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Abstract

We first establish a variable density and viscosity, volume-conserved, hydrodynamically coupled phase-field variable elastic

bending energy model for lipid vesicles, and then construct an efficient time-discrete scheme for solving it. The numerical

scheme combines the penalty method for solving the Navier±Stokes equation, the explicit-IEQ (invariant energy quadratization)

method for the nonlinear potentials, and the operator-splitting method. Hence it is not only fully decoupled but also owns some

desired properties of linearity and unconditional energy stability. The feature of full decoupling is achieved by introducing some

auxiliary variables and designing additional ordinary differential equations which are used for discretizing the coupled and

nonlinear terms. The solvability and the unconditional energy stability of the numerical scheme have been further rigorously

and numerically proven. Several numerical examples are carried out on the sedimentation process of the vesicle cell to show

the effectiveness of the model and scheme.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

Certain amphiphilic molecules (such as surfactants, phospholipids, polymer amphiphiles) will spontaneously form

an ordered combination of molecules with a closed bilayer structure when dispersed in water, called vesicles (or

liposomes). The vesicle structure type is the basic functional unit, which provides the basis for drug transportation

and related functional material design. The dynamic behavior of vesicles has very important applications in biology,

medicine, and other fields. The phase-field (diffusive interface) approach, as an effective method for simulating

multiphase flow, has been widely applied to investigate the dynamical deformation of lipid vesicle membranes,

cf. [1±9]. The main idea of deriving the phase-field model of lipid vesicles is to minimize the total free energy

in certain specific spaces, usually in the L2 space or called as Allen±Cahn relaxation dynamics. By adopting a

labeling function (phase-field variable) to label the two immiscible fluids isolated by the lipid vesicle membrane, and
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postulating the energy potential to approximate the mean curvature of the membrane surface, the phase-field vesicle

model is obtained using the variational energetic approach. The obtained system is usually called the phase-field

elastic bending energy model or phase-field vesicle model.

One of the important applications of the phase-field bending energy model is to investigate the dynamical

deformations of lipid vesicles when an external field is applied (e.g., shear-driven deformation, gravity-driven

sedimentation behavior, magnetic field-driven alignment, etc., see [10±22]). Assuming that the fluid inside and

outside the lipid vesicles is incompressible, the flow-coupled vesicle model can be established by coupling the

bending energy model with the Navier±Stokes equation, and the coupling of these two equations is achieved

through the surface tension and advection terms. Regarding flow-coupled models, we find that most modeling and

simulation-related works do not consider the impact of density change on vesicle dynamics. This may be reasonable

for simulating some phenomena such as the shear flow of suspension. However, when considering the sedimentation

dynamics of vesicles under the gravity force, see [18,19,23,24], if the density difference between the liquid in the

vesicle and the surrounding liquid is large, the influence of the density difference cannot be ignored. Therefore, the

first goal of this paper is to couple variable density and viscosity into the flow-coupled bending energy model using

the variational energetic approach.

Considering that the classic phase-field bending energy model [7±9] can only approximately conserve the volume,

in this article, we directly apply the so-called conserved Allen±Cahn method developed in [25] to achieve accurate

volume conservation. In fact, there are many different available methods to achieve the volume conservation, for

example, various versions of the conservative Allen±Cahn equation (see [26±31]), Lagrangian multiplier method

(see [1,32]), and even the Cahn±Hilliard dynamics that can be used when deriving the model (see [33,34]). Among

these methods, the way of adding a nonlocal Lagrange multiplier term into the time-dependent PDE system to

achieve exact volume conservation is more suitable for developing the numerical scheme with energy stability

because the modified system can not only have the same spatial order as the classical phase-field bending energy

model but also guarantee the energy law of dissipation at the same time. After obtaining such a highly nonlinear,

nonlocal, flow-coupled, variable-density/viscosity, phase-field elastic bending energy model for lipid vesicles, the

second goal of this article is to design some efficient and energy-stable numerical algorithms to solve it, especially

linear and fully decoupled type schemes.

So far, many effective numerical schemes related to the phase-field vesicle model have been developed,

especially for the case of no flow-field, for example, the linear stabilization method [35], the nonlinear functional

derivative method [33], the Exponential Time Differencing (ETD) method [32], the Invariant Energy Quadratization

(IEQ) method [36] and its variant version of Scalar Auxiliary Variable (SAV) method [37±39], etc. As for

the Navier±Stokes equation, we all know that there are many effective numerical approaches, for example, the

Gauge/penalty/projection methods (cf. [40±46]), etc. Therefore, a natural question arises, is it possible to obtain an

effective numerical method for the hydrodynamically coupled model by simply combining numerical methods for

these two equations? The answer to this question can be explored by classifying the available numerical schemes

of the flow-coupled phase-field model because the particular vesicle model studied in this article is also derived

from the phase-field approach.

If the existing time-marching numerical schemes of the flow-coupled phase-field model are categorized based

on the way of the time discretization for those nonlinearly coupled terms, there are usually four different methods

that are capable of following the energy stability unconditionally, including the fully-implicit method (cf. [47,48]),

the semi-implicit method (cf. [49±51]), the explicit-stabilization method (cf. [52±55]), and the explicit-auxiliary

variable method [38,39]. In the fully-implicit method, all terms are discretized implicitly, resulting in a nonlinearly

coupled algorithm and leading to high computational cost. After using the semi-implicit method, a linear algorithm

can be obtained, and even a time-marching algorithm with the second-order temporal accuracy (for constant-density

case), but the disadvantage is that the obtained scheme is still fully coupled. For comparison, the use of the explicit-

stabilization method [33,52±55] and the explicit-auxiliary variable method [38,39] has great advantages in obtaining

a complete decoupling scheme. These two methods are currently the only two methods that can achieve a fully

decoupling structure while maintaining unconditional energy stability, but there are still some shortcomings. In

the explicit-stabilization method [33,52±55], the key to realizing the decoupling structure is to introduce some

stabilization terms to the advection term in the phase-field equation. This method inevitably leads to solving

the variable-coefficient phase-field equation at every time step, which requires higher computational costs than

equations with only constant coefficients. In addition, because the flow coupling model studied in this paper is
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nonlocal, the direct application of the explicit-stabilization method needs to solve a nonlocal system with many

variable coefficients, which can cause more additional computational cost in practice. The disadvantage of the

explicit-auxiliary variable approach developed in [38,39] is that this method only considers the case of constant

density/viscosity, so it cannot be directly applied to the vesicle model with variable density/viscosity studied in this

article. Therefore, we hope to make up for the shortcomings of these methods, that is, to construct a full decoupling

scheme for the variable-density phase-field vesicle model. It is expected that the developed scheme can solve as

many linear systems with constant coefficients as possible while verifying the energy stability unconditionally,

thereby reducing the computational cost due to dealing with variable-coefficient systems as much as possible.

To achieve the above purposes, inspired by the explicit-auxiliary variable method developed in [38,39] for the

constant density case, we develop a novel explicit-IEQ method to deal with the nonlinear potentials and nonlinear

couplings. The key idea of the new time-marching explicit-IEQ method is the introduction of four auxiliary variables

and their associated ordinary differential equations (ODEs). By using these auxiliary variables, the original system

is then rewritten into an equivalent form and we design the algorithm for the modified model. The benefit of

discretizing the new model is that the auxiliary variables can help to decompose the discretized equations into

several linear sub-equations, in which all variables can be solved independently at each time step, thereby greatly

reducing the computational cost and improving the efficiency. After combining the decoupling approach with

the IEQ approach for linearizing the energy potential, the penalty method of the Navier±Stokes equation, and

the operator-splitting method, we get an easy-to-implement numerical algorithm in which all nonlinear terms are

discretized using an explicit way, which is why we call this method the explicit-IEQ method. When implementing

the scheme at each time step, we first solve the phase-field equation with constant coefficients, then solve the fluid

momentum equation, in which only two terms have variable coefficients (associated with the time derivative of the

velocity and the viscosity term), and finally solve the pressure Poisson equation with constant coefficients. We also

present the rigorous proof of energy stability and solvability and further simulate various numerical examples to

numerically demonstrate accuracy and stability.

The rest of the article is organized as follows. In Section 2, a phase-field elastic bending energy model with

volume conservation, variable density and viscosity, and hydrodynamics coupling is established for lipid vesicles.

Its law of energy dissipation has also been verified. In Section 3, we construct a semi-discrete time marching scheme

and describe its implementations in detail. Unconditional energy stability and solvability are also proved rigorously.

In Section 4, we perform several accuracy/stability tests and implement various simulations to demonstrate the

effectiveness of the scheme. In Section 5, some concluding remarks are given finally.

2. The variable-density/viscosity vesicle model

We first introduce some notations that will be used throughout this article. We assume that the domain Ω ∈
R

d , d = 2, 3 is open, rectangular, smooth and bounded. For any two functions φ(x) and ψ(x), their L2-inner

product on Ω is denoted by (φ,ψ) =
∫
Ω
φ(x)ψ(x)dx, and the L2-norm of φ(x) is denoted by ∥φ∥ = (φ, φ)

1
2 .

Based on the total free energy given in [7±9], we establish the volume-conserved, flow-coupled phase-field

bending energy model with variable density and viscosity as follows.

We define the phase-field variable as φ(x) = tanh
(

d(x)√
2ϵ

)
for all x ∈ Ω , where d(x) is the signed distance of the

point x from the membrane surface Γ , and ϵ is related to the width of the diffusive interface. After coupling with

the fluid flow field, the total free energy of the elastic bending energy model is given as follows [8]:

E(ρ,u, φ) =
∫

Ω

ρ

2
|u|2dx

  
part A

+λ
(∫

Ω

ϵ

2
(∆φ − f (φ))2 dx

  
part B

+ 1

2
M(A(φ) − β)2

  
part C

)
, (2.1)

where ρ is the density of the fluid mixture, u is the average velocity field (u = (u1, u2) for 2D, and u = (u1, u2, u3)

for 3D), λ is a normalization constant that characterizes the magnitude of bending energy, F(φ) = 1

4ϵ2 (φ2 − 1)2 is

the double-well potential, f (φ) = F ′(φ) = 1

ϵ2φ(φ2 − 1), and A(φ) is the surface area function that is defined as

A(φ) = ϵ

∫

Ω

(1

2
|∇φ|2 + F(φ)

)
dx. (2.2)

The surface area can be given as 3

2
√

2
A(φ). M ≫ 1 is a positive penalty parameter to enforce the surface area

conservation (approximately). β denotes a constant related to the initial surface area. In this paper, β = A(φ0) with

3
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φ0 = φ|(t=0). In the energy (2.1), part A represents the kinetic energy of the flow field, part B represents the elastic

bending energy of lipid vesicles, and part C represents the penalty term to enforce the surface area constraint in an

approximate way.

Assuming that the system follows the Allen±Cahn relaxation dynamics (L2-gradient flow), the governing PDEs

read as:

φt + ∇ · (uφ) + γ

(
µ− 1

|Ω |

∫

Ω

µdx

)
= 0, (2.3)

µ = ϵ(∆ − f ′(φ))(∆φ − f (φ)) + ϵM(A(φ) − β)(−∆φ + f (φ)), (2.4)

where f ′(φ) = 1

ϵ2 (3φ2 − 1), γ is the relaxation mobility parameter, µ = 1
λ
δE
δφ

is the scaled variational derivative or

chemical potential, and ∇ · (uφ) is the fluid advection term.

Note that the volume of the vesicle is defined as
∫
Ω

1+φ
2

dx, see [1,7±9], hence, by integrating (2.3) and using

the integration by parts and ∇ · u = 0, we derive

d

dt

∫

Ω

φdx = 0. (2.5)

This means that the vesicle volume remains the same over time. The volume conservation property is actually

achieved by adding the nonlocal term − 1
|Ω |

∫
Ω
µdx into (2.3). This idea of using such a nonlocal Lagrange multiplier

term to conserve the volume of the phase-field variable was first proposed in [25].

We assume that the two fluid components (the fluid inside the vesicle and the ambient fluid) have different

density and viscosity, i.e., ρ1, ν1 are the density and viscosity of the vesicle, and ρ2, ν2 are the density and viscosity

of the ambient fluid, respectively. For the case where the density and viscosity of the two fluids are the same,

i.e., ρ1 = ρ2 = 1, ν1 = ν2 = ν, the Navier±Stokes fluid flow equation reads as:

ut + (u · ∇)u − ν∆u + ∇ p + φ∇µ = 0, (2.6)

∇ · u = 0, (2.7)

with u|∂Ω = 0 as the boundary condition. The nonlinear term φ∇µ is a surface tension term, that can be derived

from the principle of least action, see [56].

For the case where the density and viscosity of the two fluids are not matched. If the density ratio is low

(∼ O(1)), one could use the well-known Boussinesq approximation and to simulate the density difference (cf. for

instance [56]). When the density ratio is high, the Boussinesq approximation is useless. For this case, we follow

the derivation of [53,57] and assume that the density function ρ(φ) and viscosity ν(φ) have the linear relations with

the phase-field variable φ as:

ρ(φ) = ρ1 − ρ2

2
φ + ρ1 + ρ2

2
, ν(φ) = ν1 − ν2

2
φ + ν1 + ν2

2
. (2.8)

This implies ρ(φ) = ρ1, ν(φ) = ν1 when φ = 1, and ρ(φ) = ρ2, ν(φ) = ν2 when φ = −1. Thus, from (2.3) and

(2.8), the density function ρ(φ) satisfies the following equation

ρt + ∇ · (uρ) − J = 0, (2.9)

where J = γ
ρ2−ρ1

2

(
µ− 1

|Ω |
∫
Ω
µdx

)
. By using integration by parts, we derive the following identities

d

dt

(
ρ,

|u|2
2

)
= (ρut ,u) + (ρt ,

|u|2
2

)

= (ρut ,u) + (−∇ · (uρ),
|u|2

2
) + (J,

|u|2
2

)

= (ρut ,u) + (ρu · ∇u,u) + (
1

2
Ju,u).

(2.10)

In the above derivations, we use the boundary condition u · n|∂Ω = 0 where n is the outward-pointing unit normal

vector on the domain boundary ∂Ω .

Hence, we obtain the nonlocal volume-conserved hydrodynamically coupled elastic bending energy system with

non-matched density and viscosity for lipid vesicles as follows:

φt + ∇ · (uφ) = −γ
(
µ− 1

|Ω |

∫

Ω

µdx

)
, (2.11)

4
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µ = λϵ(∆ − f ′(φ))(∆φ − f (φ)) + λϵM(A(φ) − β)(−∆φ + f (φ)), (2.12)

ρut + ρ(u · ∇)u + 1

2
Ju − ∇ · (ν(φ)D(u)) + ∇ p + φ∇µ = 0, (2.13)

∇ · u = 0, (2.14)

with D(u) = ∇u + (∇u)T .

We consider one of the following two types of boundary conditions:

(i) all variables are periodic, or (ii) u|∂Ω = 0, ∂nφ|∂Ω = ∂n∆φ|∂Ω = 0. (2.15)

The initial conditions of the system read as

u|(t=0) = u0, p|(t=0) = p0 , φ|(t=0) = φ0. (2.16)

The system (2.11)±(2.14) admits the law of energy dissipation which is derived in the following lemma.

Lemma 2.1. The following energy law holds for the variable density system (2.11)±(2.14):

d

dt
E(ρ,u, φ) = −γ

µ− 1

|Ω |

∫

Ω

µdx


2

− 1

2

∫

Ω

ν|D(u)|2dx ≤ 0, (2.17)

where E(ρ,u, φ) is given in (2.1).

Proof. By multiplying the inner product of (2.11) with µ in L2, we derive

(φt , µ) + γ

µ− 1

|Ω |

∫

Ω

µdx


2

=
∫

Ω

φu · ∇µdx

  
I

, (2.18)

where we use

(µ− 1

|Ω |

∫

Ω

µdx, µ)

= (µ− 1

|Ω |

∫

Ω

µdx, µ− 1

|Ω |

∫

Ω

µdx) + (µ− 1

|Ω |

∫

Ω

µdx,
1

|Ω |

∫

Ω

µdx)

=
µ− 1

|Ω |

∫

Ω

µdx


2

,

since (µ− 1
|Ω |

∫
Ω
µdx, 1) = 0.

Taking the inner product of (2.4) with −φt in L2, we get

− (µ, φt ) + λ
d

dt

(∫

Ω

ϵ

2
(∆φ − f (φ))2 dx + 1

2
M(A(φ) − β)2

)
= 0. (2.19)

By taking the L2 inner product of (2.13) with u and using integration by parts and the divergence-free condi-

tion (2.14), we obtain

(ρut ,u) = −1

2

∫

Ω

ν|D(u)|2dx −
∫

Ω

(φ∇µ · u)dx

  
II

−
∫

Ω

ρ(u · ∇)u · udx

  
III

−1

2

∫

Ω

Ju · udx. (2.20)

We multiply (2.9) with 1
2
u to derive

1

2
ρt u + 1

2
∇ · (ρu)u − 1

2
Ju = 0. (2.21)

Hence, we take the L2 inner product of (2.21) with u to derive

(ρt ,
1

2
|u|2) = − 1

2

∫

Ω

∇ · (ρu)u · udx

  
IV

+1

2

∫

Ω

Ju · udx. (2.22)

By combining (2.18), (2.19), (2.20), and (2.22), we obtain (2.17). □

5
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Remark 2.1. In the process of deducing the PDE energy law (2.17), many nonlinear terms are cancelled, such as

I and II :
∫

Ω

φu · ∇µdx −
∫

Ω

φ∇µ · udx = 0, (2.23)

III and IV :
∫

Ω

ρ(u · ∇)u · udx + 1

2

∫

Ω

∇ · (ρu)u · udx = 0, (2.24)

which are derived by using integration by parts and the boundary condition u·n|Ω = 0 (or periodic). This means that

despite the complexity of these terms, they do not contribute to the energy diffusivity. Such a kind of cancellation

during the process of deriving the energy law can be referred as ªzero-energy-contributionº property (see the explicit-

auxiliary variable method developed in [38,39,58±61] for the matched density model). It provides some inspiration

when we aim to develop decoupling type schemes, see the next section.

Remark 2.2. For completeness, we also present the total free energy of the classical phase-field bending energy

model developed in [7±9]. In addition to the penalty potential that enforces conservation of surface area, conservation

of volume is also approximated by a similar penalty potential. Namely, the energy reads as

Ẽ(u, φ) = E(u, φ) + 1

2
M̃(V (φ) − V (φ0))2, (2.25)

where V (φ) =
∫
Ω

φ+1

2
dx, and M̃ ≫ 1 is a penalty parameter to enforce volume conservation (approximately). That

is, no matter how big M̃ is, the vesicle volume is preserved over time in an approximate manner.

3. Numerical scheme

In this section, we try to develop a time-marching algorithm for the variable-density/viscosity vesicle model

(2.11)±(2.14) with the focus on achieving a decoupling type scheme. We also expect that the scheme can be linear,

provably solvable, and unconditionally energy stable. The detailed process is as follows.

3.1. Equivalent form of system

We notice that one of the main challenges of numerical discretizations is on the nonlinear term µ in (2.12).

Using f ′(φ) = 1

ϵ2 (3φ2 − 1), we rewrite the energy potential part A in (2.1) as follows,

ϵ

∫

Ω

(1

2
(∆φ − f (φ))

)2

dx = ϵ

∫

Ω

(1

2
|∆φ|2 − 1

ϵ2
|∇φ|2 + e

2
φ2

)

  
linear

dx

+ ϵ
∫

Ω

( 3

ϵ2
φ2|∇φ|2 + 1

2
f (φ)2 − e

2
φ2

)

  
nonlinear

dx,

(3.1)

where e is a positive constant. Remarkably, we add a zero term e
2
φ2 − e

2
φ2 in the total free energy. Since f (φ)2 is

a sixth-order polynomial with the positive leading term, it can bound the negative term − e
2
φ2 from below for any

e.

First, we define an auxiliary variable U (x, t) (local) to ªquadratizeº the nonlinear part of (3.1) as

U (x, t) =
√

3

ϵ2
φ2|∇φ|2 + 1

2
f (φ)2 − e

2
φ2 + B1, (3.2)

where the constant B1 > 0 is added to ensure the radicand further positive. Since the nonlinear part in (3.1) is

bounded from below for any e, the existence of the constant B1 is obvious.

For the surface area potential (part C in (2.1)), we further define another auxiliary variable V (t) (nonlocal) to

quadratize it as

V (t) =
√

1

2ϵ
M(A(φ) − β)2 + B2, (3.3)

where B2 > 0 is added to make the radicand further positive.

6
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The usage of auxiliary variables U and V are the so-called IEQ/SAV method which is an efficient method to

linearize the nonlinear terms induced by the energy potentials, see [37,62±65]. Using the two variables U and V ,

we reformulate (2.12) to the following form:

µ = λϵ

(
∆

2φ + eφ + 2

ϵ2
∆φ

)
+ λϵHU + λϵV K , (3.4)

Ut = 1

2
Hφt , (3.5)

Vt = 1

2
(K , φt ), (3.6)

where the two functions H (φ) and K (φ) are defined as:
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

H (φ) =
6

ϵ2 (φ|∇φ|2 − ∇ · (φ2|∇φ|)) + f (φ) f ′(φ) − eφ
√

3

ϵ2φ
2|∇φ|2 + 1

2
f (φ)2 − e

2
φ2 + B1

,

K (φ) = M(A(φ) − β)(−∆φ + f (φ))√
1
2ϵ

M(A(φ) − β)2 + B2

.

(3.7)

Here, Eq. (2.12) is reformulated by using the new variables U, V , and the two ODEs ((3.5) and (3.6)) are obtained

by taking the time derivative of U and V .

Second, we introduce a variable Q(t) (nonlocal) and an ODE system related to it, that reads as:
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Qt = (∇ · (uφ), µ) + (φ∇µ,u) + λϵ(U H, φt ) − λϵ(Hφt ,U )

+ λϵV (K , φt ) − λϵ(K , φt )V,

Q|(t=0) = 1,

u|∂Ω = 0, or all variables are periodic.

(3.8)

By utilizing the ªzero-energy-contributionº property (2.23), it is straightforward to see that the ODE (3.8) is the

same as the trivial ODE (Qt = 0, Q|(t=0) = 1), which has Q(t) = 1 as the exact solution.

Third, we introduce another nonlocal variable R(t) (nonlocal) and an ODE system related to it, that reads as:
⎧
⎪⎪⎨
⎪⎪⎩

Rt = (ρ(u · ∇)u,u) + 1

2
(∇ · (ρu)u,u),

R|(t=0) = 1,

u|∂Ω = 0, or all variables are periodic.

(3.9)

Similarly, by using (2.24), one can see that (3.9) is equivalent to a trivial ODE (Rt = 0, R|(t=0) = 1), which has

R(t) = 1 as the exact solution.

Finally, using the new variables U, V , Q and R, we rewrite the PDE system (2.11)±(2.14) as:

φt + Q∇ · (uφ)  
Q−reform

+γ
(
µ− 1

|Ω |

∫

Ω

µdx

)
= 0, (3.10)

µ = λϵ(∆2φ + eφ + 2

ϵ2
∆φ) + λϵQ HU  

Q−reform

+ λϵQV K  
Q−reform

, (3.11)

Ut = 1

2
Q Hφt  

Q−reform

, (3.12)

Vt = 1

2
Q(K , φt )  
Q−reform

, (3.13)

ρut + Rρ(u · ∇)u  
R−reform

+1

2
Ju +

c f. (2.21)  
1

2
ρt u + 1

2
R∇ · (ρu)u

  
R−reform

−1

2
Ju (3.14)

7
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− ∇ · (νD(u)) + ∇ p + Qφ∇µ  
Q−reform

= 0,

∇ · u = 0, (3.15)

Qt = (∇ · (uφ), µ) + (φ∇µ,u) + λϵ(U H, φt ) − λϵ(Hφt ,U ) (3.16)

+λϵV (K , φt ) − λϵ(K , φt )V,

Rt = (ρ(u · ∇)u,u) + 1

2
(∇ · (ρu)u,u), (3.17)

with the boundary conditions that read as

(i) all variables are periodic, or (ii) u|∂Ω = 0, ∂nφ|∂Ω = ∂n∆φ|∂Ω = 0, (3.18)

and initial conditions that read as

u|(t=0) = u0, p|(t=0) = p0, φ|(t=0) = φ0, Q|(t=0) = 1, R|(t=0) = 1,U |(t=0) = U (φ0). (3.19)

Remark 3.1. Using the combinations of the new variables and their associated ODEs, some modifications are

applied to the original system (2.11)±(2.14) and a new system (3.10)±(3.17) is formed. The terms ∇ · (uφ) and

φ∇µ are multiplied by Q, and the term ρ(u · ∇)u is multiplied by R. This kind of modification of multiplying Q

or R does not bring up any changes to the system since Q(t) = 1 and R(t) = 1. Second, in the fluid momentum

equation, we add 1
2
ρt u + 1

2
R∇ · (ρu)u + 1

2
Ju, which is actually zero using the fact of R(t) = 1 and (2.21). In

addition, in (3.14), the two terms ( 1
2

Ju − 1
2

Ju) will be offset, so they will no longer appear in the algorithm given

in next section. Finally, we multiply the nonlocal variable Q to the nonlinear terms (the under braced terms by

ªQ-reformº) in (3.11)±(3.12)±(3.13) due to Q(t) = 1.

Remark 3.2. When developing numerical algorithms, if the algorithm design of the original system is very

challenging, a commonly used strategy is to use some techniques to rewrite it to an equivalent but relatively

simple system for discretization. This strategy is used in this article for the aim of developing a scheme with

a fully-decoupled structure and unconditional energy stability. This strategy had also been adopted in algorithm

designs of many other models. For example, the advective term in the Navier±Stokes equation with variable density

is reformulated for stability reasons (cf. [42,57]); the penalty method reformulates the divergence-free condition

of the velocity field of the Navier±Stokes equation to avoid solving the pressure Poisson equation with variable

coefficients (cf. [43,45,53]); the energy potentials in gradient flow models had been reformulated in the IEQ or

SAV methods (cf. [36,50,62,63,66,67]) for the reasons of obtaining linear schemes, etc. Based on this basic logic,

we reformulate the original PDE system to obtain an equivalent system, which is relatively easier to obtain the

desired property of numerical schemes, i.e., linear, fully-decoupled, and unconditionally energy stable.

Using a similar process obtaining the energy law (2.17), the new system (3.10)±(3.17) can be also proven to

hold the similar energy dissipation law. Since the energy stability proof process of the discrete algorithm follows

the same line, the detailed process are given in the following lemma to make it clear.

Lemma 3.1. The PDE system (3.10)±(3.17) holds a law of energy dissipation:

d

dt
Etot (ρ, φ,u,U, V, Q, R) = −γ

µ− 1

|Ω |

∫

Ω

µdx


2

− 1

2

∫

Ω

ν|D(u)|2dx ≤ 0, (3.20)

where Etot reads as

Etot (ρ, φ,u,U, V, Q, R) =
∫

Ω

1

2
ρ|u|2dx + λϵ

(1

2
∥∆φ∥2 + e

2
∥φ∥2 − 1

ϵ2
∥∇φ∥2

+ ∥U∥2 + |V |2
)

+ |Q|2
2

+ |R|2
2

− B1|Ω | − B2 − 1.

(3.21)

Meanwhile, Etot is bounded from below when the parameter e is sufficiently large.

8
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Proof. We multiply the inner product of (3.14) with u i L2 space, and using integration by parts and the

divergence-free condition (3.15), we obtain

d

dt

∫

Ω

1

2
ρ|u|2dx = −1

2

∫

Ω

ν|D(u)|2dx − Q(φ∇µ,u)  
I1

− R(ρ(u · ∇)u,u)  
II1

− 1

2
R(∇ · (ρu)u,u)

  
III1

.

(3.22)

We multiply the inner product of (3.10) by µ in L2 to derive

(φt , µ) = −γ
µ− 1

|Ω |

∫

Ω

µdx


2

− Q(∇ · (uφ), µ)  
IV1

. (3.23)

Taking the inner product of (3.11) with −φt in L2, we get

− (µ, φt ) = −λϵ d

dt

(1

2
∥∆φ∥2 + e

2
∥φ∥2 − 1

ϵ2
∥∇φ∥2

)
−λϵQ(U H, φt )  

V1

−λϵQV (K , φt )  
VI1

. (3.24)

By taking the L2 inner product of (3.12) with 2λϵU , we obtain

d

dt

(
λϵ∥U∥2

)
= λϵQ(Hφt ,U )  

VII1

. (3.25)

By multiplying (3.13) with 2λϵV , we obtain

d

dt

(
λϵ|V |2

)
= λϵQ(K , φt )V  

VIII1

. (3.26)

By multiplying (3.16) with Q, we obtain

d

dt

( |Q|2
2

)
= Q(∇ · (uφ), µ)  

IV2

+ Q(φ∇µ,u)  
I2

+ λϵQ(U H, φt )  
V2

− λϵQ(Hφt ,U )  
VII2

+ λϵQV (K , φt )  
VI2

−λϵQ(K , φt )V  
VIII2

.

(3.27)

By multiplying (3.17) with R, we obtain

d

dt

( |R|2
2

)
= R(ρ(u · ∇)u,u)  

II2

+ 1

2
R(∇ · (ρu)u,u)

  
III2

. (3.28)

By combining all obtained Eqs. (3.23)±(3.28), and noting that the two terms marked with the same Roman

numerals cancel each other out, we obtain the energy law (3.20).

We further show that the reformulated total free energy Etot is bounded from below. By using the boundary

condition (2.15) and the Cauchy±Schwarz inequality, we derive

∥∇φ∥2 = (∇φ,∇φ) = −(∆φ, φ) ≤ η

2
∥∆φ∥2 + 1

2η
∥φ∥2,∀η > 0. (3.29)

Hence, we deduce

1

2
∥∆φ∥2 + e

2
∥φ∥2 − 1

ϵ2
∥∇φ∥2 ≥ (

1

2
− η

2ϵ2
)∥∆φ∥2 + (

e

2
− 1

2ηϵ2
)∥φ∥2. (3.30)
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We note that the parameter e is adjustable since in the definition of U (x, t) in (3.2), f (φ)2 is the sixth-order

polynomial and thus it can always bound the term − e
2
φ2 from below for any e. Therefore, as long as we adjust the

magnitude of η and e, we can always get 1
2
∥∆φ∥2 + e

2
∥φ∥2 − 1

ϵ2 ∥∇φ∥2 ≥ 0. For instance, we let η = ϵ2

2
, e = 4

ϵ4 ,

then

1

2
∥∆φ∥2 + e

2
∥φ∥2 − 1

ϵ2
∥∇φ∥2 ≥ 1

4
∥∆φ∥2 + 1

ϵ4
∥φ∥2 ≥ 0. (3.31)

Therefore, Etot is shown to be bounded from below when the parameter e is large enough. □

Remark 3.3. It is worth noting that when e ∼ O( 1

ϵ4 ), its magnitude is the same as the nonlinear term f (φ) f ′(φ)

in (2.4) or in H (φ). This means that in (3.11), the linear term eφ acts as a stabilizer to balance the nonlinear term

f (φ) f ′(φ) that is embedded in Q HU .

3.2. Numerical scheme

Now, in this subsection, we construct the time-marching algorithm for (3.10)±(3.17) as follows. We let δt > 0

be a time step size, tn = nδt for 0 ≤ n ≤ N with T = Nδt , ψn be the numerical approximation to the analytic

function ψ(·, t)|t=tn . Given un , pn , µn , φn , φn , Qn , Rn , U n , V n , we update un+1, pn+1, µn+1, φn+1, ρn+1, Qn+1,

Rn+1, U n+1, V n+1 by the following:

Step 1:

φn+1 − φn

δt
+ Qn+1∇ · (φnun) = −γ

(
µn+1 − 1

|Ω |

∫

Ω

µn+1dx

)
, (3.32)

µn+1 = λϵ

(
∆

2φn+1 + eφn+1 + 2

ϵ2
∆φn+1

)
+ λϵQn+1 H nU n + λϵQn+1V n K n, (3.33)

U n+1 − U n

δt
= 1

2
Qn+1 H nφn

t , (3.34)

V n+1 − V n

δt
= 1

2
Qn+1(K n, φn

t ), (3.35)

ρn ũn+1 − un

δt
+ Qn+1φn∇µn = 0, (3.36)

Qn+1 − Qn

δt
= (∇ · (unφn), µn+1) + (φn∇µn, ũn+1) (3.37)

+ λϵ(U n H n,
φn+1 − φn

δt
) − λϵ(H nφn

t ,U
n+1)

+ λϵV n(K n,
φn+1 − φn

δt
) − λϵ(K n, φn

t )V n+1.

Step 2:

ρn un+1 − ũn+1

δt
+ 1

2

ρn+1 − ρn

δt
un+1 − ∇ · (νn+1 D(un+1)) + ∇(2pn − pn−1) (3.38)

+ Rn+1ρn(un · ∇)un + 1

2
Rn+1∇ · (ρnun)un = 0,

Rn+1 − Rn

δt
= (ρn(un · ∇)un,un+1) + 1

2
(∇ · (ρnun)un,un+1). (3.39)

Step 3:

∆(pn+1 − pn) = χ

δt
∇ · un+1. (3.40)

10
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The notations used in the scheme read as⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H n = H (φn), K n = K (φn), φn
t = φn − φn−1

δt
,

χ = 1

2
min(ρ1, ρ2),

φ̂ =
{
φ, |φ| ≤ 1,

sign(φ), |φ|⟩1,

ρn+1 = ρ1 − ρ2

2
φ̂n+1 + ρ1 + ρ2

2
, νn+1 = ν1 − ν2

2
φ̂n+1 + ν1 + ν2

2
.

(3.41)

The boundary conditions are either periodic for all variables or

un+1|∂Ω = 0, ∂nφ
n+1|∂Ω = ∂n∆φ

n+1|∂Ω = ∂n pn+1|∂Ω = 0. (3.42)

We give some detailed explanations and comments on the scheme (3.32)±(3.40) in the following remarks.

Remark 3.4. In step 1, we note that the term Qn+1φn∇µn (surface tension term) is actually extracted from the

fluid equation, which is the application of the first-order operator splitting method. The advantage of using this

method is to decouple the computation of the phase-field variable φn+1 from the momentum equation. We recall

that in [52±55], a similar splitting method had been applied as well. But there exists some essential difference

between the method therein and our developed scheme of this article on the discretization approach for coupled

nonlinear terms. By taking the surface tension term φ∇µ as an example, it was discretized as φn∇µn+1 in [52±55],

namely, by using the combination of implicit and explicit approaches. In our scheme, we discretize it as Qn+1φn∇µn

where φ and ∇µ are both discretized explicitly. From the final structure, although the scheme given in [52±55] can

also generate a decoupling scheme, due to the implicit processing of µn+1, we have to solve a variable-coefficient

phase-field equation at each time step, resulting in costly computations in practice.

Remark 3.5. Due to the discretization method used in (3.37) and (3.39), it is easy to see that Qn+1 and Rn+1 are no

longer equal to 1, because the discrete form of nonlinear terms contained in (3.37) and (3.39) are no longer equal

to zero. For the benefit of the reader, we explain here why we allow this to happen. As we all know, the numerical

solution is only an approximation of the exact solution of the original PDE system with a certain accuracy. Therefore,

in the actual calculations, Qn+1 and Rn+1 will be the numerical approximations of Q(t)|(t=tn+1), R(t)|(t=tn+1). This

is similar to the fact of that un+1 is the approximation of u(t)|(t=tn+1), because ψn+1 is numerical approximation to

ψ |(t=tn+1) for any ψ . Namely, Qn+1 and Rn+1 are the approximate solutions to Q(t)|(t=tn+1) and R(t)|(t=tn+1) in the

first-order temporal accuracy, as shown in the accuracy test in Section 4, cf. Fig. 4.1 (a).

Remark 3.6. The penalty method is a widely-used approach to solve the variable-density Navier±Stokes equations,

see [43,53]. Its advantage is to avoid solving the variable-coefficient (1/ρ) pressure Poisson equation. Note that in

our scheme, only one constant-coefficient pressure Poisson equation needs to be solved, which is very efficient in

practice.

Remark 3.7. The scheme is linear. It seems that the two terms ρn+1 un+1−un

δt
and ∇ ·(νn+1 D(un+1)) in step 2 contains

two implicit terms, but in fact, φn+1 is already obtained in step 1, i.e., ρn+1 and νn+1 are known terms in step 2.

Moreover, from the definition of the cut-off function φ̂ given in (3.41), we have

ρn+1 ≥ min(ρ1, ρ2), νn+1 ≥ min(ν1, ν2). (3.43)

3.3. Decoupled implementation

Now, we give the process of how to implement the scheme (3.32)±(3.40). Since step 3 only includes a Poisson

type Eq. (3.40) with constant coefficients, therefore we only discuss the implementation of step 1 and 2 here. The

schemes in (3.32) and (3.39) contain many nonlocal terms, so it is usually time-consuming to solve them directly.

Moreover, the four ODEs of U, V, Q, R need to be solved, which will also cause a lot of time to calculate. We

11
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design the decoupling process as follows by using the nonlocal properties of auxiliary variables Q, R to realize the

fully-decoupled structure. For example, since Qn+1 is a nonlocal scalar, any variable ψ can always be split into the

form of

ψ = ψ1 + Qn+1ψ2. (3.44)

Using this linear combination form, we split all variables into multiple variables and then merge them back.

3.3.1. Implementation of step 1

First, we use the nonlocal variable Qn+1 to split φn+1, µn+1, ũn+1, U n+1, and V n+1 into a linear combination

form that reads as⎧
⎪⎨
⎪⎩

φn+1 = φn+1
1 + Qn+1φn+1

2 , µn+1 = µn+1
1 + Qn+1µn+1

2 ,

ũn+1 = ũn+1
1 + Qn+1ũn+1

2 , U n+1 = U n+1
1 + Qn+1U n+1

2 ,

V n+1 = V n+1
1 + Qn+1V n+1

2 .

(3.45)

Then the scheme (3.32), (3.33), and (3.36) can be rewritten as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φn+1
1 + Qn+1φn+1

2 − φn

δt
+ Qn+1∇ · (unφn)

+ γ

(
µn+1

1 + Qn+1µn+1
2 − 1

|Ω |

∫

Ω

(µn+1
1 + Qn+1µn+1

2 )dx

)
= 0,

µn+1
1 + Qn+1µn+1

2 = λϵ

(
∆

2(φn+1
1 + Qn+1φn+1

2 ) + e(φn+1
1 + Qn+1φn+1

2 )

+ 2

ϵ2
∆(φn+1

1 + Qn+1φn+1
2 )

)
+λϵQn+1 H nU n + λϵQn+1V n K n,

ρn ũn+1
1 + Qn+1ũn+1

2 − un

δt
+ Qn+1φn∇µn = 0.

(3.46)

According to Qn+1, the three equations in the system (3.46) can be split into three sub-systems as⎧
⎪⎪⎨
⎪⎪⎩

1

δt
φn+1

1 + γ

(
µn+1

1 − 1

|Ω |

∫

Ω

µn+1
1 dx

)
= φn

δt
,

µn+1
1 = λϵ(∆2φn+1

1 + eφn+1
1 + 2

ϵ2
∆φn+1

1 ),

(3.47)

and ⎧
⎪⎪⎨
⎪⎪⎩

1

δt
φn+1

2 + γ

(
µn+1

2 − 1

|Ω |

∫

Ω

µn+1
2 dx

)
= −∇ · (unφn),

µn+1
2 = λϵ(∆2φn+1

2 + eφn+1
2 + 2

ϵ2
∆φn+1

2 ) + λϵH nU n + λϵV n K n,

(3.48)

⎧
⎨
⎩

ũn+1
1 = un,

ρn ũn+1
2

δt
+ φn∇µn = 0.

(3.49)

By taking the L2 inner product of the first equation in (3.47) and (3.48) with 1, we immediately get∫

Ω

φn+1
1 dx =

∫

Ω

φndx = · · · =
∫

Ω

φ0dx,

∫

Ω

φn+1
2 dx = 0. (3.50)

The boundary conditions of the φn+1
1 and φn+1

2 are either periodic or

∂nφ
n+1
1 |∂Ω = ∂n∆φ

n+1
1 |∂Ω = 0, ∂nφ

n+1
2 |∂Ω = ∂n∆φ

n+1
2 |∂Ω = 0. (3.51)

In fact, the two equations in (3.47) and (3.48) can be combined by eliminating µn+1
1 and µn+1

2 together so that one

does not need to solve a coupled system. More precisely, using (3.50), we find that (3.47) and (3.48) become
⎧
⎪⎨
⎪⎩

1

δt
φn+1

1 + λϵγ (∆2φn+1
1 + eφn+1

1 + 2

ϵ2
∆φn+1

1 ) = Gn
1,

1

δt
φn+1

2 + λϵγ (∆2φn+1
2 + eφn+1

2 + 2

ϵ2
∆φn+1

2 ) = Gn
2,

(3.52)

12
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where⎧
⎪⎪⎨
⎪⎪⎩

Gn
1 = φn

δt
+ λγ ϵe

|Ω |

∫

Ω

φ0dx,

Gn
2 = −∇ · (unφn) − λϵγ

(
H nU n − 1

|Ω |

∫

Ω

H nU ndx

)
− λϵγ V n

(
K n − 1

|Ω |

∫

Ω

K ndx

)
.

(3.53)

We can solve the two linear and constant-coefficient biharmonic equations in (3.52) directly to obtain φn+1
1 and

φn+1
2 .

Second, for the system (3.34)±(3.35), we use (3.45) to replace U n+1, V n+1 and decompose the obtained equations

according to Qn+1 into the following sub-systems:
⎧
⎨
⎩

U n+1
1 = U n,

1

δt
U n+1

2 = 1

2
H nφn

t ,
(3.54)

⎧
⎨
⎩

V n+1
1 = V n,

1

δt
V n+1

2 = 1

2
(K n, φn

t ).
(3.55)

These equations are algebraic and so they are very straight forward to be solved.

Third, Qn+1 is computed from (3.37). With the splitting form given in (3.45) for the variables µn+1, ũn+1, U n+1,

V n+1, φn+1, one can rewrite (3.37) as the following form:

(
1

δt
− θ2)Qn+1 = 1

δt
Qn + θ1, (3.56)

where⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ1 = (∇ · (unφn), µn+1
1 ) + (φn∇µn, ũn+1

1 ) + λϵ(U n H n,
φn+1

1 − φn

δt
)

− λϵ(H nφn
t ,U

n+1
1 ) + λϵV n(K n,

φn+1
1 − φn

δt
) − λϵ(K n, φn

t )V n+1
1 ,

θ2 = (∇ · (unφn), µn+1
2 ) + (φn∇µn, ũn+1

2 ) + λϵ(U n H n,
φn+1

2

δt
)

− λϵ(H nφn
t ,U

n+1
2 ) + λϵV n(K n,

φn+1
2

δt
) − λϵ(K n, φn

t )V n+1
2 .

(3.57)

We need to verify that (3.56) is solvable by showing 1
δt

−θ2 ̸= 0. By taking the L2-inner product of the first equation

in (3.48) with µn+1
2 , of the second equation of (3.48) with − 1

δt
φn+1

2 , combining the obtained two equations and using

Lemma 3.1, we get

−(∇ · (unφn), µn+1
2 ) − λϵ(H nU n,

φn+1
2

δt
) − λϵV n(K n,

φn+1
2

δt
)

= γ

µ
n+1
2 − 1

|Ω |

∫

Ω

µn+1
2 dx


2

+ λϵ
1

δt

(
∥∆φn+1

2 ∥2 + e∥φn+1
2 ∥2 − 1

ϵ2
∥∇φn+1

2 ∥2
)

≥ 0.

(3.58)

By taking the L2 inner product of the second equation in (3.49) with ũn+1
2 and using (3.43), we deduce

− (φn∇µn, ũn+1
2 ) = (ρn ũn+1

2

δt
, ũn+1

2 ) ≥ 0. (3.59)

By taking the L2 inner product of the second equations of (3.54) with 2λϵU n+1
2 and multiplying the second equation

of (3.55) with 2λϵV n+1
2 , we derive

⎧
⎪⎨
⎪⎩

λϵ(H nφn
t ,U

n+1
2 ) = 2λϵ

1

δt
∥U n+1

2 ∥2 ≥ 0,

λϵ(K n, φn
t )V n+1

2 = 2λϵ
1

δt
|V n+1

2 |2 ≥ 0.

(3.60)

13
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From (3.58), (3.59), and (3.60), we get −θ2 ≥ 0 that ensures (3.56) is solvable. After obtaining Qn+1 from (3.56),

we can get φn+1, µn+1, ũn+1,U n+1, V n+1 from (3.45), that completes the step 1.

3.3.2. Implementation of step 2

We further give a detailed implementation of step 2, i.e., (3.38)±(3.39).

First, we use the nonlocal variable Rn+1 to rewrite un+1 as a linear combination form that reads as

un+1 = un+1
1 + Rn+1un+1

2 . (3.61)

Using (3.61), the scheme (3.38) can be split into the following two equations according to Rn+1,
⎧
⎪⎨
⎪⎩

1

2δt
(ρn+1 + ρn)un+1

1 − ∇ · (νn+1 D(un+1
1 )) = ρn

δt
ũn+1 − ∇(2pn − pn−1),

1

2δt
(ρn+1 + ρn)un+1

2 − ∇ · (νn+1 D(un+1
2 )) = −ρn(un · ∇)un − 1

2
∇ · (ρnun)un.

(3.62)

The boundary conditions of these two equations are either periodic or

un+1
1 |∂Ω = un+1

2 |∂Ω = 0. (3.63)

The two elliptic equations in (3.62) are always solvable since the variable coefficients ρn+1 + ρn and νn+1 are

non-negative.

Second, the nonlocal variable Rn+1 is computed from (3.39). With the splitting form given in (3.61) for the

variable un+1, one can rewrite (3.39) as the following form:

(
1

δt
− η2)Rn+1 = 1

δt
Rn + η1, (3.64)

where⎧
⎪⎨
⎪⎩

η1 = (ρn(un · ∇)un,un+1
1 ) + 1

2
(∇ · (ρnun)un,un+1

1 ),

η2 = (ρn(un · ∇)un,un+1
2 ) + 1

2
(∇ · (ρnun)un,un+1

2 ).

We need to verify that (3.64) is solvable by showing 1
δt

− η2 ̸= 0. By taking the L2 inner product of the second

equation in (3.62) with un+1
2 , and using integration by parts and (3.43), we derive

−η2 = 1

2δt

∫

Ω

(ρn+1 + ρn)|un+1
2 |2dx + 1

2

∫

Ω

νn+1|D(un+1
2 )|2dx ≥ 0, (3.65)

that implies the solvability of (3.64). Once Rn+1 is obtained, un+1 is updated using (3.61).

To summarize, the total computing cost at each time step includes solving two biharmonic equations (with

constant coefficients) in (3.52), two elliptic equations (with variable coefficients) in (3.62), and one Poisson type

equation (with constant coefficients) in (3.40). The linearity and decoupling nature of these equations means that

the designed scheme is very effective in actual implementation.

Remark 3.8. For the hydrodynamics coupled phase-field model, we recall that in [52±55], a linear scheme with

fully-decoupled nature had been developed using the explicit-stabilization method (abbreviated as Ex-Stab for short).

For comparison, we briefly introduce its key idea of discretization.

First, the Ex-Stab method split the surface tension term from the momentum equation and then discretize the

phase-field equation as
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φn+1 − φn

δt
+ ∇ · (ũn+1φn) = −γ (µn+1 − 1

|Ω |

∫

Ω

µn+1dx),

ρn ũn+1 − un

δt
+ φn∇µn+1

  
explicit−implicit

= 0 (:Operator-Splitting method).
(3.66)

Here, the application of the operator splitting method helps to isolate the surface tension term from the momentum

equation, which is the same as our method. But there exists a substantial difference between the Ex-Stab scheme

14
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and our method. The Ex-Stab scheme in (3.66) discretizes the advection and surface tension term using the

implicit±explicit combination, while our scheme discretizes them explicitly, as Qn+1∇ · (unφn) and Qn+1φn∇µn .

The decoupling nature of the Ex-Stab scheme can be achieved after combining the two equations of (3.66)

together, that reads as

φn+1 − φn

δt
+ ∇ · ((un − δt

ρn
φn∇µn+1)φn) = −γ (µn+1 − 1

|Ω |

∫

Ω

µn+1dx). (3.67)

Therefore, on the one hand, (3.67) clearly tells us the decoupling structure of the phase field variable and the

velocity field. On the other hand, the scheme (3.67) also shows one shortcoming, that is, the phase-field equation

has become variable-coefficient (for the term ∇µn+1). So in actual calculations, the calculation cost is relatively

high.

Second, in the Ex-stab method given in [52±55], the fluid momentum equation is discretized as

ρn un+1 − ũn+1

δt
+ 1

2

ρn+1 − ρn

δt
un+1 − ∇ · (νn+1 D(un+1)) + ∇(2pn − pn−1)

+ ρn(un · ∇)un+1 + 1

2
∇ · (ρnun)un+1

  
explicit−implicit

= 0.
(3.68)

Here, the advection terms are discretized using the explicit±implicit method, which also leads to many variable

coefficients (for un+1).

Therefore, although the numerical scheme constructed using the Ex-Stab method can also be full decoupled while

maintaining the energy stability unconditionally, its design leads to a large number of variable coefficients, so it

will lead to costly computations. To illustrate this, in Fig. 4.2 (b), we compare the average number of iterations per

time step required by the Ex-Stab method and our developed scheme (3.32)±(3.40). The comparison clearly show

that our developed scheme has much higher effectiveness.

3.3.3. Unconditional energy stability

In this subsection, we show that the scheme (3.32)±(3.40) is unconditionally energy stable. We will use the

following identity repeatedly:

2(a − b)a = |a|2 − |b|2 + |a − b|2. (3.69)

Theorem 3.1. The scheme (3.32)±(3.40) holds the following discrete energy dissipation law:

En+1 ≤ En − 1

2
δt∥

√
νn+1 D(un+1)∥2 − γ δt

µ
n+1 − 1

|Ω |

∫

Ω

µn+1dx


2

, (3.70)

where

En+1 =1

2
∥σ n+1un+1∥2 + δt2

2χ
∥∇ pn+1∥2

+ λϵ

(1

2
∥∆φn+1∥2 + e

2
∥φn+1∥2 − 1

ϵ2
∥∇φn+1∥2|| + ∥U n+1∥2 + |V n+1|2

)

+ 1

2
|Qn+1|2 + 1

2
|Rn+1|2 − B1|Ω | − B2 − 1,

(3.71)

and σ k =
√
ρk for any k. Moreover, En+1 is bounded from below when the parameter e is sufficiently large as

described in Lemma 3.1.

Proof. We take the inner product of (3.38) with 2δtun+1 in the L2-space and use (3.69) to obtain

∥σ n+1un+1∥2 − ∥σ nũn+1∥2 + ∥σ n(un+1 − ũn+1)∥2 + δt∥
√
νn+1 D(un+1)∥2

+ 2δt(pn+1 − 2pn + pn−1,∇ · un+1) − 2δt(pn+1,∇ · un+1) (3.72)

= −2δt Rn+1(ρn(un · ∇)un,un+1) + 1

2
(∇ · (ρnun)un,un+1).
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We take the L2-inner product of (3.36) with 2δt ũn+1 and use (3.69) to obtain

∥σ nũn+1∥2 − ∥σ nun∥2 + ∥σ n(ũn+1 − un)∥2 = −2δt Qn+1(φn∇µn, ũn+1). (3.73)

We combine (3.72) and (3.73) to obtain

∥σ n+1un+1∥2 −∥σ nun∥2 + ∥σ n(un+1 − ũn+1)∥2 + ∥σ n(ũn+1 − un)∥2

+ δt∥
√
νn+1 D(un+1)∥2 + 2δt(pn+1 − 2pn + pn−1,∇ · un+1) − 2δt(pn+1,∇ · un+1)

= −2δt Rn+1(ρn(un · ∇)un,un+1) + 1

2
(∇ · (ρnun)un,un+1)

−2δt Qn+1(φn∇µn, ũn+1).

(3.74)

We take the L2 inner product of (3.40) with 2δt2

χ
(pn+1 − 2pn + pn−1) and use (3.69) to obtain

2δt(pn+1 − 2pn + pn−1,∇ · un+1) = −δt
2

χ

(
∥∇ pn+1 − ∇ pn∥2 − ∥∇ pn − ∇ pn−1∥2

+ ∥∇ pn+1 − 2∇ pn + ∇ pn−1∥2
)
.

(3.75)

We take the L2 inner product of (3.40) with − 2δt2

χ
pn+1 and use (3.69) to obtain

− 2δt(pn+1,∇ · un+1) = δt2

χ

(
∥∇ pn+1∥2 − ∥∇ pn∥2 + ∥∇ pn+1 − ∇ pn∥2

)
. (3.76)

By combining (3.75) and (3.76), we derive

2δt(pn+1 − 2pn + pn−1,∇ · un+1) − 2δt(pn+1,∇ · un+1)

= δt2

χ

(
∥∇ pn+1∥2 − ∥∇ pn∥2

)
+ δt2

χ
∥∇ pn − ∇ pn−1∥2

−δt
2

χ
∥∇ pn+1 − 2∇ pn + ∇ pn−1∥2.

(3.77)

We subtract (3.40) at (n + 1)-step and n-step to obtain

∆(pn+1 − 2pn + pn−1) = χ

δt
∇ · (un+1 − un). (3.78)

We multiply the L2 inner product of (3.78) with pn+1 − 2pn + pn−1 to derive

∥∇(pn+1 − 2pn + pn−1)∥2 = − χ

δt
(un+1 − un,∇(pn+1 − 2pn + pn−1))

≤ χ2

2δt2
∥un+1 − un∥2 + 1

2
∥∇(pn+1 − 2pn + pn−1)∥2,

(3.79)

where we use integration by parts and Cauchy±Schwarz inequality. Hence (3.79) implies

∥∇(pn+1 − 2pn + pn−1)∥2 ≤ χ2

δt2
∥un+1 − un∥2. (3.80)

By multiplying (3.80) with δt2

χ
and applying χ = 1

2
min(ρ1, ρ2) ≤ 1

2
ρn , we derive

δt2

χ
∥∇(pn+1 − 2pn + pn−1)∥2 ≤ χ∥un+1 − un∥2 ≤ 1

2
∥σ n(un+1 − un)∥2. (3.81)

Using the inequality 1
2
(a + b)2 ≤ a2 + b2, we obtain

1

2
∥σ n(un+1 − un)∥2 ≤ ∥σ n(un+1 − ũn+1)∥2 + ∥σ n(ũn+1 − un)∥2. (3.82)
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Therefore, by combining (3.77), (3.81) and (3.82), we obtain

2δt(pn+1 − 2pn + pn−1,∇ · un+1) − 2δt(pn+1,∇ · un+1)

≥ δt2

χ

(
∥∇ pn+1∥2 − ∥∇ pn∥2

)
+ δt2

χ
∥∇ pn − ∇ pn−1∥2

−∥σ n(un+1 − ũn+1)∥2 − ∥σ n(ũn+1 − un)∥2.

(3.83)

Hence, from (3.74) and (3.83), we derive

∥σ n+1un+1∥2 −∥σ nun∥2 + δt∥
√
νn+1 D(un+1)∥2

+ δt2

χ

(
∥∇ pn+1∥2 − ∥∇ pn∥2

)
+ δt2

χ
∥∇ pn − ∇ pn−1∥2

≤ −2δt Rn+1(ρn(un · ∇)un,un+1)  
I1

−δt Rn+1(∇ · (ρnun)un,un+1)  
II1

−2δt Qn+1(φn∇µn, ũn+1)  
III1

.

(3.84)

We take the L2 inner product of (3.32) with 2δtµn+1 and use integration by parts to get

2(φn+1 − φn, µn+1) +2γ δt

µ
n+1 − 1

|Ω |

∫

Ω

µn+1dx


2

= −2δt Qn+1(∇ · (unφn), µn+1)  
IV1

.
(3.85)

By taking the L2 inner product of (3.33) with −2(φn+1 − φn), and using integration by parts and (3.69), we get

−2(φn+1 − φn, µn+1) = −λϵ(∥∆φn+1∥2 − ∥∆φn∥2 + ∥∆(φn+1 − φn)∥2)

− λϵ(e∥φn+1∥2 − e∥φn∥2 + e∥φn+1 − φn∥2)

− λϵ(− 2

ϵ2
∥∇φn+1∥2 + 2

ϵ2
∥∇φn∥2 − 2

ϵ2
∥∇(φn+1 − φn)∥2)

−2λϵQn+1(H nU n, φn+1 − φn)  
V1

−2λϵQn+1V n(K n, φn+1 − φn)  
VI1

.

(3.86)

By taking the L2 inner product of (3.34) with 4λϵδtU n+1 and using (3.69), we get

2λϵ(∥U n+1∥2 − ∥U n∥2 + ∥U n+1 − U n∥2) = 2δtλϵQn+1(H nφn
t ,U

n+1)  
VII1

. (3.87)

By multiplying (3.35) with 4λϵδtV n+1 and using (3.69), we get

2λϵ(|V n+1|2 − |V n|2 + |V n+1 − V n|2) = 2δtλϵQn+1(K n, φn
t )V n+1

  
VIII1

. (3.88)

We multiply (3.37) with 2δt Qn+1 and use (3.69) to get

|Qn+1|2 −|Qn|2 + |Qn+1 − Qn|2

= 2δt Qn+1(∇ · (unφn), µn+1)  
IV2

+ 2δt Qn+1(φn∇µn, ũn+1)  
III2

+ 2λϵQn+1(U n H n, φn+1 − φn)  
V2

−2δtλϵQn+1(H nφn
t ,U

n+1)  
VII2

+ 2λϵV n Qn+1(K n, φn+1 − φn)  
VI2

−2δtλϵQn+1(K n, φn
t )V n+1

  
VIII2

.

(3.89)
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Fig. 4.1. (a) The numerical errors of φ, p,u in L2 and the nonlocal variables Q, R that are calculated by using the scheme EIEQ with

different time steps; (b) the total free energy (3.71) that is evolved over time and computed by using the scheme EIEQ with different time

steps.

We multiply (3.39) with 2δt Rn+1 and use (3.69) to get

|Rn+1|2 −|Rn|2 + |Rn+1 − Rn|2

= 2δt Rn+1(ρn(un · ∇)un,un+1)  
I2

+ δt Rn+1(∇ · (ρnun)un,un+1)  
II2

. (3.90)

By combining (3.84)±(3.90), we derive

∥σ n+1un+1∥2 −∥σ nun∥2 + δt2

χ

(
∥∇ pn+1∥2 − ∥∇ pn∥2

)
+ δt2

χ
∥∇ pn − ∇ pn−1∥2

+ λϵ(∥∆φn+1∥2 − ∥∆φn∥2 + ∥∆(φn+1 − φn)∥2)

+ λϵ(e∥φn+1∥2 − e∥φn∥2 + e∥φn+1 − φn∥2)

+ λϵ(− 2

ϵ2
∥∇φn+1∥2 + 2

ϵ2
∥∇φn∥2 − 2

ϵ2
∥∇(φn+1 − φn)∥2)

+ 2λϵ(∥U n+1∥2 − ∥U n∥2 + ∥U n+1 − U n∥2) + 2λϵ(|V n+1|2 − |V n|2 + |V n+1 − V n|2)

+ (|Qn+1|2 − |Qn|2 + |Qn+1 − Qn|2) + (|Rn+1|2 − |Rn|2 + |Rn+1 − Rn|2)

≤ −2γ δt

µ
n+1 − 1

|Ω |

∫

Ω

µn+1dx


2

− δt∥
√
νn+1 D(un+1)∥2.

(3.91)

Using (3.31), we deduce that when e is sufficiently large, for any k, the following inequality holds:

∥∆(φk+1 − φk)∥2 + e∥φk+1 − φk∥2 − 2

ϵ2
∥∇φk+1 − ∇φk∥2 ≥ 0. (3.92)

Therefore, after we divide 2 to each side of (3.91) and remove some unnecessary positive terms, we obtain (3.70).

In addition, it is easy to prove that En+1 is bounded from below by following a process similar to (3.31). □

4. Numerical simulations

In this section, several numerical tests are first carried out to verify the accuracy and energy stability of the

proposed explicit-IEQ scheme (3.32)±(3.40) (referred to as EIEQ for short). Then, by performing numerous 2D and

3D numerical simulations of the vesicle sedimentation dynamics under gravity, we demonstrate the effectiveness of

the variable-density model and the proposed scheme EIEQ.
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Fig. 4.2. (a) The free energy in the original form (2.1) and the energy (3.71) in the discrete modified form, which are calculated using

δt = 0.01; and (b) comparisons of the EIEQ and Ex-Stab schemes in computational efficiency.

In all the numerical examples below, the computational domain is set to a 2D or 3D rectangular region. We

can use periodic boundary conditions or the boundary conditions given in (3.42). We adopt the Legendre±Galerkin

method to discretize directions with the boundary conditions given in (3.42). The stable inf±sup pair (PN , PN−2),

where N is the degree of the Legendre polynomial, is adopted for the velocity field u and pressure p, respectively;

and PN is adopted for discretizations of the phase-field variable φ and the chemical potential µ. We adopt the

Fourier-Spectral method to discretize directions satisfying the periodic boundary conditions.

4.1. Accuracy and stability test

In this subsection, we carry out several accuracy and stability tests to verify the accuracy and stability of the

scheme EIEQ (3.32)±(3.40). We set the 2D computational domain as Ω = [0, 2π ]2. The system is assumed to

satisfy the periodic boundary conditions and so space is discretized by the Fourier-Spectral method.

We set the initial condition of φ0,u0, p0 as follows:

φ0(x) = 1 +
2∑

i=1

tanh

(
ri − |x − xi |√

2ϵ

)
,u0(x) = 0, p0 = 0, (4.1)

where the profile of φ0 is set as two circular kissing vesicles, (r1, r2) = (0.28π, 0.28π ), x1 = (0.71π, π), x2 =
(1.29π, π). The model parameters are set as

⎧
⎨
⎩
ρ1 = 100, ρ2 = 1, ν1 = 100, ν2 = 1, λ = 0.01,

ϵ = 0.08, γ = 0.1, e = 4

ϵ4
,M = 1e5, B1 = 100, B2 = 100.

(4.2)

We use 256 Fourier modes to discretize each direction of the space. Thus, if compared with the error caused by

time discretization, the error caused by spatial discretization is relatively very small and can be ignored. Moreover,

since the exact solutions equipped with the above initial conditions are unknown, for simplicity, we consider the

numerical solution calculated with a tiny time step δt = 1e−7 as the roughly exact solution. The time step refinement

method is adopted to verify the numerical accuracy caused by time discretization.

We perform an accuracy test to investigate the convergence order of EIEQ. In Fig. 4.1 (a), the L2 errors of φ,u, p

and the errors of Q, R (Q(t) = R(t) = 1 is the exact solution) at t = 0.5 are obtained by using different time step

sizes. It can be seen that all variables provide a very good first-order temporal convergence order. In Fig. 4.1 (b),

to verify the energy stability, we plot the total free energy (3.71) that evolves over time, which are calculated by

using four different time steps. All obtained energy curves exhibit monotonic decaying trends, which illustrates the

unconditional energy stability that the EIEQ scheme has always maintained.
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In Fig. 4.2 (a), we compare the temporal evolution curve of the total free energy (2.1) (in the original form) and

(3.71) (in the modified discrete form) using δt = 0.01. We can see that the two energy curves are very consistent.

To further illustrate the effectiveness of the scheme, in Fig. 4.2 (b), the average number of iterations per time step

needed by EIEQ and that needed by the scheme developed in [53,55,68] (see Remark 3.8, denoted by Ex-Stab for

short) are compared. It can be seen that the efficiency of EIEQ is much higher than that of Ex-Stab. We take the

result obtained using δt = 0.01 as an example, where at each time step, the scheme Ex-Stab requires around 450

iterations, and only around 10 iterations are required when using the scheme EIEQ. The reason is that in the scheme

Ex-Stab, the linear system for φn+1 and un+1, i.e., (3.67) and (3.68), have many variable coefficients.

4.2. 2D vesicle cell sedimentation

The vesicle model has been extensively used in simulating the dynamical motion of red blood cells [24,34].

When the vesicle cell sinks due to the density difference of the inner and outer fluids, the so-called ªreorientationº or

ªrotationº phenomenon caused by the gravity force happens during the sedimentation process. Due to the asymmetry

of the vesicle shape, it has been observed that the trajectory of the vesicle will be significantly different depending on

the initial angle between the main axis and the gravity direction. In this subsection, we use the developed variable-

density vesicle model and our constructed scheme EIEQ to investigate the dynamical sedimentation process of a

single vesicle driven by the gravity force.

We first perform 2D simulations in this subsection, and impose the gravity field to the fluid equation as

follows:

ρ(ut + (u · ∇)u) + 1

2
Ju − ∇ · (ν(φ)D(u)) + ∇ p + φ∇µ = ρg, (4.3)

where g = (0, g0) and g0 is the gravity constant. The variables/parameters are rescaled as:

t̂ = t

t0
, x̂ = x

d0

, û = u

u0

, ν̂ = ν√
d3

0 g0

, γ̂ = γ, λ̂ = λ, p̂ = p, ρ̂ = ρ, φ̂ = φ,
(4.4)

where t0 =
√

d/g0, u0 =
√

dg0, d0 = d . Note that if we omit ,̂ the dimensionless governing system

(2.11)±(2.12)±(4.3)±(2.14) keeps the same form.

We set the rectangular computed region as (x, y) ∈ Ω = [0, 3π ]×[0, 4π ]. We assume both the x and y-directions

satisfy the non-periodic boundary conditions specified in (3.42), and adopt Legendre polynomial up to the degree

of 256 for each direction.

The initial profile of the vesicle cell is set to the capsule shape (consistent with [24]). To obtain such a profile,

we set the pre-initial condition of φ̂0 to be 2D ellipse

φ̃0(x, y) = tanh
(1 − x̃2/4.5 − ỹ2

√
2ϵ

)
, (4.5)

where

x̃ = (x − x0) sin θ + (y − y0) cos θ, ỹ = (x − x0) cos θ + (y − y0) sin θ. (4.6)

Here the angle θ can be adjusted to obtain different oblique shapes of the ellipse, see four different dashed ellipses

plotted in Fig. 4.3.

We set the model parameters as

λ = 0.01, ϵ = 0.14, γ = 0.01, e = 4

ϵ4
,M = 1e5, B1 = 100, B2 = 100. (4.7)

and implement the no-flow simulation (set u = 0, p = 0) to long enough time. The obtained steady-state solution

of φ is used as the initial condition φ0 to simulate the sedimentation process. In Fig. 4.3, we select four different

angles of θ = π/2, π/3, π/6, 0 and plot the contour of the pre-initial condition φ̃0 using the dashed lines. The real

initial condition of φ0 used to simulate the sediment process are plotted by the solid lines in Fig. 4.3, where we

can see that these steady-state contours are all capsule-like.
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Fig. 4.3. The pre-initial (dashed lines) and initial (solid lines) profiles of four different oblique ellipses where (a) θ = 0, (b) θ = π/6, (c)

θ = π/3, (a) θ = π/2.

Fig. 4.4. Dynamics of a 2D vesicle sink to the bottom wall under the action of gravity at different times where (a) θ = 0 and (b) θ = π/2.

Using the obtained initial conditions of u0 = 0, p0 = 0, φ0 (the solid contour in Fig. 4.3), and setting other

model parameters as
⎧
⎨
⎩

g0 = 1, ρ1 = 40, ρ2 = 1, ν1 = 100, ν2 = 1, λ = 10, ϵ = 0.14, γ = 0.01,

e = 4

ϵ4
,M = 1e5, B1 = 100, B2 = 100,

(4.8)

we start with the two coaxial cases, where the long axis of the capsule-like vesicle cell is parallel or perpendicular

to the direction of gravity. Snapshots of the phase-field variable φ at various times are shown in Fig. 4.4(a) and (b).

The common point of these two cases is that the main axis of the vesicle always maintains the same angle with the

gravity direction when the vesicle is falling. The difference between these two cases is, when θ = 0, as shown in

Fig. 4.4(a), the lower part of the vesicle is enlarged, and the upper part becomes thinner and shorter. When θ = 0,

as shown in Fig. 4.4(b), the shape of the vesicle remains unchanged when it falls. Note that no ªreorientationº

behaviors occur in either case.

We continue to simulate other two tilted cases, that is, the long axis of the capsule-like vesicle has a certain

angle with the direction of gravity. Snapshots of the phase-field variable φ at various times are shown in Fig. 4.5(a)

21



X. Yang Computer Methods in Applied Mechanics and Engineering 400 (2022) 115479

Fig. 4.5. Dynamics of a 2D vesicle sink to the bottom wall under the action of gravity at different times where (a) θ = π/6 and (b)

θ = π/3.

and (b). The common point of these two cases is that the vesicle reorients the direction of the long axis when

they approach near the bottom wall, and the long axis direction is almost perpendicular to the direction of gravity,

which is the so-called ªreorientationº phenomenon, see also [24]. The difference between these two cases is that,

the vesicle with θ = π/3, shown in Fig. 4.5(b), drifts a greater distance horizontally before touching the bottom

strength than the vesicle with θ = π/6, shown in Fig. 4.5(a), see also [24].

Finally, using φ0 of θ = π/6 as the initial condition (Fig. 4.3(b)), we only adjust the viscosity ν1 and ν2 while

keeping other parameters unchanged. In Fig. 4.6, the contours of the level set {φ = 0} are plotted at different times

to give the trajectory of sinking vesicles for three cases of ν1 : ν2 = 50 : 1, ν1 : ν2 = 80 : 1, and ν1 : ν2 = 100 : 1. It

can be seen that when the viscosity is smaller, the horizontal drifted distance of the vesicle is larger. These results

are qualitatively consistent with the numerical simulations given by using a different vesicle cell model in [24].

4.3. 3D vesicle cell sedimentation

In this subsection, we perform 3D simulations to investigate the capsule-like vesicle cell sedimentation process.

The computational domain is set as (x, y, z) ∈ Ω = [0, 3π ] × [0, 4π ] × [0, 3π ], where the x and z-directions

are assumed to satisfy periodic boundary conditions, and the y-direction is assumed to be non-periodic boundary
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Fig. 4.6. Three simulations of the vesicle sedimentation process using different viscosity ratio, where (a) ν1 : ν2 = 50 : 1, (b) ν1 : ν2 = 80 : 1,

and (c) ν1 : ν2 = 100 : 1. In each subfigure, the contour of level set {φ = 0} at various times are shown.

conditions (3.42). The model parameters are set as
⎧
⎨
⎩

g0 = 1, ρ1 = 40, ρ2 = 1, ν1 = 100, ν2 = 1, λ = 40, ϵ = 0.14, γ = 0.01,

e = 4

ϵ4
,M = 1e5, B1 = 100, B2 = 100.

(4.9)

The initial conditions of the capsule-like vesicle is still obtained by using the similar process as the 2D

simulations. We set the pre-initial condition of φ̃0 to be a 3D ellipsoid, that reads as

φ̃0(x, y, z) = tanh
(1 − x̃2 − ỹ2 − z̃2/5.5√

2ϵ

)
, (4.10)

where

(x̃, ỹ, z̃) = x̃ = Rz(θz)Ry(θy)Rx (θx )(x − x0), (4.11)

Rz(θz) =

⎛
⎝

cos θz − sin θz 0

sin θz cos θz 0

0 0 1

⎞
⎠ , Ry(θy) =

⎛
⎝

cos θy 0 sin θy

0 1 0

− sin θy 0 cos θy

⎞
⎠ ,

Rx (θx ) =

⎛
⎝

1 0 0

0 cos θx − sin θx

0 sin θx cos θx .

⎞
⎠

Here Rx , Ry, Rz are three extrinsic rotation matrices, θx , θy, θz are Euler angles, x − x0 = (x − x0, y − y0, z − z0)T ,

x0 = 1.95π, y0 = 2π, z0 = 1.95π .

We discretize x and z-directions using 256 Fourier modes, and discretize the y-direction using the Legendre

polynomials up to the degree of 512. We set the pre-initial conditions of φ̃0 with four different set of rotational

angles of (θx , θy, θz)1 = (0, π/2, 0), (θx , θy, θz)2 = (−π/3, π/6,−π/4), (θx , θy, θz)3 = (−5π/12, π/4,−π/12),

(θx , θy, θz)4 = (−π/2, π/2, 0), and implement the no-flow simulation (set u = 0, p = 0) to long enough time

with other model parameters as (4.7). The obtained steady-state solutions which are shown in the first subfigure in

Fig. 4.7 (a)±(b) and Fig. 4.8 (a)±(b), will be used as the initial condition φ0 to simulate the process of 3D vesicle

sedimentation.

Using the obtained four different initial conditions φ0 and setting u0 = 0, p0 = 0, we investigate the sediment

process in 3D. First, for the two coaxial cases with (θx , θy, θz)1 and (θx , θy, θz)4, we plot the isosurface of {φ = 0}
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Fig. 4.7. Dynamics of a 3D vesicle sink to the bottom wall under the action of gravity at different times, where the initial conditions with

Euler angles are set as (a) (θx , θy , θz)1 and (b) (θx , θy , θz)4.

at various times in Fig. 4.7(a) and (b). Similar to 2D simulations, the dynamical motion of the vesicle roughly

maintains its initial shape. For the case of (θx , θy, θz)1, the lower part of the capsule-like vesicle is enlarged slightly

during the falling process.

For the other two tilted cases of (θx , θy, θz)2 and (θx , θy, θz)3, shown in Fig. 4.8(a) and (b), the vesicle flips the

direction of the rotation when they fall to the bottom wall, i.e., the ªreorientationº phenomenon occurs. To compare

their drifted distance, in Fig. 4.9, we plot the profiles of isosurfaces {φ = 0} before the vesicle touches the bottom
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Fig. 4.8. Dynamics of a 3D vesicle sink to the bottom wall under the action of gravity at different times, where the initial conditions with

Euler angles are set as (a) (θx , θy , θz)2 and (b) (θx , θy , θz)3.

wall together. We find that the drift distance of the case of (θx , θy, θz)3 is slightly more than that of (θx , θy, θz)2,

which are also consistent with the 2D simulations and the numerical results given in [24].

5. Concluding remarks

In this paper, for the hydrodynamics-coupled phase-field variable elastic bending energy model for lipid vesicles,

we have established the volume-conserved, variable-density and viscosity version, and constructed an efficient

numerical algorithm for it. Many desired properties are embedded in the algorithm, including linearity, decoupling
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Fig. 4.9. The comparisons of drifted distance for the two tilted angle cases (θx , θy , θz)2 (color green) and (θx , θy , θz)3 (color red), where

the isosurfaces of φ0 and the snapshots when the vesicle cell touches the bottom wall. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

nature, and unconditional energy stability. The algorithm is built upon on the effective union of several algorithms

using a new decoupling technology, including the projection method for the incompressible Navier±Stokes equation,

and the explicit IEQ method for the nonlinear terms. The realization of unconditional energy stability and full

decoupling nature is based on the introduction of some auxiliary variables and the design of their ODEs with specific

forms. The system is reformulated based on the ªzero-energy-contributionº feature satisfied by the coupled nonlinear

terms. The decoupling structure of the scheme enables independent calculation of all variables and at each time step

we only need to calculate several linear equations independently. The detailed implementation, solvability, as well

as the rigorous proof of unconditional energy stability are also given. Numerous numerical examples are simulated,

including the benchmark sedimentation process of a vesicle cell under gravity to illustrate the effectiveness of the

proposed scheme.
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