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Abstract

Ecological relationships between bacteria mediate the services that gut microbiomes provide to
their hosts. Knowing the overall direction and strength of these relationships within hosts, and
their generalizability across hosts, is essential to learn how microbial ecology scales up to affect
microbiome assembly, dynamics, and host health. Here we gain insight into these patterns by
inferring thousands of correlations in bacterial abundance between pairs of gut microbiome taxa
from extensive time series data, consisting of 5,534 microbiome profiles from 56 wild baboon
hosts over a 13-year period. We model these time series using a statistically robust, multinomial
logistic-normal modeling framework and test the degree to which bacterial abundance
correlations are consistent across hosts (i.e., “universal”) or individualized to each host. We also
compare these patterns to two publicly available human data sets. We find that baboon gut
microbial relationships are largely universal: correlation patterns within each baboon host reflect
a mixture of idiosyncratic and shared patterns, but the shared pattern dominates by almost 2-fold.
Surprisingly, the strongest and most consistently correlated bacterial pairs across hosts were
overwhelmingly positively correlated and typically belonged to the same family—a 3-fold
enrichment compared to pairs drawn from the data set as a whole. The bias towards universal,
positive bacterial correlations was also apparent in monthly samples from human infants, and
bacterial families that had universal relationships in baboons also tended to be universal in
human infants. Together, our results advance our understanding of the relationships that shape
gut microbial ecosystems, with implications for microbiome personalization, community
assembly and stability, and the feasibility of microbiome interventions to improve host health.

Introduction

Mammalian gut microbiomes are highly diverse, dynamic communities whose members
exhibit the full spectrum of ecological relationships, from strong mutualisms like syntrophy and
cross-feeding, to competition, parasitism, and predation [1-4]. These relationships mediate a
variety of biological processes that have powerful effects on host health and fitness, including
the metabolism of complex carbohydrates and toxins, and the synthesis of physiologically
important compounds, like short-chain fatty acids, neurotransmitters, and vitamins [1-8]. Despite
their importance, major gaps remain in our understanding of microbial relationships in the gut
microbiome [1, 9, 10]. We typically do not know if the abundance of one microbe consistently
predicts the abundance of other microbes in the same host community, nor do we understand
whether these correlative relationships are consistent in strength or direction across hosts ([10-
13]).

Knowing the overall direction and strength of these correlative relationships is important,
not only because they partly reflect the ecological relationships that mediate gut microbial
processes, but also because overall correlation patterns can affect gut microbiome assembly,
stability, and productivity [14, 15]. For instance, sets of microbes that exhibit strong, positive
relationships within hosts sometimes represent networks of cooperating taxa that promote each
other’s growth [5, 9, 16]. In turn, these strong, mutualistic interdependencies can create an
ecological house of cards where microbes rise and fall together, hampering community assembly
and stability [ 14, 17]. In addition, understanding the degree to which correlative relationships
between microbes are the same or different in different hosts can shed light on whether hosts
share similar, underlying microbial ecologies [9, 10, 18-20]. Filling this knowledge gap has
consequences for the generalizability of microbiome assembly processes, stability, and the
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86  ecosystem services that emerge from microbiome dynamics to affect host health [9, 10, 12, 14,
87 17,21].
88 To date, there are several reasons to think that correlative relationships in the gut
89  microbiome will not be consistent across hosts and will instead be individualized to each host.
90  For instance, several common community and evolutionary processes—such as horizontal gene
91 transfer, genotype by environment interactions, and priority effects—can lead microbiome taxa
92  to fill different ecological roles in different hosts [3, 22-26]. Further, some microbes can adopt
93  context-dependent metabolisms and ecological roles depending on their microbial neighbors or
94  other aspects of the environment—all phenomena that could lead to personalized interspecies
95  relationships in gut microbiota [27-30]. Finally, the common observation that gut microbial
96  community compositions (i.e., the presence and abundance of taxa) are highly individualized is
97  sometimes proposed to arise from host-specific microbial ecologies and relationships [22-26, 31-
98  35].
99 However, to date, the handful of studies that have tested the generalizability of gut
100  microbial relationships across hosts suggest that these relationships are not highly individualized
101  and are instead largely consistent (i.e., “universal”) across hosts (Fig. 1A; [10, 18-20, 36]). For
102  instance, Bashan et al. [10] inferred “universal” gut microbial relationships in the human gut
103  microbiome by applying dissimilarity-overlap analysis (DOA) to cross-sectional samples from
104  several human data sets. DOA infers universal microbial relationships by testing whether pairs of
105  hosts who share many of the same microbiome taxa also tend to have similar abundances of
106  those taxa [10, 18-20, 36]. This approach relies on the assumption that, when two communities
107  share many of the same species and have similar abundances of those species, they do so because
108  of a shared, underlying set of between-species abundance relationships [10, 36]. While many
109  studies using this approach find evidence that microbial relationships are “universal” [10, 18-20],
110  DOA’s assumptions have been questioned because some conditions can lead to the spurious
111 detection of universality, including environmental gradients, the strength of stochastic processes,
112 and the presence of many non-interactive species [10, 36, 37].
113 An obvious alternative is to measure microbial correlations directly from microbiome
114  time series collected from several hosts [9, 38]. Unlike DOA, this approach should be able to
115  pinpoint which microbiome taxa exhibit the most and least consistent relationships across hosts.
116  However, measuring microbial correlations from longitudinal, multi-host microbiome time series
117  has its own challenges: time series with adequately dense sampling are rare, and most such data
118  sets exhibit temporal autocorrelation and irregular sampling [38]. Further, the most common, and
119  still most feasible, way to collect microbiome community data—via high-throughput
120  sequencing—generates noisy count data that usually can only be interpreted in terms of relative
121 (not absolute) abundances [39, 40].
122 To overcome these hurdles, here we combine extensive time-series data on the stool-
123 associated microbiota with a multinomial logistic-normal modeling framework (Fig. 1; n=5,534
124 samples from 56 baboons; 75 to 181 samples per baboon across 6 to 13.3 years, between 2000
125  and 2013; [41-43]). This framework uses 16S rRNA sequencing count data to learn a smoothly
126  evolving Gaussian process. The baboon hosts were the subject of long-term research on
127  individually recognized animals by the Amboseli Baboon Research Project in Kenya, which has
128  been studying baboon ecology and behavior in the Amboseli ecosystem since 1971 [41]. The
129  baboons range over the same habitat and experience similar diets and sources of microbial
130  colonization, facilitating inference about the consistency of microbial correlations across hosts
131  (Fig. S1; [42, 43]). Our modeling approach accounts for variation attributable to seasonal
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132 changes in the animals’ diets, proportionality in the count data, and irregularity in sampling to
133 produce per-individual, per-taxon trajectories of log-ratio abundances that we used to estimate
134  pairwise microbial correlations within each host.

135 We pursued four main objectives. First, we characterized the overall sign and strength of
136  pairwise correlations in bacterial abundance within each host. Second, we tested the degree to
137  which these correlation patterns are systematically consistent across hosts or individualized by
138  host (Fig. 1A). Third, we identified taxonomic, phylogenetic, environmental, and host-related
139  predictors of the direction and universality of bacterial correlations. Finally, we tested the

140  generalizability of our findings by comparing the patterns of universality in our data set to two
141  microbiome time series from humans [34, 44].

142 Our predictions for these analyses were influenced by ideas from community and

143  microbial ecology. First, because strong interdependencies can hamper community assembly and
144  destabilize community dynamics [14, 15, 17], we expected that most microbial correlations

145  would be weak with few strong positive relationships between microbes. Second, consistent with
146  studies that used DOA, we expected that microbial relationships would be more consistent across
147  hosts than individualized (see Fig. 1A for a visualization of this prediction). This result would
148  suggest that personalized microbiota—their compositions and dynamics—do not arise from host-
149  specific microbiome ecologies [10, 18-20]. Third, because closely related gut bacteria may have
150  similar functional properties, we expected to observe many positive correlations between those
151  that are close phylogenetic relatives. Alternatively, competitive exclusion may lead closely

152  related taxa to exhibit neutral or negative relationships. Fourth, because the environments

153  experienced by baboons in Amboseli are far more uniform than those experienced by typical

154  human study subjects [42, 43], we expected that the signature of “universality” in baboons would
155  be stronger than that observed in humans. We discuss the implications of these patterns for

156  individual microbiome community assembly and dynamics, and for understanding how

157  microbiome communities are structured across hosts—a key requirement for successful

158 intervention to improve host health [10, 11, 45].
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Figure 1. Testing the generalizability of gut microbial correlations across hosts. (A)
Schematic illustrating our approach for testing the degree to which gut microbial abundance
correlations are consistent (i.e., “universal” [10]) across different baboon hosts. The left-hand set
of images show our expectations for consistent correlation patterns; the right-hand images show
our expectation for individualized correlation patterns. Colored circles next to each baboon
represent prevalent microbial taxa found in at least 20% of samples in each host (and excluding
putative duplicate 16S gene copies; see methods). In each host, we inferred centered log-ratio
(CLR) abundance trajectories for these taxa using a multinomial-logistic normal modeling
approach implemented in the R package ‘fido’ [46]. Cartoons of two such trajectories for the
orange and blue taxa are below each baboon. We used these trajectories to infer covariances
between each pair of taxa in all baboons (represented by covariance matrices). We then
converted these covariances to Pearson’s correlations and compared bacterial correlation patterns
across all hosts, shown as heat maps (red cells are positively correlated taxa; blue cells reflect
negatively correlated taxa). (B) Irregular time series of fecal samples used to infer microbial
CLR abundance trajectories in 56 baboon hosts (n=5,534 total samples; 75-181 samples per
baboon across 6 to 13.3 years). Each point represents a fecal sample collected from a known
individual baboon (y-axis) on a given date (x-axis). Samples from the same baboon were
collected a median of 20 days apart (range=0 to 723 days; 25th percentile=7 days, 75th
percentile =49 days). (C) Relative abundances of the 8 most prevalent gut bacterial orders and
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179  families over time (x-axis) for all 56 hosts (samples from females are labeled with an F; male
180  samples with an M). Microbiota were somewhat individualized to each host (Fig. S2; [42, 43]).

181
182

183  Results

184  Most bacterial correlations within individuals are weak and negative

185 We began by characterizing the overall sign, strength, and significance of pairwise

186  correlations in bacterial abundance within each host. To do so, we applied the approach outlined
187  in Fig. 1A to stool-associated time series from 56 baboons (Fig. 1B) and calculated Pearson’s
188  correlations between all possible pairs of bacterial taxa for three taxonomic partitions of the data.
189  These partitions were: (1) all pairs of CLR-transformed amplicon sequence variants (ASVs)

190  found in >20% of samples in each host and were unlikely to represent a duplicate 16S rRNA

191  gene copy ([47]; see Methods; n=125 ASVs; Fig. 2A; Table S1); (2) all pairs of bacterial phyla
192 found in >20% of samples in each host (n=12 phyla; Table S2; Fig. S3); and (3) all pairs of taxa
193  agglomerated to the most granular possible family, order, or class found in >20% of samples in
194  each host (n=37 taxa; Table S3; Fig. S3). We assessed the false discovery rate for each

195  correlation with a threshold for significance of FDR < 0.05, by comparing the nominal p-values
196  for each observed correlation to an empirical permutation-based null, obtained by shuffling

197  taxonomic identities within microbiome samples 10 times for each host and re-calculating the
198  Pearson correlation p-values obtained from the permutations (Fig. 2B). We also confirmed that
199  the resulting correlation patterns were insensitive to several modeling choices and were not

200  primarily driven by seasonal shifts in microbiome composition (see results below and the

201  Supplement).

202 Consistent with the expectation that most bacterial correlations in the gut microbiome are
203  weak [14, 17], only 17% of ASV-ASYV correlations in the heat map in Fig. 2A were stronger than
204  expected by chance (FDR < 0.05; Fig. S4A; 20% of phylum-phylum; 21% of family/order/class
205  correlations; Fig. S3). The strongest negatively correlated pair in Fig. 2A included two ASVs in
206  the family Lachnospiraceae that had a median correlation of -0.562 (+/- 0.118 s.d.) across all
207  baboon hosts (Fig. 2C; ASV25 and ASV107; Tables S1 and S4). The strongest positively

208  correlated pair of ASVs included two members of the genus Prevotella that had a median

209  correlation of 0.801 (+/- 0.053 s.d.) across all baboons (Fig. 2D; ASV2 and ASV3; Tables S1
210  and S4). While these two ASVs were assigned to the same genus, their V4 16S DNA sequence
211  identity was 97.6%, indicating they are probably not duplicate 16S gene copies in the same taxa
212 [47] (Table S4).

213 In support of the idea that positive bacterial interdependencies are rare [14, 15, 17], only
214 8.8% of ASV pairs were significantly positively correlated within hosts over time, and the

215  overall bacterial correlation patterns were slightly skewed towards negative relationships—

216  especially for relationships between bacterial phyla. For instance, at the ASV-level, the median
217  correlation coefficient in Fig. 2A was -0.016, and 53% of these correlations were negative

218  (binomial test p <0.0001). For family/order/class-level taxa, 55% of all correlations in were

219  negative (Figs. S3A and S4A; median family/order/class-level correlation=-0.031; binomial test
220  p<0.0001). Correlations between phyla exhibited the strongest negative skew, with 64% of

221  phyla-phyla correlations having a negative sign (Figs. S3B and S4A; median phyla-level

222 correlation=-0.092; binomial test p < 0.0001). This bias towards negative relationships may

223 reflect the fact that different phyla exhibit substantial differences in metabolism and lifestyle and
224 likely respond to distinct environmental drivers.
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228  Figure 2. Bacterial correlation patterns across hosts. The heat map in panel (A) shows

229  Pearson’s correlation coefficients of CLR abundances between all pairs of ASVs (x-axis) in each
230  of the 56 baboon hosts (y-axis). Each pair of ASVs is represented on the x-axis, including all
231  pairwise combinations of 125 ASVs resulting in 7,750 ASV-ASV pairs in each host (434,000
232 total correlations across all 56 hosts). Columns are ordered by the mean correlation coefficient
233 between ASV-ASV pairs, from negative (blue) to positive (red). (B) Pairwise correlations

234  generated from random permutations of the data. Taxonomic identities were shuffled within
235  samples and pairwise ASV-ASV correlations were estimated to produce a null model of ASV-
236  ASV correlation patterns within and between hosts. Column order is the same as in Panel A.
237  Panels (C) and (D) show example trajectories of CLR abundances for two pairs of ASVs in the
238  same five hosts. Panel (C) shows a strongly negatively correlated pair (median r across all

239  hosts=-0.562; two ASVs in family Lachnospiraceae: ASV25 (orange) and ASV107 (blue);

240  Tables S1 and S4) and panel (D) shows one strongly positively correlated pair (median r across
241  all hosts=0.801; two ASVs in the genus Prevotella 9; ASV2 (orange) and ASV3 (blue); Tables
242 S1 and S4).
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243 Within-host bacterial correlation patterns are largely consistent across baboons

244 Next, we tested the degree to which within-host ASV-ASV correlations were consistent
245  across hosts. We began by plotting the absolute value of each ASV pair’s median Pearson’s

246  correlation coefficient as a function of the consistency of their correlation sign (positive or

247  negative) across the 56 hosts (Figs. 3A and 3B). These plots provide two main insights into the
248  consistency of bacterial associations. First, in support of the idea that ASVs do not exhibit vastly
249  different correlative relationships in different hosts, no ASV pairs were both strongly and

250  inconsistently correlated across hosts (Figs. 3A and 3B; Fig. SS5A). Instead, the ASV pairs that
251  had inconsistent correlation signs across hosts always had weak and often non-significant median
252 absolute correlation coefficients within hosts (Figs. 3A and 3B). Second, the pairs with the most
253  consistent sign agreement across hosts also exhibited the largest median absolute correlation

254  coefficients across hosts (Figs. 3A and 3B; Spearman’s r=0.844, p<0.0001). Hence, pairs of

255  ASVs that have the strongest relationships, and are therefore likely to play the most important
256  roles in structuring gut microbiome dynamics, also tend to have the most consistent relationships
257  in different hosts. Indeed, for the sets of positively or negatively correlated ASV-pairs that

258  showed universal agreement in the sign of their correlation across all hosts (i.e., where x=1 in
259  Figs. 3A and 3B), the median correlation coefficient is 0.398, compared to 0.113 for those with
260  no sign consistency (x=0.5 in Figs. 3A and 3B). Note, that the correlation strength for a given
261  pair of ASVs was only weakly predicted by bacterial abundance. When both members of the pair
262  were relatively abundant, pairs tended to exhibit stronger median correlations (r=0.012,

263  p<0.0001; Fig. S6). However, while this effect is significant, it explained <1% of the variance in
264  median correlation strength.

265 Visual inspection of the patterns in Figs. 2A, 3A, and 3B indicate that ASV-ASV

266  correlations are largely consistent across baboons, as opposed to individualized to each baboon.
267  To explicitly quantify the relative strength of shared versus individualized signatures in the heat
268  map in Fig. 2A, we calculated the population mean pattern for the ASV-ASV correlation matrix,
269  m. For each host, we then estimated the residual difference, e, between that individual’s observed
270  ASV-ASV correlation matrix, y, and the population mean matrix: y — m (see Fig. STA for a

271  cartoon example). We reasoned that the observed correlation matrix for each host can be

272  approximated by a mixture of contributions from the population mean matrix m and the host-
273  specific residual matrix e. To identify the optimal mixture for each host (i.e., the mixture of

274  consistent vs. individualized correlation patterns that best explained the observed data), we

275  titrated the contribution (i.e., weight) of e from 0% to 100% (and correspondingly, the

276  contribution of m from 100% to 0%) and identified the value that minimized the Frobenius

277  distance between the simulated combination and the observed correlation matrix, y.

278 In support of prior observations of “universality” [10, 18-20], we found that, across hosts,
279  the optimal mixture involved contributions from the shared correlation structure (i.e., m) of

280  between 50% and 70% (median 65%) and a host-level contribution (i.e., from e) of between 50%
281 and 30% (median 35%). Hence, population-level signatures contributed almost twice the weight
282  as host-level signatures (a median population:host ratio of 1.86:1; Fig. S7B). As a result, ASV-
283  level relationships tend to be more consistent across hosts than host-specific.
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285

286  Figure 3. None of the ASV pairs were strongly and inconsistently correlated across hosts,
287  and the strongest and most consistently correlated ASVs are typically positively correlated.
288  Plots in (A) and (B) show the median correlation strength for each ASV-ASV pair across all 56
289  hosts as a function of the consistency in direction of that pair’s correlation across hosts,

290  measured as the proportion of hosts that shared the majority correlation sign (positive or

291  negative; ASV pairs that were positively correlated in half of the 56 hosts have a consistency of
292 0.5; ASV pairs that were positively [or negatively] correlated in all hosts have a consistency of
293 1.0). Panel (A) presents this relationship for consensus positively correlated features and panel
294  (B) shows consensus negatively correlated features. The Spearman correlation between median
295  association strength and the proportion of shared sign for all correlated features is 0.844 (p <
296  0.0001). Multiplying the two axes in either panel (A) or (B) creates a “universality score”, whose
297  distribution is shown in panel (C). This score reflects the strength and consistency of pairwise
298  microbial correlations across hosts and ranges from 0 to 1, where a score of 1 indicates ASV-
299  ASV pairs with perfect correlations of the same sign in all hosts. A vertical line indicates the
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300 minimum significant universality score. (D) Correlation networks for the top 2.5% most strongly
301  and consistently correlated ASV pairs across hosts (i.e., the top 2.5% highest universality scores;
302  pairs with rank 1-194 in Table S4). Network edges are colored by the consensus sign of the

303  correlation between that pair (black for pairs where most hosts had a positive correlation; gray
304  for pairs where most hosts had a negative correlation). Node labels indicate the ASV identity in
305 Table S1 and colors represent bacterial families. (E) Significantly enriched bacterial families in
306  the network in panel D (Fisher’s Exact Test p < 0.01 all, FDR <0.05; see Table S5 enrichment
307  statistics for all families). (F) Significantly enriched same-family pairings in the network in panel
308 D (Table S5). Note that for visualization, the estimated log2 odds ratio intervals have been

309 truncated at 5; full estimates are given in Table S5.

310

311

312  The most consistent ASV-level correlations are positive and between phylogenetically

313 related taxa

314 One advantage of our approach, compared to dissimilarity overlap analyses [10], is we
315  can identify the bacterial pairs that exhibit the most consistent relationships across hosts. Hence,
316  we next conducted several analyses to understand why some pairs of ASVs exhibit more

317  consistent correlation patterns across hosts than others. To do so, we created a “universality”

318  score that could be calculated for each ASV pair. The score multiplies the pair’s median

319  correlation coefficient across hosts (y-axis of Fig. 3A, 3B) with its correlation consistency across
320  hosts (i.e., proportion of shared sign; x-axis of Fig. 3A, 3B). The resulting scores range from 0 to
321 1, where a score of 1 equates to perfect “universality” (i.e., all hosts have a correlation

322 coefficient of 1 or all hosts have a correlation coefficient of -1). Applying this score to all pairs
323  of ASVs reveals a right-skewed distribution, reflecting the fact that most bacterial correlations
324  are weak, with inconsistent sign directions across hosts (Fig. 3C; Fig. S4B). However, 49% of
325  these scores were higher than expected by chance (permutation test; FDR < 0.05; Fig. 3C; Fig.
326  S4B), reflecting a signal of universality in our data.

327 Interestingly, the ASV-pairs with the highest universality scores almost always exhibited
328  net positive correlations across hosts, as opposed to net negative relationships, suggesting that
329  the most universal relationships occur between pairs of ASVs that respond similarly to shared
330  drivers or facilitate each other’s growth. For example, among the ASV pairs in the top 1% of
331  universality scores (n=78 pairs), 96.2% exhibited net positive correlations across all hosts, while
332 only 5.6% (3 of 78 pairs) exhibited net negative correlations (Table S4). In the top 2.5% most
333 universal ASV pairs (n=194), 78.4% had net positive correlations across all hosts (Table S4).
334 To visualize these highly consistent positive correlations, we plotted bacterial co-

335  abundance networks connecting the top 2.5% most universal ASV pairs (Fig. 3C). A handful of
336  ASVs were highly connected within this network. The most connected ASV was ASV107

337  (family Lachnospiraceae; Table S1; Table S4), which was connected to 20 other ASVs. Ten
338  other ASVs were connected to more than 10 other ASVs, including six other members of

339  Lachnospiraceae (ASV9, ASV25, ASV30, ASV106, ASV107, and ASV111), two members of
340  Coriobacteria (ASV115 in the family Coriobacteriaceae and ASV30 in the genus Slackia), one
341  member of Bifidobacteriaceae (ASV50), and one member of Prevotellaceae (ASV71). The ASVs
342  involved in these top 2.5% pairs were enriched for the families Atopobiaceae,

343  Bifidobacteriaceae, Coriobacteriaceae, Eggerthellaceae, Erysipelotrichaceae, and

344  Lachnospiraceae (Fig. 3E; Table S5; all Fisher’s Exact Test p-values < 0.01; FDR <0.05).
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345 The network in Fig. 3D revealed clusters of positive connections, often between ASVs
346  assigned to the same family (Fig. 3F). In fact, same-family pairs were enriched by >3-fold in the
347  2.5% most universal taxon pairs (52 pairs observed vs. 19 expected, p < 0.0001). The cluster of
348  interconnected red nodes in Fig. 3D represents members of Lachnospiraceae, and

349  Lachnospiraceae-Lachnospiraceae pairings were 3.7 times more common in this network than
350  overall (30 pairs observed vs. 9 pairs expected Fig. 3F). Bifidobacteriaceae also tended to exhibit
351  within-family ASV pairings (Fig. 3F).

352 The observation that the most consistent correlations often occur among ASVs in the

353  same family raises another question: does the phylogenetic distance between a pair predict the
354  nature of their relationship? In support of the idea that closely related ASVs respond similarly to
355  the environment or facilitate each other’s growth, we found a significant relationship between the
356  universality score of a given pair of ASVs and their phylogenetic distance (Pearson’s r for

357  positively correlated pairs=-0.213; p < 0.0001; Fig. 4A). In contrast, negatively correlated ASV
358  pairs exhibited a weak positive relationship between phylogenetic distance and universality such
359 that closely related taxa tended to be less universal than more distantly related taxa (Pearson’s
360 r=0.049; p=0.004; Fig. 4B). In other words, the strongest and most consistently negatively

361 correlated taxa tend to be only distantly related. Positively correlated, closely related pairs were
362  often members of the families Atopobiaceae, Eggerthellaceae, and Lachnospiraceae, especially
363  pairs where both members belonged to the family Lachnospiraceae (Fig. 4C-D; Table S6).

364

A B
0.8 ° ° ®
® s l
i ] - 05 8 8
L]
° . i
g . {
0.6 °
i Lol %
8 2 5 %
z ' z
= = 03+ :
. Consensus sign
@ o & 9
14 o ® positive
‘s €
=1 S a4 ® negative
0.2 d :
° 4
ﬁ.' 01
SR N I AR A S S A
e ¢ e ¢ &° R &
phylogenetic distance phylogenetic distance
C D '
Atopobiaceae - | —0— !
! Bifidobacteriaceae | ! o
Eggerthellaceae - : —— Bifidobacteriaceae :
Lachnospiraceae 1 I —e— !
1 ]
Prevotellaceae{ ——@— | Lachnospiraceae | 1 ———
| Lachnospiraceae | |
Ruminococcaceae{ ——@—— | I
] |
-2 0 2 0 1 2 3 4 5
log2 odds ratio log2 odds ratio

365
366  Figure 4. The most consistent ASV-level correlations are positive and often between close

367 evolutionary relatives. Pairwise universality scores are plotted as a function of phylogenetic
368  distance between the ASV-ASV pair for consensus positively correlated pairs in red (A) and
369  negatively correlated pairs in blue (B). Phylogenetic distance (x-axis) is binned into 0.1

370  increments; each point represents a given ASV pair, and box plots represent the median and
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371 interquartile ranges for a given interval of phylogenetic distance. Phylogenetic distance is

372  negatively correlated with universality score in positive pairs (Pearson’s correlation for

373  positively associated ASV pairs=-0.213, p-value < 0.0001), and positively correlated with

374  universality score in negatively associated pairs (Pearson’s correlation for negatively associated
375  ASV pairs=0.049, p = 0.004). Panel (C) shows families for the ASV pairs enriched in the closest
376  related (distance < 0.2) and highly universal (score > 0.5) pairs. Panel (D) shows enriched

377  family-family pairings for the same subset of closely related and highly universal ASV pairs in
378  panel C. Note that for visualization, the estimated log2 odds ratio intervals have been truncated
379  at5, which excludes 5 pairs with high uncertainty in the odds ratio; full estimates are given in
380  Table S6.

381

382

383  Genetic relatives, and hosts with similar microbiome compositions, have more similar
384  bacterial correlation patterns

385 We next asked whether host-level variables, including sex, social group membership,
386  genetic relationships, and baseline gut microbiome composition predict host differences in

387  patterns of bacterial correlation. Consistent with prior research [10], the strongest predictor of
388  distance in bacterial correlation patterns was distance in terms of baseline microbiome

389  composition. Indeed, a Mantel test correlating compositional distance of average microbial
390  profiles (as Aitchison distances between the per-host mean of centered log-ratio-transformed
391  samples) with distance in microbial correlation patterns between hosts (via Frobenius distance)
392  revealed that 34% of the variation in correlation patterns was explained by baseline microbiome
393 community composition (Mantel: r’=0.343; p=0.001; Fig. 5A; Table S7).

394 Consistent with prior research in our population, which finds widespread heritability of
395  the abundance of individual gut microbiome taxa [43], we also found a weak but significant
396 relationship between host genetic distance and the distance in microbial correlation patterns
397  between hosts. Hosts who were more distantly related based on a multigenerational pedigree
398  have slightly less similar ASV-level correlation matrices, as measured by Frobenius distance
399  (Fig. 5B; Table S7; 1’=0.025; Mantel p-value=0.001). We found no evidence that members of
400  the same social group or sex exhibit especially similar microbial correlation patterns (social
401  group: F=1.994; p=0.106; sex: F=1.784; p=0.187; Table S7).
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403

404  Figure S. Baboons with more similar bacterial correlation patterns are more likely to have
405 more similar baseline microbiome compositions and are more likely to be genetic relatives.
406  In panel (A) each point is a pair of hosts; the y-axis shows the similarity of these hosts’ bacterial
407  correlation patterns (via Frobenius distance) as a function of their microbiome compositional
408  similarity (via Aitchison distance; Mantel: r=0.343; p=0.001). Colors show samples from pairs
409  of baboons living in the same social group and grey dots are pairs of animals living in different
410  social groups; there is no detectable effect of social group on correlation pattern similarity. Panel
411  (B) shows the same Frobenius distances as a function of host genetic dissimilarity (1 — the

412 coefficient of genetic relatedness between hosts; R*=0.025; p-value Mantel test 0.001). Colors
413  reflect pairs of hosts living in the same social group, as in panel A.

414

415

416  Universality in Amboseli is not solely explained by seasonality or synchrony

417 Without experiments, we cannot disentangle whether our observed bacterial correlations

418  are due to ecological interactions between bacterial species (e.g., mutualisms, direct or indirect
419  competition etc.) or to shared responses to environmental gradients. While our modeling

420  approach accounts for seasonal changes in the first three principal components of the baboons’
421  diets, to identify other potential effects of season we re-estimated the ASV-ASV correlation

422  matrix after removing an oscillating seasonal trend from the observed log-ratio abundance for
423  each ASV (Fig. S8). Removing this trend had little effect on the ASV-ASV correlation matrix;
424  the variance explained by the seasonal oscillation is small for all ASVs (median 1.1%,

425  minimum=0%, maximum=6%) and the between-ASV correlation estimates were almost

426  identical to those derived from our original model (Pearson’s r=0.979, p<0.0001; Fig. S8C). We
427  also tested whether pairs of ASVs with especially consistent between-host correlation patterns
428  tend to show large seasonal changes in CLR abundance. To do so, we focused on 13 families that
429  exhibit significant seasonal changes in CLR abundance, based on a previous analysis of the same
430  data set [42]. While ASV pairs in which one member belongs to one of these significantly

431  “seasonal” families are slightly more universal, this effect is small (difference of 0.026,

432 p<0.0001 vs. pairs where 0 or 1 partner were “seasonal”’; Fig. S9).
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433 Because the high level of universality we observed was not well explained by season, we
434  also tested whether universality is explained by synchronized dynamics. We reasoned that if one
435  member of an ASV pair shows highly synchronized dynamics across different hosts, and the
436  other member is also strongly synchronized across hosts, then universality could be an inevitable
437  outcome of each member of the pair’s strong synchrony. We quantified synchrony as the degree
438  to which the observed dynamics of a single, focal ASV are consistent across hosts, such that high
439  synchrony (near 1) implies that the timing and direction of shifts in log-ratio ASV abundance are
440  1identical across hosts in the population (see Methods; Fig. S10). Estimates of synchrony ranged
441  from 0.019 to 0.477 (median=0.196). Interestingly, ASVs in the 13 “seasonal” families are not
442  more likely to have high synchrony than other families (ANOVA, p=0.358; Fig. S11). However,
443  the average synchrony of an ASV-ASV pair did predict that pair’s universality score (r=0.264,
444 p<0.0001): ASV pairs that are more synchronous on average are also more likely to show

445  consistent correlations across hosts. These high synchrony, high universality pairs are highly
446  enriched for Bifidobacteriaceae-Bifidobacteriaceae and Lachnospiraceae-Lachnospiraceae

447  family pairs (Fig. S12).

448
449  Baboon microbiomes are not substantially more “universal” than human microbiomes
450 Finally, to investigate the generalizability and applicability of our observations in

451  baboons, we turned to two publicly available gut microbial time-series data sets: daily samples
452  from 34 adults over a 17-day span (483 total samples; hereafter “Johnson et al.” [34]), and the
453  DIABIMMUNE cohort that consists of 285 samples, collected monthly over 3 years, from 15
454  infants and toddlers living in Russian Karelia ([44]; at the time of writing, these cohorts were the
455  only publicly available data sets we could find that included large numbers of repeated samples
456  from the same subjects). Because baboons in Amboseli experience less heterogeneity in their
457  environments and diets than humans [42, 43], we expected they would exhibit greater

458  consistency in microbial correlations than either human cohort. Note that we compared each host
459  cohort’s universality at the family/order/class level because this taxonomic level offered the

460  greatest comparative power (10.1% of families/orders/classes overlap between the cohorts

461  compared to just 3.1% of genera and no ASVs).

462 Contrary to our expectations, we find comparable evidence of universality in baboons
463  and the DIABIMMUNE infant/toddler cohort, but weak universality in Johnson et al. (Figs. 6A-
464  6D). Bacterial families in the DIABIMMUNE cohort yielded universality scores slightly higher
465  than those observed in Amboseli (25th percentile=0.132, median=0.206, 75th percentile=0.316
466  for DIABIMMUNE; 25th percentile=0.088, median=0.150, 75th percentile=0.234 for

467  Amboseli), driven by relationships between families that were stronger on average than those
468  estimated for baboons (median DIABIMMUNE family-family correlation strength=0.270;

469  median Amboseli family-family correlation strength=0.181). The high level of consistency

470  between both infants/toddlers and baboons in one wild population is surprising and may point to
471  the similar sampling intervals for these cohorts. Both cohorts were sampled approximately

472  monthly, while Johnson et al.’s subjects were sampled daily [17, 48]. Median correlation

473  strengths and universality scores for the Johnson et al. [34] cohort were substantially lower

474  (median correlation=0.099; 25th percentile universality=0.050, median=0.076, 75th

475  percentile=0.111) than the DIABIMMUNE cohort or the baboons.

476 Despite considerable differences in the hosts, time scales, and designs of these studies, all
477  three data sets exhibited a positive correlation between correlation strength and sign consistency
478  for family pairs (Fig. 6C). This correlation was strongest in the Amboseli baboons (Spearman’s
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479  1=0.844; p<0.0001); weaker in the DIABIMMUNE cohort (r=0.686; p<0.0001) and weakest in
480  Johnson et al. [34] (r=0.644; p<0.0001). Further, the observation that the most universal family-
481  family associations skew positive in baboons was replicated in the infant data set, but not in

482  Johnson et al. [34]. All of the top 1% and top 2.5% most universal family pairs (6 of 6 and 16 of
483 16 pairs, respectively) are positively associated in the DIABIMMUNE cohort, compared to 86%
484  and 71% of these pairs in the Amboseli baboons.

485 Finally, we examined the relationship between universality scores for family pairs that
486  overlapped between Amboseli and DIABIMMUNE (n=45 pairs), and between Amboseli and
487  Johnson et al. [34] (Fig. 6D; n=21 pairs; only 10 family pairs overlapped between all three data
488  sets). For these overlapping pairs, scores in the Amboseli data predicted scores for the same

489  family-family pair in the DIABIMMUNE data set (r=0.449, p=0.023). The association between
490  scores in the Amboseli data and the Johnson et al. data was negative, but not statistically

491  significant (r=-0.222, p=0.071).
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493

494  Figure 6. Patterns of universality in baboons are recapitulated in the DIABIMMUNE

495  study. Following Fig. 2A, Panels (A), (B), and (C) show the Pearson’s correlation coefficients
496  of CLR abundances between all pairs of families (x-axis) in two time series data sets from

497  human subjects: (A) the Amboseli baboons, (B) the DIABIMMUNE cohort, consisting of 15
498  infants/toddlers sampled monthly over 3 years in Russian Karelia [44], and (C) the diet study of
499  Johnson et al. [34], including 34 adults sampled daily over 17 days. Following Figs. 3A and B,
500  panel (D) shows the median correlation strength of each family pair’s correlation coefficient
501 across hosts as a function of the consistency in direction of that pair’s correlation across hosts
502  (i.e., the proportion of hosts that shared the majority correlation sign, positive or negative).

503  Median correlation strength is low overall in Johnson et al. (median=0.099), whereas the
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504  Amboseli baboon and DIABIMMUNE infant/toddler cohorts show similar relationships between
505 median correlation strength and the proportion shared correlation sign across hosts (Spearman’s r
506  in Amboseli=0.844; Spearman’s r in DIABIMMUNE=0.686). (E) Universality scores for

507  overlapping family pairs from the infant/toddler subjects of the DIABIMMUNE study and

508  baboons in the Amboseli study are significantly correlated (r=0.449, p=0.0226). Panel D shows
509  universality scores for overlapping gut bacterial family pairs in the Amboseli baboon and

510 DIABIMMUNE infant/toddler data sets (black outlines), as well as the Amboseli and Johnson et
511  al. data sets (gray outlines) on opposing axes. Color represents the taxonomic identities of the
512 family pairs.

513

514

515  Discussion

516 Do different hosts have different microbiome “ecologies”? Answering this question is

517  essential for predicting gut microbiome community assembly and dynamics, and for

518  understanding the degree to which the species interactions that govern these processes are shared
519  across hosts. Here, we overcome the constraints of previous cross-sectional analyses by

520  measuring bacterial correlations directly from longitudinal, multi-host microbiome time series.
521  Our results provide independent confirmation for prior studies that tested for universal gut

522 microbial relationships via dissimilarity overlap analyses (DOA; [10, 18-20, 36]). We confirm
523  that bacterial correlation patterns are largely shared across hosts in the same population, as

524  opposed to idiosyncratic to individual hosts, and that hosts with the most similar bacterial

525  correlation patterns are those with the most similar baseline microbiome compositions—a core
526  assumption of DOA. Because prior analyses of these microbiome time series find that each

527  baboon exhibits a highly personalized microbiome composition and dynamics [42], our findings
528  suggest that such compositional personalization, which is also common in humans [22-26, 31-
529  35], cannot be easily explained by personalized microbiome ecologies. Further, in terms of

530  microbiome therapeutics, our results suggest that widely applicable microbiome interventions
531 may be more attainable than personalized microbiome compositions would suggest.

532 By measuring bacterial correlations in multiple hosts, we were also able, for the first

533 time, to pinpoint which pairs of bacterial taxa exhibit the most consistent relationships across
534  hosts. Surprisingly, we found that the most universal bacterial pairs are almost always positively
535  (as opposed to negatively) correlated. Positive bacterial interactions have been the subject of
536  recent controversy [9, 15, 49]. Ecological theory predicts that strong positive interactions should
537  be rare in natural communities because species interdependencies can hamper community

538  assembly and stability [14, 17]. This theory is supported by experiments that directly measure the
539  effects of one bacterial species on another’s growth [50-53] (but see [49]). Our results suggest
540 that positive bacterial correlations are indeed uncommon in intact, unmanipulated microbiomes:
541  significant positive relationships made up just 8.8% of all of the pairwise correlations we

542  observed. However, when they occur, they often contain taxa that belong to the same bacterial
543  families or are otherwise phylogenetically close, suggesting they may be members of the same
544  ecological guild and respond similarly to shared resources and other environmental drivers. This
545  pattern may partly explain the abundance of positively associated Lachnospiraceae pairs in our
546  data, a family in which positive, within-family interactions are known to contribute to

547  hydrolyzing starch and other complex carbohydrates, and ultimately the regulation of short chain
548  fatty acids (SCFAs) [54-56].
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549 These observations—that bacterial correlation patterns are largely consistent across hosts,
550 and that the most consistent correlations are typically positive—were also apparent in one human
551  data set, despite differences in study design, host age, and time scale. Specifically, both the

552 Amboseli baboons and the DIABIMMUNE infant/toddler cohort from Russia [44] exhibit

553  comparable levels of universality. This outcome was surprising, given that baboons are expected
554  to experience less heterogeneity in their environments and diets than human children from birth
555  to age three years—even if those infants are from the same population (Russian Karelia). We
556  also found that the most universal bacterial families in baboons tended to be highly universal in
557  human infants/toddlers. Hence, some bacterial families may exhibit consistent microbial

558  relationships within hosts, across host populations, and across host species. Finally, a recent,

559 independent study also identified consistent bacterial correlation patterns across four different
560 populations of human hosts [9]. While this study lacked resolution at the level of individual

561  hosts, it did identify a highly conserved network of positively associated and closely related

562  microbes similar to those we identify in Fig. 3. The authors speculate that these conserved

563  associations may indicate strong partner fidelity or obligate partnerships.

564 We did, however, fail to detect universality in a second human data set reported in

565  Johnson et al. [34], in which subjects were sampled daily, rather than weekly or monthly. The
566  lack of universality in Johnson et al. [34] may be due to this difference in sampling time scale,
567  especially if daily abundances and correlations are noisier than covariances modeled over the
568  longer time scales in our study. In support, many fewer of the microbial correlations were

569  stronger than random chance in Johnson et al. as compared to the baboons or children in the

570 DIABIMMUNE cohort. The subjects in Johnson et al. [34] also consumed substantially different
571  diets from each other, perhaps more so than the children in the DIABIMMUNE cohort, and this
572 inter-host difference in diet may reduce the universality of microbial correlations.

573 In terms of understanding microbiome ecology, an essential caveat to our findings is that
574  the correlation patterns we observed could reflect either direct or indirect relationships, or

575 uncontrolled environmental gradients, and they cannot be mapped directly to standard categories
576  of pairwise ecological interactions, such as mutualism, commensalism, amensalism, exploitation,
577  or competition. Experimental approaches that directly measure the effects of one species on

578  another’s growth in vitro are better suited to characterizing these relationships [49-53]. However,
579  even then, caution is required because a microbe’s community and environmental context can
580  have important consequences for its metabolism, functional capacities, and relationships with
581  other microbes. We surmise that most of the correlation patterns we observed are not attributable
582  to environmental gradients because our signature of universality persisted, even when we

583  accounted for diet, oscillating seasonal drivers, and microbial synchrony between hosts. Hence,
584  some of correlations we observed may derive from microbial interactions themselves, rather than
585  shared environmental drivers creating shared dynamics.

586 Our finding that correlations between gut microbial taxa are largely consistent across

587  hosts is important, considering that many studies find highly personalized gut microbial

588  compositions and single-taxon dynamics [27-29]. Personalized compositions and dynamics in
589  the gut microbiome are commonly attributed to horizontal gene transfer and functional

590 redundancy, which may lead some bacteria to perform different functions and exhibit different
591  environmental responses in different hosts. Our results suggest these processes do not

592  substantially alter pairwise microbial associations in the gut, at least for highly prevalent taxa at
593  the level of ASVs and above, and on the time scales in our study (on the order of weeks and

594  months). Because ASVs encompass multiple species and strains, reflecting the functional
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595  diversity of these taxa, their dynamics may be somewhat buffered against idiosyncrasies driven
596 by horizontal gene transfer and functional redundancy, which affect single strains more strongly
597  than whole species or genera. If so, personalized gut microbial compositions may emerge instead
598  from personalized assembly processes [57, 58], the fact that most microbial relationships are
599  weak, and the effects of rare, host-specific taxa (which were necessarily excluded from our

600 analyses). A logical next step would be to confirm the stability of the microbial correlations we
601  observed using culture-based approaches, which will help reveal the stability of these

602  correlations in vitro and whether they can be attributed to direct effects of one microbe on

603  another’s growth.

604

605  Methods

606  Study population and microbiome profiles

607 The baboon hosts in this study were members of the Amboseli baboon population, which
608  has been studied by the Amboseli Baboon Research Project since 1971 [41]. The microbiome
609  compositional profiles are derived from V4 16S rRNA gene amplicon sequencing data that were
610 previously analyzed in [42, 43]. Our analyses use 5,534 of these profiles from 56 especially well-
611  sampled baboons, collected over a 13.3-year span between 2000 to 2013 (Fig. 1B). Each baboon
612  host in this data set was sampled at least 75 times (mean number of samples=99; range=75 to
613 181 samples; median number of days between samples within hosts=20 days; 25th percentile=7
614  days, 75th percentile =49 days). DNA was extracted from each sample using the MoBio and
615 QIAGEN PowerSoil kit with a bead-beating step. All samples were sequenced on an Illumina
616  HiSeq 2500, with a median read count of 48,827 reads per sample across all 5,534 samples

617  (range=982 to 459,315 reads per sample). Further details of sample collection, DNA extraction,
618  and sequencing can be found in [42, 43].

619
620  Filtering of low-abundance taxa
621 Data sets of per-sample taxonomic counts were produced at each of three taxonomic

622  levels, from finest to coarsest: ASV, taxonomic assignments finer than phyla, but above the

623  genus level (e.g., class, order, family), and phylum. At the intermediate and coarsest levels, taxa
624  were agglomerated using phyloseq’s tax _glom() function [59] such that all sequence variants
625  sharing taxonomic identity at that level were collapsed into a single taxon (e.g. family

626  Bifidobacteraceae).

627 To reduce sparsity in the data set, remove 16S sequences that could represent gene

628  duplications, and focus only on taxa that were prevalent in all 56 hosts, we further filtered as
629  follows: (1) in each of the three taxonomically defined data sets (i.e. ASV, taxa assigned to

630  family/order/class, and phylum), we identified taxa present in a minimum of 20% of each host’s
631  samples; (2) if a given ASV was >99% genetically similar to another ASV we removed the least
632  abundant of the pair to minimize the risk of including duplicate 16S rRNA gene copies from the
633  same taxa [47]; and (3) counts associated with all other taxa were combined into a dummy

634  category, hereafter referred to as “other.” The “other” category therefore includes a combination
635  of rare and host-specific gut microbes. This category was retained in the data set (although not
636  analyzed directly) because “other” counts still inform the precision of the observed relative

637  abundances in our model. Characteristics of the filtered data at each taxonomic level are

638  provided in Tables S1-S3.

639

640
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641  Modeling log-ratio dynamics

642 Estimates of taxon-taxon covariance were obtained from the basset model of the “fido”
643  package in R [46]. Data for each host took the form of a D X N count matrix, where D gives the
644  number of taxa and N the number of samples collected for a given host. The following model
645  was fit to each host’s count matrix (Y) where Y; represents the counts associated with a single

646  sample:
647

Y; ~ Multinomial(rr;)

m; = ALR™'(n;)
N ~ Normal(A, Z,1)

A~ GP(O[X], 2, T[X])

Y ~ inv-Wishart(Z, v)
648
649 The observed relative abundances are considered to be drawn from a multinomial

650  distribution parameterized by a set of proportions () which have an analogous representation in
651  the additive log-ratio. The dynamics of these log-ratio abundances (1)) are described by what

652  amounts to a state space model in the 3" and 4™ lines of the specification above, where a

653  Gaussian process models the evolution of a “latent” state. The matrix ¥ captures covariation in
654  log-ratio abundances (the D rows of the observed count matrix). Sample-sample covariation

655  arising from nearness in time (autocorrelation) is modeled by the kernel matrix I". Both the

656  kernel matrix and the expected baseline log-ratio abundances (@) are parameterized by a set of
657  time-varying covariates X which included the day of sampling (where the date of first sample is
658  defined as zero) and the first three principal components of diet composition, calculated

659  following [42, 43] as the diet all juveniles and females living in the host’s social group in the 30
660  days prior to sample collection. All group members consume highly similar diets as they travel in
661  atogether across the habitat, encountering the same resources at the same time [42, 43]. These
662  data are collected via random-order behavioral observations collected two to four times per week
663  on adult females and juveniles in each social group. Parameterization of the kernel matrix is

664  further described in the Supplement.

665 Posterior inference on this model is performed as described in [46] and yields estimates
666  of the distributions of parameters necessary to reconstruct trajectories for all log-ratio taxa across
667  sampling time. In particular, we extract the posterior estimates of one such parameter, X, the

668  covariance of additive log-ratio (ALR) taxa, from the fitted models for each host. We convert
669  these covariance matrices over ALR taxa to the centered log-ratio (CLR) form (a simple linear
670  transformation of the matrix). We then normalize estimated CLR covariance matrices to Pearson
671  correlation matrices in R using the built-in cov2cor() function.

672
673  Calculating universality scores for taxon-taxon pairs
674 We devised a universality score for each pair of taxa intended to capture the strength and

675  consistency of taxon-taxon correlations across hosts. The majority direction is negative

676  otherwise. This score identifies the sign of the taxon-taxon correlation (positive or negative) that
677  is most common across the 56 hosts (i.e., occurs in >50% of the 56 hosts in the data set). The
678  direction of this sign is the “majority correlation sign.”

679 For a pair of taxa i, let ntinal be the number of hosts with CLR correlation over pair i with
680  the majority correlation sign for that pair and let n be the total number of hosts. Let R be the
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681  subset of estimated CLR correlations for pair i across hosts with the majority sign. The
682  universality score u; for that taxon-taxon pair is then given by

683
maj
n, )
u; = 0 x median(R)
684
685 This score is the product of the median CLR correlation across hosts and the proportion

686  of hosts with the majority correlation sign, and is bounded between 0 and 1. Scores near 1

687 indicate strong universality and near-zero scores indicate weak universality. Strong universality
688  can only be achieved by taxon-taxon correlations that are both large in magnitude and highly
689  concordant across hosts.

690
691  Defining a cutoff for significant bacterial correlations and universality scores
692 We identified correlations stronger than expected under random simulations using

693  permutations of the data set to define empirical null distributions (Fig. S4A). Specifically, we
694  permuted the data by randomly shuffling taxon identity within each sample 10 times for each of
695  the 56 hosts. This procedure maintained relative abundance patterns within a sample but

696  scrambled the covariance patterns of relative abundances. The distributions of ASV-level CLR
697  correlations in the original and permuted data are shown in Fig. S4A. We identified “significant
698  correlations as those below FDR < 0.05 (Benjamini-Hochberg), testing against the permuted
699  data.

700 We applied an analogous permutation test to derive a null distribution for taxon-taxon
701  universality scores. In a single iteration of this permutation procedure, rows and columns of the
702  observed taxon-taxon correlation matrix for each host were shuffled, maintaining the distribution
703 over observed correlations at the host level but randomizing the identity of taxon pairs across
704  hosts. This procedure was repeated 100 times and universality scores were calculated from each
705  of these shuffled data sets to give a pseudo-null distribution of universality scores. The observed
706  and null distributions of universality scores at the ASV level are shown in Fig. S4B. We used
707  this empirical null distribution to identify universality scores significantly greater than expected
708  (FDR <0.05).

709

710  Estimating the ratio of population-level to host-level contributions to observed taxon-taxon
711  correlation patterns

712 We used simulations to estimate the degree of shared “signal" between hosts in terms of
713 taxon-taxon correlations. Each host’s “observed correlations” were defined as the basset

714  estimated maximum a posteriori (MAP) estimates of centered log-ratio ASV correlations for that
715  host. We computed the mean correlations across the population using the function estcov() from
716  the shapes package in R [60] and estimated a host-specific contribution to the observed

717  correlations as the residual difference between per-host observed and these mean correlations.
718  That is,

9

719
observed host correlations = mean population correlations + host residual
720
721 For each host, we simulated a hypothetical set of composite taxon-taxon correlations as a
722 convex combination of mean and host residual:
723
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composite correlations = (1 — a) X mean population correlations + a X host residual
724
725 A cartoon example of this procedure is given in Fig. S7TA. For example, one such
726  simulated set of taxon-taxon correlations might constitute a mixture of 90% host contribution
727  and 10% shared population-level "signal" (a=0.9). Alternatively, a small host-level contribution
728  might have 0=0.1.
729 For each host, we iterated over increasing proportions of host-level contribution (from
730 0% to 100%), generating simulated composite correlation matrices according to the formula
731  above. We compared these simulated patterns to those observed for the same host, reasoning that
732 simulated correlation matrices that minimize the distance between the observed correlation
733 matrices and the simulated mixtures provide the best description of the underlying true mixture.
734
735  Estimating synchrony
736 Seasonal autoregressive models were fit independently to each CLR-transformed ASV
737  with arima() in R, using covariate matrices which included per-host intercepts and an oscillating
738  periodic trend to mimic wet-dry season oscillation. For each ASV, all hosts’ samples were
739  combined into a single series, yielding per-ASV models of CLR dynamics. This procedure is
740  detailed in the Supplemental Methods. Residuals were extracted from these fitted models as
741  seasonally “de-trended” data and CLR correlation matrices across ASV pairs were estimated
742 directly from these adjusted data using cov() in R (Fig. S9).
743 “Synchrony” was estimated by sampling aligned microbiome compositional profiles
744 across hosts. We identified all samples collected from pairs of hosts within 1 calendar day. For
745  instance, a sample collected from host FO1 on 2011-03-14 could pair with a sample from M04 on
746  2011-03-15. For all possible pairs of hosts, we selected one such aligned pair of samples,
747  yielding 1540 joint observations of gut microbiome composition. For each such paired sample,
748  one host was arbitrarily designated as host A and the other as host B. The “synchrony” of a given
749  taxon was estimated as the correlation of a taxon’s model-inferred log-ratio abundance across the
750  set of samples from hosts labeled A and the set of samples from hosts labeled B. The cartoon in
751  Fig. S10 illustrates this sample pairing.

752
753  Enrichment analyses
754 We performed enrichment analyses for bacterial families and family pairs in several

755  settings. In each case we computed the frequency of ASVs belonging to a given family, or of
756  pairs belonging to a family pair, on a subset of the data. These were compared to the overall

757  frequencies of ASVs belonging to those families or pairs.

758 To determine the enrichment of families and family pairs in the most universal ASV pairs
759  (Fig. 3E and 3F), we calculated the frequencies of ASV families and pairs in the top 2.5% of
760  pairs by universality scores. Significant enrichment of families or pairs was identified using a
761  one-sided Fisher's Exact Test. Multiple test correction was applied as a Benjamini-Hochberg

762  adjustment to observed p-values.

763 Phylogenetic distances between ASV sequences were calculated with the dist.ml function
764  in the “phangorn” package in R [61] using default settings for amino acid substitution rates. In
765  Fig. 4C and 4D, low phylogenetic distance/high median correlation strength pairs were

766  identified as those with phylogenetic distances of less than 0.2 and median correlation strengths
767  of greater than 0.5. Again, significance of these was evaluated against overall frequencies of the
768  same families and pairs.
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769 To determine enrichment of low synchrony/high universality or of high synchrony/high
770  universality families and pairs (shown in Fig. S12A and 12B), we defined the low

771  synchrony/high universality cohort as those ASV pairs with synchrony estimates of less than 0.3
772  and universality estimates greater than 0.4. We defined the high synchrony/high universality

773  cohort as those ASV pairs with synchrony greater than 0.3 and universality greater than 0.4. The
774  frequency of these subsets was evaluated against the overall frequencies of the same families and

775  pairs.

776

777  Evaluating explanatory factors

778 Variation in taxon-taxon correlation patterns explained by kinship and baseline

779  composition. To evaluate a possible explanatory effect of distances in terms of kinship or
780  baseline gut bacterial composition on distances in terms of taxon-taxon correlation patterns, we
781  applied Mantel tests. However, because population structure can lead to anticonservative p-
782  wvalues [62], we also developed a second simulation-based procedure for evaluating the
783  significance of baseline composition, using a permutation procedure of our own design. Firstly,
784  baseline composition for each host was estimated by transforming all of a given host’s samples
785  to the centered log-ratio representation after adding a small fraction (0.5) to remove zeros. The
786  vector of per-taxon averages of these CLR values was used as that host’s “baseline” CLR
787  composition. The Euclidean distances between hosts in terms of these per-host baselines were
788  compared against distances in terms of correlation patterns to give an r* value.
789 In the case of the customized permutation test, this observed result was evaluated against
790  apseudo-null distribution computed in the following way. The identity of each taxon in the
791  baseline composition was shuffled for each host independently. Euclidean distances across these
792  shuffled baselines were computed and an r* value calculated for these distances against the
793  observed distances computed from taxon-taxon correlation patterns. This procedure was repeated
794 1000 times to give a distribution of “random” r* values we used as an empirical null.
795 Variation in taxon-taxon correlation patterns explained by sex and social group. To test
796  whether host sex or social group membership predicted similarity in terms of correlation
797  patterns, we used an ANOV A-like strategy. We calculated the F-statistic, a ratio of between- to
798  within-group variation, on the observed correlation patterns (strictly, the vectorized CLR taxon-
799  taxon correlation matrices; Z in the equation below) and segmented samples into groups defined
800 by either sex or social group. The F-statistic was calculated as
801

between-group variation Kn(Z, -2)3?/K—-1

within-group variation K 27;1 (Zij _ Zl)z /(N —K)
802
803  and significance was evaluated via an F-distribution parameterized by the appropriate degrees of
804  freedom. Here K represents the number of groups (e.g. two, in the case of sex) and N, the total
805  number of hosts. The matrix Z, consists of the mean taxon-taxon correlations for group i and Z,
806  the population mean correlations.

807
808  Comparison to microbiome time series from human populations
809 We compared our findings to those generated from two human data sets: the

810 DIABIMMUNE project’s infant/toddler cohort from Russian Karelia [44] and the adult diet-
811  microbiome association study of Johnson et al. [34]. In both cases, count tables were obtained
812  from the project’s public website and subject identity and sampling schedules were available in
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813  the associated metadata. We compared each host cohort’s universality at the family/order/class
814  level because this taxonomic level offered the greatest comparative power (10.1% of

815  families/orders/classes overlap between the cohorts compared to just 3.1% of genera and no

816  ASVs). The basset model from the “fido” R package [46] was fit to each subject’s data set using
817  model settings analogous to those employed on the Amboseli baboon series: first, only taxa with
818  non-zero counts in at least 20% of all subjects’ series were retained; second, Gaussian process
819  kernel bandwidth settings were chosen in such a way as to encode an expectation of minimum
820  autocorrelation between samples at a distance in time of 90 days. We extracted centered log-ratio
821  estimates of taxa at the family level in the same manner as described previously for the Amboseli
822  data set.

823

824  Data and code availability

825  16S rRNA gene sequences are available on EBI-ENA (project 590 ERP119849) and Qiita (study
826  12949). Analyzed data and code is available on GitHub at:

827  https://github.com/kimberlyroche/rulesoflife

828
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