Deep-mantle krypton reveals Earth's early accretion of carbonaceous matter

https://doi.org/10.1038/s41586-021-04092-z

Sandrine Péron^{1⊠}, Sujoy Mukhopadhyay¹, Mark D. Kurz² & David W. Graham³

Received: 29 September 2020

Accepted: 4 October 2021

Published online: 15 December 2021

Check for updates

Establishing when, and from where, carbon, nitrogen and water were delivered to Earth is a fundamental objective in understanding the origin of habitable planets such as Earth. Yet, volatile delivery to Earth remains controversial¹⁻⁵. Krypton isotopes provide insights on volatile delivery owing to their substantial isotopic variations among sources⁶⁻¹⁰, although pervasive atmospheric contamination has hampered analytical efforts. Here we present the full suite of krypton isotopes from the deep mantle of the Galápagos and Iceland plumes, which have the most primitive helium, neon and tungsten isotopic compositions^{11–16}. Except for ⁸⁶Kr, the krypton isotopic compositions are similar to a mixture of chondritic and atmospheric krypton. These results suggest early accretion of carbonaceous material by proto-Earth and rule out any combination of hydrodynamic loss with outgassing of the deep or shallow mantle to explain atmospheric noble gases. Unexpectedly, the deep-mantle sources have a deficit in the neutron-rich 86Kr relative to the average composition of carbonaceous meteorites, which suggests a nucleosynthetic anomaly. Although the relative depletion of neutron-rich isotopes on Earth compared with carbonaceous meteorites has been documented for a range of refractory elements^{1,17,18}, our observations suggest such a depletion for a volatile element. This finding indicates that accretion of volatile and refractory elements occurred simultaneously, with krypton recording concomitant accretion of non-solar volatiles from more than one type of material, possibly including outer Solar System planetesimals.

Volatile delivery was a key process that shaped Earth's early surface environment. Yet the timing and sources of volatile delivery, as well as subsequent volatile evolution, are still debated^{1-5,19}. Although some studies advocate for most volatile delivery before the last giant impact^{5,19}, a contribution from a late veneer event may also be required^{1,2}. Three main sources seem to be needed to explain the Earth's volatile composition, namely solar^{3,4,20}, chondritic²⁰ and cometary²¹. The study of accretional heterogeneities preserved in the deep mantle provides direct observational constraints for testing planet-formation models, in particular regarding the processes responsible for material migration in the Solar System^{1,3}. For instance, dual accretion of volatile-rich outer Solar System material and solar gases in the deep Earth 10,22 may indicate early transport of outer Solar System solids into Earth's formation region²³.

Being inert, noble gases are ideal tracers of volatile sources and evolution^{3,4}. However, Earth's deep-mantle noble gas composition remains poorly constrained, particularly for krypton (Kr) and xenon (Xe). Krypton, with its six stable isotopes—⁷⁸Kr, ⁸⁰Kr, ⁸²Kr, ⁸³Kr, ⁸⁴Kr and ⁸⁶Kr-is extremely well suited to deconvolve solar from chondritic sources because they have distinct isotopic compositions; solar and chondritic material are enriched in light and heavy Kr isotopes relative to Earth's atmosphere, respectively^{24,25}. Upper-mantle Kr appears chondritic rather than solar on the basis of measured 82Kr/84Kr and ⁸⁶Kr/⁸⁴Kr ratios in carbon dioxide (CO₂) well gases⁹. Measurement of the ⁸⁶Kr/⁸⁴Kr ratio from a single mid-ocean-ridge basalt (MORB) is also consistent with chondritic Kr in the upper mantle⁸. A recent investigation of deep-mantle Kr and Xe isotopes in volcanic gases from the Yellowstone hotspot suggests a chondritic origin¹⁰. As neon (Ne) isotopes in basalts derived from the deep mantle indicate acquisition of a solar component during the early phase of Earth's accretion^{4,26,27}, the Yellowstone results could indicate a dual solar and chondritic source during early terrestrial accretion 10. The fingerprint of crustal and lithospheric mantle helium (He) and Ne in the Yellowstone gas samples¹⁰, however, leaves room for the possibility that Kr in these samples may be derived from a source less primitive than other hotspots such as Hawaii, Iceland and Galápagos. In addition, the mantle compositions of the light isotopes 78Kr and 80Kr are not known owing to their very low abundances, ubiquitous atmospheric contamination and progressive atmospheric noble gas recycling into the mantle. As we show, these isotopes are critical for determining the volatile sources for Kr, and by inference Xe.

Deep-mantle Kr and Xe

We analysed the Kr isotopic composition of ocean island basalt (OIB) glass samples from Fernandina, Galápagos and from Midfell, Iceland. These two hotspots sample the deep mantle via plumes rooted at the core-mantle boundary²⁸ and the samples analysed have the most

Department of Earth and Planetary Sciences, University of California, Davis, Davis, CA, USA. Adarine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA. 3College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA. Se-mail: scperon@ucdavis.edu

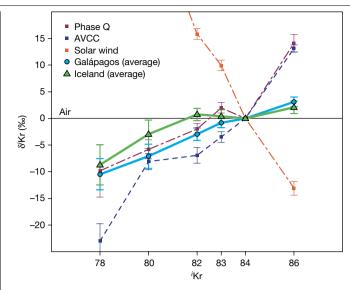


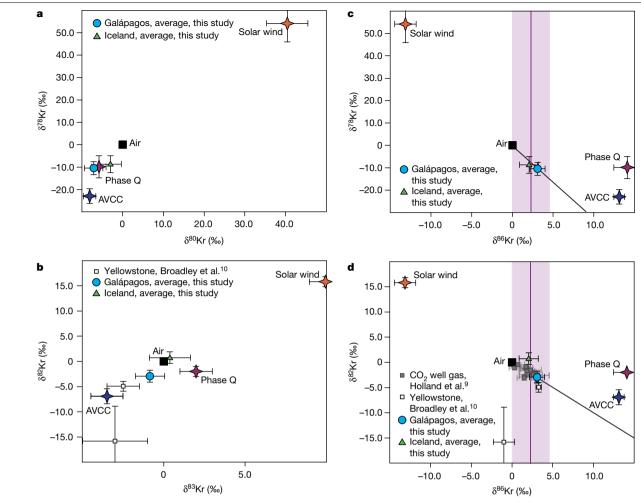
Fig. 1 | Krypton isotopic patterns of Galápagos and Iceland samples. Isotopic ratios are in delta notation, $\delta^i Kr = ((^i Kr/^{84} Kr)_{sample}/(^i Kr/^{84} Kr)_{air} - 1) \times 10^3$. The average Krisotopic compositions of the four Galánagos (solid blue line) and the two Iceland (solid green line) measurements are compared with Phase Q (dashed purple line)25, AVCC (dashed dark blue line) and solar wind (dashed orange line)²⁴. The δ^{78} Kr and δ^{80} Kr of solar wind are 54.2% and 40.4%, respectively. The measured Kr isotopic ratios in the Galápagos and Iceland plume sources are close to Phase Q^{25} ; compared with $\delta^{78}Kr$ and $\delta^{80}Kr$ of $-9.9 \pm 4.9\%$ and $-5.8 \pm 1.8\%$, respectively, for Phase Q^{25} , the Galápagos values are $-10.5 \pm 2.9\%$ and $-7.1 \pm 2.3\%$, respectively. For Iceland, δ^{78} Kr and δ^{80} Kr are $-8.7 \pm 3.8\%$ and $-3.0 \pm 2.7\%$, respectively. The error bars are 1σ .

primitive Ne compositions^{11,13-16}. Furthermore, both plumes have negative tungsten (W) isotope anomalies, with Galápagos carrying the largest negative anomaly¹². To overcome the challenges of low noble gas abundances and ubiquitous shallow-level atmospheric contamination in basalts²⁹, we used the novel technique of accumulating argon (Ar), Kr and Xe from crushing steps that show little atmospheric contamination as determined by analyses of Ne isotopes⁸, followed by an effective Ar-Kr-Xe separation and multicollection of five Kr isotopes during the mass spectrometric analyses (Methods).

The Kr isotopic compositions of Galápagos and Iceland (Extended Data Table 1) are distinct from air and solar wind but similar to the chondritic end-member (Fig. 1, Extended Data Figs. 1, 2). The measured 82Kr/84Kr and 86Kr/84Kr ratios of both plumes are similar to the highest measured values of the upper mantle based on CO₂ well gases⁹ and one MORB sample⁸ (Fig. 2). Whether this similarity extends to the lighter isotope ratios ⁷⁸Kr/⁸⁴Kr and ⁸⁰Kr/⁸⁴Kr remains to be determined because these ratios have not been established for the upper mantle. The Galápagos and Iceland Kr ratios are similar to one sample from the Yellowstone hotspot¹⁰ but differ from a second sample (Fig. 2), the reasons for which are not entirely clear.

The Xe isotopic data of Galápagos and Iceland are reported in Extended Data Table 2 and shown in Fig. 3. Although there are no literature data for Galápagos, the new Iceland data are in very good agreement with literature data for Xe^{14,15}. The Iceland accumulated gas is similar in composition to the error-weighted step-crush average of the DICE sample (Supplemental Fig. 5 of ref. 14), which provides confidence for the Kr isotope data. However, the error-weighted DICE average¹⁴ is closer to air because of a greater atmospheric contamination (Fig. 3). The Galápagos accumulated gas is also very similar in composition to the DICE error-weighted step-crush average¹⁴. Importantly, our Xe data do not plot on a mass fractionation line (Fig. 3). The non-radiogenic 124 Xe/ 130 Xe and 126 Xe/ 130 Xe ratios are not resolved from air. But the Galápagos and Iceland non-radiogenic ¹²⁸Xe/¹³⁰Xe ratios show slight excesses relative to air. In the 128 Xe/130 Xe-129 Xe/130 Xe space, the Galápagos average barely overlaps with the best-fit mixing line between the atmosphere and upper-mantle samples^{8,30-32}, while the Iceland average appears to fall on the line. Whereas the Yellowstone plume data appear to fall on a steeper mixing line than the upper mantle¹⁰, the uncertainty in the Galápagos and Iceland data do not allow us to conclude whether they are on the same mixing line defined by samples from the upper mantle^{8,30-32} or a slightly steeper mixing line.

Recycled proportion of atmospheric Kr


The clear observation of non-atmospheric Kr in the Galápagos and Iceland sources provides firm constraints on the amount of atmospheric Kr recycled into the deep mantle through subduction^{31,33}. For primordial mantle Kr, we use two meteoritic reference points, average carbonaceous chondrites (AVCC; Methods, Extended Data Table 3) and Phase Q, which is a poorly characterized carbonaceous phase carrying the majority of trapped heavy noble gases in meteorites²⁵. Phase Q is widespread in chondrites and usually the only trapped component in achondrites^{25,34,35}, whereas carbonaceous chondrites are the meteorite group for which there is currently the most precise Kr isotopic data. If the primordial plume-source Kr composition is assumed to be equivalent to AVCC, or to Phase Q, the proportion of atmospheric Kr in the plume source would range from $64 \pm 8\%$ to $0_0^{+9}\%$ (Fig. 4, Methods). Likewise, we can place upper bounds on the amount of solar Kr in the deep mantle by assuming a solar-AVCC mixture, which constrains the solar component to be $10 \pm 2\%$ and $16 \pm 2\%$ of the Kr in the Galápagos and Iceland plumes, respectively (Fig. 4).

The measured Kr and Xe isotopic anomalies from Galápagos and Iceland are lower limits of the isotopic anomalies in the mantle sources of these two plumes because the measured values have not been entirely corrected for shallow-level atmospheric contamination; the gas accumulation methodology drastically reduces atmospheric contamination but does not eliminate it⁸ (Methods). Thus, the maximum proportions of recycled atmospheric Kr are $48 \pm 8\%$ and $64 \pm 8\%$ for the Galápagos and Iceland sources, respectively, assuming AVCC as the initial composition (Fig. 4). The proportions of recycled air in the mantle plumes suggest that the Galápagos source may have retained a more primitive heavy noble gas signature than the Iceland source, consistent with the less radiogenic ³He/⁴He ratios, the less nucleogenic ²¹Ne/²²Ne ratios and the more negative u¹⁸²W (deviation of ¹⁸²W/¹⁸⁴W from terrestrial standards in parts per million) in the Galápagos source¹¹⁻¹⁶. Using the ¹²⁸Xe excesses, we estimate the maximum proportion of recycled atmospheric Xe in the deep mantle. Assuming an initial composition similar to AVCC, at maximum, $93 \pm 5\%$ and $95^{+5}_{-6}\%$ of the ¹³⁰Xe budget are of recycled origin for the Galápagos and Iceland mantle sources, respectively. The percentage of recycled ¹³⁰Xe in the Iceland plume based only on the 128 Xe/ 130 Xe ratio from this study is in good agreement with the 93.4 $^{+2.4}_{-1.2}$ % estimated previously for the Iceland plume using ^{130,131,132,134,136}Xe (ref. ³³). As a comparison, for plume-influenced samples from the Rochambeau Rift in the Lau Basin, $88.8^{+3.1}_{-1.2}\%$ of ¹³⁰Xe is from recycling ^{33,36}. Importantly, the maximum proportion of recycled Kr in the plumes is lower than the minimum proportion of recycled Xe, demonstrating that Kr in the mantle is much less affected by recycling than Xe.

Sources of Earth's volatiles

To determine the origin of primordial Kr, we investigate the full suite of Kr isotopes, which indicates that the measured 78,80,82,83 Kr/84 Kr ratios in both plumes are similar to that of Phase Q²⁵ (Fig. 1). The Kr isotopic anomalies, relative to air, are slightly lower for the Iceland sample, but within uncertainties of the Galápagos values (Figs. 1, 2).

Despite the similarity of the light Kr isotopes with Phase Q, the initial deep-mantle Kr isotopic composition cannot be derived solely from Q.

Fig. 2 | Krypton isotopic compositions of Galápagos and Iceland samples. **a**, δ^{78} Kr versus δ^{80} Kr. **b**, δ^{82} Kr versus δ^{83} Kr. **c**, δ^{78} Kr versus δ^{86} Kr. **d**, δ^{82} Kr versus δ^{86} Kr. The Galápagos and Iceland data are the averages of the four D22 and two DG2017 measurements, respectively. Air, Phase Q²⁵, AVCC (Extended Data Table 3) and solar wind²⁴ are shown for comparison. Data for CO₂ well gases (corrected for crustal fission) and Yellowstone are also indicated, but only ⁸²Kr, ⁸³Kr, ⁸⁴Kr and ⁸⁶Kr have been measured ^{9,10}. The solid lines in **c**, **d** highlight the deficit in ⁸⁶Kr relative to the chondritic end-member. The measured δ^{82} Kr and

 $\delta^{86} Kr$ of the two mantle plumes ($\delta^{82} Kr$ of $-2.9\pm1.2\%$ and $0.7\pm1.1\%$, $\delta^{86} Kr$ of $3.1\pm0.9\%$ and $2.1\pm1.2\%$ for Galápagos and Iceland, respectively) are similar to the highest measured $\delta^{82} Kr$ ($-0.44\pm0.46\%$) and $\delta^{86} Kr$ ($3.17\pm1.44\%$) ratios of the upper mantle based on analyses of CO_2 well gases 9 and to the $\delta^{86} Kr$ ($2.29\pm2.29\%$, purple bar in \boldsymbol{c} , \boldsymbol{d}) of the Mid-Atlantic Ridge popping rock basalt 8 . Data for the Galápagos and Iceland hotspots rule out any substantial solar contribution for heavy noble gases in the deep mantle. The error bars are 10.

The measured δ^{86} Kr (per mil deviation of 86 Kr/ 84 Kr from air) for both plumes are much lower than the value for Q. On the basis of the calculated proportions of a Phase Q-air mixture (Fig. 4), the expected δ^{86} Kr are 14.1 \pm 1.3% for Galápagos and 10.1 \pm 2.6% for Iceland, much higher than their respective measured values of 3.09 \pm 0.92% and 2.06 \pm 1.17% (Fig. 5).

Carbonaceous chondrites may represent a possible source of Kr, and therefore other volatiles, for the deep mantle (Figs. 1, 2). On the basis of the mixing proportions of AVCC-air Kr (Fig. 4), the expected δ^{86} Kr is $6.85 \pm 0.98\%$ for Galápagos and $4.71 \pm 0.98\%$ for Iceland, much higher than the measured values (Fig. 5). Given the uncertainties in the measured and predicted values, the probability that the measured δ^{86} Kr values for both the Galápagos and Iceland are lower than the predicted values by random chance is 0.01% (Extended Data Fig. 3); that is, there is a 99.99% probability that Earth's mantle has a deficit in the heaviest Kr isotopes with respect to the average composition of carbonaceous chondrites. Given the small dataset and the limited precision on Kr isotopic ratios for different carbonaceous chondrite groups (Extended Data Table 3), we cannot rule out that a specific group of carbonaceous chondrites may match the Earth's deep-mantle Krisotopic composition. However, dynamically, several types of carbonaceous chondrite would be expected to be scattered to the inner Solar System during Earth's formation.

The misfit to the deep mantle's δ^{86} Kr would be larger for ordinary and enstatite chondrites (Extended Data Table 3) because they have higher 86 Kr/ 84 Kr values than AVCC. Likewise, a mix of solar–AVCC Kr predicts much higher δ^{86} Kr (Fig. 5). Consequently, the deep mantle has a nucleosynthetic 86 Kr anomaly with respect to AVCC, enstatite and ordinary chondrites, and solar compositions; the average composition of carbonaceous chondrites though provides the closest match. The nucleosynthetic 86 Kr anomaly is more visible in the Galápagos plume given its higher proportion of primordial Kr compared with Iceland (Fig. 4).

The nucleosynthetic ^{86}Kr anomaly of the two hotspots must be a remnant of Earth's accretion, signifying that some planetary building blocks carried a lower $^{86}Kr/^{84}Kr$ ratio than represented by the AVCC composition or Phase Q. The $\delta^{86}Kr$ of slow-process nucleosynthesis, determined through analyses of interstellar silicon carbide (SiC) from the Murchison carbonaceous chondrite, shows a wide range 37 from -223% to +3,041% (ref. 38), requiring several stellar sources to have contributed SiC grains to the parent molecular cloud of the Solar System 38 . The large variability in $\delta^{86}Kr$ of SiC grains occurs as ^{86}Kr is at a branching point on the slow-process path. Incomplete mixing of SiC grains, derived from asymptotic giant branch (AGB) stars, in the solar nebula might then have imparted varying $^{86}Kr/^{84}Kr$ ratios in different parent bodies with

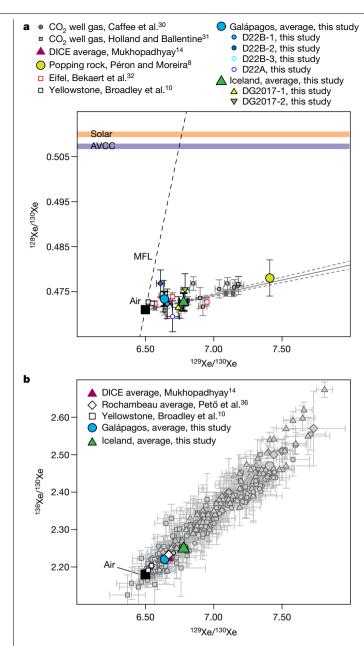


Fig. 3 | Xenon isotope composition of Galápagos and Iceland samples. a, $^{128}\mbox{Xe}/^{130}\mbox{Xe}-^{129}\mbox{Xe}/^{130}\mbox{Xe}$. The Galápagos and Iceland data are the averages of the four D22 (small circles) and two DG2017 (small triangles) measurements, respectively. Literature data for upper-mantle-derived samples from CO₂ well gases^{30,31}, the Mid-Atlantic Ridge popping rock basalt⁸, thermal springs from Eifel³² and plume source samples from Iceland (error-weighted average of all crush steps of DICE) 14 and from Yellowstone 10 are shown for comparison. The data for Eifel³² and Yellowstone¹⁰ are normalized to the same atmospheric composition used in this study (Extended Data Table 2). MFL stands for mass fractionation line (dashed line). Our data for Galápagos and Iceland (averages and individual data points) are not on the MFL. The solid and dashed grey lines represent the mixing line (error-weighted fit forced through air) defined by upper-mantle-derived samples with the 68% confidence interval. **b**, 136 Xe/ 130 Xe-¹²⁹Xe/¹³⁰Xe. The plume samples (this study, DICE error-weighted average¹⁴, Rochambeau error-weighted average 36 and Yellowstone 10) compared with upper-mantle samples (refer to Methods for references). The error bars on measurements are 1σ .

some carrying 86 Kr depletion relative to the average composition of carbonaceous chondrites. However, we cannot rule out the possibility that rapid-process nucleosynthesis associated with supernovae may

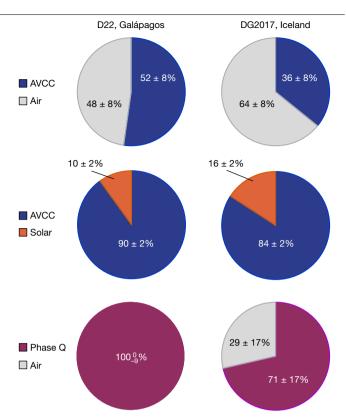


Fig. 4 | Mixing proportions in the plume sources. Estimates of mixing proportions to explain the 78 Kr $^{-80}$ Kr $^{-84}$ Kr compositions of samples D22A and D22B (Galápagos) and DG2017 (Iceland). Three scenarios have been considered: mixing of AVCC with air, mixing of AVCC with a solar end-member and mixing of Phase Q with air. The error bars are 1o.

also have produced variability in the neutron-rich Kr isotopic ratio as ⁸⁶Kr is not shielded from rapid-process nucleosynthesis.

Several refractory elements (for example, calcium (Ca), titanium (Ti), chromium (Cr), nickel (Ni), zirconium (Zr), molybdenum (Mo), ruthenium (Ru) and neodymium (Nd)) on Earth show relative depletions in neutron-rich isotopes in reference to carbonaceous meteorites^{1,17,18}. These depletions have been attributed to a relative enrichment of slow-process over rapid-process matter, as well as to heterogeneous distribution of grains derived from different AGB stars in Earth-forming materials^{1,17,18}. Isotopes of refractory elements such as Ca and Ti track the composition of accreted material throughout Earth's formation ^{17,39}. Hence, the observed relative depletion in a neutron-rich isotope for the highly volatile element Kr in the solid Earth (Fig. 5) suggests that its depletion may be linked to relative depletion of the neutron-rich refractory elements on Earth, indicating that accretion of volatile and refractory elements occurred simultaneously.

Earth's deep mantle deficit in 86Kr has ramifications for the longstanding debate about the origin of terrestrial Xe, as the heavy noble gases (Kr and Xe) are thought to have a common origin on Earth^{9,10}. The initial Xe in Earth's mantle and atmosphere was long advocated to be U-Xe⁴⁰, a primordial component with a deficit in the neutron-rich isotopes ¹³⁴Xe and ¹³⁶Xe (ref. ⁴¹), but never directly observed in a parent body. Recently, U-Xe was shown to be a mixture of chondritic and cometary Xe²¹, establishing an observational basis for Earth's initial atmospheric composition. However, for the mantle, chondritic Xe, and not U-Xe, has been suggested $as the progenitor^{8-10}, although \, differences \, between \, chondritic \, and \, U-Xe$ are not discernible given the measurement uncertainties. Instead, the Kr isotopic results suggest that Earth's mantle may well have a deficit of the neutron-rich Xe isotopes with respect to chondrites; that is, a U-Xe pattern reflecting a mixture of chondritic and cometary Xe²¹.

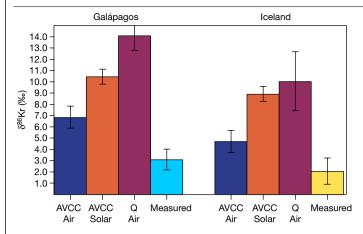


Fig. 5 | Estimated 86 Kr/84 Kr ratio based on different mixing scenarios. Predicted 86Kr/84Kr ratio (expressed in delta unit, per mil deviation relative to the air ratio) based on the calculated mixing proportions (Fig. 4) for samples D22 from Galápagos (left) and DG2017 from Iceland (right). These predicted $ratios\,are\,compared\,with\,the\,average\,measured\,ratios\,for\,each\,sample.$ The comparison shows that the measured 86Kr/84Kr ratios are lower than expected based on the measured 78 Kr and 80 Kr anomalies. The error bars are σ .

To further evaluate the possible sources of deep mantle Kr, we investigate the nature of the accretionary material. Earth may have primarily grown from differentiated planetesimals as sampled in achondrites⁴². In differentiated meteorites, Kr is mainly hosted in Phase Q^{25,34}. However, it is unlikely that deep-mantle Kr is only from Phase O (Figs. 4.5). If Earth grew from differentiated planetesimals, then either the achondrite parent bodies had much lower 86Kr/84Kr ratios than Phase Q owing to the presence of other nucleosynthetic components, unlike those that have been observed^{25,34,35}, or additional parent bodies with a low ⁸⁶Kr/⁸⁴Kr ratio were also added. The nature of the 86Kr-depleted parent body is not entirely clear. The only planetary body that has so far been shown to carry a deficit in 86Kr relative to solar wind is the Kuiper Belt comet 67P/Churyumov-Gerasimenko⁴³. Accretion of cometary material would also have produced a depletion in the heavy Xe isotopes²¹, leading to a U-Xe composition of the deep mantle. Owing to the large uncertainty in the cometary Kr composition⁴³ a mixing calculation to determine the proportion of cometary Kr required to explain the deep-mantle Kr isotopic composition is not feasible.

The measured Kr isotopic composition may be explained by accretion of a specific group of carbonaceous chondrites, or parent bodies carrying noble gases in the carbonaceous Phase Q, such as enstatite or ordinary chondrites²⁵, with other parent bodies, potentially comets, carrying a depletion in the neutron-rich 86Kr isotope. The enstatite or ordinary chondrite parent bodies would require a larger contribution from a parent body depleted in 86Kr. However, as Phase Q is carbonaceous and widespread in chondrites and achondrites^{25,34}, all scenarios require early accretion of carbonaceous phases. The discussions above highlight that one or more volatile-rich outer Solar System objects probably contributed to the deep mantle's Kr budget during the earliest phase of Earth's accretion.

Implications for origin of atmosphere

The primordial Kr sampled by the mantle plumes had to be delivered during the early phases of Earth accretion. Indeed, mantle plumes sample a reservoir that differentiated from the upper mantle before the end of Earth's main phase of accretion (that is, by 4.45 billion years ago) and has never been homogenized with the rest of the mantle based on its μ^{182} W, iodine/plutonium (I/Pu)-derived Xe, and 3 He/ 22 Ne ratios 14,33,36. Early Kr delivery associated with carbonaceous phases, or chondritic parent bodies, also suggests simultaneous delivery of other chondritic volatiles. This early delivery was concurrent with acquisition of solar Ne in the deep mantle 10,22. As the solar wind and solar nebula are enriched by several orders of magnitude in Ne relative to Kr and because the solar Ne/Kr ratio is also several orders of magnitude higher than in chondrites, acquisition of solar Ne would not affect the Kr composition 10,44,45. We propose that the composition of volatile elements suggests that delivery was not restricted towards the end of the accretion, or to the aftermath of the Moon-forming giant impact. Rather, volatile delivery may have occurred through most of Earth's accretion with volatile abundances on the growing planet sculpted and fractionated by processes such as core formation and atmospheric loss.

Volatile delivery during only the early or the main phase of Earth's accretion, however, does not explain the atmospheric noble gases-the largest reservoir of noble gases on Earth. Degassing of chondritic Kr from the upper mantle does not match the atmospheric composition (Fig. 2). As hydrodynamic escape would leave a residual atmosphere enriched in the heavier isotopes, degassing of the upper mantle followed by hydrodynamic escape also cannot explain the atmospheric composition9. Similarly, the deep-mantle enrichment in heavy Kr isotopes compared with the atmosphere (Figs. 1, 2) indicates that any combination of deep and shallow mantle outgassing followed by hydrodynamic escape will not produce the atmospheric composition. The chemical similarity between Earth and the Moon is used to argue for isotopic equilibration between Earth's mantle and the impacting body, either through a silicate vapour disk⁴⁶ or through a synestia-like planetary structure generated by vaporizing a portion of the silicate Earth through high-angular-momentum impacts⁴⁷. If isotopic equilibration of refractory lithophile isotopes between Earth's silicate mantle and the impactor was achieved, the pre-existing atmosphere on Earth should also have equilibrated with its silicate interior. Hence, we hypothesize that a large fraction of atmospheric noble gases was delivered after the last major equilibration of the mantle with the atmosphere—the Moon-forming giant impact^{46,47}. Consequently, volatile delivery during the late veneer is also required to explain the atmospheric noble gases9,48.

The recognition of the deep mantle's Kr isotopic patterns suggests an outer Solar System contribution to Earth's volatile budget starting early in Earth's accretion history. Carbonaceous or organic-rich material could have been delivered to the inner Solar System during radial transport of dust-sized grains in the disk before the formation of Jupiter⁴⁹. In addition, during giant planet formation and migration in the nebula, volatile-rich planetesimals from the outer Solar System could have been scattered onto terrestrial planet-crossing orbits^{23,50}. In either scenario, volatile-rich material from the outer Solar System was delivered into the terrestrial planet-forming region during the early periods of Earth's accretion.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-021-04092-z.

- Fischer-Gödde, M. et al. Ruthenium isotope vestige of Earth's pre-late-veneer mantle preserved in Archaean rocks, Nature 579, 240-244 (2020)
- Albarède, F. Volatile accretion history of the terrestrial planets and dynamic implications Nature 461, 1227-1233 (2009)
- Mukhopadhyay, S. & Parai, R. Noble gases: a record of Earth's evolution and mantle dynamics. Annu. Rev. Earth Planet. Sci. 47, 389-419 (2019).
- Moreira, M. Noble gas constraints on the origin and evolution of Earth's volatiles Geochem, Perspect, 2, 229-403 (2013),
- Clay, P. L. et al. Halogens in chondritic meteorites and terrestrial accretion. Nature 551, 614-618 (2017).

- Ozima, M. & Zashu, S. Solar-type Ne in Zaire cubic diamonds. Geochim. Cosmochim. Acta 52 19-25 (1988)
- 7. Ozima, M. & Zashu, S. Noble gas state of the ancient mantle as deduced from noble gases in coated diamonds. Earth Planet. Sci. Lett. 105, 13-27 (1991).
- Péron, S. & Moreira, M. Onset of volatile recycling into the mantle determined by xenon 8. anomalies, Geochem, Perspect, Lett. 9, 21-25 (2018).
- Holland, G., Cassidy, M. & Ballentine, C. J. Meteorite Kr in Earth's mantle suggests a late accretionary source for the atmosphere, Science 326, 1522-1525 (2009)
- Broadley, M. W. et al. Identification of chondritic krypton and xenon in Yellowstone gases and the timing of terrestrial volatile accretion. Proc. Natl Acad. Sci. USA 117, 13997-14004
- Péron, S. et al. Neon isotopic composition of the mantle constrained by single vesicle 11 analyses. Earth Planet. Sci. Lett. 449, 145-154 (2016).
- Mundl-Petermeier, A. et al. Anomalous ¹⁸²W in high ³He/⁴He ocean island basalts: 12. fingerprints of Earth's core? Geochim. Cosmochim. Acta 271, 194-211 (2020).
- 13. Kurz, M. D., Curtice, J., Fornari, D., Geist, D. & Moreira, M. Primitive neon from the center of the Galapagos hotspot, Earth Planet, Sci. Lett. 286, 23-34 (2009).
- 14. Mukhopadhyay, S. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101-104 (2012).
- 15. Trieloff, M., Kunz, J., Clague, D. A., Harrison, D. & Allègre, C. J. The nature of pristine noble gases in mantle plumes. Science 288. 1036-1038 (2000).
- Harrison, D., Burnard, P. & Turner, G. Noble gas behaviour and composition in the mantle: 16. constraints from the Iceland Plume, Earth Planet, Sci. Lett. 171, 199-207 (1999).
- Render, J., Fischer-Gödde, M., Burkhardt, C. & Kleine, T. The cosmic molybdenumneodymium isotope correlation and the building material of the Earth. Geochem. Perspect. Lett. 3, 170-178 (2017).
- Akram, W., Schönbächler, M., Bisterzo, S. & Gallino, R. Zirconium isotope evidence for the heterogeneous distribution of s-process materials in the Solar System. Geochim. Cosmochim. Acta 165, 484-500 (2015).
- Hirschmann, M. M. & Dasgupta, R. The H/C ratios of Earth's near-surface and deep reservoirs, and consequences for deep Earth volatile cycles, Chem. Geol. 262. 4-16 (2009).
- 20. Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313-314, 56-66 (2012).
- Marty, B. et al. Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth's atmosphere. Science 356, 1069-1072 (2017).
- 22. Harper, C. L. & Jacobsen, S. B. Noble gases and Earth's accretion. Science 273, 1814-1818 (1996)
- O'Brien, D. P., Walsh, K. J., Morbidelli, A., Raymond, S. N. & Mandell, A. M. Water delivery 23. and giant impacts in the 'grand tack' scenario. Icarus 239, 74-84 (2014).
- 24. Meshik, A., Hohenberg, C., Praydiytseya, O. & Burnett, D. Heavy noble gases in solar wind delivered by Genesis mission, Geochim, Cosmochim, Acta 127, 326-347 (2014).
- Busemann, H., Baur, H. & Wieler, R. Primordial noble gases in 'Phase Q' in carbonaceous and ordinary chondrites studied by closed-system stepped etching. Meteorit. Planet. Sci. 35, 949-973 (2000).
- 26 Williams, C. D. & Mukhopadhyay, S. Capture of nebular gases during Earth's accretion is preserved in deep-mantle neon. Nature 565, 78-81 (2019).
- Yokochi, R. & Marty, B. A determination of the neon isotopic composition of the deep mantle. Earth Planet. Sci. Lett. 225, 77-88 (2004).
- 28. French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the Earth's mantle beneath major hotspots. Nature 525, 95-99 (2015).
- Ballentine, C. J. & Barfod, D. N. The origin of air-like noble gases in MORB and OIB. Earth Planet. Sci. Lett. 180, 39-48 (2000).

- 30. Caffee, M. W. et al. Primordial noble gases from Earth's mantle: identification of primitive volatile component. Science 285, 2115-2118 (1999).
- 31. Holland, G. & Ballentine, C. J. Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441, 186-191 (2006).
- Bekaert, D. V., Broadley, M. W., Caracausi, A. & Marty, B. Novel insights into the degassing history of Earth's mantle from high precision noble gas analysis of magmatic gas. Earth Planet. Sci. Lett. 525, 115766 (2019).
- Parai, R. & Mukhopadhyay, S. The evolution of MORB and plume mantle volatile budgets: constraints from fission Xe isotopes in Southwest Indian Ridge basalts. Geochem. Geophys. Geosyst. 16, 719-735 (2015).
- Busemann, H. & Eugster, O. The trapped noble gas component in achondrites. Meteorit. Planet. Sci. 37, 1865-1891 (2002).
- Broadley, M. W., Bekaert, D. V., Marty, B., Yamaguchi, A. & Barrat, J.-A. Noble gas variations in ureilites and their implications for ureilite parent body formation. Geochim. Cosmochim, Acta 270, 325-337 (2020).
- Pető, M. K., Mukhopadhyay, S. & Kelley, K. A. Heterogeneities from the first 100 million years recorded in deep mantle noble gases from the Northern Lau Back-arc Basin, Farth Planet, Sci. Lett. 369-370, 13-23 (2013).
- Ott, U., Begemann, F., Yang, J. & Epstein, S. S-process krypton of variable isotopic composition in the Murchison meteorite, Nature 332, 700-702 (1988).
- 38 Lewis, R. S., Amari, S. & Anders, E. Interstellar grains in meteorites: II. SiC and its noble gases, Geochim, Cosmochim, Acta 58, 471-494 (1994).
- Dauphas, N. The isotopic nature of the Earth's accreting material through time. Nature **541**, 521-524 (2017).
- 40 Pepin, R. O. & Porcelli, D. Xenon isotope systematics, giant impacts, and mantle degassing on the early Earth. Earth Planet. Sci. Lett. 250, 470-485 (2006).
- Pepin, R. O. On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 2-79 (1991).
- 42. Carlson, R. W. et al. How did early Earth become our modern world? Annu. Rev. Earth Planet. Sci. 42, 151-178 (2014).
- Rubin, M. et al. Krypton isotopes and noble gas abundances in the coma of comet 67P/ Churyumov-Gerasimenko, Sci. Adv. 4, eaar6297 (2018).
- 44. Mazor, E., Heymann, D. & Anders, E. Noble gases in carbonaceous chondrites. Geochim. Cosmochim. Acta 34, 781-824 (1970).
- Heber, V. S. et al. Noble gas composition of the solar wind as collected by the Genesis mission. Geochim. Cosmochim. Acta 73, 7414-7432 (2009).
- 46. Pahlevan, K. & Stevenson, D. J. Equilibration in the aftermath of the lunar-forming giant impact. Earth Planet. Sci. Lett. 262, 438-449 (2007).
- Lock, S. J. & Stewart, S. T. The structure of terrestrial bodies: Impact heating, corotation limits, and synestias, J. Geophys, Res. Planets 122, 950-982 (2017).
- 48. Bekaert, D. V., Broadley, M. W. & Marty, B. The origin and fate of volatile elements on Earth revisited in light of noble gas data obtained from comet 67P/Churyumov-Gerasimenko. Sci. Rep. 10, 5796 (2020).
- 49. Ciesla, F. J. & Cuzzi, J. N. The evolution of the water distribution in a viscous protoplanetary disk. Icarus 181, 178-204 (2006).
- Raymond, S. N. & Izidoro, A. Origin of water in the inner Solar System: planetesimals scattered inward during Jupiter and Saturn's rapid gas accretion. Icarus 297, 134-148 (2017).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2021

Methods

Samples

We used centimetre-sized basaltic glass chunks of samples AHA-NEMO2-D22A and AHA-NEMO2-D22B from a submarine lava flow of Fernandina Volcano, Galápagos^{13,51}. The composition of these samples for major, trace and volatile (major and noble gases) elements have been well characterized^{11,13,51,52}. In particular, these samples have the most primitive He and Ne isotopic ratios of the Galápagos hotspot^{11,13}.

The Iceland sample DG2017 is a picritic subglacial basalt glass from Dagmalafell (Midfell), located approximately 1 km east of Lake Þingvallavatn. The GPS coordinates are 64° 10′ 29.3″ N, 21° 02′ 52.1″ W. This sample was collected by Adam Kent in 2017 from the same locality as the DICE10 sample analysed previously¹6, from a small quarry at the base of a hill formed by subglacial eruptions. The sample material was taken from a mass of pillow basalts, more than 50 m high that underlies hyaloclastite. Abundances of CO $_2$ and He as well as the He isotopic ratio for sample DG2017, measured by crushing and melting at Oregon State University (OSU) 53 , are shown in Supplementary Table 1, and are consistent with previous studies $^{14-16,54}$. The He isotope ratio of DICE10, as measured at OSU, is the same within uncertainties as measured for the DG2017 sample. Abundances and isotopic compositions of Ne, Ar and Xe have also been reported for this locality $^{14-16,54}$.

Glass chunks from Galápagos and Iceland were cleaned in oxalic acid (1%) on a hot plate (50 °C) and then rinsed with ethanol and acetone in ultrasonic baths. About 4 g (Extended Data Table 1, Supplementary Table 2) of each sample was then put into crushers, which were then baked between 110 °C and 120 °C for 24 h and pumped for a minimum of 4 weeks before starting the analyses. Analyses were started when the crusher blanks were below 1.0×10^{-13} ccSTP (cm³ at standard temperature and pressure) of 22 Ne, 4.6×10^{-12} ccSTP of 36 Ar, 4.5×10^{-14} ccSTP of 84 Kr and 1.1×10^{-15} ccSTP of 130 Xe.

Protocol of accumulation and noble gas purification

We used a recently developed accumulation protocol⁸, consisting of accumulating heavy noble gases (Ar, Kr and Xe) only for crushing steps showing little atmospheric contamination as determined by the prior analyses of neon isotopic ratios 20 Ne/ 22 Ne and 21 Ne/ 22 Ne.

For each crushing step, gases were first purified successively with a hot (400 °C) MP10 SAES getter and then with a cold (room temperature) MP10 SAES getter. After purification, gases were trapped on a dual cryogenic trap⁵⁵. The latter is a new cryogenic system composed of two electropolished stainless steel traps on one cold head⁵⁵. One trap can be cooled to <5 K (hereafter trap A) and the other trap to <50 K (hereafter trap B). The nude stainless-steel traps present steeper release curves for noble gases than charcoal traps⁵⁶, allowing a better Ar/Kr/ Xe separation⁵⁵.

Noble gases, except He, were then trapped on trap A at 9 K. A temperature cycle of the trap was then conducted, consisting of putting the trap at 35 K for 5 min and then cooling it to 9 K. This temperature cycle is effective in limiting the effect of cryotrapping (the process by which one noble gas is trapped by another one) as it can better re-layer each noble gas under each other on the trap⁵⁷. This operation allows recovery of a higher fraction of each noble gas. Neon was then released at 25 K and introduced to the Noblesse mass spectrometer for analysis (see below).

If the 20 Ne/ 22 Ne ratio of the crushing step was higher than 11.75 (and 11.49 for one step, Supplementary Table 2), then the heavy noble gases on trap A were released at 160 K and trapped on a charcoal trap at liquid nitrogen temperature (77 K) for accumulation.

To analyse the composition of the accumulated gas, the charcoal trap was first heated with a Kapton heater at 40 °C to release all the Xe. The accumulated gas was first purified with the two hot and cold MP10 SAES getters. Then gases were trapped on trap B at 67 K. The protocol then used to separate Ar/Kr/Xe was protocol 2 described in

another study⁵⁵ for samples D22B-1, D22B-1 and DG2017-1. For the three other analyses, two temperature cycles were applied for Ar/Kr and Kr/ Xe separation (similar to protocol 3 of a previous study⁵⁵) to further improve the efficiency of the separation.

The Ne, Ar and Xe data for the samples are indicated in Extended Data Tables 2, 4 and Supplementary Table 2.

The charcoal trap, used to accumulate Ar, Kr and Xe from several crushing steps (Supplementary Table 2), remained in a static vacuum for several days. In total, the charcoal trap remained in a static vacuum for 6 days (isolated) for sample D22B-1, 5 days for D22B-2, 5 days for D22B-3, 3 days for D22A, 7 days for DG2017-1 and 3 days for DG2017-2. The blank of the charcoal trap after several days in a static vacuum is discussed below.

Noble gas analyses on the Noblesse 5F5M

To measure the noble gas abundances and isotopic ratios, we use a Noblesse HR mass spectrometer (Nu Instruments) equipped with five Faraday cups and five electron multipliers (5F5M) at the Davis Noble Gas Laboratory. The filament voltage was kept at -78 V and the trap current was kept at $250 \,\mu\text{A}$ for all the analyses.

Neon isotopes $^{-20}$ Ne, 21 Ne and 22 Ne—were measured in multicollection on electron multipliers, on the right side of the peaks where 20 Ne is resolved from 40 Ar $^{++}$. Signals of hydrofluoric acid (HF) and at mass 44 were measured to correct for HF $^{+}$ and CO $_{2}^{++}$ interferences, using the measured double/single charge ratios CO $_{2}^{++}$ /CO $_{2}^{+}$ of 0.0068 \pm 0.0005.

The Ar isotopes were measured in multicollection, ⁴⁰Ar on one of the Faraday cups and ³⁶Ar and ³⁸Ar on electron multipliers.

The Kr isotopes were measured in two steps on electron multipliers. The first step consisted of measuring 78 Kr, 80 Kr, 82 Kr, 84 Kr and 86 Kr in multicollection, and the second step consisted of analysing 83 Kr. Measurements were done on the left side of the peaks, where interferences with hydrocarbon on Kr isotopes are resolved. The isotope 80 Kr was measured on the electron multiplier that has a slit (initially for resolving 3 He from HD) that allows full resolution of 80 Kr from any interfering hydrocarbons. Kr is efficiently separated from Ar using the dual stainless steel trap 55 . As a result, no interference of 40 Ar $_2^{+}$ with 80 Kr was detected (see discussion below).

The Xe isotopes were measured in three steps on electron multipliers, the first step for ¹²⁶Xe, ¹²⁹Xe and ¹³²Xe, the second step for ¹²⁸Xe, ¹³¹Xe and ¹³⁴Xe and the third step for ¹²⁴Xe, ¹³⁰Xe and ¹³⁶Xe.

Sensitivity, reproducibility and mass discrimination of the measurements

Sensitivity, reproducibility and mass discrimination of the measurements were assessed through repeat analyses of air standards of similar size to the samples. Each pipette of the air standard corresponds to 6.15×10^{-11} ccSTP of 22 Ne, 1.15×10^{-9} ccSTP of 36 Ar, 2.38×10^{-11} ccSTP of 84 Kr and 1.30×10^{-13} ccSTP of 130 Xe.

Typical values of sensitivity of the mass spectrometer during the analysis periods were $1.1\times10^{-14}\,cm^3\,c.p.s.^{-1}$ for $^{22}\text{Ne}, 1.9\times10^{-15}\,cm^3\,c.p.s.^{-1}$ for $^{36}\text{Ar}, 4.8\times10^{-16}-5.0\times10^{-16}\,cm^3\,c.p.s.^{-1}$ for ^{84}Kr and $4.6\times10^{-16}-5.1\times10^{-16}\,cm^3\,c.p.s.^{-1}$ for $^{130}\text{Xe}.$

Extended Data Fig. 4 shows the measurement reproducibility of air standards of three different sizes, from $7.52\times10^{-12}\,\mathrm{cm^3}$ to $2.38\times10^{-11}\,\mathrm{cm^3}$ of 84 Kr. For data reduction, only air standards of similar size to the samples were considered. Repeat measurements of the largest air standard size (84 Kr of $2.38\times10^{-11}\,\mathrm{cm^3}$) show an even better reproducibility, typically of 2% for 78 Kr/ 84 Kr, of 2.5% for 80 Kr/ 84 Kr, of 1% for 82 Kr/ 84 Kr, of 1.5% for 83 Kr/ 84 Kr and of 1% for 86 Kr/ 84 Kr.

Accumulation blank and tests

An important parameter to monitor is the blank of the charcoal trap (see above the total numbers of days the trap remained in a static vacuum for each sample). We carried out accumulation blanks consisting of trapping Ar, Kr and Xe from the line in different blank steps,

as we did for the crush steps. The accumulated blank represents 3.1% of the total measured Kr for sample D22B-1, 1.7% for D22B-2, 1.9% for D22B-3, 3.7% for D22A, 2.1% for DG2017-1 and 1.9% for DG2017-2, with atmospheric isotopic ratios. These blanks represent 3.2% and 6.7% of the total measured Ar and Xe, respectively, for sample D22B-1, 1.9% and 3.7% for D22B-2, 2.1% and 4.0% for D22B-3, 3.6% and 8.0% for D22A, 3.8% and 4.8% for DG2017-1 and 1.9% and 4.0% for DG2017-2. We corrected the measured Ar, Kr and Xe abundances and isotopic ratios for these blanks. This correction is negligible given the blank proportions for each sample.

The measured Kr isotopic ratios for the D22 and DG2017 samples are similar, within uncertainties, suggesting that the blank correction is not important for this accumulation procedure, that is, the quantity of accumulated gas is too large to be affected by the blank. These similar results provide confidence that the procedure is reproducible for precisely measuring small variations in Kr isotopes in such samples despite the considerable amount of gas processing/distillations.

However, the measured Kr and Xe isotopic ratios may be lower limits for the Galápagos and Iceland sources, as for the accumulation protocol we considered crushing steps with $^{20}{\rm Ne}/^{22}{\rm Ne}$ lower than the maximum measured value for these sources. The average $^{20}{\rm Ne}/^{22}{\rm Ne}$ ratios of the accumulated gas for each sample are between 11.99 and 12.41 (Supplementary Table 2), which is lower than the maximum measured value of more than 12.8 for these sources. However, as explained in a previous study 8 , mixing in a Kr–Ne or Xe–Ne space would be hyperbolic and so crushing steps with lower $^{20}{\rm Ne}/^{22}{\rm Ne}$ ratio than the maximum value but higher than 11.75 would still have Kr and Xe isotopic ratios very close to the source value (Extended Data Fig. 2). Therefore, we expect the measured Kr and Xe isotopic ratios to be representative of the Galápagos and Iceland sources. As there are no previous Kr isotopic data for a high $^{20}{\rm Ne}/^{22}{\rm Ne}$ ratio for these oceanic islands, we cannot correct for this small effect.

In addition, we note that the small Kr isotopic differences observed between the four D22 and the two DG2017 measurements may be explained either by instrumental variability (as observed with standards) or by small differences in the air-like contaminant (air versus seawater, for instance). More investigation would be needed to determine the cause of these small variations.

The Ne isotopic ratios fall exactly on the mixing lines previously determined for these samples in other noble gas labs (Supplementary Table 2). This is a further confirmation of the robustness of the measurements by the new 5F5M mass spectrometer. Another important observation is that the measured ⁴⁰Ar/³⁶Ar ratios and the average ²⁰Ne/²²Ne ratios of the accumulated gas fall exactly on the mixing hyperbolae previously identified for these samples (Extended Data Fig. 5). The 129 Xe/ 130 Xe and 136 Xe/ 130 Xe ratios also fall exactly on the trend identified for Iceland¹⁴ (Fig. 3), but there are no previously published data for the Galápagos hotspot samples. This is robust evidence that suggests that the accumulation protocol worked very well for these samples and that the measured Kr isotopic ratios are representative of these OIB sources. In Fig. 3b, data for upper mantle include MORB from the North Atlantic^{8,58-60}, the equatorial Atlantic⁶¹ and the South West Indian Ridge^{33,62}, CO₂ well gas³¹, and thermal springs from Eifel³² and Massif Central63.

However, the Ar abundances and Ar isotopic ratios cannot be taken as representative of the source compositions. As shown in Extended Data Fig. 5, the measured $^{40} \rm Ar/^{36} Ar$ ratios with the accumulation protocol are much lower than the highest values determined for these samples. This is due to the principles of the accumulation protocols: mixing in Extended Data Fig. 5 is hyperbolic and so accumulating steps with high $^{20} \rm Ne/^{22} Ne$ ratios (greater than 11.75) provides Kr with similar isotopic ratios as the source but Ar with much lower ratios.

We also carried out tests of accumulation with aliquots of air standard. For each of the three tests, three aliquots of $7.52 \times 10^{-12}\,\mathrm{cc}$ of $^{84}\mathrm{Kr}$ were accumulated on the charcoal trap and analysed as explained above. The measured Kr isotopic ratios for each test, presented in Extended

Data Table 5, are similar to measurements of air standard aliquots of 7.52×10^{-12} cc and of 2.37×10^{-11} cc of 8^{44} Kr. The results of these tests argue against mass fractionation induced by the accumulation protocol itself.

Uncertainties on isotopic ratios and discussion of the results

The uncertainties on isotopic ratios were calculated by propagation of errors of the measured uncertainty and of the external reproducibility estimated with standards. For each sample, the external reproducibility was estimated by considering a suite of air standards, with similar size to the samples (as explained above), analysed before and after the sample.

The ⁸⁶Kr/⁸⁴Kr ratios were not corrected for fission production, as it is expected to be negligible. Spontaneous fission of ²³⁸U can produce small amounts of ⁸³Kr, ⁸⁴Kr and ⁸⁶Kr whereas spontaneous fission of ²⁴⁴Pu produces ⁸⁶Kr (ref. ⁶⁴). The fission yields are 0.95% and 0.11% for ⁸⁶Kr from ²³⁸U and ²⁴⁴Pu fissions, respectively ⁶⁴. It is important to note that this correction would lower the measured ⁸⁶Kr/⁸⁴Kr ratio. Therefore, the anomaly observed for ⁸⁶Kr (Figs. 1, 5) would be even more important with this fissiogenic correction.

Another observation that precludes interference on 80 Kr from 40 Ar $_2^+$ is the overall pattern in Fig. 1. As the Kr isotopic pattern closely follows that of Phase Q for isotopes of mass 78, 80, 82 and 83, it is unlikely that any interference with 40 Ar $_2^+$ on mass 80 occurred. Otherwise, we should observe a noticeable excess for the 80 Kr/ 84 Kr ratio relative to Phase Q.

We also estimated the probabilities that the measured Kr isotopic ratios are identical to air within uncertainties. Considering the six data independently, we calculated the probability that the ⁷⁸Kr/⁸⁴Kr, ⁸⁰Kr/⁸⁴Kr and ⁸²Kr/⁸⁴Kr ratios are all identical to or higher than air by randomly picking an isotopic ratio based on the measured value and the uncertainty assuming a normal distribution, and comparing it with the atmospheric ratios, also randomly picked according to the normal distribution. We found that the probability that the ⁷⁸Kr/⁸⁴Kr, ⁸⁰Kr/⁸⁴Kr and 82Kr/84Kr ratios are all identical to or higher than air is 0.19% for sample D22B-1, 0% for samples D22B-2, D22B-3 and D22A, 2.19% for DG2017-1 and 0.38% for DG2017-2. Similarly, the probabilities that the 78 Kr/ 84 Kr, 80 Kr/ 84 Kr and 82 Kr/ 84 Kr ratios are all within uncertainties of air $(\pm 2\sigma)$ are 0.23% for sample D22B-1, 0.12% for D22B-2, 0% for D22B-3, 0.66% for D22A, 1.5% for DG2017-1 and 0.21% for DG2017-2. The probabilities that all five Kr isotopic ratios are within uncertainties of air $(\pm 2\sigma)$ are 0.09% for sample D22B-1, 0.002% for D22B-2, 0% for D22B-3, 0.24% for D22A, 0.37% for DG2017-1 and 0.07% for DG2017-2. Therefore, these calculations demonstrate that it is very likely that the measured Kr isotopic compositions are different from air.

$Kr \, cosmochemistry \, and \, compilation \, of \, chondrites \, Kr \, isotopic \, data$

The Kr isotopic composition of carbonaceous chondrites is a mixture of Phase Q Kr and Kr from presolar grains such as SiC, which were used to determine the slow-process Kr isotopic composition $^{37.38}$. The large variability in δ^{86} Kr of SiC grains are due to the fact that 86 Kr is at a branching point on the slow-process path and thus the SiC grain composition is influenced by neutron flux and stellar temperature in individual AGB stars. The Kr isotopic compositions of SiC grains reflect mixtures of the normal 'N' component, close to the solar composition, and the 'G' component, corresponding to slow-process Kr, and the range in Kr isotopic ratios is predicted by AGB star composition models 38 .

We compiled Kr isotopic data from carbonaceous, ordinary and enstatite chondrites (Extended Data Table 3) to compare with our data. We report data only for chondrites of low petrologic types (1 to 3) as they have better preserved their original constituents 65 .

We re-determined the AVCC Kr isotopic composition (Extended Data Tables 1, 3) to take into account more data than usually considered and also because it is not always clear in the literature from which data this AVCC composition was calculated. It is often referred for AVCC to the study of Pepin⁶⁶ but in this study chondritic Kr is not only calculated with data for carbonaceous chondrites.

For the calculation of AVCC, we used data from several studies that have measured the carbonaceous chondrites Murray, Cold Bokkeveld, Orgueil, Lancé and Leoville $^{67-70}$. Some data were not considered because some meteorites were too much affected by Kr from neutron-capture production 71,72 .

All the data considered were first re-normalized to the atmospheric composition used in this study⁷³ in case other values were taken. The data for Leoville⁶⁹ were corrected considering they were reported to the atmospheric composition of Nier⁷⁴ as described in the data table, and not to that of Nief⁷⁵ as mentioned in the text.

The data for Leoville ⁶⁹ were corrected for cosmogenic Kr production, for the other carbonaceous meteorites no cosmogenic correction appears necessary ^{67,68,70}. To correct Leoville data for cosmogenic Kr, we use two methods that give similar results. The first one consisted of using the ⁷⁸Kr/²¹Ne ratio of the spallation end-member ⁷⁶ of 7.6×10^{-6} and the Kr spallation spectra ⁷⁷. The second method consisted of calculating the production ratios of ⁸³Kr/²¹Ne for the spallogenic end-member on the basis of determined equations ⁷⁸ provided that ²²Ne/²¹Ne > 1.08 – 1.10 (refs. ^{78,79}) and combining this production ratio with the Kr spallation spectra ⁷⁷. The correction was less than 0.2% for all isotopic ratios. The data were not corrected for neutron-capture production.

The AVCC composition calculated in Extended Data Table 3 represents the weighted mean of the eight data considered (only five data for ⁷⁸Kr and six for ⁸⁰Kr). The uncertainties reported are the standard error of the mean to take into account the underdispersion/overdispersion of the data. We note that because Earth accreted substantial amounts of carbonaceous meteorites (approximately 5–15% of bulk Earth mass^{5,39}), the average value of the carbonaceous meteorites (AVCC) should be representative of the composition of the carbonaceous meteorites accreted. Consequently, the appropriate parameter for the uncertainty of the average value is the standard error. Our calculated mean value for AVCC composition is consistent with a previous estimation⁶⁷.

For ordinary chondrites, we selected data from the study of Eugster 80 (Extended Data Table 3), and corrected them for cosmogenic production using their estimated $^{83}{\rm Kr}/^{21}{\rm Ne}$ (ref. 80) and the Kr spallation spectra 77 . We did not report the $^{80}{\rm Kr}/^{84}{\rm Kr}$ and $^{82}{\rm Kr}/^{84}{\rm Kr}$ ratios as both ratios are clearly affected by neutron-induced production.

For enstatite chondrites, we used data from two studies 81,82 and corrected them for cosmogenic production using the Kr spallation spectra 77 and the calculated production ratios 83 Kr/ 21 Ne for the spallogenic end-member 78 . We report only the 83 Kr/ 84 Kr and 86 Kr/ 84 Kr ratios, as the other isotopic ratios show more variability, probably owing to imperfect neutron-induced production correction for 80 Kr/ 84 Kr and 82 Kr/ 84 Kr ratios and to imperfect cosmogenic correction for the 78 Kr/ 84 Kr ratio.

As for AVCC, the averages for enstatite and ordinary chondrites correspond to the weighted mean and the reduced chi-square of the weighted error.

Calculation of the Kr mixing proportions in the OIB sources

To explain the Kr isotopic patterns of the Galápagos and Iceland sources, we considered several mixing combinations (Fig. 4). The aim of this approach was to fit the anomalies in ⁷⁸Kr/⁸⁴Kr and ⁸⁰Kr/⁸⁴Kr, the two ratios most resolvable from the air ratios, to estimate the expected ⁸⁶Kr/⁸⁴Kr ratio. We used the same methods of linear least square fitting and Monte Carlo for propagation of uncertainties as described for Xe component deconvolution³³.

If the composition of Kr in the plume sources is a mixture of AVCC and atmospheric Kr, then $52\pm8\%$ of the Kr in the Galápagos plume and $36\pm8\%$ of the Kr in the Iceland plume originate from AVCC on the basis of the measured $^{78}\text{Kr}-^{80}\text{Kr}-^{84}\text{Kr}$. A solar–AVCC mixture would indicate that at most $10\pm2\%$ of the Kr in the Galápagos plume and $16\pm2\%$ of the Kr in the Iceland plume would be solar. A Phase Q–air mixture would give $100^{0}_{-9}\%$ and $71\pm17\%$ of the Kr in the Galápagos and Iceland plumes, respectively, originated from Q.

We also tested this approach considering a mixing of AVCC, solar and air Kr to fit the $^{78} \mathrm{Kr}/^{84} \mathrm{Kr}$, $^{80} \mathrm{Kr}/^{84} \mathrm{Kr}$ and $^{82} \mathrm{Kr}/^{84} \mathrm{Kr}$ ratios. This three-component mixing gives a similar result for samples D22 to the mixing of AVCC–air Kr, that is, 0% of solar Kr, 48 \pm 6% of AVCC Kr and $52 \pm 6\%$ of air Kr. However, it was not possible to fit well the DG2017 sample composition with this three-component mixing given that the measured $^{82} \mathrm{Kr}/^{84} \mathrm{Kr}$ ratio for this sample is not as well resolved from air as for samples D22. The fact that this three-component mixing gives the same result as the two-component mixing considering only the $^{78} \mathrm{Kr}/^{84} \mathrm{Kr}$ ratios for samples D22 suggests that it is a valid approach to only consider these two ratios for the fit and that the solar end-member did not contribute substantially to mantle Kr.

The uncertainties on the mixing proportions take into account uncertainties on the measured Krisotopic ratios for the samples as well as the uncertainties on the AVCC, solar and Phase Q end-members.

Data availability

The geochemical data that support the findings of this study are archived on EarthChem at https://ecl.earthchem.org/view.php?id=2065. Source data are provided with this paper.

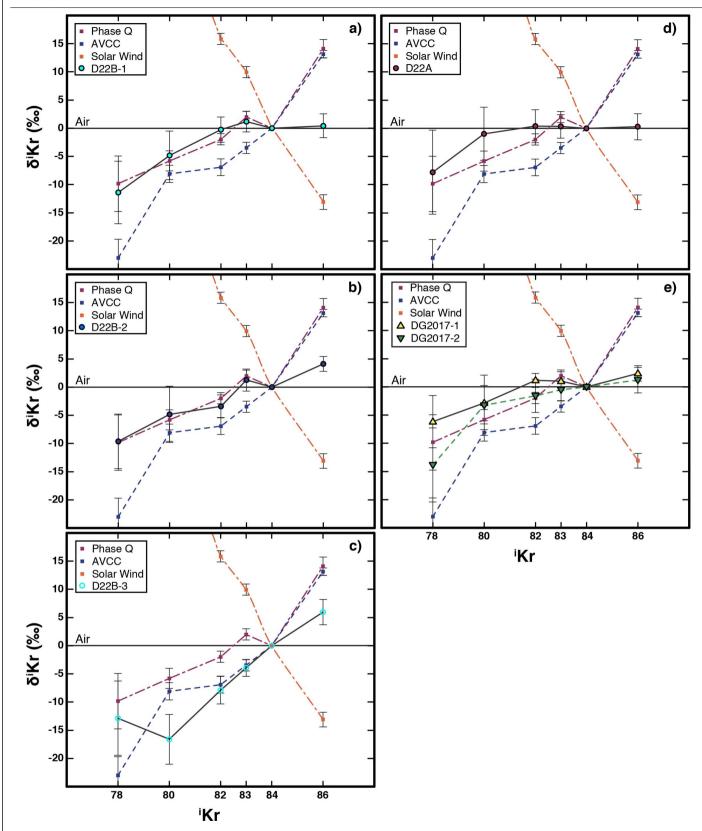
- Geist, D. et al. Submarine Fernandina: magmatism at the leading edge of the Galapagos hot spot. Geochem. Geophys. Geosyst. 7, Q12007 (2006).
- Peterson, M. E. et al. Submarine basaltic glasses from the Galapagos Archipelago: determining the volatile budget of the mantle plume. J. Petrol. 58, 1419–1450 (2017).
- Graham, D. W., Hanan, B. B., Hémond, C., Blichert-Toft, J. & Albarède, F. Helium isotopic textures in Earth's upper mantle. Geochem. Geophys. Geosyst. 15, 2048–2074 (2014).
- Colin, A., Moreira, M., Gautheron, C. & Burnard, P. Constraints on the noble gas composition of the deep mantle by bubble-by-bubble analysis of a volcanic glass sample from Iceland. Chem. Geol. 417, 173–183 (2015).
- Péron, S., Mukhopadhyay, S. & Huh, M. A new dual stainless steel cryogenic trap for efficient separation of krypton from argon and xenon. J. Analyt. At. Spectrom. 35, 2663–2671 (2020).
- Lott, D. E. III Improvements in noble gas separation methodology: a nude cryogenic trap. Geochem. Geophys. Geosyst. 2, 1068 (2001)
- Stanley, R. H. R., Baschek, B., Lott, D. E. III & Jenkins, W. J. A new automated method for measuring noble gases and their isotopic ratios in water samples. Geochem. Geophys Geosyst. 10, Q05008 (2009).
- Kunz, J., Staudacher, T. & Allègre, C. J. Plutonium-fission xenon found in Earth's mantle. Science 280, 877–880 (1998).
- Moreira, M., Kunz, J. & Allègre, C. J. Rare gas systematics on popping rock: estimates of isotopic and elemental compositions in the upper mantle. Science 279, 1178–1181 (1998).
- Parai, R. & Mukhopadhyay, S. Heavy noble gas signatures of the North Atlantic Popping Rock 2ПD43: implications for mantle noble gas heterogeneity. Geochim. Cosmochim. Acta 294, 89–105 (2021).
- Tucker, J. M., Mukhopadhyay, S. & Schilling, J.-G. The heavy noble gas composition
 of the depleted MORB mantle (DMM) and its implications for the preservation of
 heterogeneities in the mantle. Earth Planet. Sci. Lett. 355–356, 244–254 (2012).
- Parai, R., Mukhopadhyay, S. & Standish, J. J. Heterogeneous upper mantle Ne, Ar and Xe isotopic compositions and a possible Dupal noble gas signature recorded in basalts from the Southwest Indian Ridge. Earth Planet. Sci. Lett. 359–360, 227–239 (2012).
- Moreira, M., Rouchon, V., Muller, E. & Noirez, S. The xenon isotopic signature of the mantle beneath Massif Central. Geochem. Perspect. Lett. 6, 28–32 (2018).
- 64. Ozima, M. & Podosek, F. A. Noble Gas Geochemistry (Cambridge Univ. Press, 2002).
- Huss, G. R. & Lewis, R. S. Presolar diamond, SiC, and graphite in primitive chondrites: abundances as a function of meteorite class and petrologic type. Geochim. Cosmochim. Acta 59, 115–160 (1995).
- Pepin, R. O. On noble gas processing in the solar accretion disk. Space Sci. Rev. 106, 211–230 (2003).
- Eugster, O., Eberhardt, P. & Geiss, J. Krypton and xenon isotopic composition in three carbonaceous chondrites. Earth Planet. Sci. Lett. 3, 249–257 (1967).
- Marti, K. Isotopic composition of trapped krypton and xenon in chondrites. Earth Planet. Sci. Lett. 3, 243–248 (1967).
- Manuel, O. K., Wright, R. J., Miller, D. K. & Kuroda, P. K. Heavy noble gases in Leoville: The case for mass fractionated xenon in carbonaceous chondrites. J. Geophys. Res. 75, 5693–5701 (1970)
- Krummenacher, D., Merrihue, C. M., Pepin, R. O. & Reynolds, J. H. Meteoritic krypton and barium versus the general isotopic anomalies in meteoritic xenon. Geochim. Cosmochim. Acta 26, 231–249 (1962).
- Manuel, O. K., Wright, R. J., Miller, D. K. & Kuroda, P. K. Isotopic compositions of rare gases in the carbonacaous chondrites Mokoia and Allende. Geochim. Cosmochim. Acta 36, 961–983 (1972).
- Matsuda, J.-I., Lewis, R. S., Takahashi, H. & Anders, E. Isotopic anomalies of noble gases in meteorites and their origins—VII. C3V carbonaceous chondrites. Geochim. Cosmochim. Acta 44, 1861–1874 (1980).
- Basford, J. R., Dragon, J. C., Pepin, R. O., Coscio, M. R. Jr & Murthy, V. R. Krypton and xenon in lunar fines. Lunar Planet. Sci. Proc. 4, 1915–1955 (1973).

- Nier, A. O. A redetermination of the relative abundances of the isotopes of neon, krypton, rubidium, xenon and mercury. Phys. Rev. 79, 450–454 (1950).
- Nief, G. Isotopic Abundance Ratios Given for Reference Samples Stocked by the National Bureau of Standards (ed. Mohler, F.) NBS Technical Note 51 (National Bureau of Standards, 1960).
- Eugster, O., Eberhardt, P. & Geiss, J. The isotopic composition of krypton in unequilibrated and gas rich chondrites. Earth Planet. Sci. Lett. 2, 385–393 (1967).
- 77. Marti, K., Eberhardt, P. & Geiss, J. Spallation, fission, and neutron capture anomalies in meteoritic krypton and xenon. *Z. Naturforsch. A* 21, 398–426 (1966).
- Eugster, O. Cosmic-ray production rates for ³He, ²INe, ³⁸Ar, ⁸³Kr, and ¹²⁶Xe in chondrites based on ⁸¹Kr–Kr exposure ages. Geochim. Cosmochim. Acta 52, 1649–1662 (1988).
- Wieler, R. Cosmic-ray-produced noble gases in meteorites. Rev. Mineral. Geochem. 47, 125–170 (2002).
- Eugster, O., Eberhardt, P. & Geiss, J. Isotopic analyses of krypton and xenon in fourteen stone meteorites. J. Geophys. Res. 74, 3874–3896 (1969).
- Nakashima, D. & Nakamura, T. Trapped noble gas components and exposure history of the enstatite chondrite ALH84206. Geochem. J. 40, 543–555 (2006).
- Okazaki, R., Takaoka, N., Nagao, K. & Nakamura, T. Noble gases in enstatite chondrites released by stepped crushing and heating. Meteorit. Planet. Sci. 45, 339–360 (2010).
- Heber, V. S. et al. Isotopic fractionation of solar wind: evidence from fast and slow solar wind collected by the Genesis Mission. Astrophys. J. 759, 121–133 (2012).

 Pepin, R. O., Schlutter, D. J., Becker, R. H. & Reisenfeld, D. B. Helium, neon, and argon composition of the solar wind as recorded in gold and other Genesis collector materials. Geochim. Cosmochim. Acta 89, 62–80 (2012).

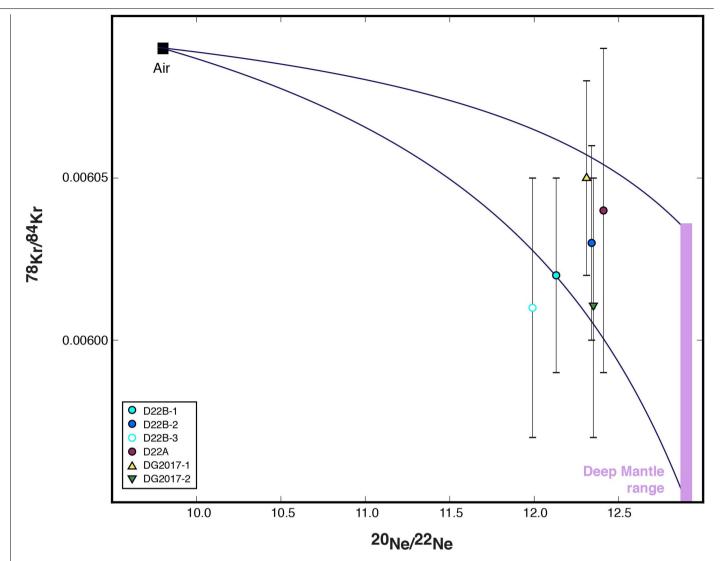
Acknowledgements We thank M. Huh for assistance in the lab; and M. Huyskens, S. Stewart and S. J. Lock for helpful discussions and comments on the manuscript. The He isotope analyses in the OSU noble gas lab were supported by NSF 1763255. The collection of the Fernandina samples and WHOI participation was supported by NSF Ocean Sciences.

Author contributions S.P. and S.M. designed the study. S.P. carried out the noble gas (Ne, Ar, Kr and Xe) analyses, interpreted the data and wrote the manuscript with feedback from S.M. M.D.K. and D.W.G. provided the samples, discussed the results and contributed to the final manuscript preparation. D.W.G. carried out the He and CO₂ analyses of sample DG2017.

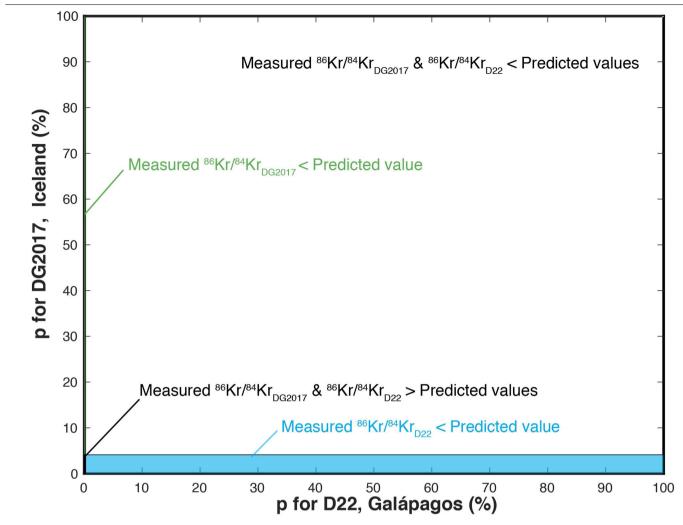

Competing interests The authors declare no competing interests.

Additional information

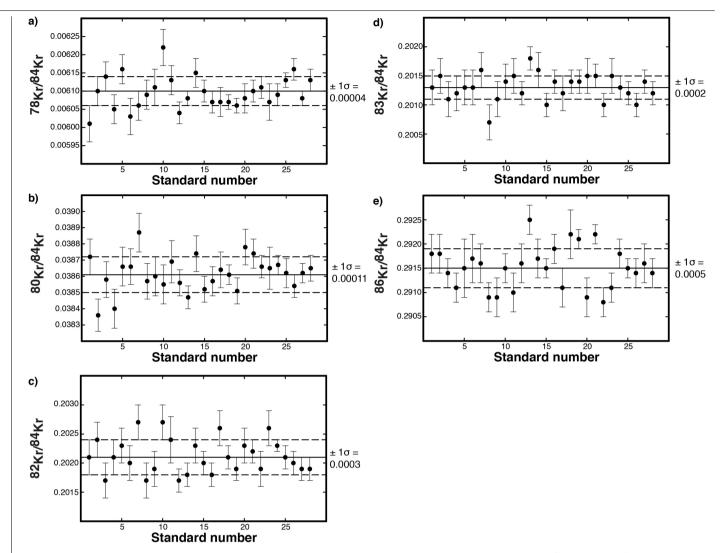
 $\textbf{Supplementary information} \ The \ online \ version \ contains \ supplementary \ material \ available \ at \ https://doi.org/10.1038/s41586-021-04092-z.$


Correspondence and requests for materials should be addressed to Sandrine Péron. Peer review information Nature thanks Hirochika Sumino and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

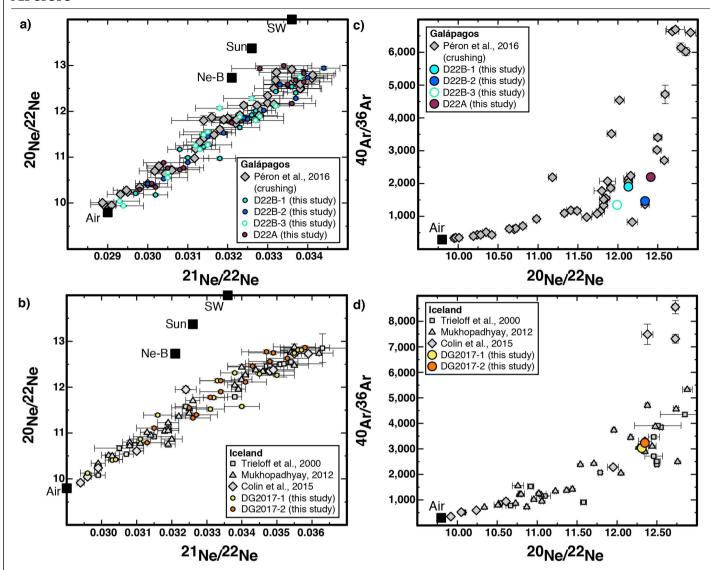
Reprints and permissions information is available at http://www.nature.com/reprints.


Extended Data Fig. 1 | **Krypton isotopic patterns for each analysis.** Isotopic ratios are in delta notation $\delta' Kr = (({}^i Kr)/{}^{84}Kr)_{sample}/({}^i Kr)/{}^{84}Kr)_{air} - 1) \times 10^3$. **a,** Sample D22B-1. **b,** Sample D22B-2. **c,** Sample D22B-3. **d,** Sample D22A. **e,** Samples

DG2017-1 and DG2017-2. Patterns of solar wind $^{24}\!$, AVCC and Phase Q^{25} are shown for reference.


 $\label{lem:extended} \textbf{Data} \ \textbf{Fig. 2} \ | \ \textbf{Krypton-neon isotope plot.} \ The \ krypton \ isotopic compositions of the Galápagos and Iceland mantle sources are not precisely known; our data represent a lower limit as explained in Methods. As such, a range is indicated for the deep mantle spanning the Phase Q and AVCC Kr$

isotopic compositions. The mixing hyperbolae show that accumulating crushing steps with $^{20}\mbox{Ne}/^{22}\mbox{Ne}$ ratios >11.75 allow to obtain Kr isotopic ratios close to the mantle source ratios.


Extended Data Fig. 3 | Estimation of the probability of the observed deficit in 86 Kr for the D22 (Galápagos) and DG2017 (Iceland) samples. The black rectangle represents the probability (0.01%) that both measured 86 Kr/ 84 Kr ratios for the Galápagos and Iceland plume sources are higher than the predicted values (Fig. 5). The white rectangle represents the probability that both measured ratios are lower than the predicted values, the blue rectangle

that the measured ratio for the Galápagos source is lower than the predicted value with the measured ratio for Iceland being higher than the predicted value, and the green rectangle that the measured ratio for the Iceland source is lower than the predicted value with the measured ratio for Galápagos being higher than the predicted value. There is a 99.9% probability that Earth's deep mantle has a deficit in $^{86}\mbox{Kr}$ relative to AVCC.

Extended Data Fig. 4 | **Reproducibility of the air standard for krypton isotopic ratios. a**, 78 Kr/ 84 Kr. **b**, 80 Kr/ 84 Kr. **c**, 82 Kr/ 84 Kr. **d**, 83 Kr/ 84 Kr. **e**, 86 Kr/ 84 Kr. This set of standards was measured over 13 days and include three sizes of air standard, ranging from 7.52×10^{-12} cc to 2.37×10^{-11} cc of 84 Kr. For the samples,

only one size of the air standard was used (84 Kr of 2.37 \times 10 $^{-11}$ cc), measurements of this air standard size show an even better reproducibility (typically of 2% for 78 Kr/ 84 Kr, of 2.5% for 80 Kr/ 84 Kr, of 1% for 82 Kr/ 84 Kr, of 1.5% for 83 Kr/ 84 Kr and of 1% for 86 Kr/ 84 Kr).

Extended Data Fig. 5 | Three-neon isotope plot for the step-crushing analyses and argon-neon isotope plot for the accumulated gas. a, Neon isotopic ratios for samples D22B-1, D22B-2, D22B-3 and D22A (Galápagos), compared with literature data 11 . b, Neon isotopic ratios for samples DG2017-1 and DG2017-2 (Iceland), compared with literature data 14,15,54 . Supplementary Table 2 indicates for which step heavy noble gases were accumulated. Neon-B4, Sun 83 , solar wind 84 . c, 40 Ar / 36 Ar versus 20 Ne for samples D22B-1, D22B-2,

D22B-3 and D22A (Galápagos), compared with literature data 11 . d, 40 Ar/ 36 Ar versus 20 Ne/ 22 Ne for samples DG2017-1 and DG2017-2 (Iceland) compared with literature data 14,15,54 . The 20 Ne/ 22 Ne ratios for samples D22B-1, D22B-2, D22B-3, D22A, DG2017-1 and DG2017-2 are the average ratios of the accumulated steps, refer to Supplementary Table 2. The measured 40 Ar/ 36 Ar ratios as well as the average 20 Ne/ 22 Ne ratios are consistent with previous measurements for these same samples.

Extended Data Table 1 | Krypton isotopic compositions of samples AHA-NEMO2-D22A and AHA-NEMO2-D22B (hereafter D22A and D22B, Fernandina, Galápagos, respectively) and DG2017 (Midfell, Iceland)

Sample	⁸⁴ Kr	⁷⁸ Kr/ ⁸⁴ Kr	⁸⁰ Kr/ ⁸⁴ Kr	82Kr/84Kr	83Kr/84Kr	⁸⁶ Kr/ ⁸⁴ Kr
	$(x10^{-11} \text{ cm}^3 \text{STP})$					
D22B-1	1.61	0.00602	0.03941	0.2021	0.2016	0.3053
+/-	0.02	0.00003	0.00017	0.0005	0.0004	0.0006
D22B-2	3.10	0.00603	0.03941	0.2015	0.2017	0.3065
+/-	0.05	0.00003	0.00020	0.0004	0.0004	0.0004
D22B-3	2.30	0.00601	0.03894	0.2006	0.2006	0.3070
+/-	0.04	0.00004	0.00017	0.0005	0.0003	0.0007
D22A	1.22	0.00604	0.03956	0.2023	0.2015	0.3053
+/-	0.04	0.00005	0.00019	0.0006	0.0004	0.0007
D22 (average)		0.00603	0.03932	0.2016	0.2012	0.3061
+/-		0.00002	0.00009	0.0002	0.0002	0.0003
DG2017-1	2.19	0.00605	0.03949	0.2024	0.2016	0.3059
+/-	0.04	0.00003	0.00012	0.0003	0.0003	0.0004
DG2017-2	2.42	0.00601	0.03947	0.2019	0.2013	0.3056
+/-	0.08	0.00004	0.00021	0.0006	0.0004	0.0007
DG2017 (average)	0.00604	0.03948	0.2023	0.2015	0.3058
+/-		0.00002	0.00011	0.0002	0.0003	0.0004
Air		0.00609	0.03960	0.2022	0.2014	0.3052
AVCC		0.00595	0.03928	0.2008	0.2007	0.3092
+/-		0.00002	0.00006	0.0003	0.0002	0.0002
Phase Q		0.00603	0.03937	0.2018	0.2018	0.3095
+/-		0.00003	0.00007	0.0002	0.0002	0.0005
Solar Wind		0.00642	0.04120	0.2054	0.2034	0.3012
+/-		0.00005	0.00020	0.0002	0.0002	0.0004

The weighted averages of the four Galápagos and the two Iceland measurements are reported. Compositions of air 73 , AVCC, Phase Q^{25} and solar wind 24 are indicated for comparison. 84 Kr is reported as the total amount measured in cm 3 STP and not divided by the sample mass. Sample D22B-1 was 4.04599 g, sample D22B-2 was 4.09500 g, sample D22B-3 was 3.0052 g, sample D22A was 4.1554 g, sample D62017-1 was 4.5371 g and sample D62017-2 was 4.7092 g. Refer to text and Extended Data Table 3 for the calculation of the AVCC end-member. Uncertainties are 1σ .

 $\label{lem:continuous} \textbf{Extended Data Table 2 | Xenon abundances and isotopic ratios measured with the accumulation protocol for the Galápagos (AHA-NEMO2-D22A and AHA-NEMO2-D22B) and Iceland (DG2017) samples }$

Sample	¹³⁰ Xe	124 Xe/ 130 Xe	126 Xe/ 130 Xe	128 Xe/ 130 Xe	129 Xe/ 130 Xe	131 Xe/ 130 Xe	132 Xe/ 130 Xe	134 Xe/ 130 Xe	136 Xe/ 130 Xe
	$x10^{-13}$								
	cm ³ STP								
D22B-1	1.57	0.0236	0.0215	0.4723	6.66	5.23	6.65	2.59	2.23
+/-	0.04	0.0006	0.0006	0.0033	0.03	0.02	0.03	0.01	0.01
D22B-2	3.05	0.0231	0.0212	0.4768	6.61	5.23	6.63	2.59	2.21
+/-	0.07	0.0006	0.0005	0.0030	0.03	0.04	0.04	0.03	0.01
D22B-3	1.97	0.0234	0.0223	0.4740	6.63	5.23	6.65	2.60	2.23
+/-	0.04	0.0007	0.0007	0.0035	0.03	0.02	0.03	0.01	0.01
D22A	1.13	0.0227	0.0218	0.4695	6.70	5.20	6.63	2.61	2.22
+/-	0.06	0.0007	0.0006	0.0034	0.05	0.04	0.04	0.02	0.02
D22 (average	e)	0.0232	0.0216	0.4734	6.64	5.22	6.64	2.60	2.22
+/-		0.0003	0.0003	0.0016	0.02	0.01	0.02	0.01	0.01
DG2017-1	2.37	0.0236	0.0223	0.4715	6.74	5.23	6.64	2.62	2.25
+/-	0.04	0.0004	0.0005	0.0024	0.04	0.03	0.03	0.02	0.01
DG2017-2	2.31	0.0241	0.0224	0.4754	6.79	5.22	6.66	2.62	2.26
+/-	0.07	0.0008	0.0008	0.0036	0.03	0.03	0.03	0.01	0.01
DG2017 (ave	rage)	0.0237	0.0223	0.4727	6.78	5.22	6.65	2.62	2.25
+/-		0.0004	0.0004	0.0020	0.03	0.02	0.02	0.01	0.01
Air		0.0234	0.0218	0.4710	6.50	5.21	6.61	2.56	2.18

Uncertainties are 1σ.

Extended Data Table 3 | Compilation of carbonaceous, ordinary and enstatite chondrites krypton isotopic data 67-70,80-82

Meteorites	Class	⁷⁸ Kr/ ⁸⁴ Kr	σ	⁸⁰ Kr/ ⁸⁴ Kr	σ	⁸² Kr/ ⁸⁴ Kr	· σ	⁸³ Kr/ ⁸⁴ Kı	· σ	⁸⁶ Kr/ ⁸⁴ Kr	- σ
Carbonaceou				IXI/ IXI	0	IXI/ IXI	U	IXI/ IXI	. 0	181/ 181	
Murray ⁶⁸	CM2		,	0.03938	0.00053	0.2006	0.0020	0.2009	0.0018	0.3093	0.0019
Murray ⁷⁰	CM2		0.0000	0.00,00	0.0000	0.1988	0.0016	0.1994	0.0014	0.3068	0.0024
Cold	CM2	0.00597	0.00004	0.03915	0.00030		0.0008		0.0009	0.3092	0.0008
Bokkeveld ⁶⁷											
Orgeuil ⁷⁰	CI1					0.1998	0.0012	0.2001	0.0012	0.3091	0.0015
Orgeuil ⁶⁷	CI1	0.00588	0.00008	0.03922	0.00042	0.2011	0.0016	0.2011	0.0016	0.3090	0.0015
Lance ⁶⁸	CO3.5	0.00591	0.00011	0.03948	0.00059	0.2006	0.0026	0.2013	0.0024	0.3093	0.0029
Lance ⁶⁷	CO3.5	0.00600	0.00008	0.03958	0.00046	0.2017	0.0015	0.2013	0.0014	0.3099	0.0012
Leoville ⁶⁹	CV3			0.03824	0.00030	0.2009	0.0012	0.2005	0.0010	0.3090	0.0010
AVCC		0.00595	0.00002	0.03928	0.00006	0.2008	0.0003	0.2007	0.0002	0.3092	0.0002
Ordinary ch		. ,									
Dimmitt ⁸⁰	H3.7		0.00023					0.2019	0.0040	0.3089	0.0038
Mezö	L3.5	0.00591	0.00017					0.2014	0.0027	0.3112	0.0029
Madaras ⁸⁰											
Parnallee ⁸⁰	LL3		0.00010					0.2021	0.0016	0.3104	0.0029
Tieschitz 180			0.00017					0.2012	0.0036	0.3105	0.0029
Tieschitz 480			0.00006					0.2013	0.0013	0.3088	0.0014
Average OC		0.00601	0.00003					0.2016	0.0002	0.3097	0.0005
T		(T-C)									
Enstatite cho		s (EC)						0.0000	0.0010	0.0070	0.0010
ALH8420681								0.2020	0.0010	0.3070	0.0010
ALH 77295 ⁸²								0.2026	0.0004	0.3124	0.0005
Sahara	EH3							0.2020	0.0005	0.3102	0.0006
97096^{82}	EIIO							0.2024	0.0004	0.2142	0.0004
Y-691 ⁸²	EH3							0.2034	0.0004	0.3142	0.0004
Y-792959 ⁸²	EH3							0.2014	0.0004	0.3113	0.0005
Y-793161 ⁸²	EH3							0.2017	0.0004	0.3094	0.0006
Average EC								0.2022	0.0003	0.3118	0.0008

Data are normalized to the atmospheric composition used in this study⁷³. The Leoville data⁶⁹, ordinary⁸⁰ and enstatite chondrites^{81,82} data were corrected for cosmogenic component (refer to Methods for details).

 $\label{lem:continuous} \textbf{Extended Data Table 4} \ | \ Argon abundances and isotopic ratios measured with the accumulation protocol for the Galápagos (AHA-NEMO2-D22A and AHA-NEMO2-D22B) and Iceland (DG2017) samples \\$

Sample	³⁶ Ar	σ	³⁸ Ar/ ³⁶ Ar	σ	40Ar/36Ar	σ
	$x10^{-10}$	cm ³ STP				
AHA-NEMO2-D22B-1	5.75	0.10	0.1879	0.0003	1902.6	1.0
AHA-NEMO2-D22B-2	9.73	0.20	0.1885	0.0003	1464.2	1.0
AHA-NEMO2-D22B-3	8.26	0.02	0.1884	0.0003	1347.2	1.0
AHA-NEMO2-D22A	4.25	0.03	0.1879	0.0003	2195.4	1.0
DG2017-1	5.01	0.02	0.1880	0.0004	3025.2	1.0
DG2017-2	7.95	0.05	0.1889	0.0002	3228.8	1.0
Air			0.1880		295.5	

As mentioned in the text, the values for argon cannot be used as representative of the source compositions. Uncertainties are 1o.

$\overline{\text{Extended Data Table 5 | Results of the accumulation tests with } \text{ air standard aliquots of 7.52} \times 10^{-12} \, \text{cc of} \, ^{84} \text{Kr}}$

	⁷⁸ Kr/ ⁸⁴ Kr	S	80Kr/84Kr	S	82Kr/84Kr	S	83Kr/84Kr	S	86Kr/84Kr	S
Test 1	0.00606	0.00003	0.04010	0.00007	0.2030	0.0002	0.2020	0.0002	0.2900	0.0003
Test 2	0.00611	0.00003	0.04006	0.00007	0.2034	0.0002	0.2021	0.0002	0.2907	0.0002
Test 3	0.00607	0.00003	0.04004	0.00008	0.2033	0.0002	0.2022	0.0002	0.2903	0.0002
Average	0.00608	0.00003	0.04007	0.00003	0.2032	0.0002	0.2021	0.0001	0.2903	0.0004
Average 7.52x10 ⁻¹² cc of ⁸⁴ Kr (n = 16)	0.00609	0.00003	0.04021	0.00010	0.2036	0.0004	0.2022	0.0003	0.2902	0.0003
Measurements of	of air standa	rd of 2.37x1	10 ⁻¹¹ cc of ⁸⁴	Kr						
STD 1	0.00611	0.00002	0.04023	0.00009	0.2033	0.0002	0.2025	0.0002	0.2903	0.0002
STD 2	0.00608	0.00002	0.04034	0.00006	0.2037	0.0002	0.2024	0.0002	0.2903	0.0002
STD 3	0.00612	0.00003	0.04034	0.00006	0.2036	0.0003	0.2023	0.0003	0.2901	0.0002
STD 4	0.00606	0.00002	0.04011	0.00007	0.2031	0.0002	0.2023	0.0002	0.2902	0.0002
STD 5	0.00611	0.00003	0.04019	0.00008	0.2030	0.0002	0.2024	0.0002	0.2905	0.0003
Average (n = 5)	0.00610	0.00003	0.04024	0.00010	0.2033	0.0003	0.2024	0.0001	0.2903	0.0001

Each test consists of the accumulation of three air standard aliquots of 7.52×10^{-12} cc of 84 Kr. The test results are compared with measurements of air aliquots of 7.52×10^{-12} cc (average of n = 16 analyses) and of 2.37×10^{-11} cc (average of n = 5 analyses) of 84 Kr. The measured Kr isotopic ratios from the accumulation tests are similar to the ones for air standard aliquots of 7.52×10^{-12} cc and of 2.37×10^{-11} cc of 84 Kr.