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Abstract

Product transitions involve the replacement of products currently being produced
and distributed by a firm with new products throughout the firm’s supply chain. In
high technology industries effective management of product transitions is crucial
to long-term success, and involves the coordination of multiple product develop-
ment units and a manufacturing unit by a product division serving a particular
market. Since the different units are organizationally autonomous, and the prod-
uct division does not have access to their detailed technological constraints and
internal operating policies, a decentralized solution is required. We develop a
price-based coordination framework using the subadditive dual of a mixed-integer
linear program that seeks to maximize the number of units whose proposed plans
are included in the final solution. The proposed approach yields superior solutions
to a linear-programming-based branch-and-price approach within the same comput-
ing budget. We discuss the broader applicability of this integer column generation

and economics.
KEYWORDS

duality

1 | INTRODUCTION

Product transitions, also referred to as product rollovers (Bil-
giner & Erhun, 2011; Katana et al., 2017), replace a set of
products that are currently being produced and distributed
by a firm with new products throughout its supply chain
to improve market share by providing enhanced products
at competitive prices. In high technology industries such
as semiconductor manufacturing, effective management of
product transitions is crucial to long-term success (Hendricks
& Singhal, 2008; Levinthal & Purohit, 1989; Padmanabhan
et al., 1997). Intel’s dominant position in the microprocessor
industry is enabled by its ability to effectively manage succes-
sive product transitions over an extended period. Both indus-
trial customers, who use semiconductor devices in industrial
and consumer products, and the end users who buy these

approach, and suggest directions for future work.
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products have come to expect frequent releases of new prod-
ucts with improved features and price; the product life cycle
of a new device produced by Intel is in the order of 18 months
(Rash & Kempf, 2012). A large firm like Intel, serving mul-
tiple markets with different product lines, may have tens of
product transitions ongoing at any time.

Effective management of product transitions requires coor-
dination of several organizational units across the firm. At
Intel, market segments such as servers or mobile devices
are each served by specialized product divisions. A product
integrates several features such as a microprocessor core, a
three-dimensional graphics processing engine, multichannel
audio signal processors, and so on. Each product division
plans which existing and new features will be integrated into
distinct products, and when these products will be intro-
duced for sale in the market it serves (Rash & Kempf, 2012).
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To execute this plan, a product division interacts with two
other units: product engineering and manufacturing (MFG).
Product engineering is responsible for converting the product
division’s rough specifications into detailed circuit designs
that can be produced with available manufacturing technolo-
gies. Each product in development is treated as a project and
assigned to the skilled engineers and computing resources
required, forming a product development group (PDG). The
product development process alternates between periods of
design activity carried out by the PDG and prototype fabri-
cation by MFG. At the end of each period of design activity,
physical prototypes are fabricated by MFG and evaluated by
the PDG to identify the design problems and manufactura-
bility issues. Several such cycles of design activity, prototype
fabrication, and design refinement may be required before
the design is verified, allowing the product to be manufac-
tured for sale into the market. Timely completion of product
development depends on MFG providing factory capacity for
prototype fabrication to the PDGs when needed. MFG must
also allocate factory capacity to meet current orders and build
inventory for the future in order to generate the revenue that
keeps the firm financially viable.

While each product division seeks to maximize its prof-
itability over a (long) planning horizon, it does not have
access to or control over the detailed technological con-
straints governing the resource allocation decisions made by
the MFG and the PDGs, which are autonomous organiza-
tions. This combination of extensive decision autonomy and
distribution of technical knowledge across different func-
tional units creates a decentralized decision environment
where a centralized, corporation-wide decision model is nei-
ther practical nor desirable. A key difficulty in developing a
decentralized procedure for this problem is the interdepen-
dent nature of the decisions made by MFG and the PDGs.
To schedule its development activities effectively, each PDG
needs to know how much prototyping capacity MFG can
assign to it in each period. MFG, in its turn, needs to
know when the PDGs will complete product development
activities, making new products available for sale into the
market.

Since the problem in its full generality is quite complex, we
consider the problem faced by a single product division inter-
acting with a single MFG unit and multiple PDGs, and pro-
pose a decentralized approach to obtain implementable solu-
tions. The product division serves as a coordinator between
MFG and PDGs. PDGs are offered a reward for completing
the development of new products, and charged a price per unit
for the prototyping capacity they use in each period. Similarly,
MFG is compensated for the prototyping capacity allocated
to the PDGs in each period. The proposed procedure seeks to
achieve coordination between the PDGs and MFG by itera-
tively adjusting rewards and prices until the product division’s
fill rates are met, all units’ resource constraints are satisfied,
and no product is produced for sale before its development
activities have been completed.

Our decentralized approach uses an integer column genera-
tion procedure (Klabjan, 2007) in which we solve a restricted
master problem (RMP) at each iteration as a mixed-integer
linear program (MILP), instead of its LP relaxation. New
columns, corresponding to proposals for factory capacity allo-
cation (from MFG) and product development schedules (from
the PDGs) are identified using reduced costs computed from
an optimal subadditive dual function of the RMP. Such pro-
cedures are usually not computationally viable for general
MILPs since a strongly NP-hard inverse integer optimization
problem must be solved to obtain the optimal subadditive dual
function (Guzelsoy & Ralphs, 2007). However, an optimal
subadditive dual function for the RMP in our problem can be
calculated efficiently.

The next section reviews previous related work. We present
a formal problem statement in Section 3 and briefly review
subadditive duality for MILPs in Section 4. Section 5 outlines
the integer column generation algorithm we use as the basis
of a coordination scheme for the product transition problem.
Section 6 describes computational experiments and results,
while Section 7 summarizes our findings and discusses some
directions for future work.

2 | LITERATURE REVIEW

2.1 | Product transitions

Several aspects of managing product transitions are addressed
in the literature (Bilginer & FErhun, 2011; Billington
et al., 1998; Lim & Tang, 2006) including capacity man-
agement under technological uncertainty (Angelus & Por-
teus, 2002; Bilginer & Erhun, 2015; Li et al.,, 2014;
Rajagopalan et al., 1998; Wu et al., 2005) and supply con-
straints (Ho et al., 2002; Keith et al., 2017; Kumar &
Swaminathan, 2003), the effect of initial investment on
ramp-up-time and time-to-market of a new product (Carrillo
& Franza, 2006; Wu et al., 2009), industry clockspeed (Car-
rillo, 2005; Druehl et al., 2009; Souza et al., 2004), and
cost structure (Souza, 2004). Klastorin and Tsai (2004), Seref
et al. (2016), and Seidl et al. (2019) study the interaction
between pricing of successive products and the timing of the
new product introduction, while Liang et al. (2014), Lobel
et al. (2016), and Liu et al. (2018) examine how strategic
waiting by customers affects the timing of product transi-
tions. Shen et al. (2014) examine the interactions between
pricing, production and inventory policies for new product
introductions with limited capacity using a diffusion model
of demand where production shortages affect future demand.
Koca et al. (2010) examine the impacts of dynamic pricing
and inventory decisions, while Li et al. (2010) study inven-
tory planning decisions during product transitions. However,
this body of work has two limitations. Firstly, it assumes a
single centralized decision-maker with complete information.
However, in practice, decentralized groups possess domain
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knowledge and local decision-making authority. Secondly, it
does not consider product transitions as a part of routine oper-
ations, and overlooks their impact on products not involved in
the transition (Gopal et al., 2013). In firms that experience fre-
quent new product transitions, the allocation of factory capac-
ity to prototype fabrication can significantly impact the output
of high-volume products with which they share resources.
Thus, effective management of product transitions requires
explicit consideration of the technological constraints that
govern resource allocations of all functional units involved in
product transitions (Ulrich & Eppinger, 2016).

2.2 | Combinatorial auctions

Combinatorial auctions (Abrache et al., 2007; Cramton
et al., 2007; de Vries & Vohra, 2003), which allow bidders
to bid on bundles of goods that they value more than the
individual goods, are a common approach to decentralized
decision-making. In single round combinatorial auctions bid-
ders submit the bundles they want and their valuation of each
bundle to the auctioneer, who then solves a weighted set
packing problem, called the Winner Determination Problem
(WDP) (de Vries & Vohra, 2003), to allocate the goods to
bidders. However, the number of bundles may grow expo-
nentially with the number of goods considered. Dietrich and
Forrest (2001) suggest using column generation to solve the
WDP for a specified set of bids. Giinliik et al. (2005) extend
this work to present a branch-and-price framework for solving
the WDP.

Iterative combinatorial auctions (ICAs) sequentially elicit
bidders’ valuations of bundles (Bichler et al., 2009; Parkes
& Ungar, 2001; Scheffel et al., 2011). At each iteration the
auctioneer provides bidders with provisional prices and ten-
tative allocations of goods, based on which they determine
their bids. The auctioneer then uses the submitted bids to
obtain updated prices and allocations for the next iteration.
Lagrangian relaxation and column generation can be used to
emulate ICAs (de Vries et al., 2007; de Vries & Vohra, 2003).
Bansal et al. (2020) propose a LP column generation-based
ICA for a simpler version of the problem considered in this
paper where MFG acts as the auctioneer allocating capacity
to the PDGs. The optimal dual solution of the LP relaxation of
a restricted WDP is used to elicit bids from the PDGs at each
iteration. In this paper, we consider a more realistic organi-
zational structure, in which MFG and the PDGs act as agents
while the product division acts as the coordinator, selecting a
mutually compatible set of plans proposed by MFG and the
several PDGs. Our procedure differs in its consideration of
interdependent units, in which units must consider possible
requests by other units in formulating their proposed solu-
tions, and in the use of subadditive duality to elicit a diverse
set of solutions from the functional units involved. We show in
Section 6 that the proposed subadditive dual-based procedure
outperforms a branch-and-price algorithm where dual prices
are obtained from the LP relaxation of the RMP.
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2.3 | Capacity coordination in semiconductor
manufacturing

Several authors have proposed mechanism design techniques
for capacity coordination in the semiconductor industry.
Mallik and Harker (2004) and Mallik (2007) consider the
sales and marketing (S-MKT) unit of a semiconductor firm
with multiple product lines. S-MKT requests factory capac-
ity for each product from MFG while truthful information
is elicited from MFG using a bonus scheme. Karabuk and
Wu (2005), Erkoc and Wu (2005), and Jin and Wu (2007)
focus on problems involving capacity reservations, where a
S-MKT unit requests reservation of manufacturing capacity
from MFG under demand uncertainty. All these mechanisms
seek combinations of payment policies and allocation rules
that result in the same total profit as a centralized solution.
However, the complex technological constraints considered
in our problem preclude the derivation of such mechanisms.

3 | PROBLEM STATEMENT

We consider the problem faced by a Product Division seeking
to meet corporate strategic and financial goals by satisfying
demand for its current and new products across a planning
horizon. The Product Division works with a set / of PDGs
PDG;i =1, ..., |I], responsible for developing new products,
and a MFG unit that manufactures products for sale and pro-
vides prototyping capacity to the PDGs to support product
development. MFG seeks to identify a factory capacity alloca-
tion plan and market introduction time periods of new product
soitis able to meet demand at the specified fill rate. Each PDG
seeks a factory capacity allocation in each period in order to
complete the development of its new products within the plan-
ning horizon. The set of new products under development by
PDG; is denoted by P;,i = 1, ... , I, and the set of all products
of the Product Division by N. Note that | J,., P; € N.

At the beginning of the planning horizon the Product Divi-
sion provides MFG with demand forecasts D,,,n € N,t =
1, ..., T and fill rates fr,,n € N specifying the fraction
of total demand for product n that must be satisfied across
the planning horizon. MFG cannot manufacture a new prod-
uct unless its development is complete, so each PDG; must
complete the development of new products p € P; in a
timely manner. This, in turn, requires that MFG provide each
PDG; with sufficient factory capacity a;, in each period ¢ for
prototype fabrication to allow development activities to be
completed. Each unit must thus submit a plan for its oper-
ations that is implementable, that is, satisfies all its local
technological constraints, and is also compatible with the
plans of other units, that is, does not render them infeasible.
This problem can be formulated as the following model:

Min Number of units without a feasible operating plan.
(1a)
subject to MFG constraints. (1b)
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PDG; constraints Vi € I. (1c)

Compeatibility constraints. (1d)

Model (1) seeks a feasible solution that satisfies the fill
rates of products subject to the technological and capacity
constraints of MFG (1b) and PDGs (Ic). The compatibil-
ity constraints (1d) ensure that decisions of different units
are compatible: no PDG uses more factory capacity than its
allocation in each period, and MFG does not manufacture a
new product until its development is complete. The objec-
tive function (la) reflects current practice at our industrial
collaborators, where the primary complexity of the problem
lies in identifying a set of compatible plans for all units
that satisfy minimum fill rates in the market served by the
Product Division. Revenue is earned when current and new
products are manufactured and sold, which is only possible
when MFG and PDGs have feasible operating plans that can
be implemented in conjunction with those of the other units
involved. A minimum acceptable revenue level for the Prod-
uct Division is ensured by the fill rate constraints in the MFG
problem. Hence, objective function (la) is closely related
to revenue. This objective also plays a key role in our pro-
posed integer column generation procedure as discussed in
Section 6.4.

As the Product Division does not have access to or con-
trol over the detailed technological constraints governing the
resource allocation decisions made by the MFG and the PDGs
a centralized decision model is neither practical nor desirable.
We decompose model (1) into |/| + 1 subproblems, one for
MFG and each of the PDGs. The compatibility constraints
are enforced in the RMP, and those describing the capabilities
of MFG and each PDG in their corresponding subproblems.
Unlike Giinliik et al. (2005), who propose a branch-and-price
framework to solve the WDP after collecting all bids, we
implement integer column generation using the subadditive
dual of the RMP to solicit new proposals corresponding to
columns from the MFG and PDGs.

In our procedure, the Product Division serves as the
coordinator. At each iteration, each PDG submits product
development proposals, that is, candidate operating plans,
specifying

° 3?,,, € {0, 1}, whether the development activities of new
product p € P; will be completed in time period ¢, and
hence become available to meet demand; and

e d; > 0, the amount of factory capacity requested from
MEFG in each period 7 in order to achieve these delivery
dates.

At each iteration, MFG submits one or more manufacturing
proposals specifying

e ¥, € {0, 1}, whether it plans to produce product n € N in
period ¢ to satisfy fill rate fr,; and

e a; > 0, the fraction of factory capacity allocated to PDG;
for prototype fabrication in period .

Each unit’s proposals satisfy its technological constraints.
The Product Division then solves a mixed-integer RMP to
identify a set of |I| + 1 proposals, one from each PDG;,i € [
and one from MFG, such that the compatibility constraints
(1d) are satisfied; specifically, that

¢ no product is manufactured for sale before its development
has been completed; and

e the prototyping capacity used by each PDG in any period
does not exceed the capacity allocated to it in the accepted
MFG proposal.

We shall refer to a set of proposals satisfying these con-
ditions as a compatible proposal set. If the RMP identifies
a compatible proposal set, an integer feasible solution has
been found, and the coordination procedure terminates. If not,
the Product Division uses the subadditive dual of the RMP
to obtain prices associated with the compatibility constraints
(1d) that are communicated to MFG and PDGs. These units
then compute new proposals, which are added to the RMP
as columns in the next iteration. We now briefly review sub-
additive duality for mixed-integer programs which is a key
component of our proposed coordination framework based on
integer column generation.

4 | SUBADDITIVE DUALS OF MILPS

Gomory (1969) and Gomory and Johnson (1972a, 1972b)
noted the importance of subadditive functions in the the-
ory of MILPs, especially that they can be used to pro-
duce valid inequalities for any MILP. Johnson (1974, 1979)
defined the dual of a MILP using subadditive functions, while
Wolsey (1981) proposed cutting plane and branch and bound
methods to construct subadditive dual functions for MILPs.
Klabjan (2007) described a family of Subadditive Genera-
tor Functions (SGFs) that are feasible to a dual problem of a
pure IP and satisfy the strong duality property. Cheung and
Moazzez (2016) derived SGFs with no restrictions on the
constraint matrix and right-hand side vector. Given an MILP

(PR1) = {Min c’'x | Ax=b, x € Z,

JEW, x>0, jeC},

where A € R™" and b € R™, let C denote the index set
of all decision variables and W C C the index set of integer
variables. The subadditive dual of (PR1) is given by:

(DP1)  {Max F(b) | F(a;) <c;, jJEW,

F(w) <. je C\W, FO)=0},

where F' : R™ — R is a subadditive function, a; the jth col-
umn of A, and f?(r) = limsups_,o+(F(6r)/6). It is well known
that DP1 satisfies both weak and strong duality properties
(Guzelsoy & Ralphs, 2007). For a given vector & € R™ of dual
variables, Cheung and Moazzez (2016) defined a Generalized
Subadditive Generator Function (GSGF)
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F(w) = a’w — max {Z (aTaj - cj) Xjiw— Zajxj €K,

JjEE jEE
x>0, jEE, x_,EZ,jeWnE}, ()

where w € R™, K is a closed convex cone, and E C Cis a
subset of the decision variables such that:

{ZQ[?@‘I){,‘ZO, jE€C\E, Xj €L, ]EW\E}QK

JEC\E
and a’a;—¢; <0, j€C\E, 3)

and showed that F is a feasible solution to DP1. Note that F
is characterized by a closed convex cone K, a subset E of the
decision variables, and a vector &« € R™ of dual variables.
Setting K = R’} for tractability, we obtain

F(w) = a"w — max { Y (aaj—c)x 0 Yap < w,

JEE JEE
x>0, jEE, xjeZ,jeWnE}, (@]

and make the following observation. All proofs are given in
Appendix C.

Lemma 1 For K = R”, F is a valid GSGF
that is a feasible solution to DP1 only if E con-
tains every decision variable x; such that a; < 0
forsomeie€ {1, ... ,m}.

F*isan Optimal Generalized Subadditive Generator Func-
tion (OGSF) if it satisfies the strong duality condition F* b) =
cx*, where x* is an optimal solution to PR1 (Klabjan, 2007).
For K = RY and a subset E of the decision variables satis-
fying the requirement in Lemma 1, an OGSF F* requires a
vector a of dual variables satisfying

aTaj -¢ L0, jeC\E, (5a)

Tx* = a’h — max {Z (aTaj - cj) X Zajxj <b,

JEE JEE
x>0,j €E, xjeZ,jeWnE}. (5b)

Constraints (5a) enforce the second condition in (3), while
(5b) enforces strong duality. For a given subset E of decision
variables, there is no known polynomial time algorithm to
find a solution satisfying constraints (5a) and (5b) as solving
(5b) involves a mixed-integer inverse optimization problem
(Wang, 2009). The complexity of this computation has been
a major barrier to the incorporation of subadditive duality
into practical algorithms. However, we show in Section 5.4
that the structure of our RMP presented in Section 5.1
allows dual solutions satisfying (5a) and (5b) to be computed
efficiently.
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5 | ACOORDINATION PROCEDURE USING
MILP-BASED COLUMN GENERATION

Given an efficient method for computing an OGSF, we pro-
pose a coordination mechanism using MILP-based column
generation, referred to as MCG, summarized in Figure 1. The
procedure is initiated with dummy proposals qu EZ), i€lin
Step 0. Then, a RMP described in Section 5.1 is solved and an
initial OGSF F;MPO is computed. In Step 1 of the kth iteration,
the Product Division, acting as the coordinator, communi-
cates the current OGSF F ;MPH to MFG and the PDGs, who
then solve their respective pricing subproblems—presented in
Sections 5.2 and 5.3—and submit their proposal sets. MFG
and PDGs can submit multiple proposals in each iteration in
order to aid quick determination of a compatible proposal set.
All submitted proposals with negative reduced cost are added
to RMP;_; to form the new RMP;, which is solved by the
coordinator (the Product Division) in Step 2. Unlike LP-based
column generation, a column with negative reduced cost may
not be cost improving in MCG. However, Proposition 1 shows
that a negative reduced cost is a necessary condition for a
column to yield a cost improving solution.

Proposition 1  For a given OGSF of RMP,,
any cost improving column has negative
reduced cost.

If no column with negative reduced cost is submitted in Step
1 or the optimal solution value of RMP; is 0, the process is
terminated and the algorithm goes to Step 5. In Step 3, a mod-
ified RMP model relaxing the requirement that a compatible
proposal set must include proposals from all units is solved to
obtain an intermediate solution. In Step 4, an updated OGSF is
computed per Section 5.4. Finally, in Step 5, MFG solves the
LP described in Section 5.5 to improve revenue by utilizing
any unused factory capacity.

5.1 | The restricted master problem

We define the jth MFG proposal as B, = ( (i)

iel=1,...,T’
(ypff)pepi,ie1,t=1, 7 ) where (a@i;),., ., denotes the frac-
tion of factory capacity allocated to PDG; in period ¢, and
Ypj = 1 if MFG plans to manufacture new product p € P;
in period ¢, and O otherwise. Similarly, the jth proposal from
PDG; is denoted by BZ = <(aizj)t:1’m’]~, (ypzj)pepi’tzl,mj>s
where (@iy),_, . denotes the fraction of factory capacity
requested by PDG; in period ¢, and y,,; = 1 if PDG; plans to
complete the development of product p € P; by period ¢. Each
proposal from MFG or a PDG represents a solution satisfying
their local constraints defined in Sections 5.2 and 5.3. By set-
tingy,; = 1, MFG signals that its proposal is conditional upon
the development of product p being completed before period
1. By setting ,,; = 1, PDG; communicates that if it is given
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Step 0: Initialize
RM Py using
dummy MFG
and PDGs
proposals;
calculate

initial OGSF

Flapy b =1

MFG s:o.lves 17";?”[,‘7‘ Step 1: Prod- ﬁfmlm,, l’DQs s.01>ve
its pricing — uct Division — their pricing
subproblem St (Coordinator) Uier Sft;‘» subproblems

Are there any Step 5: Solve
new proposals No LP to exploit
with negative unused fac-
reduced cost? tory capacity

Yes

Step 2: Add
columns rep-
resenting new
proposals to
RM Py, and
solve RM P,

Is the optimal
objective
function value
of RMP;, = 0?

Step 3: Solve a

modified RMP Step 4: Compute
—
to get an inter- a new OGSF

mediate solution

FIGURE 1  The mixed-integer linear program-based column generation implementation

the prototype capacity specified by @;, values, it commits to s{ and s to RMP;, to bring it to the form of (PR1). The RMP
completing the development of product p € N by period ¢. at 1terat10n k is then given by

We initialize the auction using dummy Proposals for MFG (RMP,) ' = Min 5" + ZS“Z M+ Z Mk}{% . (Sa)
and PDGs. The dummy MFG proposal, given by =~ = !

By = ((@0="1)qer 1+ G0 =)pepicrir 1)+ © _ "

( i )lel,t_l,...,T ( p10 )pEPi,zEI,t—l,...,T subject tozfj‘myptj _ Z)(itilyplf +S1yn =0
allocates the entire factory capacity in each period as proto- Jjesy jest

type capacity to the PDGs without meeting any demand of pepP, iel, t=1,...T, ( ﬂpt) ) (8b)
new products, violating the fill rates imposed by the Product

Division. Similarly, the dummy proposal for PDG;, given by

an m— a .
Dd _ ~ N _ . ){i.aitj— X: aitj+si =0 lEI, t=1,...,T, (ﬁit)-
BiO - <(ai’0 - 0)t=1,4..,T’ (yl”o - l)pEPi,t=l,...,T) Viel, j;i / jezs;j !
Q) (8¢)

allows PDG; to complete the development of all its products
p € P; without using any prototype capacity. As dummy pro- z }(Jm 45 =1, ( 51) ) (8d)
posals are infeasible to the units’ local constraints, we add jesn
them to the RMP with big-M objective coefficients. We show ) )
in Sections 5.2 and 5.3 that these dummy proposals ensure 2}( + s i€l (51‘ ) ) (8¢)
relatively complete recourse for the pricing subproblems of ISk
the MFG and PDGs. Xim e{0,1} jesm, (8f)

Let )(]"‘ = 1 if the jth proposal from MFG is accepted and 0
otherwise. Similarly, let ;(l.;i = 1 if the jth proposal from PDG; ){i;l €{0,1} ielje S;i, (8g)
is accepted and O otherwise. Slack variables s™ and s;’ take a
value of 1 if no proposal from MFG or PDG;, respectively, is
accepted, and O otherwise. We denote the set of all proposals
submitted by MFG in iterations 1, ... , k by E:l, and the set of peEP;, i€l t=1,..,T. (8h)
proposals submitted by PDG; by §3€ Finally, let §}" = §Zl U

§"20, 5020, 5¢>0, 5,>0

—m PV We suppress the iteration index k hereafter in Section 5
{Bo } and S5 = S U {BiO} fori € 1. We add slack variables (o simplify the notation. The number of rows in RMP is
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f =
ables
in parentheses to the right. The vector of dual vari-
ables for RMP that must satisfy (5a)-(5b) is given by

T
<(/11”>pePl-,ieI,t=1,...,T > (ﬂit)ie],t:l,...,T ’ 61, (5,~Z>iel> - RMP is
a MILP that selects at most one proposal from MFG and
from each PDG. The s™ and s;i variables in (8d) and (8e)
will be equal to one only if no proposal is accepted from
the offering unit. Constraints (8b) ensure that new product
p € P; is manufactured in period ¢ only if its development is
completed by period ¢ in the accepted PDG; proposal, while
(8c) ensure that the prototyping capacity PDG; uses in period
t does not exceed that allocated to it in the accepted MFG
proposal. The objective function (8a) minimizes the number
of units without an accepted proposal. We set the objective
coefficients of all dummy proposals to M > |I| + 1 to ensure
that they are not accepted in any optimal solution.

T (| + X IPil) + 11| + 1. The dual vari-

associated with each constraint are indicated

Proposition 2 If (ypv‘)m,...,r # 0,p €
Pii€land (@y),_, . #0,i€linall MFG
and PDG proposals, respectively, the objective
function value of any feasible solution to RMP
is either |I| + 1 or 0.

Proposition 2 states that in any feasible solution to RMP
either MFG and all PDGs will have accepted proposals simul-
taneously, or none will. No feasible MFG proposal can have
(ypt)z=1, =0, p €P;,i €linour problem because the fill
rates fr,, > 0 for all n € N, that is, all products must be pro-
duced in sufficient quantities to meet their fill rates. Similarly,
no feasible PDG; proposal can have (a,',)tzl’ = 0 as PDG;
cannot develop new products without prototype fabrication,
and fill rates cannot be met unless development is completed
and products manufactured by MFG to meet demand. Propo-
sition 2 allows us to compute an OGSF for RMP efficiently by
identifying a feasible solution to (5a) and (5b) for K = Ri and

E= (}(’") , (}(.‘?) , 8™, (s‘.i). ;[ aswe discuss in
7/ jesm V) jesd iel L/ie

Section 5.4. We now formulate the pricing subproblems that
MFG and the PDGs must solve to determine their proposals
using the most recently communicated OGSF.

5.2 | The MFG subproblem

Using the notation in Table 1, the scheduling and resource
allocation constraints of MFG are:

N
ot Yan<l t=1,....T, (9a)
n=1 iel
X Sy pEPni€lt=1,..,T, (9b)
T T
Y Cotu > Y fr, D nEN, 9c)
t=1 t=1

TABLE 1 Parameters and variables in the manufacturing (MFG)
subproblem
Parameters
fr, Fill rate of product n.
D, Demand of product n in period .
EST, MFG’s estimate of the factory capacity need for prototyping
new product p.
C, Total factory capacity in period ¢.
Variables
Xy Fraction of factory capacity used to manufacture product n in
period ¢
a; Fraction of factory capacity allocated by MFG to PDG; in
period 7.
Yo 1 if MFG plans to manufacture new product p in period # and 0
otherwise.

t

Ya. > Y EST,)y, i€lLt=1,...T. (9d)

=1 PEP;

y. €101} pepriielt=1,...T, (9e)

Xy €[0,11 neN,ielt=1,..,T. (9

Constraint (9a) ensures that the total factory capacity allo-
cated to manufacturing products in the market and to the
PDGs for prototyping new products does not exceed available
factory capacity in any period. Constraint (9b) ensures that
a new product is not manufactured before its development is
complete, while (9¢) enforces the fill rate for each product.
Since the detailed development schedules of the PDGs are not
communicated to MFG, MFG must estimate how much pro-
totyping capacity to allocate to the PDGs. Constraints (9b)
and (9d) together ensure that if MFG plans to produce product
p in period ¢, it must allocate at least EST,, units of proto-
typing capacity to that product in the periods s < t, where
EST, represents MFG’s estimate of the prototyping capacity
required to develop product p. Based on the values of the dual
variables communicated by the Product Division, MFG may
allocate additional prototyping capacity beyond the minimum
specified by EST,,.

In each iteration of the MCG, the Product Division provides

MFG with the OGSF F%, .. Let

T
o« = ((ﬂ;f)peP,,iel,tzl,...,T’ (B2 ierimr, .. 28" (51'2*)iel> g
defining F*

be the dual variables rvp-  Given  these
values, MFG seeks a proposal, that is, a feasi-
ble operating plan B with negative reduced cost
to be added to the RMP in the next iteration, with

T
= <(yﬂl)pep,,ie1,z=1,...,r ’ (_a”)iel,z=1,...,T’ L, [O]i€1>
denoting the column of RMP induced by B". Since
the objective function coefficient of the variable ;(Jf”
associated with MFG proposal j is 0, MFG should

minimize <0_;;MPI; (?m)> to identify a column Y

—m
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with negative reduced cost. Writing FRMP (I_/m> with

- d d
L= { <)(jm )jesm ' <)(U >jeS’?,ie1 5 (] )iel} and dual

variables a* yields the following MFG pricing subproblem:

i (5335, E S0 (7))

i€l peP; t=1 i€l t=

subject to :  (9a) — (9), (10a)

where Q™ (?
tion value of the maximization problem:

ERREET N 0303 ANED ) YRR

jes" N i€l pePji=1 i€l t=1

(~Z T -

i€l t=1

) in (10a) denotes the optimal objective func-

> m+(51*_ )m (113)

subject (0 )" ¢, <3, pEP, i€l t=1,...T,

jesm
(11b)
Y xlay>a, i€l t=1,...T, (11c)

jesm
Z;(;"+sm§1, (11d)

Jjes

)(;n I= {0, 1} jE Sm, (116)
s> 0. (11f)

The MFG pricing subproblem (10) is thus a mixed-integer
bilevel program. For any feasible solution to the upper-level
problem we have Z e X = = 1 in every feasible solution to
the lower level problem. ThlS is because (9¢) and (9d) ensure
that (5”)::1, T # 0 Vi € [, forcing the lower level problem
to select a proposal j € S™ to satisfy (11c). Thus, the lower
level problem selects a previously submitted MFG proposal
that

e does not manufacture product p in period ¢
if it is not scheduled to be manufactured in
period ¢ in the upper level solution, per (11b);
and,

o allocates at least as much prototyping capac-
ity to PDG; in each period 7 as the upper level
solution, per (11c).

If MFG has not previously submitted a proposal with ipm,j =
Oor a,tj > 0 and the upper-level solution has y,, = O ora;; > 0,
the lower-level problem would be infeasible. Thus, including
the dummy MFG proposal

—m _ _
By = ((aifo = Dierie,..r> o =

in the RMP ensures that the lower-level problem is feasible for
any upper-level solution. Moreover, if PDG; has not been allo-
cated capacity in period ¢ in any previously submitted MFG
proposal, that is, a;; = 0, j € S'm, (11c) ensures that MFG

0)pePi,iel,z=1, ,T) ’

will never submit a new proposal with a;; > 0 assigning PDG;
capacity in period ¢. This can prevent the MCG from reach-
ing a solution where a proposal from every PDG is accepted.
Thus, the dummy MFG proposal also ensures diversity in
MFG proposals. We now show that with an appropriate value
of the big- M objective coefficient of the dummy MFG pro-
posal, the lower-level problem will only return the dummy
proposal if the upper-level solution represents a new proposal
with negative reduced cost.

Proposition 3 If M >
- Ziel ZpeP,. ZZ:IA; Zzel zz_lﬁn’ the
lower-level problem in the MFG subproblem
selects the dummy proposal if and only if the
upper-level solution represents a new proposal
with negative reduced cost.

Note that there exists no previously submitted MFG pro-
posal (except the dummy) satisfying (11b) and (11c) with
the new proposal on the right-hand side as the upper-level
solution; if one did, the dummy proposal would not be an opti-
mal solution to the lower-level problem due to its negative
big- M objective coefficient. Hence the new proposal differs
from any previously submitted one. This formulation of the
pricing subproblem and the dummy proposal Eom encourages
diversification of the proposals submitted by MFG, improving
the Product Division’s knowledge of MFG’s capabilities and
making it easier for the MCG to find a solution incorporating
a proposal from every PDG.

53 | The PDG; subproblem
Let f?:ld from PDG;,,

< (_yP’)peP,,t:I, LT (ai’)tzl, T

umn induced by Ei’ , Where ¢; is the || dimensional row vector
with its ith element equal to 1 and all others 0. The Product
Division communicates the OGSF FEMP to each PDG;. The
objective function coefficient for each variable ;(.‘? in RMP is

0. Thus each PDG; minimizes (0 F;MP <,l? )) to identify

be a proposal and )A/ld =

T
,0, [e,-]) denote the col-

a proposal ((3,»,)t=1"__’T,(?pf)pepi’mwj) with negative

reduced cost, yielding the PDG; pricing subproblem

T
Min <Zﬁ;;a,-f - ZZA*,yp, +67 -0 (Y?)) . (12)
t=1

PEP; t=1
subject to the detailed scheduling constraints given in
Appendix A, and where

/(7)) = Max Y, <Zﬂ,,aig > Zap,y,,,, + 52*>

je S PEP; t=1

< ZZ + 52 —M>;(;{) DN CAER It

peP, 1=1 iel
(13a)
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subject t0 Y x4 25y pEPut=1,...,T, (13b)
jes?
Y dlay <ap t=1,...T, (13¢)
jest
Dai+si<i (13d)
/ES"
x €01} jes!, (13e)
57> 0. (13f)

The PDG; subproblem is a mixed-integer bilevel program.
Given an upper-level solution, the lower-level problem selects
a previously submitted PDG; proposal that

e completes the development of every new
product p no later, per (13b), and

e uses no more factory capacity in each period
t, per (13c)

than in the upper-level solution.

If PDG; has never submitted a proposal with y,; = 1 or
dy; = 0 and the upper level solution has y,, = 1 or @;; = 0, the
lower-level problem would be infeasible. Thus, including the
dummy PDG; proposal (7) ensures that there is always a feasi-
ble solution to the lower-level problem. As in t, when the big-
M objective coefficient of the dummy PDG; proposal is spec-
ified appropriately, the lower-level problem will only return
the dummy proposal if the upper-level solution represents a
new proposal with negative reduced cost.

Proposition 4 If M >
—Dier ZpeP,. ZLMZI Yie Z, 1B, the
lower-level problem in the PDG; subproblem
selects the dummy proposal if and only if the
upper-level solution represents a new proposal
with negative reduced cost.

We solve the bilevel MFG and PDG; subproblems using
the Column and Constraint Generation algorithm of Zeng
and An (2014), whose worst-case number of iterations is
bounded by the number of integer solutions to the lower-level
problem. Although the number of such solutions may be
extremely large for general mixed-integer bilevel programs,
the MFG and PDG; subproblems have |S"| and |S¢|, i € I
such solutions, respectively, permitting fast solutions.

5.4 | Computing an OGSF

To allow efficient computation of the OGSF, we set K = R’

and
E - ( m) ’ ( d) ’ Sm’ S4 ] ’
{ kl/ jesm Il] jES?,iEI ( 4 )lEl

WILEY— %

The columns associated with )(J.’" and ;(5 in RMP contain at
least one negative coefficient, and hence by Lemma 1 must
be included in E to obtain a valid OGSF. We show below that
including the slack variables s and sf, i € Iin E allows us
to easily determine the dual variables of the RMP

T
- , 1 (s2
a= (()'p’)pePi,iel,tzl,.“,T’(ﬁ”)iELT:l’--wT L (51' )iel> ’

feasible to (5a) and (5b), yielding an optimal OGSF F

RMP*
With these choices of K and E constraints (5a) become:

20 peP, i€l t=1,..,T (14a)

<0 iel, t=1,..,T (14b)

The first term on the right-hand side of (5b) is equal to §' +
D 52 for the RMP. By Proposition 2, the optimal value of
RMP equals [I] + 1 in all iterations before termination, thus
constraints (5b) imply that dual variables should be chosen
such that the optimal objective function value of the following
MILP, which implements the maximization problem in (5b),
is equal to 8! + Y, 67 — |I] — 1.

(DP) Max )’ <Z D Z/lp,ym ZZﬂ,,a,,, +6 >

jES'm i€l peP; t=1 iel t=1

(- Z T -ur)i

i€l =1
4y [z ( S = 3 S hpiyy+ 5 )
i€l e peP =1
(- 3z )l
PEP; t=1
+ (8 = 15"+ ) (82— st (152)
iel
subject toz X"V = Z ,’{/g_/y\p[j <0
jesm jesd
per, iel, t=1,...T, (15b)
Y dlay— Y x'"ay <0 i€l t=1,..,T, (I5)
jest jesm
Z;(jf” +57 <1, (15d)
jesn
Yal+si<1 i€l (15¢)
/eSd
xref0.1} jesm, (15¢)
;(ge {0,1} ieljes’, (15g)
"0, 5720 i€l (15h)
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Proposition 5  [f the optimal objective value
of RMP equals |I| + 1, the oplimal objective
value of DP equals 6" + Zze] — || — 1 when
51 21and5.22 1,ieland

M>Max{51 ZZﬁU,{az 22,1,,,,} I}.

i€l t= PEP; t=
(16)

If the conditions in Proposition 5 are satisfied, the optimal
objective value of DPis 6' + Y., 67 - — 1] — 1, satisfying the
strong duality condition (5b). There are no other restrictions
on §! and 53, sowe set 8! = 51.2 =1,Viel

For PDG;, |4,| can be interpreted as the incentive paid to
PDG; to complete development of product p € P; in period ¢,
and |f;| the unit cost of prototyping capacity in period t. To
induce proposals from PDG; that complete the development
of each product p € P; as early as possible, giving MFG the
greatest flexibility to meet fill rates, we prefer small values of
| Bi| and large values of |4,,]. This can be achieved by setting
the dual variables of the OGSF as

M1) Ay, =Vi, B,=0, peP;, i€l, t=1,..,T,
a7
where V| < 0 is a constant parameter.

For MFG, the value of the dual variable |4, can be inter-
preted as the cost of manufacturing product p in period ¢,
and |f;| as the price charged to PDG; for a unit of proto-
type capacity in period ¢. To induce proposals from MFG
that satisfy the fill rate constraints, we prefer small values
of |Ay| and large values of |B;| in each period. Further-
more, we would like to set the values of the dual variables
to encourage MFG to offer prototype capacity to PDGs in
periods when the previously submitted proposals do not.
This can be achieved by specifying the dual variables of the
OGSF as

Vz, peEP;, iel,

8it

M2) 4, =0, f; = =1, .. .T,

(18)
where V, < 0 is a constant parameter. The value of g is
determined by solving a modified RMP, denoted by M-RMP,
which minimizes the number of PDGs with no accepted pro-
posals. We present the formulation of M-RMP in Appendix B.
If no proposal from PDG,; is accepted in the M-RMP solution,
we set g;; = EjeE'" Ei,j/lgml, iel,t=1,...,T,thatis,to the
average factory capacity allocation to PDG; in period ¢ over
all MFG proposals submitted so far. Otherwise the value of
gi remains unchanged. This value of g;, will discourage MFG
from allocating more factory capacity to PDG; in period ¢ if it
has already done so in the previous iterations, and encourage it
to allocate more factory capacity in periods that have received
less allocation in previous iterations. Our MCG implemen-
tation alternates between using M1 and M2 for updating the
dual variables in successive iterations, seeking a diverse set
of proposals that make it easier for MCG to obtain a solu-
tion incorporating a proposal from MFG and each PDG. We

set an appropriate value for the big- M parameter in Proposi-
tions 3, 4, and 5 in each iteration k. In particular, as ’;*, /11’;?
0O,peP,iel,t=1,..,Tand 6§ =1 and 62k*
1, i € I, any value greater than

k
- Ziel ZpePi Zz_1’1p>zk -
Dt ZtT:lﬁl’j,* + 1 satisfies the lower bounds on M in Propo-
sitions 3, 4, and 5. Moreover, we require M > |I| + 1
to ensure that dummy proposals are not accepted. Thus we
set M > Max {= ¥ Byep, hiVi+ LI+ 1} when

using (17), and M > Max {- Ty T1, FRa 1+1}

when using (18) to compute the optimal Values of the dual
variables.

I IA

5.5 | Refining the final allocations

The MCG procedure terminates with a solution in which some
or all PDGs have accepted proposals, specifying when new
products will complete their development and the prototyping
capacity allocated to PDGs in each period. Any prototyping
capacity allocated by MFG to the PDGs that remains idle can
be used to manufacture products to generate revenue. Thus
at the termination of the MCG, we solve a linear program to
improve capacity utilization and hence the total revenue. The
Product Division provides MFG with the new product intro-
duction time periods and the prototyping capacity requests
made by the PDGs in the final solution proposed by the MCG,
and the revenue generated from one unit of product 7 in period
t, Var. MFG solves the following linear program for a produc-
tion plan (X/),en =1, ... r that maximizes the total revenue by
allocating unused factory capacity to meet additional demand
above the specified minimum fill rates.

Max ZvaC,xm (19a)
neNn t=
subject to x,, <y, pe€P;, i€l, t=1,...,T (19b)
Dot Yy <1 t=1,...T (19¢)
nenN iel
T T
Y xuCi> Y fr Dy neN\[ P,  (19)
=1 =1 i€l
T T
prtCt > 7 (ZfrpD,,,> pEP;, i€l, (19e)
=1 =1
T T
Y xwuCi < Y Dy neEN. (19)

=1 =1
The parameter y,, takes a value of 1 if product p can be man-
ufactured in period 7 and O otherwise, while @;, is the fraction
of factory capacity required by PDG; in period ¢ at the ter-
mination of MCG. Constraints (19b) state that MFG cannot
manufacture a new product before its development is com-
plete, while (19c) ensure that the available manufacturing
capacity is not exceeded. Constraints (19d) ensure that the fill
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rates of all current products are met while (19e) state that the
fill rate of a new product p € P; is enforced only if a proposal
of PDG; is accepted, that is, ; = 1. Constraints (19f) bound
the production of each product by its total demand.

6 | COMPUTATIONAL EXPERIMENTS

In order to examine the performance of the MCG proce-
dure, we conduct three distinct computational experiments.
The first of these examines the performance of MCG relative
to an optimal centralized solution with complete information
which, although impractical due to the distributed nature of
the problem, provides an upper bound on the revenue and
a lower bound on the number of units not included in the
final solution. We then compare MCG to a LP-based branch
and price algorithm, and finally examine how MCG scales to
larger instances.

6.1 |
solution

Performance of MCG relative to a centralized

We consider problem instances with one MFG unit and four
PDGs. The total factory capacity available to MFG in each
period is 5000 units. Each PDG develops one new product
that will replace a current product. We assume that all new
products have the same introduction deadline, and demand
for the current products drops to zero when demand for new
products is received. This will ensure that generated instances
are difficult as all PDGs need factory capacity in the same
time periods, and MFG cannot meet the fill rate for the cur-
rent products if it allocates too much factory capacity to
PDGs early in the planning horizon. On the other hand, if the
development of new products is not completed on time, there
will be substantial loss of revenue due to abrupt transition
between product generations. Since the number of product
development stages (i.e., cycles of design activity followed
by prototype fabrication) may vary, we consider three pos-
sible scenarios for each new product. Scenario 1 is the best
case, requiring three development stages and 600 units of
factory capacity: (500, 100, 0). Scenario 2 requires 4 stages
and 850units of factory capacity: (500, 250, 100, 0). Sce-
nario 3, representing the worst case, requires five stages and
1200 units of factory capacity: (500, 400, 200, 100, 0).

We assume that all new products are under development
in Scenario 3, and pr is the probability that MFG correctly
estimates the factory capacity requirements of a new prod-
uct for prototyping. For instance, if pr = 0.7, then with
probability 0.7, MFG correctly estimates that a new product
p is under development in Scenario 3 and will set EST), to
% = 0.24 in (23). With probability 0.3, MFG is equally

likely to incorrectly estimate the development scenario to be

Scenario 2, setting EST,, = % = 0.17 or Scenario 1, setting

EST = 2 — 0.12. We consider three values of pr in our
experiments (0.3, 0.6, 0.9) and three different values of the

TABLE 2 Performance of mixed-integer linear program (MILP)-based
column generation (MCG) for different values of r. Reported values are the
mean (max) of 45 instances over nine cases (3 fr values X 3 pr values)

Product development
groups without

accepted proposals Revenue gap®  Time (s) Iterations
1 3.89 (4) 52.36 (54.55) 3600 (3601) 3871.16 (4056)
10 1.24(3) 16.72 (40.23) 3259 (3628) 312.29 (640)
25 0.96 (2) 12.95(27.27) 3241 (3643) 149.22 (185)
50 1.02(2) 13.80 (27.43) 2974 (3718) 97.18 (128)

2Gap between the revenue from MCG and the optimal objective value of the integrated
problem that maximizes revenue.

fill rate fr (0.85, 0.9, 0.95). The proposed approach is more
likely to find a solution where MFG and all PDGs are included
when more distinct proposals available to the Product Divi-
sion. Therefore, we allow MFG and each PDG to submit up
tor = 1, 10, 25, 50 proposals with negative reduced costs in
each iteration. We consider four values of r and three values
for each of pr and fr for a total of 36 cases with five random
instances for each case. We run computational experiments
on an Intel Core i5 @ 2.80 GHz processor with 32GB RAM,
Python 3.7 and Gurobi 9.5 for a maximum run time of 3600 s.
Table 2 gives the performance of the MCG for different val-
ues of r. We report the number of PDGs with no accepted
proposals in Table 2 because M-RMP, which is solved to
determine an intermediate solution in each iteration of the
MCG, enforces that a MFG proposal is accepted as otherwise
there is no factory capacity for any of the PDGs. Examination
of MCG’s performance shows a trade-off between the num-
ber of iterations and the number of proposals submitted in
each iteration. As r increases from 1 to 25, the performance
of MCG improves in Table 2. This is because more proposals
in each iteration give the Product Division more information
regarding the capabilities of the MFG and PDGs, helping the
MCGQG to rapidly elicit a set of proposals while minimizing the
number of PDGs with no accepted proposals. The Product
Division retains all proposals submitted in previous iterations,
thus more time is needed to solve the RMP as additional pro-
posals are collected. The performance of MCG in Table 2
on the number of PDGs with accepted proposals and revenue
deteriorates slightly when r increases from 25 to 50 because
fewer iterations are conducted within the specified time limit.
We note that the product transition problem addressed here
is not a control problem, but rather a design problem, making
it appropriate to allocate more computational resources and
time to obtain a better solution. However, several iterations
of manual back-and-forth communication are not practical in
real life. Hence, the proposed coordination procedure should
be implemented with automated decision tools, the founda-
tions of which already exist in the decision tools the units use
for their local operations. Furthermore, while in our experi-
ments we have started the procedure from dummy proposals,
in real life, organizations incrementally modify the existing
operating plans in the face of new conditions which can
reduce the number of iterations needed for coordination.
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TABLE 3  Performance of mixed-integer linear program (MILP)-based column generation (MCG) under different values of fi and pr. Reported values are the
mean (max) over five instances with r = 25

Product development groups

without accepted proposals Revenue gap® (%)

pr=03 pr=03 pr = 0.6 pr =09 pr=03 pr = 0.6 pr=209

fr=0.85 0.2 (1) 0.6 (1) 1.0 (1) 2.73 (13.64) 8.23 (13.79) 13.49 (13.87)
fr = 0.90 1.0 (1) 1.0 (1) 1.0 (1) 13.49 (13.79) 13.88 (15.23) 13.49 (13.79)
fr=0.95 1.6 (2) 1.2(2) 1.0 (1) 21.52 (27.27) 16.21 (26.04) 13.49 (13.87)

2Gap between the revenue from MCG and the optimal objective value of the integrated MILP that maximizes revenue.

TABLE 4 Comparison of mixed-integer linear program (MILP)-based column generation (MCG) and LP column generation-based branch-and-price.
Reported values are the mean (max) over 15 instances across three different pr values

Product development groups without accepted proposals Revenue gap® (%)

fr MCG CG-LP CG-LP-rev MCG CG-LP CG-LP-rev

0.85 0.60 (1) 0.27 (1) 1.60 (2) 8.15 (13.87) 3.89 (13.35) 28.85 (35.49)
0.90 1.00 (1) 2.00 (2) 2.20 (3) 13.62 (15.23) 27.02 (27.09) 33.22 (40.39)
0.95 1.27 (2) 2.00 (2) 2.33(3) 17.07 (27.27) 27.11 (27.20) 34.09 (41.41)

2Gap between the revenue from MCG and the optimal objective value of the hypothetical integrated MILP that maximizes revenue.

TABLE 5 Comparison of mixed-integer linear program (MILP)-based column generation (MCG) and LP column generation-based branch-and-price.
Reported values are the mean (max) over 15 instances across three different pr values

Time (sec) Iterations
fr MCG CG-LP CG-LP-rev MCG CG-LP CG-LP-rev
0.85 2481 (3643) 1058 (3631) 3613 (3629) 114.67 (160) 115.80 (379) 199.47 (254)
0.90 3621 (3637) 3621 (3656) 3615 (3652) 167.80 (183) 102.73 (105) 195.87 (252)
0.95 3620 (3640) 3637 (3661) 3616 (3638) 165.20 (185) 185.40 (363) 191.07 (251)

Table 3 reports the performance of MCG for different
values of fr and pr with r = 25. For fill rate 0.95, more
accurate estimation of prototype capacity requirements by
MEFG helps the Product Division to determine a compatible
proposal set. However, for the lower fill rate of 0.85, the
opposite holds. This is because for lower fill rates, more
factory capacity can be distributed among PDGs and lower
value of EST,Vp € P;,i € I provides MFG with more flex-
ibility in distributing that factory capacity among the PDGs.
This results in more variety in the MFG proposals submitted
in each iteration, helping the Product Division to determine
a compatible proposal set.

6.2 | Comparison with branch-and-price

Our second experiment compares the performance of MCG
with a branch-and-price algorithm where dual prices are
obtained from the LP relaxation of the RMP at each node. We
branch on the binary decision whether new product p can be
manufactured in period ¢ or not. We consider two versions of
the branch-and-price algorithm. CG-LP minimizes the num-
ber of units with no accepted proposals while CG-LP-Rev
maximizes the revenue of the Product Division. In CG-LP, we
solve M-RMP in each iteration at each node to get an interme-
diate solution and solve an LP to improve revenue at algorithm
termination as in MCG. In CG-LP-Rev, we solve an MILP

analogous to M-RMP in each iteration to determine an inter-
mediate solution. We run CG-LP and CG-LP-Rev with r = 25
and a time limit of 3600s.

Tables 4 and 5 compare the performance of MCG with
both versions of the branch-and-price algorithm. For easier
problems with fr = 0.85, CG-LP outperforms MCG and
CG-LP-Rev in both number of PDGs with no accepted pro-
posals and revenue. For difficult problems with fr = 0.9, 0.95,
MCG outperforms both CG-LP and CG-LP-Rev. As more
PDGs have accepted proposals in the MCG solution, MFG
can meet more demand for new products developed by these
PDGs in its final production schedule. Thus, MCG generates
higher revenue than CG-LP and CG-LP-Rev for difficult
instances with fr = 0.9 and 0.95. Note that revenue is earned
when current and new products are manufactured and sold,
which is only possible if MFG and PDGs have accepted
proposals to run their respective operations.

6.3 | Experiments with larger instances

The computational experiments presented so far have
considered four PDGs and one new product for each PDG.
Increasing the number of new products or PDGs would allow
many more alternative combinations of proposals, which
could significantly impact the convergence of MCG. We thus
examine the performance of MCG using problem instances
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TABLE 6 Performance of mixed-integer linear program (MILP)-based column generation under different values of |I| and |P;|. Reported values are the mean

(max) over 45 instances across 9 cases (3 fr values X 3 pr values)

Product development groups
without accepted proposals

Revenue gap?® (%)

[Pl =1 |Pi| =2 |Pi| =4
=4 124 (3) 2.40 (3) 3.49 (4)
[l =6 1.27 (3) 2.60 (5) 3.60 (6)
=38 1.98 (4) 3.42(6) 4.36 (7)

P =1
16.72 (40.23)
11.27 (26.36)
13.34 (27.07)

1P| =2

32.23 (41.14)
23.26 (45.04)
22.95 (40.84)

P =4

46.71 (54.02)
32.18 (53.26)
29.23 (47.31)

2Gap between the revenue earned from the MCG solution and the optimal objective value of the hypothetical integrated MILP that maximizes revenue.

TABLE 7 Performance of mixed-integer linear program (MILP)-based column generation under different values of |/| and |P;|. Reported values are the mean

(max) over 45 instances across nine cases (3 fr values X 3 pr values)

Time (s) Iterations

Pl =1 IP;] =2 |P;] =4 IP;] =1 |P;] =2 |P;| =4
[l =4 3259 (3628) 3631 (3675) 3634 (3677) 312.29 (640) 114.51 (128) 82.62 (91)
17| =6 3615 (3644) 3637 (3671) 3538 (3705) 238.51 (432) 98.42 (116) 69.67 (78)
[ =8 3615 (3642) 3632 (3685) 3662 (3704) 174.18 (205) 89.67 (111) 59.13 (65)

with more PDGs (larger |I|) and more new products devel-
oped by each PDG (larger |P;|). Specifically, we consider
three values of |I| = 4, 6, 8 and |P;| = 1, 2, 4Vi € I. For each
case, we set the ratio of total demand to total capacity to 0.92
to ensure the generated problem instances are sufficiently
challenging. We run experiments for all considered values of
|11, | P;], fr, and pr. We set the number of proposals in each iter-
ation r = 10 in order to limit the size of RMP. We solve five
random instances for each case with a time limit of 3600s.
Tables 6 and 7 show the performance of MCG for different
values of |I| and |P;|. As |I| or |P;| increases, the number
of iterations conducted within the time limit decreases, and
thus the number of PDGs with no accepted proposals and
the revenue gap increase. The deterioration of MCG’s per-
formance with increasing instance sizes is expected given
the combinatorial nature of the problem and the CPU time
limit. The use of more powerful computing infrastructure
and more efficient implementation could significantly reduce
computation times, while higher revenues obtained by MCG
may well justify the additional computational effort.

6.4 | Generalization of the proposed approach

As we have commented above, the complexity of the inverse
optimization problem involved in (5b) has proven to be a sig-
nificant barrier to the exploitation of subadditive duality in
practical computations. It is thus of interest to examine the
degree to which our MCG approach can be applied beyond the
specific context of product transition management motivating
this paper. The principal insight is that MILP duality-based
column generation requires determining the optimal subaddi-
tive dual of the RMP, which is not affected by the structure
of the pricing subproblems. In our study, constraints (8b) and
(8c) of the RMP enforce the compatibility of the accepted pro-
posals, and the objective function (8a) minimizes the number
of units with no accepted proposals. Constraints (8b) and (8c)

are satisfied either when compatible solutions for all units
can be identified or when no unit has an accepted proposal
(see Proposition 2). Thus, in each iteration, the optimal objec-
tive function value of the RMP is either equal to the number
of units or zero at termination of the coordination proce-
dure. This property leads to Proposition 5 which characterizes
the optimal subadditive duals that satisfy the strong duality
condition (5b) in each iteration.

The proposed approach is applicable in decentralized
decision-making problems whose objective is to minimize
the number of units that are not included in the coordinated
solution. This is especially relevant when the cost of leav-
ing a unit out of the solution is perceived as extremely high.
In the semiconductor manufacturing context motivating this
work, both PDGs and MFG have substantial fixed costs which
must be met regardless of whether they have an accepted pro-
posal or not; even limited revenue obtained from that unit’s
operations will offset the fixed costs to some degree. While
a minimum acceptable level of revenue can be specified by
the coordinator (in our case, the Product Division), the princi-
pal complexity lies in obtaining a compatible set of proposals
from the different units without direct access to the tech-
nological constraints and policies governing their decisions.
Clearly, the compatibility constraints of the RMP could be dif-
ferent from constraints (8b) and (8c) in other applications. The
basic approach we propose ought to be applicable to problems
where the primary concern is to identify a set of compatible
proposals from different units satisfying a specified minimum
level of performance.

7 | CONCLUSION
Motivated by a complex resource allocation problem that

must be solved in a decentralized manner, we design a
coordination procedure based on subadditive duality of
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MILPs for managing product transitions in the semiconductor
industry. The models and methods presented are decision
support tools that can provide insights about the product
transition process through the coordination of manufacturing
and product development units. Our numerical experiments
show that the proposed framework can result in more PDGs
with accepted proposals and higher revenue than LP-column
generation based branch-and-price algorithm. For problems
with high fill rates, we show that improved ability of MFG
to predict the delivery of new products by the PDGs results
in improved performance in terms of both the number of
units whose proposals are included in the final solution and
total revenue. This improved predictability could be achieved
by better communication between the units involved as well
as exploiting historical data from previous product transi-
tions. Lastly, we show that MCG performs reasonably well
for problems with higher number of PDGs and products
developed by each PDG.

Several interesting directions for future research emerge
from this work. The development of column generation
schemes based on subadditive duality has been slow due to
the computational difficulty of determining the subadditive
dual that take the form of mixed integer inverse optimization
problems. Our procedure is computationally viable due to the
highly structured nature of the problem we consider, which
allows us to show that components of the optimal solution to
the current RMP remain optimal for the inverse maximiza-
tion of the pricing subproblems. The development of further
insights into other problem structures that yield tractable
instances of MCG is of considerable theoretical and practical
interest. An important future research direction is to extend
the MCG to consider inventory balance constraints while
minimizing total production cost. Another future research
direction is to study the relationship between the MCG and
primal-dual ICAs in the extant literature (Bichler et al., 2009;
Kwasnica et al., 2005; Parkes & Ungar, 2001).
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