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Abstract
Product transitions involve the replacement of products currently being produced

and distributed by a firm with new products throughout the firm’s supply chain. In

high technology industries effective management of product transitions is crucial

to long-term success, and involves the coordination of multiple product develop-

ment units and a manufacturing unit by a product division serving a particular

market. Since the different units are organizationally autonomous, and the prod-

uct division does not have access to their detailed technological constraints and

internal operating policies, a decentralized solution is required. We develop a

price-based coordination framework using the subadditive dual of a mixed-integer

linear program that seeks to maximize the number of units whose proposed plans

are included in the final solution. The proposed approach yields superior solutions

to a linear-programming-based branch-and-price approach within the same comput-

ing budget. We discuss the broader applicability of this integer column generation

approach, and suggest directions for future work.
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1 INTRODUCTION

Product transitions, also referred to as product rollovers (Bil-

giner & Erhun, 2011; Katana et al., 2017), replace a set of

products that are currently being produced and distributed

by a firm with new products throughout its supply chain

to improve market share by providing enhanced products

at competitive prices. In high technology industries such

as semiconductor manufacturing, effective management of

product transitions is crucial to long-term success (Hendricks

& Singhal, 2008; Levinthal & Purohit, 1989; Padmanabhan

et al., 1997). Intel’s dominant position in the microprocessor

industry is enabled by its ability to effectively manage succes-

sive product transitions over an extended period. Both indus-

trial customers, who use semiconductor devices in industrial

and consumer products, and the end users who buy these

products have come to expect frequent releases of new prod-

ucts with improved features and price; the product life cycle

of a new device produced by Intel is in the order of 18 months

(Rash & Kempf, 2012). A large firm like Intel, serving mul-

tiple markets with different product lines, may have tens of

product transitions ongoing at any time.

Effective management of product transitions requires coor-

dination of several organizational units across the firm. At

Intel, market segments such as servers or mobile devices

are each served by specialized product divisions. A product

integrates several features such as a microprocessor core, a

three-dimensional graphics processing engine, multichannel

audio signal processors, and so on. Each product division

plans which existing and new features will be integrated into

distinct products, and when these products will be intro-

duced for sale in the market it serves (Rash & Kempf, 2012).
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To execute this plan, a product division interacts with two

other units: product engineering and manufacturing (MFG).

Product engineering is responsible for converting the product

division’s rough specifications into detailed circuit designs

that can be produced with available manufacturing technolo-

gies. Each product in development is treated as a project and

assigned to the skilled engineers and computing resources

required, forming a product development group (PDG). The

product development process alternates between periods of

design activity carried out by the PDG and prototype fabri-

cation by MFG. At the end of each period of design activity,

physical prototypes are fabricated by MFG and evaluated by

the PDG to identify the design problems and manufactura-

bility issues. Several such cycles of design activity, prototype

fabrication, and design refinement may be required before

the design is verified, allowing the product to be manufac-

tured for sale into the market. Timely completion of product

development depends on MFG providing factory capacity for

prototype fabrication to the PDGs when needed. MFG must

also allocate factory capacity to meet current orders and build

inventory for the future in order to generate the revenue that

keeps the firm financially viable.

While each product division seeks to maximize its prof-

itability over a (long) planning horizon, it does not have

access to or control over the detailed technological con-

straints governing the resource allocation decisions made by

the MFG and the PDGs, which are autonomous organiza-

tions. This combination of extensive decision autonomy and

distribution of technical knowledge across different func-

tional units creates a decentralized decision environment

where a centralized, corporation-wide decision model is nei-

ther practical nor desirable. A key difficulty in developing a

decentralized procedure for this problem is the interdepen-

dent nature of the decisions made by MFG and the PDGs.

To schedule its development activities effectively, each PDG

needs to know how much prototyping capacity MFG can

assign to it in each period. MFG, in its turn, needs to

know when the PDGs will complete product development

activities, making new products available for sale into the

market.

Since the problem in its full generality is quite complex, we

consider the problem faced by a single product division inter-

acting with a single MFG unit and multiple PDGs, and pro-

pose a decentralized approach to obtain implementable solu-

tions. The product division serves as a coordinator between

MFG and PDGs. PDGs are offered a reward for completing

the development of new products, and charged a price per unit

for the prototyping capacity they use in each period. Similarly,

MFG is compensated for the prototyping capacity allocated

to the PDGs in each period. The proposed procedure seeks to

achieve coordination between the PDGs and MFG by itera-

tively adjusting rewards and prices until the product division’s

fill rates are met, all units’ resource constraints are satisfied,

and no product is produced for sale before its development

activities have been completed.

Our decentralized approach uses an integer column genera-

tion procedure (Klabjan, 2007) in which we solve a restricted

master problem (RMP) at each iteration as a mixed-integer

linear program (MILP), instead of its LP relaxation. New

columns, corresponding to proposals for factory capacity allo-

cation (from MFG) and product development schedules (from

the PDGs) are identified using reduced costs computed from

an optimal subadditive dual function of the RMP. Such pro-

cedures are usually not computationally viable for general

MILPs since a strongly NP-hard inverse integer optimization

problem must be solved to obtain the optimal subadditive dual

function (Guzelsoy & Ralphs, 2007). However, an optimal

subadditive dual function for the RMP in our problem can be

calculated efficiently.

The next section reviews previous related work. We present

a formal problem statement in Section 3 and briefly review

subadditive duality for MILPs in Section 4. Section 5 outlines

the integer column generation algorithm we use as the basis

of a coordination scheme for the product transition problem.

Section 6 describes computational experiments and results,

while Section 7 summarizes our findings and discusses some

directions for future work.

2 LITERATURE REVIEW

2.1 Product transitions

Several aspects of managing product transitions are addressed

in the literature (Bilginer & Erhun, 2011; Billington

et al., 1998; Lim & Tang, 2006) including capacity man-

agement under technological uncertainty (Angelus & Por-

teus, 2002; Bilginer & Erhun, 2015; Li et al., 2014;

Rajagopalan et al., 1998; Wu et al., 2005) and supply con-

straints (Ho et al., 2002; Keith et al., 2017; Kumar &

Swaminathan, 2003), the effect of initial investment on

ramp-up-time and time-to-market of a new product (Carrillo

& Franza, 2006; Wu et al., 2009), industry clockspeed (Car-

rillo, 2005; Druehl et al., 2009; Souza et al., 2004), and

cost structure (Souza, 2004). Klastorin and Tsai (2004), Seref

et al. (2016), and Seidl et al. (2019) study the interaction

between pricing of successive products and the timing of the

new product introduction, while Liang et al. (2014), Lobel

et al. (2016), and Liu et al. (2018) examine how strategic

waiting by customers affects the timing of product transi-

tions. Shen et al. (2014) examine the interactions between

pricing, production and inventory policies for new product

introductions with limited capacity using a diffusion model

of demand where production shortages affect future demand.

Koca et al. (2010) examine the impacts of dynamic pricing

and inventory decisions, while Li et al. (2010) study inven-

tory planning decisions during product transitions. However,

this body of work has two limitations. Firstly, it assumes a

single centralized decision-maker with complete information.

However, in practice, decentralized groups possess domain
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knowledge and local decision-making authority. Secondly, it

does not consider product transitions as a part of routine oper-

ations, and overlooks their impact on products not involved in

the transition (Gopal et al., 2013). In firms that experience fre-

quent new product transitions, the allocation of factory capac-

ity to prototype fabrication can significantly impact the output

of high-volume products with which they share resources.

Thus, effective management of product transitions requires

explicit consideration of the technological constraints that

govern resource allocations of all functional units involved in

product transitions (Ulrich & Eppinger, 2016).

2.2 Combinatorial auctions

Combinatorial auctions (Abrache et al., 2007; Cramton

et al., 2007; de Vries & Vohra, 2003), which allow bidders

to bid on bundles of goods that they value more than the

individual goods, are a common approach to decentralized

decision-making. In single round combinatorial auctions bid-

ders submit the bundles they want and their valuation of each

bundle to the auctioneer, who then solves a weighted set

packing problem, called the Winner Determination Problem

(WDP) (de Vries & Vohra, 2003), to allocate the goods to

bidders. However, the number of bundles may grow expo-

nentially with the number of goods considered. Dietrich and

Forrest (2001) suggest using column generation to solve the

WDP for a specified set of bids. Günlük et al. (2005) extend

this work to present a branch-and-price framework for solving

the WDP.

Iterative combinatorial auctions (ICAs) sequentially elicit

bidders’ valuations of bundles (Bichler et al., 2009; Parkes

& Ungar, 2001; Scheffel et al., 2011). At each iteration the

auctioneer provides bidders with provisional prices and ten-

tative allocations of goods, based on which they determine

their bids. The auctioneer then uses the submitted bids to

obtain updated prices and allocations for the next iteration.

Lagrangian relaxation and column generation can be used to

emulate ICAs (de Vries et al., 2007; de Vries & Vohra, 2003).

Bansal et al. (2020) propose a LP column generation-based

ICA for a simpler version of the problem considered in this

paper where MFG acts as the auctioneer allocating capacity

to the PDGs. The optimal dual solution of the LP relaxation of

a restricted WDP is used to elicit bids from the PDGs at each

iteration. In this paper, we consider a more realistic organi-

zational structure, in which MFG and the PDGs act as agents

while the product division acts as the coordinator, selecting a

mutually compatible set of plans proposed by MFG and the

several PDGs. Our procedure differs in its consideration of

interdependent units, in which units must consider possible

requests by other units in formulating their proposed solu-

tions, and in the use of subadditive duality to elicit a diverse

set of solutions from the functional units involved. We show in

Section 6 that the proposed subadditive dual-based procedure

outperforms a branch-and-price algorithm where dual prices

are obtained from the LP relaxation of the RMP.

2.3 Capacity coordination in semiconductor
manufacturing

Several authors have proposed mechanism design techniques

for capacity coordination in the semiconductor industry.

Mallik and Harker (2004) and Mallik (2007) consider the

sales and marketing (S-MKT) unit of a semiconductor firm

with multiple product lines. S-MKT requests factory capac-

ity for each product from MFG while truthful information

is elicited from MFG using a bonus scheme. Karabuk and

Wu (2005), Erkoc and Wu (2005), and Jin and Wu (2007)

focus on problems involving capacity reservations, where a

S-MKT unit requests reservation of manufacturing capacity

from MFG under demand uncertainty. All these mechanisms

seek combinations of payment policies and allocation rules

that result in the same total profit as a centralized solution.

However, the complex technological constraints considered

in our problem preclude the derivation of such mechanisms.

3 PROBLEM STATEMENT

We consider the problem faced by a Product Division seeking

to meet corporate strategic and financial goals by satisfying

demand for its current and new products across a planning

horizon. The Product Division works with a set I of PDGs

PDGii = 1, … , |I|, responsible for developing new products,

and a MFG unit that manufactures products for sale and pro-

vides prototyping capacity to the PDGs to support product

development. MFG seeks to identify a factory capacity alloca-

tion plan and market introduction time periods of new product

so it is able to meet demand at the specified fill rate. Each PDG

seeks a factory capacity allocation in each period in order to

complete the development of its new products within the plan-

ning horizon. The set of new products under development by

PDGi is denoted by Pi, i = 1, … , I, and the set of all products

of the Product Division by N. Note that
⋃

i∈I Pi ⊆ N.

At the beginning of the planning horizon the Product Divi-

sion provides MFG with demand forecasts Dnt, n ∈ N, t =
1, … , T and fill rates frn, n ∈ N specifying the fraction

of total demand for product n that must be satisfied across

the planning horizon. MFG cannot manufacture a new prod-

uct unless its development is complete, so each PDGi must

complete the development of new products p ∈ Pi in a

timely manner. This, in turn, requires that MFG provide each

PDGi with sufficient factory capacity ait in each period t for

prototype fabrication to allow development activities to be

completed. Each unit must thus submit a plan for its oper-

ations that is implementable, that is, satisfies all its local

technological constraints, and is also compatible with the

plans of other units, that is, does not render them infeasible.

This problem can be formulated as the following model:

Min Number of units without a feasible operating plan.

(1a)

subject to MFG constraints. (1b)
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PDGi constraints ∀i ∈ I. (1c)

Compatibility constraints. (1d)

Model (1) seeks a feasible solution that satisfies the fill

rates of products subject to the technological and capacity

constraints of MFG (1b) and PDGs (1c). The compatibil-

ity constraints (1d) ensure that decisions of different units

are compatible: no PDG uses more factory capacity than its

allocation in each period, and MFG does not manufacture a

new product until its development is complete. The objec-

tive function (1a) reflects current practice at our industrial

collaborators, where the primary complexity of the problem

lies in identifying a set of compatible plans for all units

that satisfy minimum fill rates in the market served by the

Product Division. Revenue is earned when current and new

products are manufactured and sold, which is only possible

when MFG and PDGs have feasible operating plans that can

be implemented in conjunction with those of the other units

involved. A minimum acceptable revenue level for the Prod-

uct Division is ensured by the fill rate constraints in the MFG

problem. Hence, objective function (1a) is closely related

to revenue. This objective also plays a key role in our pro-

posed integer column generation procedure as discussed in

Section 6.4.

As the Product Division does not have access to or con-

trol over the detailed technological constraints governing the

resource allocation decisions made by the MFG and the PDGs

a centralized decision model is neither practical nor desirable.

We decompose model (1) into |I| + 1 subproblems, one for

MFG and each of the PDGs. The compatibility constraints

are enforced in the RMP, and those describing the capabilities

of MFG and each PDG in their corresponding subproblems.

Unlike Günlük et al. (2005), who propose a branch-and-price

framework to solve the WDP after collecting all bids, we

implement integer column generation using the subadditive

dual of the RMP to solicit new proposals corresponding to

columns from the MFG and PDGs.

In our procedure, the Product Division serves as the

coordinator. At each iteration, each PDG submits product
development proposals, that is, candidate operating plans,

specifying

• ŷpt ∈ {0, 1}, whether the development activities of new

product p ∈ Pi will be completed in time period t, and

hence become available to meet demand; and

• âit ≥ 0, the amount of factory capacity requested from

MFG in each period t in order to achieve these delivery

dates.

At each iteration, MFG submits one or more manufacturing
proposals specifying

• ypt ∈ {0, 1}, whether it plans to produce product n ∈ N in

period t to satisfy fill rate frn; and

• ait ≥ 0, the fraction of factory capacity allocated to PDGi
for prototype fabrication in period t.

Each unit’s proposals satisfy its technological constraints.

The Product Division then solves a mixed-integer RMP to

identify a set of |I| + 1 proposals, one from each PDGi, i ∈ I
and one from MFG, such that the compatibility constraints

(1d) are satisfied; specifically, that

• no product is manufactured for sale before its development

has been completed; and

• the prototyping capacity used by each PDG in any period

does not exceed the capacity allocated to it in the accepted

MFG proposal.

We shall refer to a set of proposals satisfying these con-

ditions as a compatible proposal set. If the RMP identifies

a compatible proposal set, an integer feasible solution has

been found, and the coordination procedure terminates. If not,

the Product Division uses the subadditive dual of the RMP

to obtain prices associated with the compatibility constraints

(1d) that are communicated to MFG and PDGs. These units

then compute new proposals, which are added to the RMP

as columns in the next iteration. We now briefly review sub-

additive duality for mixed-integer programs which is a key

component of our proposed coordination framework based on

integer column generation.

4 SUBADDITIVE DUALS OF MILPS

Gomory (1969) and Gomory and Johnson (1972a, 1972b)

noted the importance of subadditive functions in the the-

ory of MILPs, especially that they can be used to pro-

duce valid inequalities for any MILP. Johnson (1974, 1979)

defined the dual of a MILP using subadditive functions, while

Wolsey (1981) proposed cutting plane and branch and bound

methods to construct subadditive dual functions for MILPs.

Klabjan (2007) described a family of Subadditive Genera-

tor Functions (SGFs) that are feasible to a dual problem of a

pure IP and satisfy the strong duality property. Cheung and

Moazzez (2016) derived SGFs with no restrictions on the

constraint matrix and right-hand side vector. Given an MILP

(PR1) z∗ =
{

Min cTx | Ax = b, xj ∈ Z,

j ∈ W, xj ≥ 0, j ∈ C
}
,

where A ∈ R
m×n

and b ∈ R
m

, let C denote the index set

of all decision variables and W ⊆ C the index set of integer

variables. The subadditive dual of (PR1) is given by:

(DP1)
{

Max F(b) | F
(
aj
)
≤ cj, j ∈ W,

̂F
(
aj
)
≤ cj, j ∈ C∖W, F(0) = 0

}

,

where F ∶ R
m → R is a subadditive function, aj the jth col-

umn of A, and ̂F(r) = limsup
𝛿→0

+(F(𝛿r)∕𝛿). It is well known

that DP1 satisfies both weak and strong duality properties

(Guzelsoy & Ralphs, 2007). For a given vector 𝛼 ∈ R
m

of dual

variables, Cheung and Moazzez (2016) defined a Generalized

Subadditive Generator Function (GSGF)
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̃F(w) = 𝛼

Tw − max

{
∑

j∈E

(
𝛼

Taj − cj
)

xj ∶ w −
∑

j∈E
ajxj ∈ K,

xj ≥ 0, j ∈ E, xj ∈ Z, j ∈ W ∩ E

}

, (2)

where w ∈ R
m

, K is a closed convex cone, and E ⊆ C is a

subset of the decision variables such that:
{

∑

j∈C∖E
ajxj ∶ xj ≥ 0, j ∈ C∖E, xj ∈ Z, j ∈ W∖E

}

⊆ K

and 𝛼

Taj − cj ≤ 0, j ∈ C∖E, (3)

and showed that ̃F is a feasible solution to DP1. Note that ̃F
is characterized by a closed convex cone K, a subset E of the

decision variables, and a vector 𝛼 ∈ R
m

of dual variables.

Setting K = R
m
+ for tractability, we obtain

̃F(w) = 𝛼

Tw − max

{
∑

j∈E

(
𝛼

Taj − cj
)

xj ∶
∑

j∈E
ajxj ≤ w,

xj ≥ 0, j ∈ E, xj ∈ Z, j ∈ W ∩ E

}

, (4)

and make the following observation. All proofs are given in

Appendix C.

Lemma 1 For K = R
m
+ , ̃F is a valid GSGF

that is a feasible solution to DP1 only if E con-
tains every decision variable xj such that aij < 0

for some i ∈ {1, … ,m}.

̃F∗
is an Optimal Generalized Subadditive Generator Func-

tion (OGSF) if it satisfies the strong duality condition ̃F∗(b) =
cx∗, where x∗ is an optimal solution to PR1 (Klabjan, 2007).

For K = R
m
+ and a subset E of the decision variables satis-

fying the requirement in Lemma 1, an OGSF ̃F∗
requires a

vector 𝛼 of dual variables satisfying

𝛼

Taj − cj ≤ 0, j ∈ C∖E, (5a)

cTx∗ = 𝛼

Tb − max

{
∑

j∈E

(
𝛼

Taj − cj
)

xj ∶
∑

j∈E
ajxj ≤ b,

xj ≥ 0, j ∈ E, xj ∈ Z, j ∈ W ∩ E

}

. (5b)

Constraints (5a) enforce the second condition in (3), while

(5b) enforces strong duality. For a given subset E of decision

variables, there is no known polynomial time algorithm to

find a solution satisfying constraints (5a) and (5b) as solving

(5b) involves a mixed-integer inverse optimization problem

(Wang, 2009). The complexity of this computation has been

a major barrier to the incorporation of subadditive duality

into practical algorithms. However, we show in Section 5.4

that the structure of our RMP presented in Section 5.1

allows dual solutions satisfying (5a) and (5b) to be computed

efficiently.

5 A COORDINATION PROCEDURE USING
MILP-BASED COLUMN GENERATION

Given an efficient method for computing an OGSF, we pro-

pose a coordination mechanism using MILP-based column

generation, referred to as MCG, summarized in Figure 1. The

procedure is initiated with dummy proposals B
m
0 , B

d
i0, i ∈ I in

Step 0. Then, a RMP described in Section 5.1 is solved and an

initial OGSF ̃F∗
RMP

0

is computed. In Step 1 of the kth iteration,

the Product Division, acting as the coordinator, communi-

cates the current OGSF ̃F∗
RMPk−1

to MFG and the PDGs, who

then solve their respective pricing subproblems—presented in

Sections 5.2 and 5.3—and submit their proposal sets. MFG

and PDGs can submit multiple proposals in each iteration in

order to aid quick determination of a compatible proposal set.

All submitted proposals with negative reduced cost are added

to RMPk−1 to form the new RMPk, which is solved by the

coordinator (the Product Division) in Step 2. Unlike LP-based

column generation, a column with negative reduced cost may

not be cost improving in MCG. However, Proposition 1 shows

that a negative reduced cost is a necessary condition for a

column to yield a cost improving solution.

Proposition 1 For a given OGSF of RMPk,
any cost improving column has negative
reduced cost.

If no column with negative reduced cost is submitted in Step

1 or the optimal solution value of RMPk is 0, the process is

terminated and the algorithm goes to Step 5. In Step 3, a mod-

ified RMP model relaxing the requirement that a compatible

proposal set must include proposals from all units is solved to

obtain an intermediate solution. In Step 4, an updated OGSF is

computed per Section 5.4. Finally, in Step 5, MFG solves the

LP described in Section 5.5 to improve revenue by utilizing

any unused factory capacity.

5.1 The restricted master problem

We define the jth MFG proposal as B
m
j =

( (
aitj

)

i∈I,t=1,… ,T ,(
yptj

)

p∈Pi,i∈I,t=1,… ,T

)
, where

(
aitj

)

i∈I,t=1,… ,T denotes the frac-

tion of factory capacity allocated to PDGi in period t, and

yptj = 1 if MFG plans to manufacture new product p ∈ Pi
in period t, and 0 otherwise. Similarly, the jth proposal from

PDGi is denoted by ̂Bd
ij =

((
âitj

)

t=1,… ,T ,
(
ŷptj

)

p∈Pi,t=1,… ,T

)

,

where
(
âitj

)

t=1,… ,T denotes the fraction of factory capacity

requested by PDGi in period t, and ŷptj = 1 if PDGi plans to

complete the development of product p ∈ Pi by period t. Each

proposal from MFG or a PDG represents a solution satisfying

their local constraints defined in Sections 5.2 and 5.3. By set-

ting yptj = 1, MFG signals that its proposal is conditional upon

the development of product p being completed before period

t. By setting ŷptj = 1, PDGi communicates that if it is given
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FIGURE 1 The mixed-integer linear program-based column generation implementation

the prototype capacity specified by âitj values, it commits to

completing the development of product p ∈ N by period t.
We initialize the auction using dummy proposals for MFG

and PDGs. The dummy MFG proposal, given by

B
m
0 =

((
ait0 = 1

)

i∈I,t=1,… ,T ,
(
ypt0 = 0

)

p∈Pi,i∈I,t=1,… ,T

)

, (6)

allocates the entire factory capacity in each period as proto-

type capacity to the PDGs without meeting any demand of

new products, violating the fill rates imposed by the Product

Division. Similarly, the dummy proposal for PDGi, given by

̂Bd
i0 =

((
âit0 = 0

)

t=1,… ,T ,
(
ŷpt0 = 1

)

p∈Pi,t=1,… ,T

)

∀i ∈ I,
(7)

allows PDGi to complete the development of all its products

p ∈ Pi without using any prototype capacity. As dummy pro-

posals are infeasible to the units’ local constraints, we add

them to the RMP with big-M objective coefficients. We show

in Sections 5.2 and 5.3 that these dummy proposals ensure

relatively complete recourse for the pricing subproblems of

the MFG and PDGs.

Let 𝜒
m
j = 1 if the jth proposal from MFG is accepted and 0

otherwise. Similarly, let 𝜒
d
ij = 1 if the jth proposal from PDGi

is accepted and 0 otherwise. Slack variables sm
and sd

i take a

value of 1 if no proposal from MFG or PDGi, respectively, is

accepted, and 0 otherwise. We denote the set of all proposals

submitted by MFG in iterations 1, … , k by S
m
k , and the set of

proposals submitted by PDGi by ̂Sd
ik. Finally, let Sm

k = S
m
k ∪

{

B
m
0

}

and Sd
ik = ̂Sd

ik ∪
{
̂Bd

i0

}

for i ∈ I. We add slack variables

sa
i and sy

pt to RMPk to bring it to the form of (PR1). The RMP

at iteration k is then given by

(RMPk) z∗k = Min sm +
∑

i∈I
sd

i + Mk𝜒
m
0
+
∑

i∈I
Mk𝜒

d
i0. (8a)

subject to

∑

j∈Sm
k

𝜒

m
j yptj −

∑

j∈Sd
ik

𝜒

d
ij ŷptj + sy

pt = 0

p ∈ Pi, i ∈ I, t = 1, … , T ,
(
𝜆pt

)
. (8b)

∑

j∈Sd
ik

𝜒

d
ij âitj −

∑

j∈Sm
k

𝜒

m
j aitj + sa

i = 0 i ∈ I, t = 1, … , T , (𝛽it) .

(8c)

∑

j∈Sm
k

𝜒

m
j + sm = 1,

(
𝛿

1
)
. (8d)

∑

j∈Sd
ik

𝜒

d
ij + sd

i = 1 i ∈ I,
(
𝛿

2

i
)
. (8e)

𝜒

m
j ∈ {0, 1} j ∈ Sm

, (8f)

𝜒

d
ij ∈ {0, 1} i ∈ I, j ∈ Sd

i , (8g)

sm
≥ 0, sd

i ≥ 0, sa
i ≥ 0, sy

pt ≥ 0

p ∈ Pi, i ∈ I, t = 1, … , T . (8h)

We suppress the iteration index k hereafter in Section 5

to simplify the notation. The number of rows in RMP is
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𝓁 = T
(
|I| +

∑
i∈I |Pi|

)
+ |I| + 1. The dual vari-

ables associated with each constraint are indicated

in parentheses to the right. The vector of dual vari-

ables for RMP that must satisfy (5a)-(5b) is given by
((

𝜆pt
)

p∈Pi,i∈I,t=1,… ,T , (𝛽it)i∈I,t=1,… ,T , 𝛿
1
,

(
𝛿

2

i

)

i∈I

)T
. RMP is

a MILP that selects at most one proposal from MFG and

from each PDG. The sm
and sd

i variables in (8d) and (8e)

will be equal to one only if no proposal is accepted from

the offering unit. Constraints (8b) ensure that new product

p ∈ Pi is manufactured in period t only if its development is

completed by period t in the accepted PDGi proposal, while

(8c) ensure that the prototyping capacity PDGi uses in period

t does not exceed that allocated to it in the accepted MFG

proposal. The objective function (8a) minimizes the number

of units without an accepted proposal. We set the objective

coefficients of all dummy proposals to M > |I| + 1 to ensure

that they are not accepted in any optimal solution.

Proposition 2 If
(
yptj

)

t=1,… ,T ≠ 0, p ∈
Pi, i ∈ I and

(
âitj

)

t=1,… ,T ≠ 0, i ∈ I in all MFG
and PDG proposals, respectively, the objective
function value of any feasible solution to RMP
is either |I| + 1 or 0.

Proposition 2 states that in any feasible solution to RMP

either MFG and all PDGs will have accepted proposals simul-

taneously, or none will. No feasible MFG proposal can have
(
ypt

)

t=1,… ,T = 0, p ∈ Pi, i ∈ I in our problem because the fill

rates frn > 0 for all n ∈ N, that is, all products must be pro-

duced in sufficient quantities to meet their fill rates. Similarly,

no feasible PDGi proposal can have
(
âit
)

t=1,… ,T = 0 as PDGi
cannot develop new products without prototype fabrication,

and fill rates cannot be met unless development is completed

and products manufactured by MFG to meet demand. Propo-

sition 2 allows us to compute an OGSF for RMP efficiently by

identifying a feasible solution to (5a) and (5b) for K = R
𝓁
+ and

E =
{(

𝜒

m
j

)

j∈Sm
,

(

𝜒

d
ij

)

j∈Sd
i ,i∈I

, sm
,

(
sd

i

)

i∈I

}

as we discuss in

Section 5.4. We now formulate the pricing subproblems that

MFG and the PDGs must solve to determine their proposals

using the most recently communicated OGSF.

5.2 The MFG subproblem

Using the notation in Table 1, the scheduling and resource

allocation constraints of MFG are:

N∑

n=1

xnt +
∑

i∈I
ait ≤ 1 t = 1, … , T , (9a)

xpt ≤ ypt p ∈ Pi, i ∈ I, t = 1, … , T , (9b)

T∑

t=1

Ctxnt ≥

T∑

t=1

frnDnt n ∈ N, (9c)

TABLE 1 Parameters and variables in the manufacturing (MFG)

subproblem

Parameters

frn Fill rate of product n.

Dnt Demand of product n in period t.

ESTp MFG’s estimate of the factory capacity need for prototyping

new product p.

Ct Total factory capacity in period t.

Variables

xnt Fraction of factory capacity used to manufacture product n in

period t

ait Fraction of factory capacity allocated by MFG to PDGi in

period t.

ypt 1 if MFG plans to manufacture new product p in period t and 0

otherwise.

t∑

𝜏=1

ai𝜏 ≥
∑

p∈Pi

ESTpypt i ∈ I, t = 1, … , T , (9d)

ypt ∈ {0, 1} p ∈ Pi, i ∈ I, t = 1, … , T , (9e)

xnt, ait ∈ [0, 1] n ∈ N, i ∈ I, t = 1, … , T . (9f)

Constraint (9a) ensures that the total factory capacity allo-

cated to manufacturing products in the market and to the

PDGs for prototyping new products does not exceed available

factory capacity in any period. Constraint (9b) ensures that

a new product is not manufactured before its development is

complete, while (9c) enforces the fill rate for each product.

Since the detailed development schedules of the PDGs are not

communicated to MFG, MFG must estimate how much pro-

totyping capacity to allocate to the PDGs. Constraints (9b)

and (9d) together ensure that if MFG plans to produce product

p in period t, it must allocate at least ESTp units of proto-

typing capacity to that product in the periods s < t, where

ESTp represents MFG’s estimate of the prototyping capacity

required to develop product p. Based on the values of the dual

variables communicated by the Product Division, MFG may

allocate additional prototyping capacity beyond the minimum

specified by ESTp.

In each iteration of the MCG, the Product Division provides

MFG with the OGSF ̃F∗
RMP

. Let

𝛼

∗ =
((

𝜆

∗
pt
)

p∈Pi,i∈I,t=1,… ,T ,
(
𝛽

∗
it
)

i∈I,t=1,… ,T , 𝛿
1∗
,

(
𝛿

2∗
i
)

i∈I

)T
,

be the dual variables defining ̃F∗
RMP

. Given these

values, MFG seeks a proposal, that is, a feasi-

ble operating plan B
m

with negative reduced cost

to be added to the RMP in the next iteration, with

Y
m

=
((

ypt
)

p∈Pi,i∈I,t=1,… ,T ,
(
−ait

)

i∈I,t=1,… ,T , 1, [0]i∈I

)T

denoting the column of RMP induced by B
m

. Since

the objective function coefficient of the variable 𝜒

m
j

associated with MFG proposal j is 0, MFG should

minimize

(

0 − ̃F∗
RMPk

(

Y
m))

to identify a column Y
m
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with negative reduced cost. Writing ̃F∗
RMP

(

Y
m)

with

E =
{(

𝜒

m
j

)

j∈Sm
,

(

𝜒

d
ij

)

j∈Sd
i ,i∈I

, sm
,

(
sd

i

)

i∈I

}

and dual

variables 𝛼
∗

yields the following MFG pricing subproblem:

Min −

(
∑

i∈I

∑

p∈Pi

T∑

t=1

𝜆

∗
ptypt −

∑

i∈I

T∑

t=1

𝛽

∗
itait + 𝛿

1∗ − Qm
(

Y
m)

)

subject to ∶ (9a) − (9f), (10a)

where Qm
(

Y
m)

in (10a) denotes the optimal objective func-

tion value of the maximization problem:

Qm( ̄Ym) = Max

∑

j∈ ̄Sm

(
∑

i∈I

∑

p∈Pi

T∑

t=1

𝜆

∗
ptȳptj −

∑

i∈I

T∑

t=1

𝛽

∗
it āitj + 𝛿

1∗
)

𝜒

m
j

+
(

−
∑

i∈I

T∑

t=1

𝛽

∗
it + 𝛿

1∗ − M
)

𝜒

m
0
+ (𝛿1∗ − 1)sm

(11a)

subject to

∑

j∈Sm

𝜒

m
j yptj ≤ ypt p ∈ Pi, i ∈ I, t = 1, … , T ,

(11b)

∑

j∈Sm

𝜒

m
j aitj ≥ ait i ∈ I, t = 1, … , T , (11c)

∑

j∈Sm

𝜒

m
j + sm

≤ 1, (11d)

𝜒

m
j ∈ {0, 1} j ∈ Sm

, (11e)

sm
≥ 0. (11f)

The MFG pricing subproblem (10) is thus a mixed-integer

bilevel program. For any feasible solution to the upper-level

problem we have
∑

j∈Sm 𝜒
m
j = 1 in every feasible solution to

the lower level problem. This is because (9c) and (9d) ensure

that
(
ait
)

t=1,… ,T ≠ 0 ∀i ∈ I, forcing the lower level problem

to select a proposal j ∈ Sm
to satisfy (11c). Thus, the lower

level problem selects a previously submitted MFG proposal

that

• does not manufacture product p in period t
if it is not scheduled to be manufactured in

period t in the upper level solution, per (11b);

and,

• allocates at least as much prototyping capac-

ity to PDGi in each period t as the upper level

solution, per (11c).

If MFG has not previously submitted a proposal with ym
ptj =

0 or am
itj > 0 and the upper-level solution has ypt = 0 or ait > 0,

the lower-level problem would be infeasible. Thus, including

the dummy MFG proposal

B
m
0 =

((
ait0 = 1

)

i∈I,t=1,… ,T ,
(
ypt0 = 0

)

p∈Pi,i∈I,t=1,… ,T

)

,

in the RMP ensures that the lower-level problem is feasible for

any upper-level solution. Moreover, if PDGi has not been allo-

cated capacity in period t in any previously submitted MFG

proposal, that is, aitj = 0, j ∈ S
m

, (11c) ensures that MFG

will never submit a new proposal with ait > 0 assigning PDGi
capacity in period t. This can prevent the MCG from reach-

ing a solution where a proposal from every PDG is accepted.

Thus, the dummy MFG proposal also ensures diversity in

MFG proposals. We now show that with an appropriate value

of the big- M objective coefficient of the dummy MFG pro-

posal, the lower-level problem will only return the dummy

proposal if the upper-level solution represents a new proposal

with negative reduced cost.

Proposition 3 If M >

−
∑

i∈I
∑

p∈Pi

∑T
t=1

𝜆

∗
pt −

∑
i∈I

∑T
t=1

𝛽

∗
it , the

lower-level problem in the MFG subproblem
selects the dummy proposal if and only if the
upper-level solution represents a new proposal
with negative reduced cost.

Note that there exists no previously submitted MFG pro-

posal (except the dummy) satisfying (11b) and (11c) with

the new proposal on the right-hand side as the upper-level

solution; if one did, the dummy proposal would not be an opti-

mal solution to the lower-level problem due to its negative

big- M objective coefficient. Hence the new proposal differs

from any previously submitted one. This formulation of the

pricing subproblem and the dummy proposal B
m
0 encourages

diversification of the proposals submitted by MFG, improving

the Product Division’s knowledge of MFG’s capabilities and

making it easier for the MCG to find a solution incorporating

a proposal from every PDG.

5.3 The PDGi subproblem

Let ̂Bd
i be a proposal from PDGi, and ̂Yd

i =
((

−ŷpt
)

p∈Pi,t=1,… ,T ,
(
âit
)

t=1,… ,T , 0, [ei]
)T

denote the col-

umn induced by ̂Bd
i , where ei is the |I| dimensional row vector

with its ith element equal to 1 and all others 0. The Product

Division communicates the OGSF ̃F∗
RMP

to each PDGi. The

objective function coefficient for each variable 𝜒

d
ij in RMP is

0. Thus each PDGi minimizes

(

0 − ̃F∗
RMP

(
̂Yd

i

))

to identify

a proposal

((
âit
)

t=1,… ,T ,
(
ŷpt

)

p∈Pi,t=1,… ,T

)

with negative

reduced cost, yielding the PDGi pricing subproblem

Min −

( T∑

t=1

𝛽

∗
it âit −

∑

p∈Pi

T∑

t=1

𝜆

∗
ptŷpt + 𝛿

2∗
i − Qd

i

(
̂Yd

i

)
)

, (12)

subject to the detailed scheduling constraints given in

Appendix A, and where

Qd
i ( ̂Y

d
i ) = Max

∑

j∈ ̂Sd
i

( T∑

t=1

𝛽

∗
it âitj −

∑

p∈Pi

T∑

t=1

𝜆

∗
ptŷptj + 𝛿

2∗
i

)

𝜒

d
ij

+
(

−
∑

p∈Pi

T∑

t=1

𝜆

∗
pt + 𝛿

2∗
i − M

)

𝜒

d
i0 +

∑

i∈I
(𝛿2∗

i − 1)sd
i ,

(13a)
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subject to

∑

j∈Sd
i

𝜒

d
ij ŷptj ≥ ŷpt p ∈ Pi, t = 1, … , T , (13b)

∑

j∈Sd
i

𝜒

d
ij âitj ≤ âit t = 1, … , T , (13c)

∑

j∈Sd
i

𝜒

d
ij + sd

i ≤ 1 (13d)

𝜒

d
ij ∈ {0, 1} j ∈ Sd

i , (13e)

sd
i ≥ 0. (13f)

The PDGi subproblem is a mixed-integer bilevel program.

Given an upper-level solution, the lower-level problem selects

a previously submitted PDGi proposal that

• completes the development of every new

product p no later, per (13b), and

• uses no more factory capacity in each period

t, per (13c)

than in the upper-level solution.

If PDGi has never submitted a proposal with ŷptj = 1 or

âitj = 0 and the upper level solution has ŷpt = 1 or âit = 0, the

lower-level problem would be infeasible. Thus, including the

dummy PDGi proposal (7) ensures that there is always a feasi-

ble solution to the lower-level problem. As in t , when the big-

M objective coefficient of the dummy PDGi proposal is spec-

ified appropriately, the lower-level problem will only return

the dummy proposal if the upper-level solution represents a

new proposal with negative reduced cost.

Proposition 4 If M >

−
∑

i∈I
∑

p∈Pi

∑T
t=1

𝜆

∗
pt −

∑
i∈I

∑T
t=1

𝛽

∗
it , the

lower-level problem in the PDGi subproblem
selects the dummy proposal if and only if the
upper-level solution represents a new proposal
with negative reduced cost.

We solve the bilevel MFG and PDGi subproblems using

the Column and Constraint Generation algorithm of Zeng

and An (2014), whose worst-case number of iterations is

bounded by the number of integer solutions to the lower-level

problem. Although the number of such solutions may be

extremely large for general mixed-integer bilevel programs,

the MFG and PDGi subproblems have |Sm| and |Sd
i |, i ∈ I

such solutions, respectively, permitting fast solutions.

5.4 Computing an OGSF

To allow efficient computation of the OGSF, we set K = R
𝓁
+

and

E =
{(

𝜒

m
j

)

j∈Sm
,

(

𝜒

d
ij

)

j∈Sd
i ,i∈I

, sm
,

(
sd

i
)

i∈I

}

.

The columns associated with 𝜒

m
j and 𝜒

d
ij in RMP contain at

least one negative coefficient, and hence by Lemma 1 must

be included in E to obtain a valid OGSF. We show below that

including the slack variables sm
and sd

i , i ∈ I in E allows us

to easily determine the dual variables of the RMP

𝛼 =
((

𝜆pt
)

p∈Pi,i∈I,t=1,… ,T , (𝛽it)i∈I,t=1,… ,T , 𝛿
1
,

(
𝛿

2

i
)

i∈I

)T
,

feasible to (5a) and (5b), yielding an optimal OGSF ̃F∗
RMP

.

With these choices of K and E constraints (5a) become:

𝜆pt ≤ 0 p ∈ Pi, i ∈ I, t = 1, … , T (14a)

𝛽it ≤ 0 i ∈ I, t = 1, … , T (14b)

The first term on the right-hand side of (5b) is equal to 𝛿

1 +
∑

i∈I 𝛿
2

i for the RMP. By Proposition 2, the optimal value of

RMP equals |I| + 1 in all iterations before termination, thus

constraints (5b) imply that dual variables should be chosen

such that the optimal objective function value of the following

MILP, which implements the maximization problem in (5b),

is equal to 𝛿

1 +
∑

i∈I 𝛿
2

i − |I| − 1.

(DP) Max

∑

j∈ ̄Sm

(
∑

i∈I

∑

p∈Pi

T∑

t=1

𝜆ptȳptj −
∑

i∈I

T∑

t=1

𝛽itāitj + 𝛿

1

)

𝜒

m
j

+
(

−
∑

i∈I

T∑

t=1

𝛽it + 𝛿

1 − M
)

𝜒

m
0

+
∑

i∈I

[
∑

j∈ ̂Sd
i

( T∑

t=1

𝛽itâitj −
∑

p∈Pi

T∑

t=1

𝜆ptŷptj + 𝛿

2

i

)

𝜒

d
ij

+
(

−
∑

p∈Pi

T∑

t=1

𝜆pt + 𝛿

2

i − M
)

𝜒

d
i0

]

+ (𝛿1 − 1)sm +
∑

i∈I
(𝛿2

i − 1)sd
i (15a)

subject to

∑

j∈Sm

𝜒

m
j yptj −

∑

j∈Sd
i

𝜒

d
ij ŷptj ≤ 0

p ∈ Pi, i ∈ I, t = 1, … , T , (15b)

∑

j∈Sd
i

𝜒

d
ij âitj −

∑

j∈Sm

𝜒

m
j aitj ≤ 0 i ∈ I, t = 1, … , T , (15c)

∑

j∈Sm

𝜒

m
j + sm

≤ 1, (15d)

∑

j∈Sd
i

𝜒

d
ij + sd

i ≤ 1 i ∈ I, (15e)

𝜒

m
j ∈ {0, 1} j ∈ Sm

, (15f)

𝜒

d
ij ∈ {0, 1} i ∈ I, j ∈ Sd

i , (15g)

sm
≥ 0, sd

i ≥ 0 i ∈ I. (15h)
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Proposition 5 If the optimal objective value
of RMP equals |I| + 1, the optimal objective
value of DP equals 𝛿1 +

∑
i∈I 𝛿

2

i − |I| − 1 when
𝛿

1 ≥ 1 and 𝛿

2

i ≥ 1, i ∈ I and

M > Max

{

𝛿

1 −
∑

i∈I

T∑

t=1

𝛽it,

{

𝛿

2

i −
∑

p∈Pi

T∑

t=1

𝜆pit

}

i∈I

}

.

(16)

If the conditions in Proposition 5 are satisfied, the optimal

objective value of DP is 𝛿
1 +

∑
i∈I 𝛿

2

i − |I|− 1, satisfying the

strong duality condition (5b). There are no other restrictions

on 𝛿

1
and 𝛿

2

i , so we set 𝛿
1 = 𝛿

2

i = 1,∀i ∈ I.

For PDGi, |𝜆pt| can be interpreted as the incentive paid to

PDGi to complete development of product p ∈ Pi in period t,
and |𝛽it| the unit cost of prototyping capacity in period t. To

induce proposals from PDGi that complete the development

of each product p ∈ Pi as early as possible, giving MFG the

greatest flexibility to meet fill rates, we prefer small values of

|𝛽it| and large values of |𝜆pt|. This can be achieved by setting

the dual variables of the OGSF as

(M1) 𝜆

∗
pt = V1, 𝛽

∗
it = 0, p ∈ Pi, i ∈ I, t = 1, … , T ,

(17)

where V1 < 0 is a constant parameter.

For MFG, the value of the dual variable |𝜆pt| can be inter-

preted as the cost of manufacturing product p in period t,
and |𝛽it| as the price charged to PDGi for a unit of proto-

type capacity in period t. To induce proposals from MFG

that satisfy the fill rate constraints, we prefer small values

of |𝜆pt| and large values of |𝛽it| in each period. Further-

more, we would like to set the values of the dual variables

to encourage MFG to offer prototype capacity to PDGs in

periods when the previously submitted proposals do not.

This can be achieved by specifying the dual variables of the

OGSF as

(M2) 𝜆

∗
pt = 0, 𝛽

∗
it =

V2

git
, p ∈ Pi, i ∈ I, t = 1, … , T ,

(18)

where V2 < 0 is a constant parameter. The value of git is

determined by solving a modified RMP, denoted by M-RMP,

which minimizes the number of PDGs with no accepted pro-

posals. We present the formulation of M-RMP in Appendix B.

If no proposal from PDGi is accepted in the M-RMP solution,

we set git =
∑

j∈S
m aitj∕|S

m
|, i ∈ I, t = 1, … , T , that is, to the

average factory capacity allocation to PDGi in period t over

all MFG proposals submitted so far. Otherwise the value of

git remains unchanged. This value of git will discourage MFG

from allocating more factory capacity to PDGi in period t if it

has already done so in the previous iterations, and encourage it

to allocate more factory capacity in periods that have received

less allocation in previous iterations. Our MCG implemen-

tation alternates between using M1 and M2 for updating the

dual variables in successive iterations, seeking a diverse set

of proposals that make it easier for MCG to obtain a solu-

tion incorporating a proposal from MFG and each PDG. We

set an appropriate value for the big- M parameter in Proposi-

tions 3, 4, and 5 in each iteration k. In particular, as 𝛽
k∗
it , 𝜆

k∗
pt ≤

0, p ∈ Pi, i ∈ I, t = 1, … , T and 𝛿

1k∗ = 1 and 𝛿

2k∗
i =

1, i ∈ I, any value greater than −
∑

i∈I
∑

p∈Pi

∑T
t=1

𝜆

k∗
pt −

∑
i∈I

∑T
t=1

𝛽

k∗
pt + 1 satisfies the lower bounds on M in Propo-

sitions 3, 4, and 5. Moreover, we require M > |I| + 1

to ensure that dummy proposals are not accepted. Thus we

set M > Max

{

−
∑

i∈I
∑

p∈Pi

∑T
t=1

V1 + 1, |I| + 1

}

when

using (17), and M > Max

{

−
∑

i∈I
∑T

t=1

V
2

gk
it
+ 1, |I| + 1

}

when using (18) to compute the optimal values of the dual

variables.

5.5 Refining the final allocations

The MCG procedure terminates with a solution in which some

or all PDGs have accepted proposals, specifying when new

products will complete their development and the prototyping

capacity allocated to PDGs in each period. Any prototyping

capacity allocated by MFG to the PDGs that remains idle can

be used to manufacture products to generate revenue. Thus

at the termination of the MCG, we solve a linear program to

improve capacity utilization and hence the total revenue. The

Product Division provides MFG with the new product intro-

duction time periods and the prototyping capacity requests

made by the PDGs in the final solution proposed by the MCG,

and the revenue generated from one unit of product n in period

t, 𝜈nt. MFG solves the following linear program for a produc-

tion plan (xnt)n∈N,t=1,… ,T that maximizes the total revenue by

allocating unused factory capacity to meet additional demand

above the specified minimum fill rates.

Max

∑

n∈N

T∑

t=1

𝜈ntCtxnt (19a)

subject to xpt ≤ ỹpt p ∈ Pi, i ∈ I, t = 1, … , T (19b)

∑

n∈N
xnt +

∑

i∈I
ãit ≤ 1 t = 1, … , T (19c)

T∑

t=1

xntCt ≥

T∑

t=1

frnDnt n ∈ N∖
⋃

i∈I
Pi, (19d)

T∑

t=1

xptCt ≥ 𝜂i

( T∑

t=1

frpDpt

)

p ∈ Pi, i ∈ I, (19e)

T∑

t=1

xntCt ≤

T∑

t=1

Dnt n ∈ N. (19f)

The parameter ỹpt takes a value of 1 if product p can be man-

ufactured in period t and 0 otherwise, while ãit is the fraction

of factory capacity required by PDGi in period t at the ter-

mination of MCG. Constraints (19b) state that MFG cannot

manufacture a new product before its development is com-

plete, while (19c) ensure that the available manufacturing

capacity is not exceeded. Constraints (19d) ensure that the fill
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rates of all current products are met while (19e) state that the

fill rate of a new product p ∈ Pi is enforced only if a proposal

of PDGi is accepted, that is, 𝜂i = 1. Constraints (19f) bound

the production of each product by its total demand.

6 COMPUTATIONAL EXPERIMENTS

In order to examine the performance of the MCG proce-

dure, we conduct three distinct computational experiments.

The first of these examines the performance of MCG relative

to an optimal centralized solution with complete information

which, although impractical due to the distributed nature of

the problem, provides an upper bound on the revenue and

a lower bound on the number of units not included in the

final solution. We then compare MCG to a LP-based branch

and price algorithm, and finally examine how MCG scales to

larger instances.

6.1 Performance of MCG relative to a centralized
solution

We consider problem instances with one MFG unit and four

PDGs. The total factory capacity available to MFG in each

period is 5000 units. Each PDG develops one new product

that will replace a current product. We assume that all new

products have the same introduction deadline, and demand

for the current products drops to zero when demand for new

products is received. This will ensure that generated instances

are difficult as all PDGs need factory capacity in the same

time periods, and MFG cannot meet the fill rate for the cur-

rent products if it allocates too much factory capacity to

PDGs early in the planning horizon. On the other hand, if the

development of new products is not completed on time, there

will be substantial loss of revenue due to abrupt transition

between product generations. Since the number of product

development stages (i.e., cycles of design activity followed

by prototype fabrication) may vary, we consider three pos-

sible scenarios for each new product. Scenario 1 is the best

case, requiring three development stages and 600 units of

factory capacity: (500, 100, 0). Scenario 2 requires 4 stages

and 850 units of factory capacity: (500, 250, 100, 0). Sce-

nario 3, representing the worst case, requires five stages and

1200 units of factory capacity: (500, 400, 200, 100, 0).
We assume that all new products are under development

in Scenario 3, and pr is the probability that MFG correctly

estimates the factory capacity requirements of a new prod-

uct for prototyping. For instance, if pr = 0.7, then with

probability 0.7, MFG correctly estimates that a new product

p is under development in Scenario 3 and will set ESTp to
1200

5000
= 0.24 in (23). With probability 0.3, MFG is equally

likely to incorrectly estimate the development scenario to be

Scenario 2, setting ESTp = 850

5000
= 0.17 or Scenario 1, setting

EST = 600

5000
= 0.12. We consider three values of pr in our

experiments (0.3, 0.6, 0.9) and three different values of the

TABLE 2 Performance of mixed-integer linear program (MILP)-based

column generation (MCG) for different values of r. Reported values are the

mean (max) of 45 instances over nine cases (3 fr values × 3 pr values)

Product development
groups without
accepted proposals Revenue gapa Time (s) Iterations

1 3.89 (4) 52.36 (54.55) 3600 (3601) 3871.16 (4056)

10 1.24 (3) 16.72 (40.23) 3259 (3628) 312.29 (640)

25 0.96 (2) 12.95 (27.27) 3241 (3643) 149.22 (185)

50 1.02 (2) 13.80 (27.43) 2974 (3718) 97.18 (128)

a
Gap between the revenue from MCG and the optimal objective value of the integrated

problem that maximizes revenue.

fill rate fr (0.85, 0.9, 0.95). The proposed approach is more

likely to find a solution where MFG and all PDGs are included

when more distinct proposals available to the Product Divi-

sion. Therefore, we allow MFG and each PDG to submit up

to r = 1, 10, 25, 50 proposals with negative reduced costs in

each iteration. We consider four values of r and three values

for each of pr and fr for a total of 36 cases with five random

instances for each case. We run computational experiments

on an Intel Core i5 @ 2.80 GHz processor with 32GB RAM,

Python 3.7 and Gurobi 9.5 for a maximum run time of 3600 s.

Table 2 gives the performance of the MCG for different val-

ues of r. We report the number of PDGs with no accepted

proposals in Table 2 because M-RMP, which is solved to

determine an intermediate solution in each iteration of the

MCG, enforces that a MFG proposal is accepted as otherwise

there is no factory capacity for any of the PDGs. Examination

of MCG’s performance shows a trade-off between the num-

ber of iterations and the number of proposals submitted in

each iteration. As r increases from 1 to 25, the performance

of MCG improves in Table 2. This is because more proposals

in each iteration give the Product Division more information

regarding the capabilities of the MFG and PDGs, helping the

MCG to rapidly elicit a set of proposals while minimizing the

number of PDGs with no accepted proposals. The Product

Division retains all proposals submitted in previous iterations,

thus more time is needed to solve the RMP as additional pro-

posals are collected. The performance of MCG in Table 2

on the number of PDGs with accepted proposals and revenue

deteriorates slightly when r increases from 25 to 50 because

fewer iterations are conducted within the specified time limit.

We note that the product transition problem addressed here

is not a control problem, but rather a design problem, making

it appropriate to allocate more computational resources and

time to obtain a better solution. However, several iterations

of manual back-and-forth communication are not practical in

real life. Hence, the proposed coordination procedure should

be implemented with automated decision tools, the founda-

tions of which already exist in the decision tools the units use

for their local operations. Furthermore, while in our experi-

ments we have started the procedure from dummy proposals,

in real life, organizations incrementally modify the existing

operating plans in the face of new conditions which can

reduce the number of iterations needed for coordination.
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TABLE 3 Performance of mixed-integer linear program (MILP)-based column generation (MCG) under different values of fr and pr. Reported values are the

mean (max) over five instances with r = 25

Product development groups
without accepted proposals Revenue gapa (%)

pr = 0.3 pr = 0.3 pr = 0.6 pr = 0.9 pr = 0.3 pr = 0.6 pr = 0.9

fr = 0.85 0.2 (1) 0.6 (1) 1.0 (1) 2.73 (13.64) 8.23 (13.79) 13.49 (13.87)

fr = 0.90 1.0 (1) 1.0 (1) 1.0 (1) 13.49 (13.79) 13.88 (15.23) 13.49 (13.79)

fr = 0.95 1.6 (2) 1.2 (2) 1.0 (1) 21.52 (27.27) 16.21 (26.04) 13.49 (13.87)

a
Gap between the revenue from MCG and the optimal objective value of the integrated MILP that maximizes revenue.

TABLE 4 Comparison of mixed-integer linear program (MILP)-based column generation (MCG) and LP column generation-based branch-and-price.

Reported values are the mean (max) over 15 instances across three different pr values

Product development groups without accepted proposals Revenue gapa (%)

fr MCG CG-LP CG-LP-rev MCG CG-LP CG-LP-rev

0.85 0.60 (1) 0.27 (1) 1.60 (2) 8.15 (13.87) 3.89 (13.35) 28.85 (35.49)

0.90 1.00 (1) 2.00 (2) 2.20 (3) 13.62 (15.23) 27.02 (27.09) 33.22 (40.39)

0.95 1.27 (2) 2.00 (2) 2.33 (3) 17.07 (27.27) 27.11 (27.20) 34.09 (41.41)

a
Gap between the revenue from MCG and the optimal objective value of the hypothetical integrated MILP that maximizes revenue.

TABLE 5 Comparison of mixed-integer linear program (MILP)-based column generation (MCG) and LP column generation-based branch-and-price.

Reported values are the mean (max) over 15 instances across three different pr values

Time (sec) Iterations

fr MCG CG-LP CG-LP-rev MCG CG-LP CG-LP-rev

0.85 2481 (3643) 1058 (3631) 3613 (3629) 114.67 (160) 115.80 (379) 199.47 (254)

0.90 3621 (3637) 3621 (3656) 3615 (3652) 167.80 (183) 102.73 (105) 195.87 (252)

0.95 3620 (3640) 3637 (3661) 3616 (3638) 165.20 (185) 185.40 (363) 191.07 (251)

Table 3 reports the performance of MCG for different

values of fr and pr with r = 25. For fill rate 0.95, more

accurate estimation of prototype capacity requirements by

MFG helps the Product Division to determine a compatible

proposal set. However, for the lower fill rate of 0.85, the

opposite holds. This is because for lower fill rates, more

factory capacity can be distributed among PDGs and lower

value of ESTp∀p ∈ Pi, i ∈ I provides MFG with more flex-

ibility in distributing that factory capacity among the PDGs.

This results in more variety in the MFG proposals submitted

in each iteration, helping the Product Division to determine

a compatible proposal set.

6.2 Comparison with branch-and-price

Our second experiment compares the performance of MCG

with a branch-and-price algorithm where dual prices are

obtained from the LP relaxation of the RMP at each node. We

branch on the binary decision whether new product p can be

manufactured in period t or not. We consider two versions of

the branch-and-price algorithm. CG-LP minimizes the num-

ber of units with no accepted proposals while CG-LP-Rev

maximizes the revenue of the Product Division. In CG-LP, we

solve M-RMP in each iteration at each node to get an interme-

diate solution and solve an LP to improve revenue at algorithm

termination as in MCG. In CG-LP-Rev, we solve an MILP

analogous to M-RMP in each iteration to determine an inter-

mediate solution. We run CG-LP and CG-LP-Rev with r = 25

and a time limit of 3600 s.

Tables 4 and 5 compare the performance of MCG with

both versions of the branch-and-price algorithm. For easier

problems with fr = 0.85, CG-LP outperforms MCG and

CG-LP-Rev in both number of PDGs with no accepted pro-

posals and revenue. For difficult problems with fr = 0.9, 0.95,

MCG outperforms both CG-LP and CG-LP-Rev. As more

PDGs have accepted proposals in the MCG solution, MFG

can meet more demand for new products developed by these

PDGs in its final production schedule. Thus, MCG generates

higher revenue than CG-LP and CG-LP-Rev for difficult

instances with fr = 0.9 and 0.95. Note that revenue is earned

when current and new products are manufactured and sold,

which is only possible if MFG and PDGs have accepted

proposals to run their respective operations.

6.3 Experiments with larger instances

The computational experiments presented so far have

considered four PDGs and one new product for each PDG.

Increasing the number of new products or PDGs would allow

many more alternative combinations of proposals, which

could significantly impact the convergence of MCG. We thus

examine the performance of MCG using problem instances
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TABLE 6 Performance of mixed-integer linear program (MILP)-based column generation under different values of |I| and |Pi|. Reported values are the mean

(max) over 45 instances across 9 cases (3 fr values × 3 pr values)

Product development groups
without accepted proposals Revenue gapa (%)

|Pi| = 1 |Pi| = 2 |Pi| = 4 |Pi| = 1 |Pi| = 2 |Pi| = 4

|I| = 4 1.24 (3) 2.40 (3) 3.49 (4) 16.72 (40.23) 32.23 (41.14) 46.71 (54.02)

|I| = 6 1.27 (3) 2.60 (5) 3.60 (6) 11.27 (26.36) 23.26 (45.04) 32.18 (53.26)

|I| = 8 1.98 (4) 3.42 (6) 4.36 (7) 13.34 (27.07) 22.95 (40.84) 29.23 (47.31)

a
Gap between the revenue earned from the MCG solution and the optimal objective value of the hypothetical integrated MILP that maximizes revenue.

TABLE 7 Performance of mixed-integer linear program (MILP)-based column generation under different values of |I| and |Pi|. Reported values are the mean

(max) over 45 instances across nine cases (3 fr values × 3 pr values)

Time (s) Iterations

|Pi| = 1 |Pi| = 2 |Pi| = 4 |Pi| = 1 |Pi| = 2 |Pi| = 4

|I| = 4 3259 (3628) 3631 (3675) 3634 (3677) 312.29 (640) 114.51 (128) 82.62 (91)

|I| = 6 3615 (3644) 3637 (3671) 3538 (3705) 238.51 (432) 98.42 (116) 69.67 (78)

|I| = 8 3615 (3642) 3632 (3685) 3662 (3704) 174.18 (205) 89.67 (111) 59.13 (65)

with more PDGs (larger |I|) and more new products devel-

oped by each PDG (larger |Pi|). Specifically, we consider

three values of |I| = 4, 6, 8 and |Pi| = 1, 2, 4∀i ∈ I. For each

case, we set the ratio of total demand to total capacity to 0.92

to ensure the generated problem instances are sufficiently

challenging. We run experiments for all considered values of

|I|, |Pi|, fr, and pr. We set the number of proposals in each iter-

ation r = 10 in order to limit the size of RMP. We solve five

random instances for each case with a time limit of 3600 s.

Tables 6 and 7 show the performance of MCG for different

values of |I| and |Pi|. As |I| or |Pi| increases, the number

of iterations conducted within the time limit decreases, and

thus the number of PDGs with no accepted proposals and

the revenue gap increase. The deterioration of MCG’s per-

formance with increasing instance sizes is expected given

the combinatorial nature of the problem and the CPU time

limit. The use of more powerful computing infrastructure

and more efficient implementation could significantly reduce

computation times, while higher revenues obtained by MCG

may well justify the additional computational effort.

6.4 Generalization of the proposed approach

As we have commented above, the complexity of the inverse

optimization problem involved in (5b) has proven to be a sig-

nificant barrier to the exploitation of subadditive duality in

practical computations. It is thus of interest to examine the

degree to which our MCG approach can be applied beyond the

specific context of product transition management motivating

this paper. The principal insight is that MILP duality-based

column generation requires determining the optimal subaddi-

tive dual of the RMP, which is not affected by the structure

of the pricing subproblems. In our study, constraints (8b) and

(8c) of the RMP enforce the compatibility of the accepted pro-

posals, and the objective function (8a) minimizes the number

of units with no accepted proposals. Constraints (8b) and (8c)

are satisfied either when compatible solutions for all units

can be identified or when no unit has an accepted proposal

(see Proposition 2). Thus, in each iteration, the optimal objec-

tive function value of the RMP is either equal to the number

of units or zero at termination of the coordination proce-

dure. This property leads to Proposition 5 which characterizes

the optimal subadditive duals that satisfy the strong duality

condition (5b) in each iteration.

The proposed approach is applicable in decentralized

decision-making problems whose objective is to minimize

the number of units that are not included in the coordinated

solution. This is especially relevant when the cost of leav-

ing a unit out of the solution is perceived as extremely high.

In the semiconductor manufacturing context motivating this

work, both PDGs and MFG have substantial fixed costs which

must be met regardless of whether they have an accepted pro-

posal or not; even limited revenue obtained from that unit’s

operations will offset the fixed costs to some degree. While

a minimum acceptable level of revenue can be specified by

the coordinator (in our case, the Product Division), the princi-

pal complexity lies in obtaining a compatible set of proposals

from the different units without direct access to the tech-

nological constraints and policies governing their decisions.

Clearly, the compatibility constraints of the RMP could be dif-

ferent from constraints (8b) and (8c) in other applications. The

basic approach we propose ought to be applicable to problems

where the primary concern is to identify a set of compatible

proposals from different units satisfying a specified minimum

level of performance.

7 CONCLUSION

Motivated by a complex resource allocation problem that

must be solved in a decentralized manner, we design a

coordination procedure based on subadditive duality of
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MILPs for managing product transitions in the semiconductor

industry. The models and methods presented are decision

support tools that can provide insights about the product

transition process through the coordination of manufacturing

and product development units. Our numerical experiments

show that the proposed framework can result in more PDGs

with accepted proposals and higher revenue than LP-column

generation based branch-and-price algorithm. For problems

with high fill rates, we show that improved ability of MFG

to predict the delivery of new products by the PDGs results

in improved performance in terms of both the number of

units whose proposals are included in the final solution and

total revenue. This improved predictability could be achieved

by better communication between the units involved as well

as exploiting historical data from previous product transi-

tions. Lastly, we show that MCG performs reasonably well

for problems with higher number of PDGs and products

developed by each PDG.

Several interesting directions for future research emerge

from this work. The development of column generation

schemes based on subadditive duality has been slow due to

the computational difficulty of determining the subadditive

dual that take the form of mixed integer inverse optimization

problems. Our procedure is computationally viable due to the

highly structured nature of the problem we consider, which

allows us to show that components of the optimal solution to

the current RMP remain optimal for the inverse maximiza-

tion of the pricing subproblems. The development of further

insights into other problem structures that yield tractable

instances of MCG is of considerable theoretical and practical

interest. An important future research direction is to extend

the MCG to consider inventory balance constraints while

minimizing total production cost. Another future research

direction is to study the relationship between the MCG and

primal-dual ICAs in the extant literature (Bichler et al., 2009;

Kwasnica et al., 2005; Parkes & Ungar, 2001).
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