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Abstract 41 
Ecological relationships between bacteria mediate the services that gut microbiomes provide to 42 
their hosts. Knowing the overall direction and strength of these relationships within hosts, and 43 
their generalizability across hosts, is essential to learn how microbial ecology scales up to affect 44 
microbiome assembly, dynamics, and host health. Here we gain insight into these patterns by 45 
inferring thousands of correlations in bacterial abundance between pairs of gut microbiome taxa 46 
from extensive time series data, consisting of 5,534 microbiome profiles from 56 wild baboon 47 
hosts over a 13-year period. We model these time series using a statistically robust, multinomial 48 
logistic-normal modeling framework and test the degree to which bacterial abundance 49 
correlations are consistent across hosts (i.e., “universal”) or individualized to each host. We also 50 
compare these patterns to two publicly available human data sets. We find that baboon gut 51 
microbial relationships are largely universal: correlation patterns within each baboon host reflect 52 
a mixture of idiosyncratic and shared patterns, but the shared pattern dominates by almost 2-fold. 53 
Surprisingly, the strongest and most consistently correlated bacterial pairs across hosts were 54 
overwhelmingly positively correlated and typically belonged to the same family—a 3-fold 55 
enrichment compared to pairs drawn from the data set as a whole. The bias towards universal, 56 
positive bacterial correlations was also apparent in monthly samples from human infants, and 57 
bacterial families that had universal relationships in baboons also tended to be universal in 58 
human infants. Together, our results advance our understanding of the relationships that shape 59 
gut microbial ecosystems, with implications for microbiome personalization, community 60 
assembly and stability, and the feasibility of microbiome interventions to improve host health.  61 
 62 
Introduction 63 

Mammalian gut microbiomes are highly diverse, dynamic communities whose members 64 
exhibit the full spectrum of ecological relationships, from strong mutualisms like syntrophy and 65 
cross-feeding, to competition, parasitism, and predation [1-4]. These relationships mediate a 66 
variety of biological processes that have powerful effects on host health and fitness, including 67 
the metabolism of complex carbohydrates and toxins, and the synthesis of physiologically 68 
important compounds, like short-chain fatty acids, neurotransmitters, and vitamins [1-8]. Despite 69 
their importance, major gaps remain in our understanding of microbial relationships in the gut 70 
microbiome [1, 9, 10]. We typically do not know if the abundance of one microbe consistently 71 
predicts the abundance of other microbes in the same host community, nor do we understand 72 
whether these correlative relationships are consistent in strength or direction across hosts ([10-73 
13]).  74 

Knowing the overall direction and strength of these correlative relationships is important, 75 
not only because they partly reflect the ecological relationships that mediate gut microbial 76 
processes, but also because overall correlation patterns can affect gut microbiome assembly, 77 
stability, and productivity [14, 15]. For instance, sets of microbes that exhibit strong, positive 78 
relationships within hosts sometimes represent networks of cooperating taxa that promote each 79 
other’s growth [5, 9, 16]. In turn, these strong, mutualistic interdependencies can create an 80 
ecological house of cards where microbes rise and fall together, hampering community assembly 81 
and stability [14, 17]. In addition, understanding the degree to which correlative relationships 82 
between microbes are the same or different in different hosts can shed light on whether hosts 83 
share similar, underlying microbial ecologies [9, 10, 18-20]. Filling this knowledge gap has 84 
consequences for the generalizability of microbiome assembly processes, stability, and the 85 
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ecosystem services that emerge from microbiome dynamics to affect host health [9, 10, 12, 14, 86 
17, 21]. 87 

To date, there are several reasons to think that correlative relationships in the gut 88 
microbiome will not be consistent across hosts and will instead be individualized to each host. 89 
For instance, several common community and evolutionary processes—such as horizontal gene 90 
transfer, genotype by environment interactions, and priority effects—can lead microbiome taxa 91 
to fill different ecological roles in different hosts [3, 22-26]. Further, some microbes can adopt 92 
context-dependent metabolisms and ecological roles depending on their microbial neighbors or 93 
other aspects of the environment—all phenomena that could lead to personalized interspecies 94 
relationships in gut microbiota [27-30]. Finally, the common observation that gut microbial 95 
community compositions (i.e., the presence and abundance of taxa) are highly individualized is 96 
sometimes proposed to arise from host-specific microbial ecologies and relationships [22-26, 31-97 
35]. 98 

However, to date, the handful of studies that have tested the generalizability of gut 99 
microbial relationships across hosts suggest that these relationships are not highly individualized 100 
and are instead largely consistent (i.e., “universal”) across hosts (Fig. 1A; [10, 18-20, 36]). For 101 
instance, Bashan et al. [10] inferred “universal” gut microbial relationships in the human gut 102 
microbiome by applying dissimilarity-overlap analysis (DOA) to cross-sectional samples from 103 
several human data sets. DOA infers universal microbial relationships by testing whether pairs of 104 
hosts who share many of the same microbiome taxa also tend to have similar abundances of 105 
those taxa [10, 18-20, 36]. This approach relies on the assumption that, when two communities 106 
share many of the same species and have similar abundances of those species, they do so because 107 
of a shared, underlying set of between-species abundance relationships [10, 36]. While many 108 
studies using this approach find evidence that microbial relationships are “universal” [10, 18-20], 109 
DOA’s assumptions have been questioned because some conditions can lead to the spurious 110 
detection of universality, including environmental gradients, the strength of stochastic processes, 111 
and the presence of many non-interactive species [10, 36, 37].  112 

An obvious alternative is to measure microbial correlations directly from microbiome 113 
time series collected from several hosts [9, 38]. Unlike DOA, this approach should be able to 114 
pinpoint which microbiome taxa exhibit the most and least consistent relationships across hosts. 115 
However, measuring microbial correlations from longitudinal, multi-host microbiome time series 116 
has its own challenges: time series with adequately dense sampling are rare, and most such data 117 
sets exhibit temporal autocorrelation and irregular sampling [38]. Further, the most common, and 118 
still most feasible, way to collect microbiome community data—via high-throughput 119 
sequencing—generates noisy count data that usually can only be interpreted in terms of relative 120 
(not absolute) abundances [39, 40]. 121 

To overcome these hurdles, here we combine extensive time-series data on the stool-122 
associated microbiota with a multinomial logistic-normal modeling framework (Fig. 1; n=5,534 123 
samples from 56 baboons; 75 to 181 samples per baboon across 6 to 13.3 years, between 2000 124 
and 2013; [41-43]). This framework uses 16S rRNA sequencing count data to learn a smoothly 125 
evolving Gaussian process. The baboon hosts were the subject of long-term research on 126 
individually recognized animals by the Amboseli Baboon Research Project in Kenya, which has 127 
been studying baboon ecology and behavior in the Amboseli ecosystem since 1971 [41]. The 128 
baboons range over the same habitat and experience similar diets and sources of microbial 129 
colonization, facilitating inference about the consistency of microbial correlations across hosts 130 
(Fig. S1; [42, 43]). Our modeling approach accounts for variation attributable to seasonal 131 
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changes in the animals’ diets, proportionality in the count data, and irregularity in sampling to 132 
produce per-individual, per-taxon trajectories of log-ratio abundances that we used to estimate 133 
pairwise microbial correlations within each host. 134 

We pursued four main objectives. First, we characterized the overall sign and strength of 135 
pairwise correlations in bacterial abundance within each host. Second, we tested the degree to 136 
which these correlation patterns are systematically consistent across hosts or individualized by 137 
host (Fig. 1A). Third, we identified taxonomic, phylogenetic, environmental, and host-related 138 
predictors of the direction and universality of bacterial correlations. Finally, we tested the 139 
generalizability of our findings by comparing the patterns of universality in our data set to two 140 
microbiome time series from humans [34, 44]. 141 

Our predictions for these analyses were influenced by ideas from community and 142 
microbial ecology. First, because strong interdependencies can hamper community assembly and 143 
destabilize community dynamics [14, 15, 17], we expected that most microbial correlations 144 
would be weak with few strong positive relationships between microbes. Second, consistent with 145 
studies that used DOA, we expected that microbial relationships would be more consistent across 146 
hosts than individualized (see Fig. 1A for a visualization of this prediction). This result would 147 
suggest that personalized microbiota—their compositions and dynamics—do not arise from host-148 
specific microbiome ecologies [10, 18-20]. Third, because closely related gut bacteria may have 149 
similar functional properties, we expected to observe many positive correlations between those 150 
that are close phylogenetic relatives. Alternatively, competitive exclusion may lead closely 151 
related taxa to exhibit neutral or negative relationships. Fourth, because the environments 152 
experienced by baboons in Amboseli are far more uniform than those experienced by typical 153 
human study subjects [42, 43], we expected that the signature of “universality” in baboons would 154 
be stronger than that observed in humans. We discuss the implications of these patterns for 155 
individual microbiome community assembly and dynamics, and for understanding how 156 
microbiome communities are structured across hosts—a key requirement for successful 157 
intervention to improve host health [10, 11, 45]. 158 
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 159 
Figure 1. Testing the generalizability of gut microbial correlations across hosts. (A) 160 
Schematic illustrating our approach for testing the degree to which gut microbial abundance 161 
correlations are consistent (i.e., “universal” [10]) across different baboon hosts. The left-hand set 162 
of images show our expectations for consistent correlation patterns; the right-hand images show 163 
our expectation for individualized correlation patterns. Colored circles next to each baboon 164 
represent prevalent microbial taxa found in at least 20% of samples in each host (and excluding 165 
putative duplicate 16S gene copies; see methods). In each host, we inferred centered log-ratio 166 
(CLR) abundance trajectories for these taxa using a multinomial-logistic normal modeling 167 
approach implemented in the R package ‘fido’ [46]. Cartoons of two such trajectories for the 168 
orange and blue taxa are below each baboon. We used these trajectories to infer covariances 169 
between each pair of taxa in all baboons (represented by covariance matrices). We then 170 
converted these covariances to Pearson’s correlations and compared bacterial correlation patterns 171 
across all hosts, shown as heat maps (red cells are positively correlated taxa; blue cells reflect 172 
negatively correlated taxa). (B) Irregular time series of fecal samples used to infer microbial 173 
CLR abundance trajectories in 56 baboon hosts (n=5,534 total samples; 75-181 samples per 174 
baboon across 6 to 13.3 years). Each point represents a fecal sample collected from a known 175 
individual baboon (y-axis) on a given date (x-axis). Samples from the same baboon were 176 
collected a median of 20 days apart (range=0 to 723 days; 25th percentile=7 days, 75th 177 
percentile =49 days). (C) Relative abundances of the 8 most prevalent gut bacterial orders and 178 
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families over time (x-axis) for all 56 hosts (samples from females are labeled with an F; male 179 
samples with an M). Microbiota were somewhat individualized to each host (Fig. S2; [42, 43]).  180 
 181 
 182 
Results 183 
Most bacterial correlations within individuals are weak and negative 184 

We began by characterizing the overall sign, strength, and significance of pairwise 185 
correlations in bacterial abundance within each host. To do so, we applied the approach outlined 186 
in Fig. 1A to stool-associated time series from 56 baboons (Fig. 1B) and calculated Pearson’s 187 
correlations between all possible pairs of bacterial taxa for three taxonomic partitions of the data. 188 
These partitions were: (1) all pairs of CLR-transformed amplicon sequence variants (ASVs) 189 
found in >20% of samples in each host and were unlikely to represent a duplicate 16S rRNA 190 
gene copy ([47]; see Methods; n=125 ASVs; Fig. 2A; Table S1); (2) all pairs of bacterial phyla 191 
found in >20% of samples in each host (n=12 phyla; Table S2; Fig. S3); and (3) all pairs of taxa 192 
agglomerated to the most granular possible family, order, or class found in >20% of samples in 193 
each host (n=37 taxa; Table S3; Fig. S3). We assessed the false discovery rate for each 194 
correlation with a threshold for significance of FDR ≤ 0.05, by comparing the nominal p-values 195 
for each observed correlation to an empirical permutation-based null, obtained by shuffling 196 
taxonomic identities within microbiome samples 10 times for each host and re-calculating the 197 
Pearson correlation p-values obtained from the permutations (Fig. 2B). We also confirmed that 198 
the resulting correlation patterns were insensitive to several modeling choices and were not 199 
primarily driven by seasonal shifts in microbiome composition (see results below and the 200 
Supplement).  201 

Consistent with the expectation that most bacterial correlations in the gut microbiome are 202 
weak [14, 17], only 17% of ASV-ASV correlations in the heat map in Fig. 2A were stronger than 203 
expected by chance (FDR ≤ 0.05; Fig. S4A; 20% of phylum-phylum; 21% of family/order/class 204 
correlations; Fig. S3). The strongest negatively correlated pair in Fig. 2A included two ASVs in 205 
the family Lachnospiraceae that had a median correlation of -0.562 (+/- 0.118 s.d.) across all 206 
baboon hosts (Fig. 2C; ASV25 and ASV107; Tables S1 and S4). The strongest positively 207 
correlated pair of ASVs included two members of the genus Prevotella that had a median 208 
correlation of 0.801 (+/- 0.053 s.d.) across all baboons (Fig. 2D; ASV2 and ASV3; Tables S1 209 
and S4). While these two ASVs were assigned to the same genus, their V4 16S DNA sequence 210 
identity was 97.6%, indicating they are probably not duplicate 16S gene copies in the same taxa 211 
[47] (Table S4).  212 

In support of the idea that positive bacterial interdependencies are rare [14, 15, 17], only 213 
8.8% of ASV pairs were significantly positively correlated within hosts over time, and the 214 
overall bacterial correlation patterns were slightly skewed towards negative relationships—215 
especially for relationships between bacterial phyla. For instance, at the ASV-level, the median 216 
correlation coefficient in Fig. 2A was -0.016, and 53% of these correlations were negative 217 
(binomial test p < 0.0001). For family/order/class-level taxa, 55% of all correlations in were 218 
negative (Figs. S3A and S4A; median family/order/class-level correlation=-0.031; binomial test 219 
p < 0.0001). Correlations between phyla exhibited the strongest negative skew, with 64% of 220 
phyla-phyla correlations having a negative sign (Figs. S3B and S4A; median phyla-level 221 
correlation=-0.092; binomial test p < 0.0001). This bias towards negative relationships may 222 
reflect the fact that different phyla exhibit substantial differences in metabolism and lifestyle and 223 
likely respond to distinct environmental drivers.   224 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2022. ; https://doi.org/10.1101/2022.08.20.504530doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.20.504530
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 225 

 226 
 227 
Figure 2. Bacterial correlation patterns across hosts. The heat map in panel (A) shows 228 
Pearson’s correlation coefficients of CLR abundances between all pairs of ASVs (x-axis) in each 229 
of the 56 baboon hosts (y-axis). Each pair of ASVs is represented on the x-axis, including all 230 
pairwise combinations of 125 ASVs resulting in 7,750 ASV-ASV pairs in each host (434,000 231 
total correlations across all 56 hosts). Columns are ordered by the mean correlation coefficient 232 
between ASV-ASV pairs, from negative (blue) to positive (red). (B) Pairwise correlations 233 
generated from random permutations of the data. Taxonomic identities were shuffled within 234 
samples and pairwise ASV-ASV correlations were estimated to produce a null model of ASV-235 
ASV correlation patterns within and between hosts. Column order is the same as in Panel A. 236 
Panels (C) and (D) show example trajectories of CLR abundances for two pairs of ASVs in the 237 
same five hosts. Panel (C) shows a strongly negatively correlated pair (median r across all 238 
hosts=-0.562; two ASVs in family Lachnospiraceae: ASV25 (orange) and ASV107 (blue); 239 
Tables S1 and S4) and panel (D) shows one strongly positively correlated pair (median r across 240 
all hosts=0.801; two ASVs in the genus Prevotella 9; ASV2 (orange) and ASV3 (blue); Tables 241 
S1 and S4).   242 
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Within-host bacterial correlation patterns are largely consistent across baboons 243 
Next, we tested the degree to which within-host ASV-ASV correlations were consistent 244 

across hosts. We began by plotting the absolute value of each ASV pair’s median Pearson’s 245 
correlation coefficient as a function of the consistency of their correlation sign (positive or 246 
negative) across the 56 hosts (Figs. 3A and 3B). These plots provide two main insights into the 247 
consistency of bacterial associations. First, in support of the idea that ASVs do not exhibit vastly 248 
different correlative relationships in different hosts, no ASV pairs were both strongly and 249 
inconsistently correlated across hosts (Figs. 3A and 3B; Fig. S5A). Instead, the ASV pairs that 250 
had inconsistent correlation signs across hosts always had weak and often non-significant median 251 
absolute correlation coefficients within hosts (Figs. 3A and 3B). Second, the pairs with the most 252 
consistent sign agreement across hosts also exhibited the largest median absolute correlation 253 
coefficients across hosts (Figs. 3A and 3B; Spearman’s r=0.844, p<0.0001). Hence, pairs of 254 
ASVs that have the strongest relationships, and are therefore likely to play the most important 255 
roles in structuring gut microbiome dynamics, also tend to have the most consistent relationships 256 
in different hosts. Indeed, for the sets of positively or negatively correlated ASV-pairs that 257 
showed universal agreement in the sign of their correlation across all hosts (i.e., where x=1 in 258 
Figs. 3A and 3B), the median correlation coefficient is 0.398, compared to 0.113 for those with 259 
no sign consistency (x=0.5 in Figs. 3A and 3B). Note, that the correlation strength for a given 260 
pair of ASVs was only weakly predicted by bacterial abundance. When both members of the pair 261 
were relatively abundant, pairs tended to exhibit stronger median correlations (r=0.012, 262 
p<0.0001; Fig. S6). However, while this effect is significant, it explained <1% of the variance in 263 
median correlation strength. 264 

Visual inspection of the patterns in Figs. 2A, 3A, and 3B indicate that ASV-ASV 265 
correlations are largely consistent across baboons, as opposed to individualized to each baboon. 266 
To explicitly quantify the relative strength of shared versus individualized signatures in the heat 267 
map in Fig. 2A, we calculated the population mean pattern for the ASV-ASV correlation matrix, 268 
m. For each host, we then estimated the residual difference, e, between that individual’s observed 269 
ASV-ASV correlation matrix, y, and the population mean matrix: y – m (see Fig. S7A for a 270 
cartoon example). We reasoned that the observed correlation matrix for each host can be 271 
approximated by a mixture of contributions from the population mean matrix m and the host-272 
specific residual matrix e. To identify the optimal mixture for each host (i.e., the mixture of 273 
consistent vs. individualized correlation patterns that best explained the observed data), we 274 
titrated the contribution (i.e., weight) of e from 0% to 100% (and correspondingly, the 275 
contribution of m from 100% to 0%) and identified the value that minimized the Frobenius 276 
distance between the simulated combination and the observed correlation matrix, y.  277 

In support of prior observations of “universality” [10, 18-20], we found that, across hosts, 278 
the optimal mixture involved contributions from the shared correlation structure (i.e., m) of 279 
between 50% and 70% (median 65%) and a host-level contribution (i.e., from e) of between 50% 280 
and 30% (median 35%). Hence, population-level signatures contributed almost twice the weight 281 
as host-level signatures (a median population:host ratio of 1.86:1; Fig. S7B). As a result, ASV-282 
level relationships tend to be more consistent across hosts than host-specific.   283 
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 284 
 285 
Figure 3. None of the ASV pairs were strongly and inconsistently correlated across hosts, 286 
and the strongest and most consistently correlated ASVs are typically positively correlated. 287 
Plots in (A) and (B) show the median correlation strength for each ASV-ASV pair across all 56 288 
hosts as a function of the consistency in direction of that pair’s correlation across hosts, 289 
measured as the proportion of hosts that shared the majority correlation sign (positive or 290 
negative; ASV pairs that were positively correlated in half of the 56 hosts have a consistency of 291 
0.5; ASV pairs that were positively [or negatively] correlated in all hosts have a consistency of 292 
1.0). Panel (A) presents this relationship for consensus positively correlated features and panel 293 
(B) shows consensus negatively correlated features. The Spearman correlation between median 294 
association strength and the proportion of shared sign for all correlated features is 0.844 (p < 295 
0.0001). Multiplying the two axes in either panel (A) or (B) creates a “universality score”, whose 296 
distribution is shown in panel (C). This score reflects the strength and consistency of pairwise 297 
microbial correlations across hosts and ranges from 0 to 1, where a score of 1 indicates ASV-298 
ASV pairs with perfect correlations of the same sign in all hosts. A vertical line indicates the 299 
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minimum significant universality score. (D) Correlation networks for the top 2.5% most strongly 300 
and consistently correlated ASV pairs across hosts (i.e., the top 2.5% highest universality scores; 301 
pairs with rank 1-194 in Table S4). Network edges are colored by the consensus sign of the 302 
correlation between that pair (black for pairs where most hosts had a positive correlation; gray 303 
for pairs where most hosts had a negative correlation). Node labels indicate the ASV identity in 304 
Table S1 and colors represent bacterial families. (E) Significantly enriched bacterial families in 305 
the network in panel D (Fisher’s Exact Test p < 0.01 all, FDR ≤ 0.05; see Table S5 enrichment 306 
statistics for all families). (F) Significantly enriched same-family pairings in the network in panel 307 
D (Table S5). Note that for visualization, the estimated log2 odds ratio intervals have been 308 
truncated at 5; full estimates are given in Table S5. 309 
 310 
 311 
The most consistent ASV-level correlations are positive and between phylogenetically 312 
related taxa   313 

One advantage of our approach, compared to dissimilarity overlap analyses [10], is we 314 
can identify the bacterial pairs that exhibit the most consistent relationships across hosts. Hence, 315 
we next conducted several analyses to understand why some pairs of ASVs exhibit more 316 
consistent correlation patterns across hosts than others. To do so, we created a “universality” 317 
score that could be calculated for each ASV pair. The score multiplies the pair’s median 318 
correlation coefficient across hosts (y-axis of Fig. 3A, 3B) with its correlation consistency across 319 
hosts (i.e., proportion of shared sign; x-axis of Fig. 3A, 3B). The resulting scores range from 0 to 320 
1, where a score of 1 equates to perfect “universality” (i.e., all hosts have a correlation 321 
coefficient of 1 or all hosts have a correlation coefficient of -1). Applying this score to all pairs 322 
of ASVs reveals a right-skewed distribution, reflecting the fact that most bacterial correlations 323 
are weak, with inconsistent sign directions across hosts (Fig. 3C; Fig. S4B). However, 49% of 324 
these scores were higher than expected by chance (permutation test; FDR ≤ 0.05; Fig. 3C; Fig. 325 
S4B), reflecting a signal of universality in our data.  326 

Interestingly, the ASV-pairs with the highest universality scores almost always exhibited 327 
net positive correlations across hosts, as opposed to net negative relationships, suggesting that 328 
the most universal relationships occur between pairs of ASVs that respond similarly to shared 329 
drivers or facilitate each other’s growth. For example, among the ASV pairs in the top 1% of 330 
universality scores (n=78 pairs), 96.2% exhibited net positive correlations across all hosts, while 331 
only 5.6% (3 of 78 pairs) exhibited net negative correlations (Table S4). In the top 2.5% most 332 
universal ASV pairs (n=194), 78.4% had net positive correlations across all hosts (Table S4).  333 

To visualize these highly consistent positive correlations, we plotted bacterial co-334 
abundance networks connecting the top 2.5% most universal ASV pairs (Fig. 3C). A handful of 335 
ASVs were highly connected within this network. The most connected ASV was ASV107 336 
(family Lachnospiraceae; Table S1; Table S4), which was connected to 20 other ASVs. Ten 337 
other ASVs were connected to more than 10 other ASVs, including six other members of 338 
Lachnospiraceae (ASV9, ASV25, ASV30, ASV106, ASV107, and ASV111), two members of 339 
Coriobacteria (ASV115 in the family Coriobacteriaceae and ASV30 in the genus Slackia), one 340 
member of Bifidobacteriaceae (ASV50), and one member of Prevotellaceae (ASV71). The ASVs 341 
involved in these top 2.5% pairs were enriched for the families Atopobiaceae, 342 
Bifidobacteriaceae, Coriobacteriaceae, Eggerthellaceae, Erysipelotrichaceae, and 343 
Lachnospiraceae (Fig. 3E; Table S5; all Fisher’s Exact Test p-values < 0.01; FDR ≤ 0.05).   344 
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The network in Fig. 3D revealed clusters of positive connections, often between ASVs 345 
assigned to the same family (Fig. 3F). In fact, same-family pairs were enriched by >3-fold in the 346 
2.5% most universal taxon pairs (52 pairs observed vs. 19 expected, p < 0.0001). The cluster of 347 
interconnected red nodes in Fig. 3D represents members of Lachnospiraceae, and 348 
Lachnospiraceae-Lachnospiraceae pairings were 3.7 times more common in this network than 349 
overall (30 pairs observed vs. 9 pairs expected Fig. 3F). Bifidobacteriaceae also tended to exhibit 350 
within-family ASV pairings (Fig. 3F).   351 

The observation that the most consistent correlations often occur among ASVs in the 352 
same family raises another question: does the phylogenetic distance between a pair predict the 353 
nature of their relationship? In support of the idea that closely related ASVs respond similarly to 354 
the environment or facilitate each other’s growth, we found a significant relationship between the 355 
universality score of a given pair of ASVs and their phylogenetic distance (Pearson’s r for 356 
positively correlated pairs=-0.213; p < 0.0001; Fig. 4A). In contrast, negatively correlated ASV 357 
pairs exhibited a weak positive relationship between phylogenetic distance and universality such 358 
that closely related taxa tended to be less universal than more distantly related taxa (Pearson’s 359 
r=0.049; p=0.004; Fig. 4B). In other words, the strongest and most consistently negatively 360 
correlated taxa tend to be only distantly related. Positively correlated, closely related pairs were 361 
often members of the families Atopobiaceae, Eggerthellaceae, and Lachnospiraceae, especially 362 
pairs where both members belonged to the family Lachnospiraceae (Fig. 4C-D; Table S6). 363 

 364 

 365 
Figure 4. The most consistent ASV-level correlations are positive and often between close 366 
evolutionary relatives. Pairwise universality scores are plotted as a function of phylogenetic 367 
distance between the ASV-ASV pair for consensus positively correlated pairs in red (A) and 368 
negatively correlated pairs in blue (B). Phylogenetic distance (x-axis) is binned into 0.1 369 
increments; each point represents a given ASV pair, and box plots represent the median and 370 
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interquartile ranges for a given interval of phylogenetic distance. Phylogenetic distance is 371 
negatively correlated with universality score in positive pairs (Pearson’s correlation for 372 
positively associated ASV pairs=-0.213, p-value < 0.0001), and positively correlated with 373 
universality score in negatively associated pairs (Pearson’s correlation for negatively associated 374 
ASV pairs=0.049, p = 0.004). Panel (C) shows families for the ASV pairs enriched in the closest 375 
related (distance < 0.2) and highly universal (score > 0.5) pairs. Panel (D) shows enriched 376 
family-family pairings for the same subset of closely related and highly universal ASV pairs in 377 
panel C. Note that for visualization, the estimated log2 odds ratio intervals have been truncated 378 
at 5, which excludes 5 pairs with high uncertainty in the odds ratio; full estimates are given in 379 
Table S6. 380 
 381 
 382 
Genetic relatives, and hosts with similar microbiome compositions, have more similar 383 
bacterial correlation patterns  384 

We next asked whether host-level variables, including sex, social group membership, 385 
genetic relationships, and baseline gut microbiome composition predict host differences in 386 
patterns of bacterial correlation. Consistent with prior research [10], the strongest predictor of 387 
distance in bacterial correlation patterns was distance in terms of baseline microbiome 388 
composition. Indeed, a Mantel test correlating compositional distance of average microbial 389 
profiles (as Aitchison distances between the per-host mean of centered log-ratio-transformed 390 
samples) with distance in microbial correlation patterns between hosts (via Frobenius distance) 391 
revealed that 34% of the variation in correlation patterns was explained by baseline microbiome 392 
community composition (Mantel: r2=0.343; p=0.001; Fig. 5A; Table S7).  393 

Consistent with prior research in our population, which finds widespread heritability of 394 
the abundance of individual gut microbiome taxa [43], we also found a weak but significant 395 
relationship between host genetic distance and the distance in microbial correlation patterns 396 
between hosts. Hosts who were more distantly related based on a multigenerational pedigree 397 
have slightly less similar ASV-level correlation matrices, as measured by Frobenius distance 398 
(Fig. 5B; Table S7; r2=0.025; Mantel p-value=0.001). We found no evidence that members of 399 
the same social group or sex exhibit especially similar microbial correlation patterns (social 400 
group: F=1.994; p=0.106; sex: F=1.784; p=0.187; Table S7).  401 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2022. ; https://doi.org/10.1101/2022.08.20.504530doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.20.504530
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 402 
 403 

Figure 5. Baboons with more similar bacterial correlation patterns are more likely to have 404 
more similar baseline microbiome compositions and are more likely to be genetic relatives. 405 
In panel (A) each point is a pair of hosts; the y-axis shows the similarity of these hosts’ bacterial 406 
correlation patterns (via Frobenius distance) as a function of their microbiome compositional 407 
similarity (via Aitchison distance; Mantel: r2=0.343; p=0.001). Colors show samples from pairs 408 
of baboons living in the same social group and grey dots are pairs of animals living in different 409 
social groups; there is no detectable effect of social group on correlation pattern similarity. Panel 410 
(B) shows the same Frobenius distances as a function of host genetic dissimilarity (1 – the 411 
coefficient of genetic relatedness between hosts; R2=0.025; p-value Mantel test 0.001). Colors 412 
reflect pairs of hosts living in the same social group, as in panel A.  413 
 414 
 415 
Universality in Amboseli is not solely explained by seasonality or synchrony 416 

Without experiments, we cannot disentangle whether our observed bacterial correlations 417 
are due to ecological interactions between bacterial species (e.g., mutualisms, direct or indirect 418 
competition etc.) or to shared responses to environmental gradients. While our modeling 419 
approach accounts for seasonal changes in the first three principal components of the baboons’ 420 
diets, to identify other potential effects of season we re-estimated the ASV-ASV correlation 421 
matrix after removing an oscillating seasonal trend from the observed log-ratio abundance for 422 
each ASV (Fig. S8). Removing this trend had little effect on the ASV-ASV correlation matrix; 423 
the variance explained by the seasonal oscillation is small for all ASVs (median 1.1%, 424 
minimum=0%, maximum=6%) and the between-ASV correlation estimates were almost 425 
identical to those derived from our original model (Pearson’s r=0.979, p<0.0001; Fig. S8C). We 426 
also tested whether pairs of ASVs with especially consistent between-host correlation patterns 427 
tend to show large seasonal changes in CLR abundance. To do so, we focused on 13 families that 428 
exhibit significant seasonal changes in CLR abundance, based on a previous analysis of the same 429 
data set [42]. While ASV pairs in which one member belongs to one of these significantly 430 
“seasonal” families are slightly more universal, this effect is small (difference of 0.026, 431 
p<0.0001 vs. pairs where 0 or 1 partner were “seasonal”; Fig. S9).  432 
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Because the high level of universality we observed was not well explained by season, we 433 
also tested whether universality is explained by synchronized dynamics. We reasoned that if one 434 
member of an ASV pair shows highly synchronized dynamics across different hosts, and the 435 
other member is also strongly synchronized across hosts, then universality could be an inevitable 436 
outcome of each member of the pair’s strong synchrony. We quantified synchrony as the degree 437 
to which the observed dynamics of a single, focal ASV are consistent across hosts, such that high 438 
synchrony (near 1) implies that the timing and direction of shifts in log-ratio ASV abundance are 439 
identical across hosts in the population (see Methods; Fig. S10). Estimates of synchrony ranged 440 
from 0.019 to 0.477 (median=0.196). Interestingly, ASVs in the 13 “seasonal” families are not 441 
more likely to have high synchrony than other families (ANOVA, p=0.358; Fig. S11). However, 442 
the average synchrony of an ASV-ASV pair did predict that pair’s universality score (r=0.264, 443 
p<0.0001): ASV pairs that are more synchronous on average are also more likely to show 444 
consistent correlations across hosts. These high synchrony, high universality pairs are highly 445 
enriched for Bifidobacteriaceae-Bifidobacteriaceae and Lachnospiraceae-Lachnospiraceae 446 
family pairs (Fig. S12). 447 
 448 
Baboon microbiomes are not substantially more “universal” than human microbiomes 449 

Finally, to investigate the generalizability and applicability of our observations in 450 
baboons, we turned to two publicly available gut microbial time-series data sets: daily samples 451 
from 34 adults over a 17-day span (483 total samples; hereafter “Johnson et al.” [34]), and the 452 
DIABIMMUNE cohort that consists of 285 samples, collected monthly over 3 years, from 15 453 
infants and toddlers living in Russian Karelia ([44]; at the time of writing, these cohorts were the 454 
only publicly available data sets we could find that included large numbers of repeated samples 455 
from the same subjects). Because baboons in Amboseli experience less heterogeneity in their 456 
environments and diets than humans [42, 43], we expected they would exhibit greater 457 
consistency in microbial correlations than either human cohort. Note that we compared each host 458 
cohort’s universality at the family/order/class level because this taxonomic level offered the 459 
greatest comparative power (10.1% of families/orders/classes overlap between the cohorts 460 
compared to just 3.1% of genera and no ASVs).  461 

Contrary to our expectations, we find comparable evidence of universality in baboons 462 
and the DIABIMMUNE infant/toddler cohort, but weak universality in Johnson et al. (Figs. 6A-463 
6D). Bacterial families in the DIABIMMUNE cohort yielded universality scores slightly higher 464 
than those observed in Amboseli (25th percentile=0.132, median=0.206, 75th percentile=0.316 465 
for DIABIMMUNE; 25th percentile=0.088, median=0.150, 75th percentile=0.234 for 466 
Amboseli), driven by relationships between families that were stronger on average than those 467 
estimated for baboons (median DIABIMMUNE family-family correlation strength=0.270; 468 
median Amboseli family-family correlation strength=0.181). The high level of consistency 469 
between both infants/toddlers and baboons in one wild population is surprising and may point to 470 
the similar sampling intervals for these cohorts. Both cohorts were sampled approximately 471 
monthly, while Johnson et al.’s subjects were sampled daily [17, 48]. Median correlation 472 
strengths and universality scores for the Johnson et al. [34] cohort were substantially lower 473 
(median correlation=0.099; 25th percentile universality=0.050, median=0.076, 75th 474 
percentile=0.111) than the DIABIMMUNE cohort or the baboons.   475 

Despite considerable differences in the hosts, time scales, and designs of these studies, all 476 
three data sets exhibited a positive correlation between correlation strength and sign consistency 477 
for family pairs (Fig. 6C). This correlation was strongest in the Amboseli baboons (Spearman’s 478 
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r=0.844; p<0.0001); weaker in the DIABIMMUNE cohort (r=0.686; p<0.0001) and weakest in 479 
Johnson et al. [34] (r=0.644; p<0.0001). Further, the observation that the most universal family-480 
family associations skew positive in baboons was replicated in the infant data set, but not in 481 
Johnson et al. [34]. All of the top 1% and top 2.5% most universal family pairs (6 of 6 and 16 of 482 
16 pairs, respectively) are positively associated in the DIABIMMUNE cohort, compared to 86% 483 
and 71% of these pairs in the Amboseli baboons. 484 

Finally, we examined the relationship between universality scores for family pairs that 485 
overlapped between Amboseli and DIABIMMUNE (n=45 pairs), and between Amboseli and 486 
Johnson et al. [34] (Fig. 6D; n=21 pairs; only 10 family pairs overlapped between all three data 487 
sets). For these overlapping pairs, scores in the Amboseli data predicted scores for the same 488 
family-family pair in the DIABIMMUNE data set (r=0.449, p=0.023). The association between 489 
scores in the Amboseli data and the Johnson et al. data was negative, but not statistically 490 
significant (r=-0.222, p=0.071). 491 
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 492 
 493 
Figure 6. Patterns of universality in baboons are recapitulated in the DIABIMMUNE 494 
study. Following Fig. 2A, Panels (A), (B), and (C) show the Pearson’s correlation coefficients 495 
of CLR abundances between all pairs of families (x-axis) in two time series data sets from 496 
human subjects: (A) the Amboseli baboons, (B) the DIABIMMUNE cohort, consisting of 15 497 
infants/toddlers sampled monthly over 3 years in Russian Karelia [44], and (C) the diet study of 498 
Johnson et al. [34], including 34 adults sampled daily over 17 days. Following Figs. 3A and B, 499 
panel (D) shows the median correlation strength of each family pair’s correlation coefficient 500 
across hosts as a function of the consistency in direction of that pair’s correlation across hosts 501 
(i.e., the proportion of hosts that shared the majority correlation sign, positive or negative). 502 
Median correlation strength is low overall in Johnson et al. (median=0.099), whereas the 503 
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Amboseli baboon and DIABIMMUNE infant/toddler cohorts show similar relationships between 504 
median correlation strength and the proportion shared correlation sign across hosts (Spearman’s r 505 
in Amboseli=0.844; Spearman’s r in DIABIMMUNE=0.686). (E) Universality scores for 506 
overlapping family pairs from the infant/toddler subjects of the DIABIMMUNE study and 507 
baboons in the Amboseli study are significantly correlated (r=0.449, p=0.0226). Panel D shows 508 
universality scores for overlapping gut bacterial family pairs in the Amboseli baboon and 509 
DIABIMMUNE infant/toddler data sets (black outlines), as well as the Amboseli and Johnson et 510 
al. data sets (gray outlines) on opposing axes. Color represents the taxonomic identities of the 511 
family pairs. 512 
 513 
 514 
Discussion 515 

Do different hosts have different microbiome “ecologies”? Answering this question is 516 
essential for predicting gut microbiome community assembly and dynamics, and for 517 
understanding the degree to which the species interactions that govern these processes are shared 518 
across hosts. Here, we overcome the constraints of previous cross-sectional analyses by 519 
measuring bacterial correlations directly from longitudinal, multi-host microbiome time series. 520 
Our results provide independent confirmation for prior studies that tested for universal gut 521 
microbial relationships via dissimilarity overlap analyses (DOA; [10, 18-20, 36]). We confirm 522 
that bacterial correlation patterns are largely shared across hosts in the same population, as 523 
opposed to idiosyncratic to individual hosts, and that hosts with the most similar bacterial 524 
correlation patterns are those with the most similar baseline microbiome compositions—a core 525 
assumption of DOA. Because prior analyses of these microbiome time series find that each 526 
baboon exhibits a highly personalized microbiome composition and dynamics [42], our findings 527 
suggest that such compositional personalization, which is also common in humans [22-26, 31-528 
35], cannot be easily explained by personalized microbiome ecologies. Further, in terms of 529 
microbiome therapeutics, our results suggest that widely applicable microbiome interventions 530 
may be more attainable than personalized microbiome compositions would suggest. 531 

By measuring bacterial correlations in multiple hosts, we were also able, for the first 532 
time, to pinpoint which pairs of bacterial taxa exhibit the most consistent relationships across 533 
hosts. Surprisingly, we found that the most universal bacterial pairs are almost always positively 534 
(as opposed to negatively) correlated. Positive bacterial interactions have been the subject of 535 
recent controversy [9, 15, 49]. Ecological theory predicts that strong positive interactions should 536 
be rare in natural communities because species interdependencies can hamper community 537 
assembly and stability [14, 17]. This theory is supported by experiments that directly measure the 538 
effects of one bacterial species on another’s growth [50-53] (but see [49]). Our results suggest 539 
that positive bacterial correlations are indeed uncommon in intact, unmanipulated microbiomes: 540 
significant positive relationships made up just 8.8% of all of the pairwise correlations we 541 
observed. However, when they occur, they often contain taxa that belong to the same bacterial 542 
families or are otherwise phylogenetically close, suggesting they may be members of the same 543 
ecological guild and respond similarly to shared resources and other environmental drivers. This 544 
pattern may partly explain the abundance of positively associated Lachnospiraceae pairs in our 545 
data, a family in which positive, within-family interactions are known to contribute to 546 
hydrolyzing starch and other complex carbohydrates, and ultimately the regulation of short chain 547 
fatty acids (SCFAs) [54-56].  548 
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These observations—that bacterial correlation patterns are largely consistent across hosts, 549 
and that the most consistent correlations are typically positive—were also apparent in one human 550 
data set, despite differences in study design, host age, and time scale. Specifically, both the 551 
Amboseli baboons and the DIABIMMUNE infant/toddler cohort from Russia [44] exhibit 552 
comparable levels of universality. This outcome was surprising, given that baboons are expected 553 
to experience less heterogeneity in their environments and diets than human children from birth 554 
to age three years—even if those infants are from the same population (Russian Karelia). We 555 
also found that the most universal bacterial families in baboons tended to be highly universal in 556 
human infants/toddlers. Hence, some bacterial families may exhibit consistent microbial 557 
relationships within hosts, across host populations, and across host species. Finally, a recent, 558 
independent study also identified consistent bacterial correlation patterns across four different 559 
populations of human hosts [9]. While this study lacked resolution at the level of individual 560 
hosts, it did identify a highly conserved network of positively associated and closely related 561 
microbes similar to those we identify in Fig. 3. The authors speculate that these conserved 562 
associations may indicate strong partner fidelity or obligate partnerships.  563 

We did, however, fail to detect universality in a second human data set reported in 564 
Johnson et al. [34], in which subjects were sampled daily, rather than weekly or monthly. The 565 
lack of universality in Johnson et al. [34] may be due to this difference in sampling time scale, 566 
especially if daily abundances and correlations are noisier than covariances modeled over the 567 
longer time scales in our study. In support, many fewer of the microbial correlations were 568 
stronger than random chance in Johnson et al. as compared to the baboons or children in the 569 
DIABIMMUNE cohort. The subjects in Johnson et al. [34] also consumed substantially different 570 
diets from each other, perhaps more so than the children in the DIABIMMUNE cohort, and this 571 
inter-host difference in diet may reduce the universality of microbial correlations.  572 

In terms of understanding microbiome ecology, an essential caveat to our findings is that 573 
the correlation patterns we observed could reflect either direct or indirect relationships, or 574 
uncontrolled environmental gradients, and they cannot be mapped directly to standard categories 575 
of pairwise ecological interactions, such as mutualism, commensalism, amensalism, exploitation, 576 
or competition. Experimental approaches that directly measure the effects of one species on 577 
another’s growth in vitro are better suited to characterizing these relationships [49-53]. However, 578 
even then, caution is required because a microbe’s community and environmental context can 579 
have important consequences for its metabolism, functional capacities, and relationships with 580 
other microbes. We surmise that most of the correlation patterns we observed are not attributable 581 
to environmental gradients because our signature of universality persisted, even when we 582 
accounted for diet, oscillating seasonal drivers, and microbial synchrony between hosts. Hence, 583 
some of correlations we observed may derive from microbial interactions themselves, rather than 584 
shared environmental drivers creating shared dynamics. 585 

Our finding that correlations between gut microbial taxa are largely consistent across 586 
hosts is important, considering that many studies find highly personalized gut microbial 587 
compositions and single-taxon dynamics  [27-29]. Personalized compositions and dynamics in 588 
the gut microbiome are commonly attributed to horizontal gene transfer and functional 589 
redundancy, which may lead some bacteria to perform different functions and exhibit different 590 
environmental responses in different hosts. Our results suggest these processes do not 591 
substantially alter pairwise microbial associations in the gut, at least for highly prevalent taxa at 592 
the level of ASVs and above, and on the time scales in our study (on the order of weeks and 593 
months). Because ASVs encompass multiple species and strains, reflecting the functional 594 
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diversity of these taxa, their dynamics may be somewhat buffered against idiosyncrasies driven 595 
by horizontal gene transfer and functional redundancy, which affect single strains more strongly 596 
than whole species or genera. If so, personalized gut microbial compositions may emerge instead 597 
from personalized assembly processes [57, 58], the fact that most microbial relationships are 598 
weak, and the effects of rare, host-specific taxa (which were necessarily excluded from our 599 
analyses). A logical next step would be to confirm the stability of the microbial correlations we 600 
observed using culture-based approaches, which will help reveal the stability of these 601 
correlations in vitro and whether they can be attributed to direct effects of one microbe on 602 
another’s growth.  603 

 604 
Methods 605 
Study population and microbiome profiles 606 

The baboon hosts in this study were members of the Amboseli baboon population, which 607 
has been studied by the Amboseli Baboon Research Project since 1971 [41]. The microbiome 608 
compositional profiles are derived from V4 16S rRNA gene amplicon sequencing data that were 609 
previously analyzed in [42, 43]. Our analyses use 5,534 of these profiles from 56 especially well-610 
sampled baboons, collected over a 13.3-year span between 2000 to 2013 (Fig. 1B). Each baboon 611 
host in this data set was sampled at least 75 times (mean number of samples=99; range=75 to 612 
181 samples; median number of days between samples within hosts=20 days; 25th percentile=7 613 
days, 75th percentile =49 days). DNA was extracted from each sample using the MoBio and 614 
QIAGEN PowerSoil kit with a bead-beating step. All samples were sequenced on an Illumina 615 
HiSeq 2500, with a median read count of 48,827 reads per sample across all 5,534 samples 616 
(range=982 to 459,315 reads per sample). Further details of sample collection, DNA extraction, 617 
and sequencing can be found in [42, 43].    618 
 619 
Filtering of low-abundance taxa 620 

Data sets of per-sample taxonomic counts were produced at each of three taxonomic 621 
levels, from finest to coarsest: ASV, taxonomic assignments finer than phyla, but above the 622 
genus level (e.g., class, order, family), and phylum. At the intermediate and coarsest levels, taxa 623 
were agglomerated using phyloseq’s tax_glom() function [59] such that all sequence variants 624 
sharing taxonomic identity at that level were collapsed into a single taxon (e.g. family 625 
Bifidobacteraceae). 626 

To reduce sparsity in the data set, remove 16S sequences that could represent gene 627 
duplications, and focus only on taxa that were prevalent in all 56 hosts, we further filtered as 628 
follows: (1) in each of the three taxonomically defined data sets (i.e. ASV, taxa assigned to 629 
family/order/class, and phylum), we identified taxa present in a minimum of 20% of each host’s 630 
samples; (2) if a given ASV was >99% genetically similar to another ASV we removed the least 631 
abundant of the pair to minimize the risk of including duplicate 16S rRNA gene copies from the 632 
same taxa [47]; and (3) counts associated with all other taxa were combined into a dummy 633 
category, hereafter referred to as “other.” The “other” category therefore includes a combination 634 
of rare and host-specific gut microbes. This category was retained in the data set (although not 635 
analyzed directly) because “other” counts still inform the precision of the observed relative 636 
abundances in our model. Characteristics of the filtered data at each taxonomic level are 637 
provided in Tables S1-S3. 638 
 639 
 640 
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Modeling log-ratio dynamics 641 
Estimates of taxon-taxon covariance were obtained from the basset model of the “fido” 642 

package in R [46]. Data for each host took the form of a � � � count matrix, where � gives the 643 
number of taxa and � the number of samples collected for a given host. The following model 644 
was fit to each host’s count matrix (�) where ��  represents the counts associated with a single 645 
sample: 646 
 647 

�� � Multinomial�π�� 
π� � ALR���η�� 

η � Normal�Λ, Σ, �� 
Λ � GP�Θ!"#, Σ, Γ!"#� 
Σ � inv‐Wishart�Ξ, ν� 

 648 
The observed relative abundances are considered to be drawn from a multinomial 649 

distribution parameterized by a set of proportions (π) which have an analogous representation in 650 
the additive log-ratio. The dynamics of these log-ratio abundances (η� are described by what 651 
amounts to a state space model in the 3rd and 4th lines of the specification above, where a 652 
Gaussian process models the evolution of a “latent” state. The matrix Σ captures covariation in 653 
log-ratio abundances (the � rows of the observed count matrix). Sample-sample covariation 654 
arising from nearness in time (autocorrelation) is modeled by the kernel matrix Γ. Both the 655 
kernel matrix and the expected baseline log-ratio abundances (Θ) are parameterized by a set of 656 
time-varying covariates " which included the day of sampling (where the date of first sample is 657 
defined as zero) and the first three principal components of diet composition, calculated 658 
following [42, 43] as the diet all juveniles and females living in the host’s social group in the 30 659 
days prior to sample collection. All group members consume highly similar diets as they travel in 660 
a together across the habitat, encountering the same resources at the same time [42, 43]. These 661 
data are collected via random-order behavioral observations collected two to four times per week 662 
on adult females and juveniles in each social group. Parameterization of the kernel matrix is 663 
further described in the Supplement. 664 

Posterior inference on this model is performed as described in [46] and yields estimates 665 
of the distributions of parameters necessary to reconstruct trajectories for all log-ratio taxa across 666 
sampling time. In particular, we extract the posterior estimates of one such parameter, Σ, the 667 
covariance of additive log-ratio (ALR) taxa, from the fitted models for each host. We convert 668 
these covariance matrices over ALR taxa to the centered log-ratio (CLR) form (a simple linear 669 
transformation of the matrix). We then normalize estimated CLR covariance matrices to Pearson 670 
correlation matrices in R using the built-in cov2cor() function. 671 
 672 
Calculating universality scores for taxon-taxon pairs 673 

We devised a universality score for each pair of taxa intended to capture the strength and 674 
consistency of taxon-taxon correlations across hosts. The majority direction is negative 675 
otherwise.  This score identifies the sign of the taxon-taxon correlation (positive or negative) that 676 
is most common across the 56 hosts (i.e., occurs in >50% of the 56 hosts in the data set). The 677 
direction of this sign is the “majority correlation sign.” 678 

For a pair of taxa ,, let -
�

maj be the number of hosts with CLR correlation over pair , with 679 
the majority correlation sign for that pair and let - be the total number of hosts. Let . be the 680 
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subset of estimated CLR correlations for pair , across hosts with the majority sign. The 681 
universality score /�  for that taxon-taxon pair is then given by 682 

 683 

/� �
-
�

maj

-
� median�.� 

 684 
This score is the product of the median CLR correlation across hosts and the proportion 685 

of hosts with the majority correlation sign, and is bounded between 0 and 1. Scores near 1 686 
indicate strong universality and near-zero scores indicate weak universality. Strong universality 687 
can only be achieved by taxon-taxon correlations that are both large in magnitude and highly 688 
concordant across hosts. 689 
 690 
Defining a cutoff for significant bacterial correlations and universality scores 691 

We identified correlations stronger than expected under random simulations using 692 
permutations of the data set to define empirical null distributions (Fig. S4A). Specifically, we 693 
permuted the data by randomly shuffling taxon identity within each sample 10 times for each of 694 
the 56 hosts. This procedure maintained relative abundance patterns within a sample but 695 
scrambled the covariance patterns of relative abundances. The distributions of ASV-level CLR 696 
correlations in the original and permuted data are shown in Fig. S4A. We identified “significant” 697 
correlations as those below FDR ≤ 0.05 (Benjamini-Hochberg), testing against the permuted 698 
data. 699 

We applied an analogous permutation test to derive a null distribution for taxon-taxon 700 
universality scores. In a single iteration of this permutation procedure, rows and columns of the 701 
observed taxon-taxon correlation matrix for each host were shuffled, maintaining the distribution 702 
over observed correlations at the host level but randomizing the identity of taxon pairs across 703 
hosts. This procedure was repeated 100 times and universality scores were calculated from each 704 
of these shuffled data sets to give a pseudo-null distribution of universality scores. The observed 705 
and null distributions of universality scores at the ASV level are shown in Fig. S4B. We used 706 
this empirical null distribution to identify universality scores significantly greater than expected 707 
(FDR ≤ 0.05). 708 
 709 
Estimating the ratio of population-level to host-level contributions to observed taxon-taxon 710 
correlation patterns 711 

We used simulations to estimate the degree of shared “signal" between hosts in terms of 712 
taxon-taxon correlations. Each host’s “observed correlations” were defined as the basset 713 
estimated maximum a posteriori (MAP) estimates of centered log-ratio ASV correlations for that 714 
host. We computed the mean correlations across the population using the function estcov() from 715 
the shapes package in R [60] and estimated a host-specific contribution to the observed 716 
correlations as the residual difference between per-host observed and these mean correlations. 717 
That is, 718 
 719 

observed host correlations � mean population correlations 5 host residual 
 720 

For each host, we simulated a hypothetical set of composite taxon-taxon correlations as a 721 
convex combination of mean and host residual: 722 

 723 
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composite correlations � �1 7  8� � mean population correlations 5 8 � host residual 
 724 
A cartoon example of this procedure is given in Fig. S7A. For example, one such 725 

simulated set of taxon-taxon correlations might constitute a mixture of 90% host contribution 726 
and 10% shared population-level "signal" (α=0.9). Alternatively, a small host-level contribution 727 
might have α=0.1. 728 

For each host, we iterated over increasing proportions of host-level contribution (from 729 
0% to 100%), generating simulated composite correlation matrices according to the formula 730 
above. We compared these simulated patterns to those observed for the same host, reasoning that 731 
simulated correlation matrices that minimize the distance between the observed correlation 732 
matrices and the simulated mixtures provide the best description of the underlying true mixture.  733 
 734 
Estimating synchrony 735 

Seasonal autoregressive models were fit independently to each CLR-transformed ASV 736 
with arima() in R, using covariate matrices which included per-host intercepts and an oscillating 737 
periodic trend to mimic wet-dry season oscillation. For each ASV, all hosts’ samples were 738 
combined into a single series, yielding per-ASV models of CLR dynamics. This procedure is 739 
detailed in the Supplemental Methods. Residuals were extracted from these fitted models as 740 
seasonally “de-trended” data and CLR correlation matrices across ASV pairs were estimated 741 
directly from these adjusted data using cov() in R (Fig. S9). 742 

“Synchrony” was estimated by sampling aligned microbiome compositional profiles 743 
across hosts. We identified all samples collected from pairs of hosts within 1 calendar day. For 744 
instance, a sample collected from host F01 on 2011-03-14 could pair with a sample from M04 on 745 
2011-03-15. For all possible pairs of hosts, we selected one such aligned pair of samples, 746 
yielding 1540 joint observations of gut microbiome composition. For each such paired sample, 747 
one host was arbitrarily designated as host A and the other as host B. The “synchrony” of a given 748 
taxon was estimated as the correlation of a taxon’s model-inferred log-ratio abundance across the 749 
set of samples from hosts labeled A and the set of samples from hosts labeled B. The cartoon in 750 
Fig. S10 illustrates this sample pairing.  751 
 752 
Enrichment analyses 753 

We performed enrichment analyses for bacterial families and family pairs in several 754 
settings. In each case we computed the frequency of ASVs belonging to a given family, or of 755 
pairs belonging to a family pair, on a subset of the data. These were compared to the overall 756 
frequencies of ASVs belonging to those families or pairs. 757 

To determine the enrichment of families and family pairs in the most universal ASV pairs 758 
(Fig. 3E and 3F), we calculated the frequencies of ASV families and pairs in the top 2.5% of 759 
pairs by universality scores. Significant enrichment of families or pairs was identified using a 760 
one-sided Fisher's Exact Test. Multiple test correction was applied as a Benjamini-Hochberg 761 
adjustment to observed p-values. 762 

Phylogenetic distances between ASV sequences were calculated with the dist.ml function 763 
in the “phangorn” package in R [61] using default settings for amino acid substitution rates. In 764 
Fig. 4C and 4D, low phylogenetic distance/high median correlation strength pairs were 765 
identified as those with phylogenetic distances of less than 0.2 and median correlation strengths 766 
of greater than 0.5. Again, significance of these was evaluated against overall frequencies of the 767 
same families and pairs. 768 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2022. ; https://doi.org/10.1101/2022.08.20.504530doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.20.504530
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

To determine enrichment of low synchrony/high universality or of high synchrony/high 769 
universality families and pairs (shown in Fig. S12A and 12B), we defined the low 770 
synchrony/high universality cohort as those ASV pairs with synchrony estimates of less than 0.3 771 
and universality estimates greater than 0.4. We defined the high synchrony/high universality 772 
cohort as those ASV pairs with synchrony greater than 0.3 and universality greater than 0.4. The 773 
frequency of these subsets was evaluated against the overall frequencies of the same families and 774 
pairs. 775 
 776 
Evaluating explanatory factors 777 

Variation in taxon-taxon correlation patterns explained by kinship and baseline 778 
composition. To evaluate a possible explanatory effect of distances in terms of kinship or 779 
baseline gut bacterial composition on distances in terms of taxon-taxon correlation patterns, we 780 
applied Mantel tests. However, because population structure can lead to anticonservative p-781 
values [62], we also developed a second simulation-based procedure for evaluating the 782 
significance of baseline composition, using a permutation procedure of our own design. Firstly, 783 
baseline composition for each host was estimated by transforming all of a given host’s samples 784 
to the centered log-ratio representation after adding a small fraction (0.5) to remove zeros. The 785 
vector of per-taxon averages of these CLR values was used as that host’s “baseline” CLR 786 
composition. The Euclidean distances between hosts in terms of these per-host baselines were 787 
compared against distances in terms of correlation patterns to give an r2 value. 788 

In the case of the customized permutation test, this observed result was evaluated against 789 
a pseudo-null distribution computed in the following way. The identity of each taxon in the 790 
baseline composition was shuffled for each host independently. Euclidean distances across these 791 
shuffled baselines were computed and an r2 value calculated for these distances against the 792 
observed distances computed from taxon-taxon correlation patterns. This procedure was repeated 793 
1000 times to give a distribution of “random” r2 values we used as an empirical null. 794 

Variation in taxon-taxon correlation patterns explained by sex and social group. To test 795 
whether host sex or social group membership predicted similarity in terms of correlation 796 
patterns, we used an ANOVA-like strategy. We calculated the F-statistic, a ratio of between- to 797 
within-group variation, on the observed correlation patterns (strictly, the vectorized CLR taxon-798 
taxon correlation matrices; 9 in the equation below) and segmented samples into groups defined 799 
by either sex or social group. The F-statistic was calculated as 800 

 801 

: �
between‐group variation
within‐group variation

�
∑ -��9�

> 7 9?��/	
�
� A 7 1

∑ ∑ B9�� 7 9�
> C

�
/��

�
�
�� 7 A�	

�
�

 

 802 
and significance was evaluated via an F-distribution parameterized by the appropriate degrees of 803 
freedom. Here A represents the number of groups (e.g. two, in the case of sex) and �, the total 804 
number of hosts. The matrix 9�

>  consists of the mean taxon-taxon correlations for group , and 9?, 805 
the population mean correlations. 806 
 807 
Comparison to microbiome time series from human populations 808 

We compared our findings to those generated from two human data sets: the 809 
DIABIMMUNE project’s infant/toddler cohort from Russian Karelia [44] and the adult diet-810 
microbiome association study of Johnson et al. [34]. In both cases, count tables were obtained 811 
from the project’s public website and subject identity and sampling schedules were available in 812 
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the associated metadata. We compared each host cohort’s universality at the family/order/class 813 
level because this taxonomic level offered the greatest comparative power (10.1% of 814 
families/orders/classes overlap between the cohorts compared to just 3.1% of genera and no 815 
ASVs). The basset model from the “fido” R package [46] was fit to each subject’s data set using 816 
model settings analogous to those employed on the Amboseli baboon series: first, only taxa with 817 
non-zero counts in at least 20% of all subjects’ series were retained; second, Gaussian process 818 
kernel bandwidth settings were chosen in such a way as to encode an expectation of minimum 819 
autocorrelation between samples at a distance in time of 90 days. We extracted centered log-ratio 820 
estimates of taxa at the family level in the same manner as described previously for the Amboseli 821 
data set. 822 
 823 
Data and code availability 824 
16S rRNA gene sequences are available on EBI-ENA (project 590 ERP119849) and Qiita (study 825 
12949). Analyzed data and code is available on GitHub at: 826 
https://github.com/kimberlyroche/rulesoflife 827 
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