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Abstract. We model the hierarchical and decentralized nature of product transitions using
a mixed-integer bilevel program with two followers, a manufacturing unit and an engi-
neering unit. The leader, corporate management, seeks to maximize revenue over a finite
planning horizon. The manufacturing unit uses factory capacity to satisfy the demand for
current products. The demand for new products, however, cannot be fulfilled until the
engineering unit completes their development, which, in turn, requires factory capacity for
prototype fabrication. We model this interdependency between the engineering and manu-
facturing units as a generalized Nash equilibrium game at the lower level of the proposed
bilevel model. We present a reformulation where the interdependency between the fol-
lowers is resolved through the leader’s coordination, and we derive a solution method
based on constraint and column generation. Our computational experiments show that the
proposed approach can solve realistic instances to optimality in a reasonable time. We pro-
vide managerial insights into how the allocation of decision authority between corporate
leadership and functional units affects the objective function performance. This paper
presents the first exact solution algorithm to mixed-integer bilevel programs with interde-
pendent followers, providing a flexible framework to study decentralized, hierarchical
decision-making problems.
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1. Introduction

Product transitions involve the introduction of new
products to replace those that are currently being sold
to customers in response to ever-changing customer
preferences (Klastorin and Tsai 2004), shorter product
life cycles (Wu et al. 2009), and increasing global com-
petition (Wu et al. 2005). Effective management of
product transitions can bring significant competitive
advantage to a firm, whereas poor decisions can have
serious adverse business consequences. A central chal-
lenge during product transitions is the coordination of
the product development process, which creates new
products, and the supply chain that manufactures and
distributes them. The product development process
requires access to factory capacity to fabricate pro-
totypes to assess their manufacturability and func-
tionality, whereas the supply chain requires timely
delivery of new product designs with enhanced fea-
tures and reduced costs to stay competitive in the

market. Although the challenges faced by firms in
managing product transitions have been addressed in
the literature (Lim and Tang 2006, Bilginer and Erhun
2010), most previous studies share several shortcomings:

o They treat the firm as a single decision entity with
complete information about all aspects of its opera-
tions. However, as firms grow in size and diversify
their product portfolio, operational control decisions
become distributed among different functional groups,
rendering detailed centralized planning impractical.
The critical resource allocation decisions and domain
knowledge are distributed among different functional
groups within the firm, such as product divisions and
manufacturing units, that are trying to reconcile their
local, potentially conflicting, objectives with those of
the corporate management (Bansal et al. 2020).

e They ignore the hierarchy of decision makers
involved in managing product transitions. In practice,
upper-level management addresses strategic/tactical
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planning, resulting in directives to the functional groups
that must make and implement operational decisions.

e They treat product transitions in isolation from rou-
tine operations, neglecting their impact on products that
are not directly involved in the transition. However,
firms with broad product portfolios, such as large semi-
conductor manufacturers, must often manage simulta-
neous product transitions in several markets supplied
from shared manufacturing facilities. Hence new prod-
uct introductions can adversely affect other products
with which they share manufacturing, development, or
marketing resources (Ulrich and Eppinger 2016).

Understanding the information flow and hierarchical
relation between the decision-making units involved in
product transitions is essential to developing more
realistic models. Motivated by a large semiconductor
manufacturing firm, we present a bilevel model that
represents a decentralized, hierarchical environment in
which product transitions take place. Although semi-
conductor manufacturing firms differ in the specifics of
their manufacturing processes and product develop-
ment activities, the knowledge and data required for
the successful introduction of new products and retire-
ment of older ones are usually distributed across three
units: (1) corporate management (CORP), whose leader-
ship role is to direct the company toward achieving its
strategic business goals; (2) one or more product engi-
neering (ENG) units, each of which is responsible for
new product development activities in a specific market
segment, including market research, design, implemen-
tation, and prototype testing; and (3) a manufacturing
(MFG) organization that manufactures existing prod-
ucts for sale and prototypes for products under devel-
opment by the ENG units.

CORP communicates desired production quantities
to MFG based on demand. The ENG units determine
specifications for new products through market
research and then develop these product specifica-
tions into detailed design. The product development
process alternates between periods of design activity
and prototype fabrication. Once a product design has
been tested as far as possible in software, the proto-
types are fabricated to fully debug the new designs
and assess their manufacturability. Several such cycles
of design activity, prototype fabrication, and design
testing and refinement may be required before the
design is verified. Hence, the completion of product
development may be delayed if ENG units do not
have timely access to factory capacity for prototype
fabrication or if too many design cycles are needed.
The factory capacity used by the ENG units reduces
the capacity available for MFG to meet current orders
for revenue-generating products but is essential to
maintain a profitable product pipeline in the future.

Optimizing corporate objectives by effectively co-
ordinating the functional units involved in product

transitions is extremely challenging. We propose a
bilevel model where CORP, acting as a leader, seeks
to maximize its revenue over a finite planning horizon
subject to the decisions of the MFG and ENG units,
which act as followers playing a generalized Nash
equilibrium game in the lower level. The decision
problem faced by the MFG unit is a linear program.
The ENG solves a mixed-integer program that can be
computationally difficult to solve even in a determin-
istic environment. Unlike traditional bilevel programs,
the decisions of the two followers in our model are
interdependent; the ENG and MFG units share factory
capacity, and MFG is dependent on ENG for the
development of new products to meet future demand.

The specific decision units considered in our model
represent the decentralized, hierarchical organiza-
tional structure in which product transitions take
place in many large corporations and particularly in
the global semiconductor manufacturing firm moti-
vating our work in this paper. Different organiza-
tional structures might lead to different decentralized
decision settings in other firms, which could be
studied using similar approaches. For example, the
CORP and MFG can be merged into a single player
that maximizes the difference between revenue and
manufacturing costs. The main contributions of this
paper are as follows:

e We propose a mixed-integer bilevel programming
model to effectively coordinate product transitions in a
large decentralized firm by considering the technologi-
cal constraints and objectives of the functional units
involved in product transitions. To the best of our
knowledge, this is the first bilevel model developed for
product transitions in the literature.

e The proposed bilevel programming model is also
novel in considering two interdependent followers. To
the best of our knowledge, this paper presents the first
solution algorithm for mixed-integer bilevel programs
with interdependent followers.

e We present two single-level reformulations of the
bilevel model and develop an efficient solution approach
based on these reformulations. We perform extensive
computational experiments to evaluate the performance
of the solution approach and provide key policy insights
about the implications of decision hierarchy.

The remainder of this paper is organized as follows.
We review the literature on product transitions and
production planning in semiconductor manufactur-
ing, as well as the state of the art in bilevel program-
ming and generalized Nash equilibrium problem, in
Section 2. We formulate a mixed-integer bilevel model
for product transitions in Section 3. We develop a sol-
ution approach in Section 4 and present the results of
computational experiments in Section 5. We conclude
the paper and discuss future research directions in
Section 6.
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2. Literature Review
2.1. Product Transitions
A growing body of researchers has examined product
transitions (Ferrer and Swaminathan 2006, Bilginer
and Erhun 2010). Li et al. (2013) and Bhaskaran et al.
(2015) study capacity planning for product transitions
considering demand uncertainty, the effect of compe-
tition, and service-level requirements. The impact of
initial investment on quality improvement and time-
to-market are examined in Wu et al. (2009). A rich
body of work examines the impact of customer behav-
ior on product transition decisions such as the optimal
timing of product introduction (Druehl et al. 2009,
Liao and Seifert 2015) and product rollover strategies
(Liang et al. 2014, Lobel et al. 2015). Klastorin and Tsai
(2004) develop a game-theoretical model to capture
the interactions among pricing, timing, and product
design when entering a new market. Koca et al. (2010)
analyze the impact of preannouncement and inven-
tory decisions on the demand of new products.
Although this extensive literature provides useful
insights into several aspects of the product transition
problem, it fails to consider several important aspects
of the problem addressed in this paper, particularly
the hierarchy of decision makers, the interactions
between them, and the complex technological con-
straints that an implementable solution must satisfy.
It also fails to consider the impact of product transi-
tions on other products that share capacity with the
new products but are not in transition themselves.
Thus our paper presents a novel direction for study-
ing this complex and important business problem.

2.2. Production Planning in Semiconductor
Manufacturing

A number of authors have addressed decentralized
production planning in semiconductor manufactur-
ing. Karabuk and Wu (2003) propose a multistage sto-
chastic programming model under demand and yield
uncertainty with a manufacturing unit and several
product managers. In a subsequent paper, Karabuk
and Wu (2005) consider corporate headquarters and
product managers as the units involved in the
capacity allocation process, and they propose a game-
theoretic approach to elicit private information from
the product managers to maximize expected corporate
profit. More recently, Bansal et al. (2020) consider a
simplified version of the product transition problem
considered in this paper. They develop two iterative
combinatorial auction schemes based on Lagrangian
relaxation and column generation that seek to coordi-
nate negotiations over factory capacity between MFG,
acting as the auctioneer, and ENG units that bid
for factory capacity. Bansal et al. (2020) do not en-
force a strict decision hierarchy but instead employ a

decentralized iterative combinatorial auction to co-
ordinate the participants toward an implementable
solution.

2.3. Generalized Nash Equilibrium Problem

The generalized Nash equilibrium problem (GNEP) is
a noncooperative game in which each player’s strat-
egy set depends on the strategies of other players
(Facchinei and Kanzow 2010). From an optimization
perspective, GNEP is a decentralized model where
decision makers share a set of coupling constraints. The
outcome of a GNEP is a set of equilibria, a collection of
strategies from which no decision maker has incentive
to deviate unilaterally. GNEP has many applications,
including pricing in telecommunication networks
(Altman and Wynter 2004), electricity market analysis
(Le Cadre et al. 2020), and transportation problems
(Stein and Sudermann-Merx 2018, Sagratella et al.
2020). Despite its diverse applications, solution meth-
ods for GNEP are generally confined to cases where
players control a set of continuous variables (Dreves
et al. 2011, Facchinei et al. 2014, Aussel and Sagratella
2017).

In recent years, several researchers have studied
GNEP with mixed-integer variables. Sagratella (2017)
consider generalized potential Nash games, a special
case of GNEP where players (unknowingly) optimize
the same objective function over the aggregated feasi-
ble strategy set of all players. Huppmann and Siddi-
qui (2018) propose an exact reformulation to find
Nash equilibria in a noncooperative game with binary
decision variables by including compensation pay-
ments and incentive-compatibility constraints. Sagra-
tella (2019) show that, under mild assumptions, the
set of equilibrium points of a GNEP with mixed-
integer variables and linear coupling constraints is
finite and propose algorithms to generate all possible
equilibria. More recently, Sagratella et al. (2020) pro-
pose a mixed-integer GNEP to address the noncooper-
ative fixed charge transportation problem.

2.4. Bilevel Programming

Bilevel programming (BP) provides a powerful tool
for modeling hierarchical decision-making problems
in which the outcome of decisions by an upper-level
authority (the leader) is affected by the response from
a lower-level entity (follower) that seeks to optimize
its own objective function (Bard 2013). From the per-
spective of game theory, BP models a static Stackel-
berg game (Dempe 2002, Bard 2013). An important
feature of BP is that the feasible region of each level’s
decision problem may be impacted by variables con-
trolled by the other level. This embedded hierarchy
reflects the organizational structure in a firm and ren-
ders BP a suitable approach for the product transition
problem studied in this paper.
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BPs can be generally classified as bilevel linear pro-
grams (BLPs) with no integer variables and mixed-
integer bilevel linear programs (MIBLPs) that have
integer variables in at least one decision level. BLPs are
nonconvex and strongly NP-hard (Colson et al. 2007),
although they can be reformulated as a single-level
model by enforcing the optimality of the follower’s
decisions through Karush-Kuhn-Tucker conditions
(Bertsimas and Tsitsiklis 1997). The resulting single-
level problem, which is usually nonlinear, can be
solved using branch-and-bound (Bard and Moore
1990, Hansen et al. 1992), branch-and-cut (Audet et al.
2007), Bender’s decomposition (Saharidis and lerape-
tritou 2009, Nishi et al. 2011), or penalty function meth-
ods (Campelo et al. 2000).

Bard and Moore (1990; 1992), the first to consider
discrete variables in the lower-level problem, apply a
branch-and-bound algorithm and establish several
properties of pure integer BPs. DeNegre and Ralphs
(2009) extend this work to develop a branch-and-cut
algorithm. Wang and Xu (2017) propose an algorithm
for pure integer BPs that removes bilevel infeasible
solutions by disjunctive cuts.

Xu and Wang (2014) consider a BP with a mixed-
integer lower level and a pure integer upper level
with bounded variables. They propose a branch-and-
bound algorithm where branching occurs on the slack
variables of the follower’s constraints. Lozano and
Smith (2017) extend this work by employing a single-
level value function reformulation. Fischetti et al.
(2017, 2018) propose a branch-and-cut algorithm for
MIBLPs by generating intersection cuts. Yue et al.
(2019) develop a projection-based approach for MIBLPs
that first reformulates the problem into a single-level
equivalent and then decomposes it by implicitly enu-
merating the follower’s integer variables. MIBLPs have
been applied in transportation (Arslan et al. 2018),
robust multicommodity network design (Sun et al.
2018; 2019), hazardous materials transportation (Liu
and Kwon 2020), homeland security and defense
(Aksen and Aras 2012), electricity markets (Lavigne
et al. 2000), product introduction (Hemmati and Smith
2016), healthcare (Ozaltin et al. 2018), and supply chain
(Yue and You 2017).

The limited research on BPs with multiple followers
mostly considers BLPs. Shi et al. (2007) study a BLP
with multiple followers who simultaneously deter-
mine a set of common variables. Calvete and Galé
(2007) propose a method to transform a problem with
multiple independent followers into a BLP with a sin-
gle follower whose objective function is the sum of the
objective functions of all followers. Calvete et al.
(2019) consider a nonlinear BP with multiple followers
in a rank pricing problem and present a nonlinear
single-level reformulation. Tavashoglu et al. (2019)
develop a value function-based approach for MIBLPs

with multiple independent followers. Their approach
assumes that all followers have the same constraint
matrix, and the leader’s variables impacting the feasible
regions of the followers can only take integer values. To
the best of our knowledge, BPs with interdependent fol-
lowers and discrete variables in both levels have not
been considered in the literature.

3. Model Formulation

We present a bilevel model of the product transition
management problem to capture its decentralized,
hierarchical nature. CORP acts as a leader, seeking to
maximize its total revenue over a finite planning hori-
zon T ={1,...,T}. Revenue is earned by selling the
products manufactured by the MFG unit. The MFG
and ENG units are two interdependent followers,
responding to the decisions of the CORP in a manner
that optimizes their local objective functions. They
play a generalized Nash equilibrium game over the
usage of factory capacity.

Figure 1 depicts the information exchange between
the CORP, MFG, and ENG units. CORP determines
when to release new products to MFG for sale in the
market. However, new products cannot be released to
MFG unless ENG completes their development, ren-
dering MFG dependent on the decisions of ENG. On
the other hand, ENG cannot complete the develop-
ment of new products before their due dates without
timely access to factory capacity for prototype fabrica-
tion, leading to competition between MFG and ENG
over factory capacity. As indicated by the solid black
arrows in Figure 1, once MFG and ENG reach an equi-
librium over the usage of factory capacity, MFG com-
municates the production quantities to the CORP. We
refer to this model as the bilevel product transition
model with a generalized Nash equilibrium (BPTM-
Nash).

Although we consider one MFG and one ENG unit
in the lower level of our model, the MFG subproblem
may represent the combined decisions of multiple
manufacturing facilities, and the ENG subproblem
may represent the integrated decisions of several
product development units. Thus the factory capacity
allocated to MFG in the optimal solution to BPTM-
Nash may be shared by multiple manufacturing units.
In the same vein, the factory capacity allocated to
ENG in the optimal solution of BPTM-Nash may be
shared by multiple product development units. Hence
the proposed bilevel model with two followers is rep-
resentative of the decisions encountered in practical
instances of the product transition management prob-
lem. For the sake of exposition, we shall focus on the
case with two followers, although we extend our
approach to consider multiple followers in Appendix
C of the online supplement and examine the impact of
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Figure 1. Schematic View of the Proposed Bilevel Model with CORP as the Leader and MFG and ENG as Interdependent
Followers Who Play a Generalized Nash Equilibrium Game over Factory Capacity

Leader:CORP (Max Revenue)

Demand for Products
Production Release Development Due D;t:; th’:»rl;)IZﬁ\:ta;opmg
Quantity Schedule Schedule
B A AN B A
7

! \
1 Generalized Nash Equilibrium Game 1
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: MFG < Factory | ENG 1
. (Min Cost) capacity »| (Min Tardiness) | !
] J \ .
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Notes. Arrows represent “decision variables” communicated between CORP and the followers. The demand estimates and due dates for the

development of products are parameters given to the followers.

additional followers on the solution time in Sec-
tion 5.3.

Let N denote the set of all products, and let PC N
denote the set of new products currently under devel-
opment. Table 1 summarizes the model parameters,
and Table 2 presents the upper- and lower-level
decision variables. CORP specifies the value of the
upper-level variable Y, € {0,1} to release new prod-
uct p € P to MFG at the beginning of period t. Thus
Y ={Ypep,ter} represents the new product release
schedule. Given a product release schedule Y, we de-
note the generalized Nash equilibrium game between
MFG and ENG in the lower level, as well as its solu-
tion set, by GNEP(Y). Let X denote the tuple
(X,B,I,F,Z,V). We formulate the BPTM-Nash model
as follows:

[BPTM-Nash] max Z Z Tt (Dt + B t—1 — Bnt)

neN teT
(1a)

subject to Y};-1 < Yy teT\{1}, (1b)

Yp< > Zy pePteT, (lo
T<t

X € GNEP(Y), (1d)

Y, €{0,1} peP, teT. (le)

The upper-level objective function (1a) maximizes the
total revenue of the firm. The demand D,; is a con-
stant, independent of the decision variables, but we

retain it to clarify that the objective function denotes
the revenue earned by satisfying demand. Constraints
(1b) ensure that once a new product is released to
MEFG in period t, it can be manufactured in all subse-
quent periods. Constraints (1c) ensure that the devel-
opment of new product p € P is completed in period
T <t (i.e., Zp = 1) before its release to MFG in period
t. Constraint (1d) ensures that X" is a solution to the
generalized Nash equilibrium game between MFG
and ENG in the lower level of the bilevel model.
CORP controls the product release schedule through
the Y, variables in BPTM-Nash. We follow an opti-
mistic approach, allowing CORP to select the most
advantageous equilibrium of GNEP(Y) if more than
one exists.

Table 1. Parameters of the Bilevel Product Transition
Model

Parameter Description

Dy Demand for product 7 in period ¢

Tt Marginal revenue for product # in period t

Tt Marginal production cost of product # in period ¢

by Marginal backorder cost of product 7 in period ¢

Hy Capacity required for prototype fabrication of
product p € P in period ¢

Op Due date for completing the development of new
product p € P

w, Per-period tardiness cost for product p € P

Iyt Unit inventory holding cost for product # in period t

Cy Factory capacity in period ¢
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Table 2. Decision Variables of the Bilevel Product Transition Model

Unit Variable

Description

CORP (leader) Y,

1 if product p is released to MFG at period t and 0 otherwise (Y is referred to as the

“product release schedule”)

MEG (follower) Bt

Backorder of product 7 in period ¢

Xt Fraction of factory capacity assigned to product n in period ¢
L Inventory level of product # in period t
ENG (follower) F, Fraction of factory capacity allocated for product development in period t
v, Tardiness in the development of product p
Zpt 1 if product p is developed in period t and 0 otherwise (Z is referred to as the

“product development schedule”)

MFG'’s problem in GNEP(Y) can be written as the
following linear program:

[MFG(F, Y)] minZ Z(hntlnt + 70t Xt Cr + byt Byat)
neN teT
(2a)
subject to F; + Z X =1 te7, (2b)
neN

Inp = L1 + X Gy
- (Dnt + Bn,t—l - Bnt)
neN,te7, (20

Xpt <Ypi peP,teT, (2d)
D X<l teT, (2e)
neN

Xot, Lnt, Bt =0 neN,teT. (2f)

MEG'’s objective function (2a) minimizes the sum of
production, inventory holding, and backorder costs
over the planning horizon. Coupling constraints (2b)
ensure that the factory capacity allocated for product
development (i.e., F;) and that used by MFG to meet
demand (ie., X,enXu) is equal to the available
capacity in period t. The feasible region of the MFG
unit, as a follower in the lower level of BPTM-Nash,
depends on the decisions of both the leader CORP
(who controls the Y variables) and those of the other
follower ENG (who controls the F, variables in (2b)).
Constraints (2c) enforce inventory balance across time
periods, whereas Constraints (2d), through the upper-
level variable Y, ensure that new products cannot be
manufactured unless they are released to MFG. With-
out loss of generality, we assume that N D P (i.e., there
is at least one current product) to ensure that
MEFG(F,Y) is feasible for any given (F, Y) tuple. If there
is no such current product, we can create a dummy
product with zero demand. Any factory capacity
assigned to the dummy product would then represent
unused factory capacity. Finally, Constraints (2e)
impose the factory capacity limit in each period. For a
given Y, we refer to Constraints (2c)—(2f) collectively
as MFG-primal-feasibility(Y).

We formulate ENG’s problem in GNEP(Y) as the
following mixed-integer program:

[ENG(X)]  min) w,Vp (3a)
peP
subject to F; + Z Xu=1 te7, (3b)
neN
V,,Zt(l—ZZm)—ép peP,teT, (3c)
T<t
ZHptht < CF; te7, (3d)
peP
>Zp<1 peP, (3¢
teT

V, 20,2, €{0,1} peP, teT. (3f)

ENG’s objective function (3a) minimizes the total
weighted tardiness of new products in development
as calculated in (3c). The coupling constraints (3b) also
appear in MFG’s problem. Constraints (3d) ensure
that the factory capacity used for product develop-
ment does not exceed F; in each period t. These con-
straints allow for idle factory capacity, as the ENG
does not have to use all of the allocated capacity.
Finally, Constraints (3e) ensure that a new product is
developed in a single period. This assumption can be
relaxed by considering multiperiod product develop-
ment; the proposed bilevel framework remains valid.
For a given F, we refer to Constraints (3c)-(3f) as
ENG-feasibility(F).

Tardiness is computed relative to the product
development due dates in (3c). ENG may have to
delay the completion of development activities de-
pending on the amount of factory capacity it can
obtain for prototype fabrication. If tardiness was not
allowed, the ENG problem would not be necessary
because constraints related to meeting product devel-
opment deadlines could be enforced in the upper-
level problem, leaving MFG as the only follower.

4. Solution Approach
We first show that there are multiple equilibrium
solutions to the generalized Nash equilibrium game
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between MFG and ENG in the lower level for any
given product release schedule by CORP.

Lemma 1. For a given Y, there is an equilibrium of
GNEP(Y) for any nonnegative factory capacity allocation
to ENG; that is, F; >0, Vte T.

Proof. Let (X,B,I) be the optimal response of the
MFG(F Y). Note that the ENG variable F,=1—
ZneNXnt—Ft, VteT in any feasible strategy for
ENG(X) Let (F Z, V) be the optnnal response of
ENG(X). Then X = (X,B,I,F,Z,V) is an equilibrium
of GNEP(Y), completing the proof.

Given an upper-level product release schedule Y,
the decision problems of MFG and ENG can be
merged into a single problem by taking a linear com-
bination of their respective objective functions and
enforcing all of their constraints simultaneously. The
optimal solution to this problem would be an equili-
brium of GNEP(Y) that does not necessarily optimize
the revenue of the leader. However, as BPTM-Nash
takes an optimistic approach, after deciding on the
product release schedule Y, CORP should be able to
select an equilibrium of the lower-level game to maxi-
mize its revenue. From Lemma 1, CORP can choose
an equilibrium by setting the factory capacity alloca-
tion for product development (i.e., the F; variable) in
each time period ¢t € 7. We use this result to reformu-
late BPTM-Nash as a bilevel program with independ-
ent followers. Consider the following bilevel program:

[BPTIVF] max Z Z nnt(Dnt + Bn,t—l - Bnt) (4&)
neN teT
subject to Y < Z Zye

T<t
Yp,t—l < th P € P/t eT \ {1}/ (4C)
(X,B,1) € argminMFG(F, Y), (4d)
(Z,V) € argminENG(F), (4e)
Fi>0 teT, (4f)
where ENG(F) is formulated as ¢.(F)=min{3,cp
wy,Vp : ENG-feasibility(F)}. In this model, the fac-
tory capacity F; allocated to product development in
each period t is decided in the upper level and passed

to the followers, decoupling the MFG(F,Y) and
ENG(F) subproblems in the lower level of BIPM".

Proposition 1. BPTM" is equivalent to BPTM-Nash.

peP, teT, (4b)

Proof. We show that there is a feasible solution to
BPTM* corresponding to any feasible solution to
BPTM-Nash, and vice versa. Consider a bilevel feasi-
ble solution (Y,X) to BPTM* satisfying the upper-
level constraints (1b) and (1c) in BPTM-Nash. By (4d),
it also satisfies the optimality conditions of the MFG
problem Note that F;=1-— ZneNXm £, for te7 in
ENG(X). Therefore, if (Z, V)eargmmENG(ﬁ), then

(Z,V,F)e arg mmENG(X) Thus X is an equilibrium
of GNEP(Y), and (Y, X) is a bilevel feasible solution to
BPTM-Nash.

Now consider a bilevel feasible solution (Y’,X”) to
BPTM-Nash. This solution satisfies the upper-level
constraints (4b) and (4c) in BPTM". It also satisfies
Constraints (4d) because MFG’s response must be
optimal in an equilibrium of GNEP(Y”). Note that F; =
1-3,enX), for teT in ENG(F'). Therefore, if (Z’,
V’,F’) € argminENG(X’), then (Z’,V’) € argminENG
(F’). Thus, (Y’,X’) is a bilevel feasible solution to
BPTM".

The fact that BPTM* and BPTM-Nash share the
same upper-level objective function completes the
proof.

The argument in the proof of Proposition 1 can be
extended to any bilevel problem with multiple fol-
lowers who play a GNEP with exclusively equality
coupling constraints. This property was exploited in
Sagratella et al. (2020) for a noncooperative fixed
charge transportation problem. They showed that any
solution satisfying the coupling equality constraints
can be used to find an equilibrium of the GNEP by
solving each player’s problem independently after fix-
ing the variables in the coupling constraints to their
values in that feasible solution.

Although Proposition 1 separates the lower-level
problem into two independent followers” problems,
solving BPTM" is still difficult because the continuous
variables F; are passed to both lower-level problems
in each period. To alleviate this difficulty, we present
a modified version of BPTM" where the factory
capacity constraint (2b) of the MFG(F, Y) problem is
enforced in the upper level:

[BPTM]  max Z Z Tt (Dt + By t—1 — But) (5a)
neN teT
subject to Yy < > Zpe

T<t

peEP, teT, (5b)

Yp,tf] < th te T\{l}, (5C)

Ft""ZXnt:l peP,tET, (5d)
neN

(X,B,I) € argminMFG(Y), (5e)

(Z,V) € argminENG(F), (5f)

where MFG(Y) is formulated as

mm{z Z hntlnt + 7, X Cr + bnth :
neN teT

MFG-primal- feasibility(Y)}.

Proposition 2. Any optimal solution to BPTM, if it exists,
is also optimal to BPTM".



Downloaded from informs.org by [152.7.224.30] on 22 August 2022, at 11:57 . For personal use only, all rights reserved.

Khorramfar et al.: Managing Product Transitions
INFORMS Journal on Computing, Articles in Advance, pp. 1-17, © 2022 INFORMS

Proof. Consider an optimal solution (Y*, X*) to BPTM.
This solution satisfies upper-level constraints (4b) and
(4c) in BPTM". By (5f), it is also optimal to ENG(F).
The feasible region of MFG(Y*) contains that of
MEFG(F*,Y*). As (X*,B",I") is optimal to MFG(Y*) and
satisfies (2b), it is also optimal to MFG(F*, Y*). The fact
that BPTM" and BPTM share the same upper-level
objective function completes the proof.

In BPTM, the factory capacity F; allocated to ENG in
each period t is a continuous upper-level variable
passed to the lower-level ENG problem, which is a
mixed-integer model. In the bilevel programming litera-
ture, researchers have allowed only integer upper-level
variables to appear in a mixed-integer lower-level prob-
lem in order to guarantee the existence of an optimal
solution (Vicente et al. 1996, Képpe et al. 2010). In
BPTM, however, the continuous F variables do not
appear in the upper-level (CORP’s) objective function;
they only impact the lower-level ENG problem through
the Z variables, whose values are constrained to be
binary for any value of the F variables. Thus, an optimal
solution is always attained when BPTM is feasible.

We propose a solution approach that generates upper
and lower bounds in each iteration based on a single-
level value function reformulation of BPTM. The main
idea of this reformulation is to enforce the optimality of
MFG(Y) and ENG(F) using constraints in the upper-
level problem. Let C,, 0, and 1 be dual variables asso-
ciated with Constraints (2c), (2d), and (2e), respectively.
The dual of the MFG(Y) problem is then given by

max — > > CuDur+ D D 0 Yt + Z Y, (6a)

neN teT peP teT
subject to Cy;p — Cpy 41 < Mt neN, teT, (6b)
—Cilpt+ 9, + 0y <1uC: peP,teT,  (60)
Gl +¢, <ruC; neN\P,teT, (6d)
=Gt + Cpe1 < bt neN, teT, (6e)
Cu €R, 1,0, <0 peEP, teT. (6f)

We refer to Constraints (6b)—(6f) as MFG-dual -fea-
sibility. Because MFG(Y) is a linear program, we
can enforce its optimality through the primal feasibil-
ity, dual feasibility, and strong duality conditions
(Labbé et al. 1998, Zeng and An 2014). The strong
duality condition requires the equality of primal and
dual objectives at optimality, and it can be stated as
Z Z Btlt + 70 Xt Cr + bt By =

neN teT

=220 Du + 23 >0 Y+ D (D)

neN teT peP teT teT
We define an auxiliary variable w,; to reformulate the
bilinear term 6,Y, through McCormick (1976) in-
equalities: 0 < wpr < MY, Wpr < Opr, Wyt 2 Opp — M(1 =Y y),
where M is a large positive constant. We collectively

refer to MFG-primal-feasibility(Y), MFG-dual-
feasibility, and the strong duality condition (7) as
MFG-optimality(Y) and to Constraints (5b)—(5d) as
Upper-level-feasibility. We can now restate
BPTM as

[EPTM]  max Z Z Tt (Dt + Bg—1 — But)

neN teT
subject to Upper-level-feasibility,

MFG-optimality(Y),
(Z,V) € argminENG(F).

Although MFG-optimality(Y) is a set of linear con-
straints, the extended product transition model (EPTM)
remains a bilevel program because of the constraint
(Z,V) e argminENG(F). We now present two exact
single-level reformulations of EPTM that enforce the opti-
mality of ENG with a finite set of constraints and variables.

4.1. Single-Level Reformulations of the EPTM

Let Z denote the set of all possible distinct product
development schedules for ENG, and let | denote the
index set of Z. The size of Z increases exponentially
with the number of time periods T and the number of
new products |P|, but it is finite and bounded above by
2P A given product development schedule je] wil
have total weighted tardiness Zpgppr and factory
capacity requirement H ZpepHptZ p in each time

period t € 7. We use this fact to enforce the optimality
of ENG using a finite set of constraints and variables.

4.1.1. Exact Reformulation 1. Without loss of general-
ity, we assume that the factory capacity requirements for
developing new products are positive integers (i.e.,
Hp € Z). Therefore, the factory capacity requirement
I?l]t for product development in period t under develop-
ment plan j is also a positive integer. We define binary
variable )/’t, j€],t €T, which takes the value of 0 if ENG
has been allocated sufficient factory capacity for product
development plan j in period f and 1 otherwise. Consider
the following single-level reformulation of the EPTM:

[Mpl(])] QZ)* = max Z Z 7Int(IDnt + Bn,t—l - Bnt)
neN teT
subject to Upper-level-feasibility,

MFG-optimality(Y),
ENG-feasibility(F),

CE >0 -0yl teT,je], ()
CE<H -y +C(-y) teT,je], (9b)
Sw, Ve <M> Y+ S w, Ve el (%)

pepP teT peP

7 e{0,1}

The mixed-integer program MP;(]) determines the
values of the ENG variables Z and V. Their feasibility

teT,je]. (9d)
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to the ENG problem is enforced by the ENG- feasibi-
lity(F) constraints and their optimality by (9a)-(9d).
Constraints (9a) and (9b) ensure that sufficient factory
capacity is available to ENG to 1mp1ement product
development plan j in period ¢ (i.e., C¢iF; > a W) if ) =
Otherwise, if y,=1, (9a) is not binding, and (9b)
ensures that the factory capacity allocated for product
development in period t is strictly less than H (ie.
CiF; < H} - 1), and hence product development plan j
cannot be implemented in period t because of insufficient
factory capacity. Note that if product development plan j
is not feasible, it might still be the case that C;F; > H for
some periods (1 e., Constraints (9a) are enforced as y’t

and C,F, <H) » — 1 for at least one period t' (ie., Con—
straints (9b) are enforced as 7/’t =1).

Finally, Constraints (9¢c) ensure that if sufficient fac-
tory capacity is available in every period for product
development plan j (i.e., 31} = 0), then the weighted
tardiness of the new products (i.e., the ENG objective
function) should not exceed that under product devel-
opment planj (i.e., Xpepw, Vp < ZpepprP) Note that if
Siery} = 0, product development plan j is feasible, but
it may not be selected by ENG for implementation if
there are other feasible product development plans
with lower total tardiness. The largest possible value
for the left-hand side of Constraints (9¢) is attained
when no new products are developed until the last
time period, so we can set M = 3,cp(T — 0, )w.

Proposition 3. MP;(]) is equivalent to the EPTM.

Proof. We show that there is a feasible solution to
MP; () corresponding to any feasible solution to EPTM,
and vice versa. Consider a bilevel feasible solution
(Y, X) to EPTM, and for every j € ] and t € 7, define

- 1 if CtPt <H£,
V= - A
0 if CF>H.

Note that (X,7) is feasible to Constraints (9a) and (9b)
by construction. It is also feasible to (9c) because
(Z,V) € argminENG(F). Thus, (Y,X,7) is a feasible
solution to MP;(]). We now consider a feasible solution
(Y*,X%,y*) to MP;(]). This solution satisfies upper-
level-feasibility, MFG-optimality(Y”), and
ENG-feasibility(F*). The index set of all feasible
ENG(F") solutions is given by J*= {je]|H]t < CiF},
teT}. Note that y/ =0 for every j€J* and teT
because of Constraints (9a) and (9b). Thus, 3ec7ry; =0
and Constraints (9¢) ensure that

Sw, V< Slw,Vh, jeT

pepP pepP

As aresult, (Z*,V*) is optimal to the ENG(F") problem,
and (Y*, X”) is feasible to EPTM. The fact that MPy())

and EPTM have the same objective completes the
proof.

4.1.2. Exact Reformulation 2. To obtain an alternative
single- level reformulatlon of EPTM, we define By(j) =
{kej |H <H .} as the set of all product development
plans k whose factory capacity requirement does not
exceed that of development plan j in time period t.
Thus, if the factory capacity allocated to product
development in period ¢ is not sufficient to execute
plan k (i.e., strictly less than H,), it will not be suffi-
cient for plan j either. We define an auxiliary binary
variable v} € {0,1}. If v} = 1, the factory capacity alloca-
tion for product development in period t (i.e., CiFy) is
enforced to be less than H If v} =0, on the other
hand, no requirement is tmposed on CiF;. The main
difference between the v, and y} variables is that if
y’ 0, sufficient factory capacity is allocated to exe-
cute plan j in period t, whereas if v’ 0, the product
development plan j is feas1ble in perlod tif ZkeB,(;)vt

0 and infeasible if Yep, )vt =1. We can now reformu-
late EPTM as follows:

[MPZ(D] Qb* =max Z Z 7Zm‘(l)nt + Bn,t—l - Bnt)

neN teT
subject to Upper-level-feasibility,

MFG-optimality(Y),
ENG-feasibility(F),

CF <Ci= D) (Ci+1-H)vy

el
teT, (10a)
SwVe<M> ST vf+ S w, V)
peP teT keBy(j) peP
j€J, (10b)

v, €{0,1} teT,je]. (10c)
Constraints (10a)—(10c) enforce the optimality of the
ENG(F) problem. In particular, Constraints (10a) state
that v} can be equal to 1 for at most one j € | such that
CiFi < H —1 in each time period t. Constraints (10b)
ensure that if there is no infeasible development plan
in B:(j) in any time period, the weighted tardiness of
the ENG problem cannot exceed that of product
development plan j. Lozano and Smith (2017) pre-
sented a similar single-level reformulation for general
mixed-integer bilevel programs. As in the first refor-
mulation, we set M = 3,ep(T — 0,)w, in Constraints
(10b).

Proposition 4. If MP;(]) is feasible, there exists an opti-
mal solution (Y*, X", v*) to MP5(]) AS;?Ch that z'Ankeach period
teT, v/ =1 for j€argmin{H,|C;F;<H,-1, ke]}
and v; =0 forall j € ]\ {ji}.
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Proof. Let (Y*,X",v") be an optimal solution to
MP;(]). Constraints (10a) ensure that v/ =1 for at
most one j €], ={k|C;F; <H, -1,ke]} and v/ =0 for
je]\ftineachtET. ,

Case 1. There exists a t € 7 such that v/ =0 for all
je J;. In this case, we can construct (Y*, X*,7) such that
D =v" except 0} =1. Then, d; satisfies (10a) because
CiF; < A" —1. This solution also satisfies Constraints
(10b) because ¥} > v} forallj€] and t € 7. As a result,
(Y*, X", 0) is a feasible solution.

Case 2. There exists a t € 7 such that v}’ =1 for £ €],
but £ # j;. In this case, we can construct (Y*, X", 0) such
that o = v* except 0} =1 and »! =0. Then, vy, satisfies
(10a) because C;F; < H" — 1. Note that A} < H, by defi-
nition of j;. This solution also satisfies Constraints (10b)
because for any j € | such that H]tt < H]t <H f, we have
Zkegt(]‘)l_)lt( =1> Zkeg,(j)vfk =0. Asaresult, (Y, X",D)isa
feasible solution.

In either case, the constructed feasible solution has
the same objective function and thus is also optimal,
completing the proof.

Proposition 5. MP(]) is equivalent to EPTM.

Proof. We show that there is a feasible solution to
MP,(]) corresponding to any feasible solution to
EPTM, and vice versa. Consider a bilevel feasible solu-
tion (Y, X) to EPTM. Based on Proposition 4, a solu-
tion j; € ] such that j; € argmin{HﬂCtl_:t < I:I]: -1, ke]J}
for every t € T can be identified. Now set o/ =1 and
v} =0 forallj €]\ {j:}. By construction, (Y, X, v) is fea-
sible to Constraints (10a). Suppose, by contradiction,

that (Y, X, D) violates at least one of the Constraints
(10b). Then there is a solution j €] such that

SperwpVp > Zpeppr]P and ¥ =0 for every t € T and

k€ Bi(j’). This means that (2", V") is a feasible solu-
tion to ENG(F), and its corresponding objective value
is less than Zpepprp. This contradicts the fact that
(Z,V) € argminENG(F). Thus, (Y, X,) is a feasible
solution to MP;(]).

Now consider a feasible solution (Y*, X*,v*) to MP,(]).
This solution satisfies Upper-level-feasibility,
MFG-optimality(Y*), and ENG-feasibility(F).
The index set of all feasible ENG(F*) solutions is given by
J'={j€]ICF; > H]t, teT}. Note that vi¥=0 for every
ke B:(j),je] and t € T, because otherwise, C;F; < H,—
1 as a result of Constraints (10a), contradicting C:F; > I—AI]t,

as I:I]t >H IZ by definition of B;(j). Thus, Ztgzkegt@v;" =
0 for j € J*, and Constraints (10b) ensure that

D w,Vp < prV;, jeT.

pepP pepP

As a result, (Z*, V") is optimal to the ENG(F*) problem,
and (Y*, X”) is feasible to EPTM. The fact that MP,(J)
and EPTM have the same objective completes the
proof.

4.2. Constraint and Column
Generation Algorithm

The number of product development schedules in set |
grows exponentially with the number of new products
|P| and the number of time periods T, rendering the sol-
ution time of MPy(J) or MP»(]) using off-the-shelf
mixed-integer programming solvers prohibitively time
consuming even for moderate-sized instances. We thus
propose a constraint and column generation (CCG)
method where Constraints (9a)—(9d) (in the first refor-
mulation, MP1(])) or Constraints (10a)—(10c) (in the sec-
ond reformulation, MP,(J)) are initially relaxed and
then enforced through an iterative process. Because the
main steps of the CCG method are similar for MP;(])
and MP,(]J), we refer to both reformulations simply as
MP(]) in the rest of this section. A restricted master
problem MP(J") is solved in each iteration k where J¥ C
and J° = (. The optimal objective function value ¢* of
MP(J*) is an upper bound on the optimal objective value
¢* of the EPTM (i.e., ¢* > ¢*) because the feasible region
of MP(J*) contains that of MP(]).

Let (Y*, &%) be an optimal solution of MP(J*) at itera-
tion k. We first solve ENG(F¥) to determine ¢E(Fk), the
optimal objective value of ENG under the current
factory capacity allocation F*. We then solve the
following subproblem to check the feasibility of
ENG’s product development schedule for the product
release schedule Y*:

[ENG'(F5,YH)]  ¢p(F5,Y*) = min > w,V,
peP
subject to ENG-feasibility(FF),
> Zp2 Y pePteT. (11)

T<t

The only difference between subproblems ENG(F¥) and
ENG'(F¥, Y*) is Constraint (11), which forces ENG to
meet the product release schedule Y. Let (Z’, V’) be the
optimal solution to ENG'(F¥, Y*), and let ¢}.(F¥, Y*) be
the optimal objective value. If (ﬁ)g(Fk, YF) = c{)E(Fk), then
Z' is an optimal product development schedule for ENG
in response to the factory capacity allocation F¥, and it is
feasible to the product release schedule Y*. Thus,
(Yk, x7) = (Y5, Fx, X*,BX, I, 7/, V') is Dilevel feasible.
Note that (Y, X”) is also bilevel optimal because the
feasible region of the restricted master problem MP(J)
contains the feasible region of MP()). If, on the other
hand, ¢;(F",Y*) > ¢.(FF), we generate new columns
and constraints to add to MP(J*). Algorithm 1 presents
the CCG algorithm.
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Algorithm 1 (CCG Algorithm)
1 Initialization: setk =0, J* = 0

2 while J¥ c ] do

3 | Solve MP(J).

4 | ifMP(Yis infeasible or J* = ] then

5 MP()) is infeasible, STOP.

6 | end

7 | Let (Y &%) = (Y FK XK B 1K 7k, VE) be the

optimal solution to MP(J).

8 Solve ENG(F) to get the optimal solution Z*
and the objective value ¢ (F).

9 | if ZpepwPV’; < ¢(F") then

10 | Return the optimal bilevel solution (Y, X%).
11 | end

12 | Solve ENG/(F¥, Y¥) to get the optimal solution
(Z’,V’) and the objective value ¢} (F¥, Y*).

13 | if ¢p(FF) = . (FF, Y¥) then

14 Return the bilevel optimal solution,
(Y5, &) = (YK, F*, X5 BY, ¥, 7/, V).

15 | end

16 | Add Constraints (9a)-(9d) to MP;(J¥) (or Con-
straints (10a)—(10c) to MP;(J¥)).

17 | SetJ*=J"U{Z}, k=k+1.

18 end

Proposition 6. Algorithm 1 terminates in a finite number
of iterations.

Proof. A solution to ENG is generated in line 1. If the
same solution has been generated in previous itera-
tions, the stopping condition in line 9 will be satisfied.
Thus, in each iteration, either a new product develop-
ment schedule is added to J* or the algorithm termi-
nates. The result follows because the set of distinct
feasible product development schedules ] is finite.

Proposition 7. Algorithm 1 either returns the optimal sol-
ution to MP(]) or identifies infeasibility.

Proof. In any iteration k, the feasible region of MP(J*)
contains the feasible region of MP(J). Therefore, if
MP(J*) is infeasible, MP(]) is also infeasible, and the
algorithm will terminate in line 5. If the condition in
line 9 is satisfied, the current MP(J*) solution satisfies
the optimality conditions for ENG and is thus bilevel
optimal. If the condition in line 13 is satisfied, (Z’, V') is
optimal to ENG(F¥) and feasible to the product release
schedule Y. Thus, (Y*, X7) = (YX,F*, Xk, BX, I¥,77,V") is
a bilevel feasible solution. It is also bilevel optimal
because MP(J) is a relaxation of MP(J) whose objective
does not include variables of the ENG. If none of the
three stopping conditions within the while loop is satis-
fied, the algorithm will stop when J* = [—that is, when
all ENG solutions have been generated. At that point, it
can be concluded that there is no bilevel feasible solu-
tion to MP(J), completing the proof.

The CCG algorithm solves the restricted master
problem MP(J*) in each iteration. Our computational

experiments showed that MP(J) is a difficult mixed-
integer program, and a high quality initial feasible sol-
ution can speed up its solution considerably. We
develop a greedy heuristic to generate a feasible solu-
tion to MP(J*) in Appendix A of the online supplement.

4.3. Lower Bound for BPTM

We propose a heuristic to generate a bilevel feasible
solution to BPTM that will provide a lower bound.
Consider the following mixed-integer program, which
we refer to as the extended ENG (EENG) problem:

[EENG] n*=min > w,V,,
peP
subject to Upper-level-feasibility,
MFG-optimality(Y),
ENG-feasibility(F).

Let n* denote the optimal objective value of the
EENG, and let F* denote the factory capacity alloca-
tion to ENG in the corresponding optimal solution.
Note that n*> ¢ (F') because each (Z*,V*) solution
with F = F* in the feasible solution set of EENG is fea-
sible to ENG(F*), and these two problems have the
same objective function. Therefore, if 7" = ¢ (F*), an
optimal solution to EENG is a bilevel feasible solution
to BPTM, because it simultaneously satisfies the opti-
mality conditions for both MFG and ENG.

Our preliminary computational experiments, how-
ever, showed that off-the-shelf solvers struggle to
solve even moderate-size instances of EENG in a rea-
sonable time. Therefore, we have developed a warm-
start method to generate an initial feasible solution to
EENG. In particular, we solve a multiple knapsack
problem (MKP) to generate product development
schedules yielding solutions for the Z variables. Each
time period is treated as a knapsack with a certain
amount of factory capacity allocated to product devel-
opment. New products under development represent
items to be packed into these knapsacks.

The “weight” of each new product (item) p € P is set
to the factory capacity H,; required for its develop-
ment. Recall that 6, denotes the due date for develop-
ing product p € P. In the MKP we define the “value”
of developing product p in time period f € T as

—00 if t <79,
Sp=AT—(5,—t) ift<0,,
(6p — tywy if t > 6,

where T is the earliest time period a new product can
be developed. The definition of S,; favors developing
new products close to their due dates. This property
allows the warm-start method to generate product
development schedules that are not too focused on min-
imizing the weighted tardiness objective of the ENG.
We define a coefficient f to control the factory
capacity allocated to product development in each



Downloaded from informs.org by [152.7.224.30] on 22 August 2022, at 11:57 . For personal use only, all rights reserved.

12

Khorramfar et al.: Managing Product Transitions
INFORMS Journal on Computing, Articles in Advance, pp. 1-17, © 2022 INFORMS

time period ¢t € 7 as a fraction of the total demand for
the current products (i.e., X,en\pDpt). This is equiva-
lent to specifying a minimum fill rate for current
demand that MFG must meet. The formulation of the
MKP for a given fis as follows:

MKP(f) max >} > SpZpy (13a)
peP teT
ZHptZ,,t < Ct —f Z D, te T, (13b)
peP neN\P
Z,€40,1} peP,teT. (13¢)

We solve MKP(f) with f € {1.0,1.2,1.4} in the numeri-
cal experiments. The resulting product development
schedules (i.e., Z variables) are fixed in EENG to gen-
erate feasible solutions. These solutions are then pro-
vided to the solver as initial feasible solutions when
optimizing the EENG. We henceforth refer to this
algorithm as the lower bounding algorithm (LBA).
Note that if EENG is infeasible, then BPTM is also
infeasible because the feasible region of BPTM is a
subset of the feasible region of EENG. Thus the LBA
can identify the infeasibility of a BPTM instance.

5. Numerical Experiments

We run computational experiments to evaluate the
performance of the proposed solution algorithm and
model formulations. We then present an extension of
our model with multiple ENG units and analyze scal-
ability of the proposed solution method. Finally, we
provide managerial insights about the impact of prod-

uct mix, the cost of decentralization, and the value of
CORP’s leadership.

5.1. Instance Generation

Our test instances represent a realistic demand pattern
observed during product transition periods in the semi-
conductor industry: demand for current products dimin-
ishes to 0 over time, whereas the demand for new prod-
ucts rises over time and then stabilizes. Specifically, in
our test instances, the current products have positive
demand in the first 60% of the planning horizon, and
new products have positive demand in the last 60%.
Thus there is a time interval with positive demand for
both current and new products. The demand for current
products diminishes in the last quarter of their lifetime,
whereas demand for new products increases in the first

Table 3. Parameter Values

quarter of their lifetime. Because semiconductor compa-
nies operate in different markets such as mobile devices,
memory, and servers (Rash and Kempf 2012), we con-
sider four discrete uniform distributions to model
demand. Each product is randomly assigned to a market.

The due date for the development of each new prod-
uct is selected randomly with equal probability from the
periods with positive demand for that product. The fac-
tory capacity C; in period t is randomly generated from a
discrete uniform distribution between [0.73,,en D | and
[1.23enDy]. Once the factory capacity is determined,
the factory capacity H,; required for the development of
new product p in period t is generated randomly from a
discrete uniform distribution between [0.2C;] and
[0.6C;]. The values of other model parameters are given
in Table 3.

5.2. Computational Performance

We analyze the performance of our algorithm using
24 problem classes with number of periods T €
{12,18,24}, number of products |N|e{12,14}, and
number of new products |P| € {4,5,6,7}. We report the
size of each problem class in Appendix B of the online
supplement. We generate six instances per problem
class for a total of 24 X 6 = 144 instances. The LBA
identified four infeasible instances that were replaced
with new instances. We set the time limit to 7,200 sec-
onds for the overall solution method, 3,600 seconds
for solving the master problem in each iteration of the
CCG algorithm, and 300 seconds for the LBA in the
first iteration. We do not stop an iteration if it is in
progress when the time limit is exceeded. We run
experiments on a computer with two Intel Xeon 2.99
GHz processors and 32 GB RAM. We implement our
algorithms in C++ and solve the mixed-integer
programs using CPLEX 12.9. All the code developed
for this paper is available in a GitHub repository
found at https://github.com/RahmanKhorramfar91/
IJOC2022-Managing-Product-Transitions.

Table 4 reports the performance of the solution method
for each reformulation. The t -max (min) column reports
the maximum (minimum) solution time in seconds,
and the t-avg column is the average solution time for
optimally solved instances. The iter column reports
the maximum (minimum) number of iterations for opti-
mally solved instances, and the slv column reports
the number of instances (out of six instances in each

Parameter Value Parameter Value
Demand in Market 1 U[600,1000] h (holding cost) 0.5
Demand in Market 2 U[800,1200] 7 (production cost) 2h
Demand in Market 3 U[1200,1600] b (backorder cost) 10h
Demand in Market 4 U[1400,1800] w € ZF (tardiness cost) U[5,200]
T° 04T neZN (revenue) U[25,30]
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Table 4. The Performance of the Solution Algorithm with Exact Reformulations 1 and 2

Exact reformulation 1 Exact reformulation 2
Class t-max (min) t-avg iter slv t-max (min) t-avg iter slv LBA
C1l 9 (1) 5 4 (1) 6 7 (1) 3 4 (1) 6 6
C2 7 (2) 5 2 (1) 6 95 (3) 20 76 (1) 6 6
C3 120 (5) 35 8 (1) 6 167 (9) 70 10 (1) 6 6
C4 4,401 (14) 910 10 (1) 6 1,082 (13) 297 3(1) 6 6
C5 7 (1) 4 7 (1) 6 5(1) 3 4 (1) 6 6
(@ 12 (2) 6 5(1) 6 21 (2) 7 9 (1) 6 6
Cc7 84 (27) 42 14 (1) 6 133 (12) 57 10 (1) 6 6
C8 633 (66) 307 14 (2) 6 775 (35) 305 9(2) 6 6
Cc9 13 (3) 8 3 (1) 6 14 (4) 9 4 (1) 6 6
C10 284 (14) 119 5(1) 6 296 (7) 109 20 (1) 6 6
Cl11 2,489 (464) 1,384 17 (1) 6 2,907 (454) 1,044 16 (1) 6 0
C12 8,545 (257) 3,452 5(1) 5 3,322 (825) 1,818 4 (1) 5 1
C13 28 (4) 12 4 (1) 6 25 (4) 11 3 (1) 6 6
Cl4 315 (4) 85 3 (1) 6 312 (4) 86 3() 6 5
C15 984 (11) 354 5(1) 6 791 (10) 314 3() 6 2
Cl6 7,236 (491) 3,220 8 (1) 6 3,433 (216) 1,790 5(1) 6 4
C17 19 (3) 8 2 (1) 6 39 (3) 17 3 (1) 6 6
C18 403 (11) 83 3 () 6 443 (13) 113 3() 6 5
C19 4,031 (190) 1,586 5 (1) 6 3,413 (183) 1,946 5(1) 6 4
C20 — — — 0 3,191 (3,191) 3,191 1(1) 1 3
C21 40 (6) 18 1(1) 6 135 (7) 35 3 (1) 6 6
C22 312 (26) 144 10 (1) 6 312 (19) 103 9 (1) 6 5
C23 1,736 (96) 646 18 (1) 6 3,027 (95) 1,039 26 (1) 6 4
C24 — — — 0 — — — 0 2
Avg. 1,535 (152) 692 1,095 (267) 588

problem class) that are solved optimally within the time
limit. The LBA column gives the number of instances for
which the LBA was able to generate a lower bound within
the time limit. The last row of the table reports the average
time over all instances.

Neither of the exact reformulations has consistently
better computational performance than the other. The
solution times for some instances are significantly
shorter with exact reformulation 2 (e.g., the C4 and
C16 problem classes) and those for others with exact
reformulation 1 (e.g., the C23 problem class). It is
interesting that some instances are solved optimally
even when the LBA fails to generate an initial feasible
solution—for example, all six instances in C11 are
solved optimally although the LBA failed to generate
an initial feasible solution for any of them. The warm-
start strategy reduces the solution times significantly
for both reformulations and allows larger instances to
be solved. We also tried several acceleration strategies
proposed in Lozano and Smith (2017), but none of
them had substantial impact on the performance.

The number of new products has the greatest impact
on the solution time. Solving the bilevel model becomes
more difficult as the number of new products increases
because MFG and ENG have to be coordinated on the
development of more products. Although the problem
size increases with number of periods T, a longer plan-
ning period provides scheduling flexibility for product
development. However, in our experiments the impact

of larger instance sizes is more significant than that of
product development flexibility. In Table 4, the solution
time increases with the number of periods to the point
that neither formulation is able to solve instances with
|P| =7 new products and T = 24 periods.

5.3. Multiple Engineering Units

Because the proposed bilevel model is motivated by
the need to coordinate the activities of a leader and
two followers, a natural question that arises is how
the procedure can be scaled to more than two fol-
lowers. The semiconductor firm motivating this work
has a single, global manufacturing organization;
therefore we conduct experiments by varying the
number of ENG units. Our formulation and the solu-
tion approach can be extended to consider multiple
ENG units in a straightforward manner, as presented
in Appendix C of the online supplement. We disable
the LBA as well as the greedy heuristic presented in
Appendix A of the online supplement because these
procedures are developed for the case with one ENG
unit. We also increase the time limit to six hours to get
a better sense of how well the proposed solution
approach scales to multiple ENG units.

We consider two problem classes in Table 5 with six
and eight new products. We vary the number of ENG
units and solve six randomly generated instances of
each problem. As seen in Table 5, the solution time
increases with the number of ENG units in each
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Table 5. The Performance of the Solution Method with
Varying Numbers of ENG Units

[P| #ENGs  t-max(min) t-avg iter slv
Pl=6 6 1 60 (1) 31 16(1) 6
3 2 187 (2) 8 112 6
2 3 241 (1) 8 11(1) 6
1 6 11,016 (1) 2,783 21(1) 4
Pl=8 8 1 2639 (1) 1682  8(1) 5
4 2 5,425 (443) 2,521 8 (1) 6
2 4 8371 (304) 2534  5(1) 4
1 8 1,017 1,017) 1,017 1(1) 1

Notes. The number of periods is T = 12, and the number of products
is N| = 14 for each instance. The number of new products per ENG
unit is denoted by |P|. The time limit is set to six hours.

problem class. This increase is quite significant when
considering more than four ENG units. However, the
number of new products has more impact on the scal-
ability of the solution method than the number of
ENG units when there are fewer than four ENG units.
For example, increasing the number of new products
per ENG from three to four when there are two ENG
units increases the average solution time from 48 sec-
onds to 2,521 seconds; increasing the number of ENG
units from two to three when the total number of new
products is fixed at six increases the average solution
time less significantly, from 48 seconds to 83 seconds.

These results suggest that our procedure scales well
with the number of ENG units up to a certain limit
when the total number of new products is fixed, and
it is this latter quantity that drives the computational
effort. If there is a need to increase the number of new
products, then assigning more products to existing
ENG units rather than forming new ENG units would
be a better strategy to facilitate the allocation of fac-
tory capacity.

5.4. Impact of Product Mix

In this section we explore the impact of product mix
(i.e., the number of current and new products in set
N) on the optimal objective values of the CORP, MFG,
and ENG problems. We consider instances with T =
18 periods and |[N|=14 products. We analyze the
change in the optimal objective value of each decision
entity by increasing the number of new products |P|
from 4 to 7 while keeping the total number of prod-
ucts [N| = 14. We randomly generate 6 instances with
|P| =4,5,6 and 7, for a total of 24 instances.

Table 6 shows that CORP’s revenue decreases, MFG’s
cost increases, and ENG’s tardiness decreases with the
number of new products. Developing more new prod-
ucts during a fixed planning horizon requires that ENG
be allocated more factory capacity. This, in turn, results
in more backorder cost and less revenue, as demand
cannot be fully satisfied by the MFG unit. Although
tardiness may also increase when there are more new

products to be developed, the ENG unit manages to use
the increased factory capacity allocation to improve its
objective in all instances in Table 6.

5.5. Cost of Decentralization

In this section we evaluate the impact of bilevel deci-
sion hierarchy on the objective function performance.
Although a single-level model of the considered prod-
uct transition problem is not realistic because of the
decentralized organizational structure across the
CORP, MFG, and ENG units, we consider a hypotheti-
cal case where all manufacturing and product design
decisions are made by CORP as a central planner. The
formulation of this single-level problem, referred to as
the integrated model (IM), is given by

(IM) max Z Z nnt(Dnt + Bn,t—l - Bnt)
neN teT

- Z Z hntlnt + rntXntCt + bntBnt (14&)
neN teT
subject to Y < Z Zpe
T<t
F; + Z X =1 teT, (14¢)
neN
MFG-primal-feasibility(Y),
ENG-feasibility(F).

peP, teT, (14b)

The objective function (14a) maximizes the profit
given by the difference between revenue (i.e., CORP
objective) and manufacturing costs (i.e., MFG objec-
tive). The constraints include all of the upper- and
lower-level constraints in BPTM-Nash. We solve this
single-level mixed-integer model using CPLEX 12.9.
Table 7 shows the change in the optimal objective
function values of CORP, MFG, and ENG, as well as
the change in profit compared with bilevel model
BPTM-Nash for six instances in problem class C3.

As seen in the last row of Table 7, the IM results in
higher profit in all test instances. As expected, the
decentralized nature of the problem leads to loss of
profit. However, in a firm consisting of multiple
autonomous functional units, as commonly seen in
today’s global high-technology firms, centralized deci-
sion models are hard to implement because of their
incompatibility with the organizational structure,

Table 6. Average Change in the Optimal Objective Values
of CORP, MFG, and ENG as the Number of New Products
|P| Increases

[IPl]=4to5 |P|=5to6 |P|=6t07
CORP (max revenue) (%) =27 -3.4 -3.6
ENG (min tardiness) (%) -52.8 -37.5 -11.7
MEG (min cost) (%) 6.6 8.5 12.7
Backorder cost 59,838 77,570 120,500
Inventory cost -2,855 3,391 5,510
Production cost -2,895 -5,538 -3,500
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Table 7. Percent Change in the Optimal Objective Values of the CORP, MFG, ENG, and Profit in the Integrated Model
Compared with BPTM-Nash (Reported Instances Are in Problem Class C3)

Instance 1 Instance 2 Instance 3 Instance 4 Instance 5 Instance 6
CORP (max revenue) (%) 1.0 1.5 14 5.1 4.1 4.3
MFG (min cost) (%) -26.9 -11.2 -13.9 -5.3 -8.4 -16.5
ENG (min tardiness) (%) 65.0 0.0 70.4 -21.8 237.6 0.5
Profit® (%) 7.9 49 54 9.8 94 12.1

*Profit = CORP objective — MFG objective.

management incentives, and the high cost of collect-
ing and maintaining data for a large, centralized
model (Bansal et al. 2020).

Table 7 displays a consistent pattern of relatively
small increases in revenue (the upper-level objective
in the bilevel problem) and large reductions in MFG
cost. Clearly, the decisions made by CORP based on
revenue allow MFG limited scope to reduce its cost
while meeting demand in the bilevel model. Increases
in the ENG objective (tardiness) suggest that the inte-
grated model prefers to exploit some products by
meeting large portions of their demand while delay-
ing the introductions of others. Instance 4 is of partic-
ular interest because all three units are better off with
the integrated solution, illustrating how the bilevel
approach can lead to a Pareto-dominated solution.

5.6. The Value of CORP’s Leadership

The aim of this section is to assess the value of CORP’s
leadership. To this end, we consider an alternative
bilevel model in which MFG manages the factory
capacity allocation acting as the leader. ENG in the
lower level is the only follower. The formulation of
this model, referred to as MFG-Leader, is given by

(MFG-Leader) min Z Z hanVlt + rntXntCt + b}‘lth‘

neN teT
(15a)
subject to Yy < Z Zye peP, teT, (15b)
T<t
Ft+ZXnt:1 teT,
neN (15C)

MFG-primal-feasibility(Y),
(Z,V) € argminENG(F).

The last constraint in MFG-Leader formulates the
decision problem of the ENG. Our proposed solution
approach can be adapted to solve this model by modi-
fying the restricted master problem. Specifically, we

replace CORP’s objective with the MFG objective
and change the MFG-optimality (Y) constraints to
MFG-primal - feasibility(Y) constraints in the re-
stricted master problem MP(J").

Table 8 shows the difference in the optimal objec-
tive values of the CORP, MFG, and ENG in MFG-
Leader compared with BPTM-Nash for six instances
in problem class C3. As a leader, MFG can start pro-
ducing new products as soon as it is ready without
waiting for CORP’s product release decision. Thus,
the MFG objective function improves (i.e., manufac-
turing cost decreases) compared with BPTM-Nash in
all instances. On the other hand, the impact on CORP
and ENG objectives is mixed. CORP’s revenue can
decrease because CORP has no control over the deci-
sions of MFG and ENG in MFG-Leader. However, it
can also benefit from the new setting, as revenue
depends on backorder levels that can improve under
MEFG’s leadership. It is interesting to observe that all
decision makers improve their objective values in
instance 4 when MFG acts as the leader. Another
interesting observation pertains to the “stability” of
the bilevel solution obtained from BPTM-Nash with
the leadership of CORP. If MFG and ENG realize that
they can both improve their objective functions with-
out the CORP’s control, as in instances 3 and 4 in
Table 8, they might collude to implement a solution
that is not always in the best interest of CORP.

6. Conclusion

We formulate a mixed-integer bilevel model with inter-
dependent followers for capacity coordination during
product transitions in a firm with decentralized product
development and manufacturing units. We propose
two single-level reformulations and derive a solution
algorithm based on constraint and column generation.
We perform extensive computational experiments to

Table 8. Percent Change in the Optimal Objective Values of the CORP, MFG, and ENG in the MFG-Leader Model
Compared with BPTM-Nash (Reported Instances Are in Problem Class C3)

Instance 1 Instance 2 Instance 3 Instance 4 Instance 5 Instance 6
CORP (max revenue) (%) -1.9 -0.5 -1.7 0.5 1.6 -1.4
MFG (min cost) (%) -38.1 -14.8 —42.6 -8.6 -18 -374
ENG (min tardiness) (%) 105 59 -14.2 -17.6 198.9 0
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examine the performance of the proposed solution ap-
proach and provide managerial insights.

To the best of our knowledge, this paper presents
the first exact solution algorithm for mixed-integer
bilevel programs with interdependent followers. The
proposed bilevel model and solution approach are
quite flexible and allow us to study the impact of dif-
ferent settings for the distribution of decision author-
ity among the considered decision units. Therefore,
this paper provides a useful tool to study decentral-
ized, hierarchical decision problems in organizational
design. Our computational experiments provide
practical insights, but the reported numerical values
should be interpreted with caution because our test
instances are randomly generated. In practice, some
problem parameters may be inherently related to each
other. For example, tardiness weight associated with
the development of a new product may depend on
the demand, backordering cost, and unit revenue of
that product. The decision makers should consider
such relations when calibrating the proposed model.

A number of directions for future research emerge
from this work. Despite the algorithmic enhancements
we have implemented, such as the warm-start and
lower bounding techniques, the computational bur-
den of the solution approach remains substantial, re-
quiring significant improvements to be able to address
larger instances with multiple followers and more
complex information flows among the followers. Ex-
ploring the relationship between the number of deci-
sion entities, the distribution of decision authority
among them, and the number of feasible bilevel solu-
tions is also of great practical interest. It may well be
that under certain decision hierarchies there exist very
few bilevel feasible solutions, but small adjustments
to problem parameters such as capacity levels may
make a larger number of such solutions available.
Finally, exploring the relationship between iterative
combinatorial auction-based approaches to product
transitions and the bilevel approach proposed here is
of both theoretical and practical interest.
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