across the host 
population. These results contribute to mounting evidence that highly idiosyncratic gut microbiomes are not an artefact of 
modern human environments and that synchronizing forces in the gut microbiome (for example, shared environments, diets 
and microbial dispersal) are not strong enough to overwhelm key drivers of microbiome personalization, such as host genetics, 
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different hosts16–19. Second, several cross-sectional studies, in both 
humans and animals, find that individual hosts exhibit distinc-
tive gut microbiotas and host identity explains a large fraction of 
population-wide microbiome taxonomic variation1,20–25. Further, 
some longitudinal studies in humans and animals find personal-
ized gut microbial dynamics1,24,26–28. This personalization is usually 
attributed to interpersonal differences in diet, medications and life-
style27,29–31. If correct, then idiosyncratic microbiome dynamics may 
be simply explained by a lack of shared environmental drivers rather 
than distinct microbiome responses to shared environments (but 
see ref. 27). In contrast, if personalized dynamics persist even when 
hosts share the same environment, then (1) host-specific dynamics 
may not be solely attributable to interpersonal differences in life-
styles; (2) predicting the dynamics of microbial taxa in individual 
hosts may prove difficult; and (3) microbiome interventions that 
rely on manipulating taxa may face challenges beyond heterogene-
ity in lifestyles and instead may be related to conserved ecological 
principles across microbiomes.

Results and discussion
Baboon gut microbiota show seasonal and annual cycles. 
We tested for gut microbial synchrony using 17,265 16S ribo-
somal RNA gene sequencing-based microbiome profiles from 
600 baboons living in 12 social groups over a 14-yr span32 (Fig. 
1a and Supplementary Fig. 1). The baboons were members of the 
well-studied Amboseli baboon population33, who experience shared 
diets, environments and opportunities for between-host microbial 
dispersal. All groups used an overlapping ~60 km2 range (Fig. 1b 
and Supplementary Video 1; ref. 32) and all baboons experienced 
the same seasonal changes in rainfall and temperature. Seasonal 
weather patterns drive a rotating set of baboon foods, including 
grass corms in the dry season and growing grass blades and grass 
seed heads in the wet season32,34,35 (Fig. 1c,d).

We began by visualizing annual and interannual fluctuations 
across all 17,265 samples over the 14-yr span of the data. Consistent 
with prior research on primates36–38, we found population-wide, 
cyclical shifts in microbiome community composition across sea-
sons and years (Fig. 2). This wet–dry seasonal cyclicity was primar-
ily observable in the first principal component (PC1) of a principal 
component analysis (PCA) of centred log-ratio (clr)-transformed 
amplicon sequence variant (ASV) read counts (Fig. 2a,b and 
Supplementary Figs. 2–4; PC1 explains 16.5% of the variance in 
microbiome composition). PC1 exhibited its lowest values during 
the dry season and highest values during the wet season, mirroring 
monthly rainfall (Fig. 2b and Supplementary Fig. 4). PC1 was also 
linked to annual rainfall across years, exhibiting especially low val-
ues throughout 2008 and 2009, corresponding to the worst drought 
in the Amboseli ecosystem in 50 yr (Fig. 2a,b). We also observed 
small but statistically significant seasonal differences in PC2 and 
PC3 (8.4% and 3.7% of variation in community composition; Fig. 
2c and Supplementary Figs. 2–4) and in measures of alpha diversity 
(Fig. 2c and Supplementary Figs. 4 and 5), as has been reported in 
other ecosystems39. Together, these seasonal changes are probably 
caused by seasonal shifts in plant phenology and its effects on diet 
(Fig. 1d), as well as the effects of rainfall and other weather vari-
ables on bacterial exposures from the environment (for example, 
soil communities and sources of drinking water).

In terms of individual microbiome taxa, 17% of phyla (2 of 12) 
and 38% of families (13 of 34) exhibited significant changes in abun-
dance between the wet and dry seasons (Fig. 2c and Supplementary 
Table 1; linear models with false discovery rate (FDR) thresh-
old = 0.05). These changes were significant for the phyla Firmicutes 
and Tenericutes (Fig. 2c,d and Supplementary Fig. 6) and were 
especially pronounced for the families Helicobacteraceae, 
Coriobacteriaceae, Burkholderaceae, Bacteroidales RF16 group, 
vadinBE97, Spirochaetaceae and Campylobacteraceae (Fig. 2c and 

Supplementary Fig. 7). Of the ASVs, 28% also exhibited significant 
changes in abundance across seasons (97 of 341 ASVs; linear mod-
els with FDR threshold = 0.05 for n = 393 models; Supplementary 
Fig. 8 and Supplementary Tables 2 and 3). However, most ASVs, 
families and phyla did not change in abundance, suggesting that 
many taxa play consistent roles in the gut throughout the year, 
including Kiritimatiellaeota, Elusomicrobia, Ruminococcacaceae, 
Clostridiaceae 1 and Rikenellaceae (Fig. 2c, Supplementary Figs. 6 
and 7 and Supplementary Table 1).

Baboon gut microbial dynamics are individualized. While the 
microbiome metacommunity exhibited cyclical, seasonal shifts in 
composition, microbiome dynamics across different baboons were 
only weakly synchronized. Instead, consistent with prior observa-
tions of microbiome personalization1,20–25, patterns of temporal 
autocorrelation indicated that each baboon exhibited largely indi-
vidualized gut microbiome compositions and dynamics (Fig. 3). In 
support, ASV-level Aitchison similarity was much higher for sam-
ples collected from the same baboon within a few days of each other 
than for samples from different baboons over the same time span, 
regardless of whether those animals lived in the same or a different 
social group (Fig. 3a,b; Kruskal–Wallis: P < 2.2 × 10−16 for all com-
parisons). Likewise, a permanova of Aitchison similarities between 
4,277 samples from the 56 best-sampled baboons (Supplementary 
Fig. 9) revealed that host identity explained 8.6% (P < 0.001) of the 
variation in community composition, much larger than the varia-
tion explained by sampling day or month (R2 = 2.5% and 1.4%), 
group membership (2.2%) or the first three PCs of diet (0.04–2.4%; 
Supplementary Table 4 and Supplementary Fig. 10).

Aitchison similarity among samples from the same baboon fell 
steeply for samples collected a few days to a few months apart, indi-
cating that individualized dynamics are strongest for samples col-
lected close in time (Fig. 3a–c). At longer time scales (for example, 
months and years), self-similarity was modest but samples from the 
same baboon were significantly more similar to each other than 
they were to samples from different baboons, even for samples col-
lected several years apart (Fig. 3a,c and Supplementary Figs. 11 and 
12). Following the initial steep decline in self-similarity, community 
similarity rose again at 12-month intervals, both within and between 
hosts, reflecting synchronized, seasonal microbial dynamics across 
the host population. These small, 12-month peaks in similarity were 
visible even for samples collected >5 yr apart, indicating that indi-
vidual hosts and the population at large return to similar microbi-
ome community states on 12-month cycles over several years (Fig. 
3c). Hence, the patterns in Fig. 3a,c show both idiosyncratic and 
synchronized microbial dynamics: over short time scales, hosts are 
much more similar to themselves than they are to others but, on 
annual scales, all hosts are weakly synchronized across seasons.

The greater influence of individualized dynamics compared 
to synchronized dynamics can also be captured by comparing 
microbiome dynamics for deeply sampled hosts sharing the same 
habitat at the same time (Fig. 3d and Supplementary Fig. 13). For 
instance, during the 2008–2009 hydrological year, we collected 
nearly one sample per month from 17 baboons. When we aligned 
these time series, we observed little convergence to similar values 
within any given month and little evidence of shared changes in 
the top three PCs of ASV-level microbiome composition over time 
(Fig. 3d). Consequently, the microbiome of each baboon took a 
different path over the ordination space over the same 1-yr span 
(Supplementary Fig. 13 and see Supplementary Fig. 14 for similar 
results during 2007–2008).

Microbiome taxa varied in their contributions to individualized gut 
microbiome compositions (Fig. 3e and Supplementary Fig. 15). For 
the 56 best-sampled hosts (Supplementary Fig. 9), several phyla and 
families exhibited substantial variation in host mean clr-transformed 
abundance (across repeated samples for that host) compared to 
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Fig. 1 | Baboons in Amboseli experience shared environments at multiple scales. a, Our microbiota time series consisted of 17,265 16S rRNA gene 
sequencing gut microbial profiles. Each point represents a microbiota sample, plotted by the date it was collected (x axis). Each row (y axis) corresponds 
to a unique individual host. Samples were collected from 600 wild baboons living in five original social groups (indicated by dark colours marked with 
black dots in the legend) and seven groups that fissioned/fused from these original groups (no black dots). b, All baboon groups ranged over a shared 
~60 km2 area and the social groups had largely overlapping home ranges. Ranges are shown as 90% kernel densities over the sampling period specific to 
each group; five original social groups are shown with solid borders, fission and fusion products with dashed borders. c, Monthly rainfall amounts (blue 
bars, in mm) with yellow and green stripes along the x axis representing dry and wet seasons, respectively, with the width of the green stripes reflecting 
the number of months within the focal year that had at least 1 mm of rainfall. d, Temporal shifts in diet from the years 2000 to 2013, shown as the relative 
abundance of diet components in the five original social groups over 30-d sliding windows before each sample collection date. Colours correspond to the 
13 most common food types, while the grey bars correspond to other or unknown food types. Coloured boxes around each panel in d reflect each of the 
five original, most extensively sampled social groups (colours as in a and b). The white bars indicate time periods where no diet data were collected.  
Credit for base map in b: Google, TerraMetrics.

Nature Ecology & Evolution | VOL 6 | July 2022 | 955–964 | www.nature.com/natecolevol 957

http://www.nature.com/natecolevol


Articles NaTure Ecology & EvoluTIon

their mean clr-transformed abundance across all hosts. These taxa 
included the phyla Cyanobacteria, Spirochaetes, Lentisphaerae 
and Elusimicrobia and the families Spirochaetaceae, vadinBE97, 
Elusimicrobaceae and Muribaculaceae (Fig. 3e and Supplementary 
Fig. 15). These highly variable taxa exhibited below-average abun-
dances compared to less variable taxa (Supplementary Fig. 16). 
Hence, idiosyncratic dynamics may be more often linked to uncom-
mon than common taxa, perhaps because uncommon taxa have 
greater functional variability across hosts.

To test whether individualized gut microbial dynamics could be 
explained by microbial dispersal limitation between hosts, we used 
the Sloan Neutral Community Model for Prokaryotes to estimate 
metacommunity-wide migration probabilities, m, for ASVs in each 
season and hydrological year40,41. Parameter m provides a measure of 
dispersal limitation because it represents the probability that ‘vacan-
cies’ in a local community (a host’s microbiome) will be replaced 
by dispersal from the microbiome metacommunity (other hosts), 
as opposed to reproduction within a focal host’s community40,41.  
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Fig. 2 | Baboons show population-wide, cyclical shifts in microbiome community composition across seasons and years. a, Changes in microbiome PC1 
mirror monthly rainfall across all 14 yr. The grey points show values of PC1 for each of the 17,265 samples (y axis) on the dates they were collected (x axis). 
The black line and grey band are a plate regression spline and 95% simultaneous confidence interval for daily changes in microbiome PC1. Blue bars show 
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significantly between the wet and dry seasons (n = 17,265 samples; FDR threshold = 0.05). See Supplementary Figs. 6 and 7 for feature-specific smooths 
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Kiritimatiellaeota, order WCHB1-41; Supplementary Table 2).
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We found little evidence that dispersal limitation contributed to idio-
syncratic compositions and dynamics. The probability that a given 
ASV lost from a host’s microbiota would be replaced by an ASV 
from another host in the population was nearly 40% (average host 
population-wide m across seasons and years was 0.373 with range 
0.332–0.416; Supplementary Fig. 17). These migration probabilities 

are generally lower than those others9 found for marine sponges 
sampled from the same location (m across sponge species: minimum, 
0.36; median, 0.78; maximum, 0.86) but much higher than for mice 
and nematodes, both in natural and laboratory populations (mice, 
mwild = 0.11 and mlab = 0.18; nematode, mwild = 0.03 and mlab = 0.01). 
Hence, dispersal limitation is low for baboon microbiota in Amboseli.
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(window size = 7 d) and their ribbons show 95% confidence intervals. The grey region on the left indicates samples collected within 1 month of each other. 
Brown points show average Aitchison similarity between samples collected from the same baboon (n = 392,817 distinct sample pairs from 547 hosts 
with two or more samples); green points show similarity between samples from different baboons living in the same social group (n = 16,391,761 distinct 
sample pairs); orange points show similarity between samples from different baboons living in different social groups (n = 77,520,289 distinct sample 
pairs). b, Average Aitchison similarity between pairs of samples collected within 10 d of each other. Samples from the same baboon are significantly more 
similar than samples collected from different baboons in the same or different social groups (Kruskal–Wallis; P = 2.22 × 10−16; n distinct sample pairs = 5,791 
for within-host comparisons; 218,340 for different host same group; 779,054 for different host different group). Box and whiskers indicate the median, 
25th/75th percentile and 1.5× IQR. ***P < 0.0001. c, Temporal autocorrelation in Aitchison similarity on monthly scales for samples collected up to 10 yr 
apart (n distinct sample pairs = 496,057 for within-host comparisons; 23,433,667 for different host same group; 114,170,919 for different host different 
group). d, Microbiome dynamics for 174 samples from 17 baboons for which we had at least one sample from 10 months or more during the 2008–2009 
hydrological year (November 2008 to October 2009). Panels show each individual’s mean values for microbiome PC1, PC2 and PC3; each coloured line 
represents a distinct host. See Supplementary Fig. 14 for similar results during another densely sampled time period. Gaps indicate that the focal host did 
not have a sample in a given month. e, Some taxa have more idiosyncratic abundances than others. Each horizontal bar shows a given taxon’s minimum and 
maximum absolute log fold-change in abundance across the 56 best-sampled hosts (hosts are represented as points within the bars; see Supplementary 
Fig. 9 for information on the 4,277 samples from the 56 best-sampled hosts). Absolute fold-changes were calculated, for a given taxon in a given host, as 
the taxon’s average clr-transformed abundance across all samples from that host, relative to the taxon’s grand mean in all hosts in the population. Hosts 
with large absolute fold-changes for a given taxon therefore have abundances of that taxon that are either well above or below average compared to its 
abundance in the host population at large (hosts with points close to zero exhibited taxonomic abundances typical of the population at large). For many 
taxa, hosts varied in their absolute log-ratio values, indicating that they also deviated substantially from each other in the abundance of those taxa. Taxa 
(y axis) are ordered (from top to bottom) by their highest absolute log-ratio value across the 56 best-sampled hosts. Blue bars represent microbial phyla; 
green bars represent families. See Supplementary Fig. 15 for a longitudinal version of this analysis for the most and least idiosyncratic phyla and families.
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Interestingly, when we redefined the microbiome metacom-
munity to be the host’s social group, instead of the whole host 
population, migration probabilities were similar (average m across 
groups was 0.355 with range 0.347 to 0.365; coloured points on 
Supplementary Fig. 17). Hence, despite several studies that find 
microbiome compositional differences between hosts living in dif-
ferent social groups, including in the Amboseli baboons1,42–46, social 
groups are not major barriers to microbial colonization between 
baboons, perhaps because of their overlapping home ranges, similar 
diets and network connections via male dispersal (Fig. 1).

Shared environments lead to modest synchrony across hosts. To 
quantify the relative magnitude of idiosyncratic versus synchro-
nized dynamics across the host population, social groups and hosts 
and to test whether synchrony varies for a set of common microbial 
taxa, we used generalized additive models (GAMs) to capture the 
nonlinear, longitudinal changes in 52 microbiome features (three 
PCs of ASV-level community variation, three metrics of ASV-level 
alpha diversity and clr-transformed relative abundances of 12 phyla 
and 34 families). For each feature, we ran three GAMs to measure 
the deviance explained in gut microbial dynamics by successive sets 
of parameters, reflecting the nested nature of our variables (Fig. 4a, 
x axis of Fig. 4c and Supplementary Table 5). The population-level 
model (model P) captured factors experienced by the whole host 
population, including average rainfall and maximum daily tempera-
ture in the 30 d before sample collection and random-effect splines 
to capture monthly and annual cyclicity in microbiome features (for 
example, Fig. 2a,b; see Supplementary Fig. 18 for effects of time 
of day, which was not included). The group-level model (model 
P + G) included all the predictor variables in model P and added a 
random-effect spline for each social group and variables to capture 
temporal changes in each group’s diet, home range use and group 
size (Fig. 4a,c). The host-level model (model P + G + H) included all 
of the predictor variables in model P + G and added a random-effect 
spline for each host and variables for host traits, including sex, age 
and social dominance rank (Fig. 4a,c).

Consistent with our autocorrelation analyses (Fig. 3), comparing 
the deviance explained for each microbiome feature across the three 
models revealed stronger idiosyncratic than synchronized dynam-
ics for most microbiome features (Fig. 4b,c). Host-specific factors, 
especially host identity, explained, on average, ten times the devi-
ance in the longitudinal dynamics of microbiome features, com-
pared to factors shared across all hosts and more than three times 
the deviance by factors shared with group members. Specifically, 
model P only explained on average 3.3% (range 0.46–14.0%) of 
the deviance across all 52 microbiome features (pink bars in Fig. 
4b and Supplementary Table 6), compared to 8.1% on average after 
adding group-level factors to the population-level model (increase 
from model P to model P + G; range 2–25%; green bars in Fig. 4b 
and Supplementary Table 6) and 30.1% of the deviance after includ-
ing host-level dynamics (model P + G + H; range 11.0–62.2%) for 
the same set of features (yellow bars in Fig. 4b and Supplementary 
Table 6). Importantly, the added deviance for model P + G + H com-
pared to model P or model P + G was not caused by including more 
parameters. Randomizing host identity and host-level traits across 
samples, while keeping each sample’s annual, seasonal and group 
identity intact, led to a substantial drop in deviance explained com-
pared to the real data (Supplementary Fig. 19).

Of the 52 microbiome features, 44 exhibited greater gains in devi-
ance by adding host-level factors to model P + G, compared to add-
ing group-level factors to model P. Of these 44 features, 22 features 
gained >20% deviance explained between model P + G and model 
P + G + H (Fig. 4b and Supplementary Table 6). Three of the most 
common phyla, Actinobacteria, Bacteroidetes and Firmicutes all 
gained >20% deviance explained between model P + G and model 
P + G + H (Actinobacteria, 27.1%; Bacteroidetes, 24.6%; Firmicutes, 

25.2%; Fig. 4b and Supplementary Table 6). The most idiosyncratic 
features (those that gained >30% deviance explained by adding 
host-level factors), were microbiome PC2, the phylum Euryarchaeota 
and the families Campylobacteraceae, Methanomethylophilaceae 
and Desulfovibrionaceae (Fig. 4b and Supplementary Table 6). Even 
the most synchronous feature, microbiome PC1 (14% deviance 
explained by the P model), gained 23.2% deviance explained when 
adding host-level factors to the P + G model.

Removing covariates from model P + G + H one at a time, 
while keeping all other covariates intact, revealed that host iden-
tity explained nearly all of the deviance in our models (Fig. 4c and 
Supplementary Table 6; average loss in deviance explained by remov-
ing host identity was 17.3% versus 0.2% deviance for all other fac-
tors). Beyond host identity, the next most important factor was the 
geographic area where the group travelled in the 30 d before sample 
collection, which explained 1% of the deviance, on average, across all 
52 features (Supplementary Fig. 20 and Supplementary Table 6). All 
other individual predictor variables had only minor effects on devi-
ance explained (Supplementary Fig. 20 and Supplementary Table 6).

To investigate whether some of the idiosyncrasy we observed was 
due to host genetic effects, we tested for a relationship between the 
deviance explained by each GAM and the narrow-sense heritability 
(h2) of microbiome taxon abundance as estimated previously32. We 
found that higher levels of deviance explained by model P + G + H 
were predicted by higher taxon heritability (Pearson’s correlation 
R = 0.37, P = 0.016; Fig. 5a). In contrast, we found no such effect 
at the population or group level, as expected since genotype is a 
property of individual hosts, not groups or populations (model 
P + G, R = 0.047, P = 0.76; model P, R = 0.0085, P = 0.96; Fig. 5b). 
We explained substantially more deviance by adding the host level 
to model P + G for microbiome taxa with h2 > 0.05 than we did for 
taxa with very low h2 values (model P + G + H, minimum 16.0, 
median 32.6, maximum 53.4 versus model P + G, minimum 4.6, 
median 11.1, maximum 26.8; Fig. 5b). Hence, some idiosyncrasy in 
gut microbiome dynamics is probably a consequence of differences 
in host genotype. However, because h2 estimates cannot be mapped 
directly onto estimates of deviance explained in GAMs, direct esti-
mates of genetic versus environmental effects on host dynamics 
remain an important topic for future work.

The strongest synchrony is among social group members. 
Previous research finds that hosts in the same social group have 
more similar gut microbiota than hosts in different groups1,42–44,47. 
Likewise, in our current dataset, several taxa exhibited abundances 
that were, on average, higher or lower within a given group com-
pared to their average abundance in the host population at large 
(Supplementary Figs. 21 and 22). Hence, we tested whether shared 
social group membership is linked to greater microbiome synchrony 
than hosts in different groups. In support, the patterns of temporal 
autocorrelation in Fig. 3a showed that hosts in the same group have 
more similar microbiomes than those in different groups, especially 
for samples collected within 10 d of each other (Fig. 3b; Kruskal–
Wallis, P < 2.2 × 10−16). Likewise, samples from the same group 
occupy similar ordination space over time (Supplementary Video 
2). While small, these group-level similarities were detectable, even 
for samples collected >2 yr apart (Fig. 3c and Supplementary Fig. 
11a). The addition of group-level splines to our GAMs led to gains 
in deviance that explained >10% for 15 of 52 microbiome features, 
including all three microbiome PCs, five phyla and seven families 
(Fig. 4b,c and Supplementary Table 6).

Gut microbial congruence among group members could also be 
linked to shared behaviours and environments: baboons in the same 
group eat the same foods at the same time, travel as a unit across 
the landscape and may be grooming partners that are frequently in 
physical contact32,48–52 (Fig. 1b,d). Indeed, after host identity, the next 
most important variable in model P + G + H was the group’s home 
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range in the 30 d before sample collection (Supplementary Fig. 20 
and Supplementary Table 7). Despite previous evidence that groom-
ing partners have similar microbiota42, we did not find evidence for 
this pattern in our data (Supplementary Fig. 23). Samples collected 
from individuals with strong grooming bonds were not more similar 
than samples from animals with weak or no grooming relationships 
(Supplementary Fig. 24). However, the lack of a grooming effect in 
this dataset should be interpreted with caution. Our prior research 
on this topic42 characterized microbial communities using shotgun 
metagenomic sequencing from >90% of social network members, 
all within 30 d of each other. Such data provide higher taxonomic 

resolution and more accurate estimates of abundance than 16S data 
and may more accurately capture transmission between hosts.

Conclusions
We find that gut microbial dynamics are both weakly synchronized 
across hosts and strongly idiosyncratic to individual hosts. Like mem-
bers of a poorly coordinated microbial orchestra, microbial commu-
nities in different baboons are only weakly ‘in concert’ across the host 
population. Instead, gut microbial dynamics are idiosyncratic at the 
level of individual hosts and each baboon ‘player’ approaches the  
gut microbial ‘song’ differently. Our results contribute to mounting 

Clostridiales vadinBB60 group
Enterobacteriaceae

Syntrophomonadaceae
Elusimicrobiaceae

Peptococcaceae
Helicobacteraceae

Brachyspiraceae
Family XI_2II

Erysipelotrichaceae
Christensenellaceae

Ruminococcaceae
Lactobacillaceae
Clostridiaceae 1

Peptostreptococcaceae
Lachnospiraceae

Prevotellaceae
Pasteurellaceae

Bacteroidales RF16 group
Coriobacteriaceae

Acidaminococcaceae
Veillonellaceae

Atopobiaceae
Streptococcaceae
Bifidobacteriaceae

Eggerthellaceae
Rikenellaceae

Succinivibrionaceae
Spirochaetaceae

Desulfovibrionaceae
Muribaculaceae

Burkholderiaceae
vadinBE97

Methanomethylophilaceae
Campylobacteraceae

Elusimicrobia
Cyanobacteria

Spirochaetes
Epsilonbacteraeota

Tenericutes
Proteobacteria
Lentisphaerae
Bacteroidetes

Euryarchaeota
Actinobacteria

Firmicutes
Kiritimatiellaeota
Inverse Simpson

Shannon diversity
Species richness

PC3
PC2
PC1

0 20 40 60

R
es

po
ns

e 
va

ria
bl

e

0.1 0.1 0.1 0.1 16.1 0.1 0.1
39.5

0.2 0.4 0.3 0.3 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.2

21.9

0.1 0.2 0.1 22.2 0.1 0.1

25.4
28.6

0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1

22.2

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
17.9
22.4

0.1 0.1 0.1 17.4 0.1

17.9
17.9

0.2 0.2 0.2 17.3 0.1 0.1

37

22.8

23.1

0.1 0.2 0.2 0.1 0.1 0.1 20.9 0.1 0.1

16.5
0.1 22.2

25.5

0.1 0.1

28

19

0.1 0.1 0.1 0.1 0.1 0.1 0.1 19.2 0.1

22.5

0.1

0.1

28.3

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

21.4

21.8

48.2

0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

La
tit

ud
e 

×
 L

on
gi

tu
de

 ×
 T

im
e

Predictor variable removed

M
on

th
H

yd
ro

lo
gi

ca
l y

ea
r

M
on

th
ly

 to
ta

l r
ai

nf
al

l
M

on
th

ly
 m

ax
im

um
 te

m
pe

ra
tu

re

A
nn

ua
l t

ot
al

 r
ai

nf
al

l
A

nn
ua

l m
ax

im
um

 te
m

pe
ra

tu
re

 
G

ro
up

 ×
 T

im
e

H
os

t ×
 T

im
e

G
ro

up
 s

iz
e

H
om

e 
ra

ng
e 

si
ze

 (
km

2 )
F

ra
ct

io
n 

ho
m

e 
ra

ng
e 

un
iq

ue

D
ie

t P
C

1
D

ie
t P

C
2

D
ie

t P
C

4
D

ie
t P

C
5

D
ie

t P
C

6
D

ie
t P

C
7

D
ie

t P
C

8

D
ie

t P
C

10
D

ie
t P

C
11

D
ie

t P
C

12
D

ie
t P

C
13

D
ie

t P
C

9

D
ie

t P
C

3

A
ge

S
ex

S
oc

ia
l d

om
in

an
ce

 r
an

k

b c

g(ui) = f1(Monthi) + f2(Hydrological yeari)

g(ui) = f1(Monthi) + f2(Hydrological yeari) + f3(Timei, Groupk(i ))

g(ui) = f1(Monthi) + f2(Hydrological yeari) + f3(Timei, Groupk(i)) + f4(Timei, Hostr (i ))Model  P + G + H 

Model  P + G 

Model  P 
Population level

Population level

Population level Social group level

Social group level

Host level

a

Percentage deviance explained

P

P + G

P + G + H

–40

–30

–20

–10

0

Population Social group Host

Community level features

Phylum

Family

C
hange in (%

) deviance explained

Fig. 4 | Multilevel modelling identifies idiosyncratic microbial dynamics. a, We fit three hierarchical GAMs to 52 microbiome features measured in 
4,277 samples from the 56 best-sampled baboons, all of whom lived in the five social groups sampled the longest (between 2002 and 2010; median, 72.5 
samples per host; minimum, 48 samples; maximum, 164 samples; Supplementary Fig. 9). Each model contained successive sets of predictor variables 
reflecting population-level factors (pink), group-level factors (green) and host-level factors (yellow). The factors at each level are listed at the bottom of 
c and defined in Supplementary Table 5). b, Illustration, for each microbiome feature (response variable), of the deviance explained by model P and the 
successive sets of predictor variables added in model P + G and model P + G + H, respectively (Supplementary Table 6; percentage deviance is a measure 
of goodness-of-fit for nonlinear models and is analogous to the unadjusted R2 for linear models). c, The loss in deviance explained is shown for model 
P + G + H as we successively removed each predictor variable in turn from model P + G + H, keeping the model otherwise intact (Supplementary Table 7). 
Losses in deviance are shown in green and we only provide numeric values for losses in deviance >15%. Gains in deviance are shown in pink; we only show 
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evidence that forces proposed to synchronize gut microbial meta-
communities—shared environments, diets and between-host micro-
bial dispersal—can create modest synchrony among hosts, especially 
for hosts living in the same social unit. However, these forces are  
typically not strong enough to overwhelm powerful and well-known 

drivers of microbiome personalization, including host genetic effects, 
individual-level priority effects, horizontal gene transfer and func-
tional redundancy16–19. Interestingly, these idiosyncratic dynamics 
were strong even for microbial phyla and families, whose dynamics 
reflect multiple microbial functions and interactions that potentially 
buffer them against large fluctuations in abundance. We expect that 
the personalized dynamics we observed will be even stronger for finer 
taxonomic levels, especially bacterial species or strains that exhibit a 
high degree of functional variability across hosts.

Understanding if hosts in the same social group or population 
exhibit shared microbiome dynamics may be useful to researchers 
interested in predicting individual microbiome changes, linking 
microbiome dynamics to health outcomes and designing broadly 
effective microbiome interventions. These objectives have already 
been difficult to achieve, in part because of gut microbial person-
alization in humans and animals. For instance, predictive models 
of gut microbiome dynamics from one person fail when they are 
applied to other people27. Our results support the idea that micro-
biome predictions and interventions focused on specific taxa will 
require personalized approaches. Even then, ‘universal’ microbiome 
therapies that work the same way for all hosts may be unattain-
able. Instead, interventions will probably work best when they are 
designed for host groups or populations that have shared compo-
sitions and dynamics. Functional redundancy and horizontal gene 
flow may also mean that functions will be more predictable than 
taxa and prediction and intervention efforts that focus on microbi-
ome functional traits (for example, metabolite levels; the presence 
of specific pathways) will probably be less affected by gut microbi-
ome personalization. Together, our results provide insights about 
the extent and ecological causes of microbiome personalization and 
they indicate that personalized compositions and dynamics are not 
an artefact of modern human lifestyles.

Methods
All data collection procedures adhere to the regulations of the Institutional 
Animal Care and Use Committees of Duke and Notre Dame universities and to 
the laws of Kenya. A complete description of our methods is in the Supplementary 
Methods 1A–C.

Study subjects. Our subjects were individual wild baboons studied by the 
Amboseli Baboon Research Project (ABRP) in Kenya33. Baboons are terrestrial 
primates that live in stable social groups, typically with 20 to 130 members. The 
600 baboons in our dataset lived in 12 social groups between April 2000 and 
September 2013 (5 original groups and 7 groups that were fission/fusion products 
from these original groups; Fig. 1a). ABRP collects detailed longitudinal data 
on rainfall and temperature; social group membership, ranging patterns and 
diet; and host traits such as age, sex, social relationships and dominance rank 
(Supplementary Methods 1A). The Amboseli ecosystem is a semi-arid savanna 
with a 5-month-long dry season spanning June to October, during which very little 
rain falls. The remaining 7 months (November to May) constitute the wet season, 
which has highly variable rainfall (mean annual rainfall between 2000 and 2013 
was 319 mm; range 140–559 mm).

Sample collection. Most of the microbiota data we use here were published 
previously32 but we include data from 1,031 additional samples that were 
generated at the same time using the same methods (they were not included in the 
heritability analysis of ref. 32 because we lack pedigree information for these hosts). 
The addition of these 1,031 samples led to a total of 17,265 samples in our study. 
These samples were collected from baboons who ranged in age from 7.4 months to 
27.7 years, spanning these animals’ natural lifespans (Supplementary Fig. 1a). Each 
baboon was sampled a median of 19 times and 124 baboons were sampled at least 
50 times (Supplementary Fig. 1b). On average, these samples spanned 4.3 yr of a 
baboon’s life (range 4 d to 13.2 yr; Supplementary Fig. 1c), with a median of 35 d 
between consecutive samples (Supplementary Fig. 1d).

DNA extraction and sequencing. DNA was extracted from each sample using 
MoBio and QIAGEN PowerSoil kits and subjected to 16S rRNA sequencing on 
the Illumina HiSeq 2500 platform (896,911,162 total sequencing reads; mean was 
51,913.6 reads per sample; range 1,021–477,241; Supplementary Fig. 1e). We used 
DADA2 (ref. 53) for sequence quality processing following the default protocol for 
large datasets. To allow us to compare the dynamics of individual taxa in different 
hosts, we filtered to taxa found in at least 20% of samples, resulting in 341 ASVs 
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Fig. 5 | Microbiome taxon heritability is associated with idiosyncratic 
dynamics. a, Deviance explained (y axis) by the phylum and family level 
GAMs (from Fig. 4) plotted against the focal taxon’s heritability estimate 
(h2; x axis). Pink, green and yellow denote model P, model P + G and 
model P + G + H, respectively. Each regression line is plotted with its 
95% confidence interval. b, Deviance explained (y axis) across the model 
hierarchy (pink, model P; green, model P + G; yellow, model P + G + H) 
for each taxonomic feature (at the phylum and family level; x axis). The 
x axis is ordered by increasing heritability with light blue and turquoise 
squares representing phyla and families, respectively. Horizontal dashed 
lines show the average deviance explained per model for taxa with low 
heritability estimates (h2 < 0.05; light grey); medium heritability estimates 
(0.05 < h2 < 0.1; dark grey); and high heritability estimates (h2 ≥ 0.1; black).
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(mean 162 ASVs per sample; range 19–311 ASVs; Supplementary Fig. 1f and 
Supplementary Table 2). This filtering captured 92% of the reads and many of 
the same compositional properties of the dataset when filtered to 5% prevalence 
(Supplementary Fig. 25). DNA concentration and ASV diversity were not predicted 
by time since sample collection (Supplementary Fig. 1g,h). As is typical for wild 
microbiota, 22.9% of the 341 ASVs could not be assigned to a known family (78 
of 341) and 5.5% of ASVs could not be assigned to a known phylum (19 of 341; 
Supplementary Table 2). To address the compositional nature of our data, read 
counts were clr-transformed independently in each sample (including independent 
transforms for samples from the same individual), before all analyses54,55.

Statistical analyses. To test whether shared environmental conditions and host 
traits lead to similar gut microbial compositions and synchronized dynamics 
across the microbiome metacommunity, we first characterized patterns of temporal 
autocorrelation in ASV-level Aitchison similarity within and between hosts over 
time. Our expectation was that, if hosts or social groups exhibit idiosyncratic 
composition and dynamics, then samples collected close in time from the same 
baboon or from baboons in the same group, should be more similar than they 
are to samples collected from different baboons living in different groups. 
Alternatively, if gut microbial dynamics are strongly synchronized, then samples 
collected close in time across the metacommunity should be compositionally 
similar and samples collected from the same host should not be substantially more 
similar than samples from different baboons. These analyses were run in R (v.4.0.2; 
ref. 56) using custom-written functions (code and analysed data are available on 
Open Science Framework/GitHub as noted in Code availability).

To test whether dispersal limitation could explain microbiome idiosyncrasy, 
we estimated metacommunity-wide microbial migration probabilities in each 
season and year using the Sloan Neutral Community Model for Prokaryotes40,41. 
This model assumes that each local community, defined as the ASV-level 
microbial composition of a single host in a given season-year, is the outcome of 
stochastic population dynamics and microbial immigration from other hosts in the 
microbiome metacommunity (other local communities). Briefly, local communities 
have a constant size n and individual microbes within each local community die 
at a constant rate. These deaths create vacancies that can be occupied, either by 
individuals immigrating from the microbiome metacommunity (with probability 
m) or by daughter cells from any taxon within the local community (from 
reproduction within the same host, with probability 1 − m). Taxa that are common 
in the metacommunity have a higher chance of occupying vacancies than do rare 
taxa. Without immigration from the microbiome metacommunity, ecological drift 
leads each host’s microbial diversity to reduce to a single taxon. Thus, the migration 
probability, m, represents the metacommunity-wide probability that any taxon, 
randomly lost from a given host/local community, will be replaced by dispersal 
from the microbiome metacommunity, as opposed to reproduction within hosts40,41. 
Following ref. 57, m can be interpreted as a measure of dispersal limitation, such that 
low migration probabilities signify high dispersal limitation. We estimated season and 
hydrological year-specific values for m by defining the microbiome metacommunity 
as either the hosts’ social group or the whole host population. We fit neutral models 
using nonlinear least-squares regression as implemented in the R package tyRa58.

To quantify the relative magnitude of idiosyncratic versus synchronized 
dynamics for community metrics and common families and phyla, we used GAMs 
to capture the nonlinear, longitudinal dynamics of 52 features, including the 
first three PCs of ASV-level composition, three indices of alpha diversity (ASV 
richness, the exponent of ASV-level Shannon’s H and the inverse Simpson index 
for ASVs, as computed by the function reyni from the R package vegan59) and 
the clr-transformed abundances of 12 phyla and 34 families present in >20% of 
samples. We analysed phyla and families (as opposed to genera or ASVs) because 
phyla and families are highly prevalent across samples (mean prevalence is 85.6% 
for the 12 phyla and 73.7% for the 34 families), offering excellent power to compare 
their dynamics between different baboons. However, phyla and families might 
exhibit stronger synchrony than lower-level taxa because, compared to species or 
strains, the dynamics of families and phyla reflect multiple microbial processes 
and interactions, which are expected to buffer them against large fluctuations 
in abundance. Further, the processes and interactions that a given phylum or 
family collectively encompasses may be more consistent across hosts than those 
carried out by an individual species or strain (although this consistency will vary 
depending on the phylum, family or process in question18,60).

Our GAMs allowed us to calculate the percentage deviance in each feature’s 
dynamics attributable to factors that could contribute to synchronized dynamics at 
different scales (percentage deviance is a measure of goodness-of-fit for nonlinear 
models and is analogous to the unadjusted R2 for linear models). We considered 
deviance explained by factors at three scales: those experienced by the whole host 
population (for example, rainfall and temperature), those differentiated by social 
groups (for example, group identity, group home range location and diet) and those 
differentiated at the level of individual hosts (for example, host identity, sex, age 
and social dominance rank; see later for complete model structures). If microbiome 
community dynamics are largely idiosyncratic, then population- and group-level 
factors will not explain considerable deviance in microbiota change over time 
and, instead, a large fraction of the deviance will be attributable to host identity, 
controlling for shared environments, behaviours and traits. Alternatively, if shared 

environments and behaviours across the population and within social groups 
synchronize gut microbiota, then population- and group-level factors should explain 
substantial deviance in community dynamics. To ensure sufficiently dense sampling 
for identifying host- and group-level dynamics, all three GAMs were run on a subset 
of the full dataset, consisting of 4,277 16S rRNA gene sequencing profiles from the 56 
best-sampled baboons living in the five social groups sampled the longest (between 
2002 and 2010; median, 72.5 samples per host; minimum, 48 samples; maximum, 
164 samples; Supplementary Fig. 9). GAMs were fit using the R package mgcv61–63.

To test whether host genetic effects contribute to gut microbial idiosyncrasy, we 
performed a post hoc analysis of the relationship between the deviance explained 
in the GAMs for each microbial taxon and the heritability of that taxon’s relative 
abundance32. If host effects on microbiome dynamics are in part explained by host 
genotype, we predicted that taxon heritability should be positively correlated with 
deviance explained at the host level (model P + G + H) but not at the group or 
population level (model P and model P + G).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The 16S rRNA gene sequences are deposited on EBI-ENA (project ERP119849) and 
Qiita (study 12949; ref. 64). Note that our research permission from Kenya Wildlife 
Service prohibits third-party sharing of the biological samples themselves.

Code availability
Analysed data and code are available on the JRB’s Open Science Framework/
GitHub repository at https://doi.org/10.17605/OSF.IO/ERDXA
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