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ABSTRACT

The goal of spatially explainable artificial intelligence (AI) classi-

fication approach is to build a classifier to distinguish two classes

(e.g., responder, non-responder) based on the their spatial arrange-

ments (e.g., spatial interactions between different point categories)

given multi-category point data from two classes. This problem

is important for generating hypotheses towards discovering new

immunotherapies for cancer treatment as well as for other applica-

tions in biomedical research and microbial ecology. This problem

is challenging due to an exponential number of category subsets

which may vary in the strength of their spatial interactions. Most

prior efforts on using human selected spatial association measures

may not be sufficient for capturing the relevant spatial interactions

(e.g., surrounded by) which may be of biological significance. In

addition, the related deep neural networks are limited to category

pairs and do not explore larger subsets of point categories. To over-

come these limitations, we propose a Spatial-interaction Aware

Multi-Category deep neural Network (SAMCNet) architecture and

contribute novel local reference frame characterization and point

pair prioritization layers for spatially explainable classification. Ex-

perimental results on multiple cancer datasets (e.g., MxIF) show that

the proposed architecture provides higher prediction accuracy over

baseline methods. A real-world case study demonstrates that the

proposed work discovers patterns that are missed by the existing

methods and has the potential to inspire new scientific discovery.

CCS CONCEPTS

· Computing methodologies→ Spatial and physical reason-

ing.
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1 INTRODUCTION

Our spatially explainable AI classification approach aims to build 
a classifier that can learn spatial patterns in multi-category point 
patterns to distinguish between two classes. When each data point 
belongs to a distinct category feature, it logically follows that the 
value of different spatial interactions between various points is 
additionally significant for the classification task. For example, the 
impact of one type of immune cell (e.g., cytotoxic T lymphocytes 
(CTLs)) on nearby cancer cells may be affected by other immune 
cells (e.g., T regulatory cells) [28].

This problem is important because spatial configurations, a proxy 
for physical interactions, help generate new hypotheses towards 
discovering disease therapeutics (e.g., immunotherapies for cancer 
treatment). These hypotheses could be used in applications such 
as medical pathology, biomedical research, and microbial ecology, 
where multi-category point patterns frequently appear. In many 
diseases, such as cancer, spatial arrangements and associations be-
tween distinct phenotypic markers are crucial to understand normal 
tissue function and disease biology. For example, the development 
of effective intervention strategies relies on knowledge of the spa-
tial arrangement and cellular mechanisms of coronavirus infections 
[27]. Researchers in immunology also seek to understand the spa-
tial configurations of immune and tumor cells to help evaluate the 
effectiveness of the immune checkpoint inhibitors (e.g., anti-PD-1) 
in cancer treatment [12]. Table 1 presents use case of the proposed 
model in different application domains.

This problem is challenging due to the following reasons. First, 
the number of potential spatial patterns is exponentially related 
to the number of different category subsets. The second challenge 
is that multi-category point patterns are heterogeneous and form 
complicated structural and higher-order spatial interactions. In ad-
dition, the spatial association between various point pair instances 
is not always equal, requiring the model to learn these distinctions. 
CTL-tumor cell interactions, for example, are more biologically 
relevant in the context of effector function (e.g., a CTL must engage

2860



KDD ’22, August 14–18, 2022, Washington, DC, USA Majid Farhadloo et al.

Table 1: Use cases of proposed model

Application Domain Use Case (Objective)

Oncology
Understanding the spatial configuration between immune
and tumor cells to evaluate the effectiveness of ICI [12]

Pharmacology
Identifying protein interactions and bindings
towards discovering structure-based drugs [8]

Ecology Inferring predator-prey spatial interactions in food webs [20]

Paleontology
Studying fossils to classify organisms and examine their
interactions with each other and the environment [11]

Epidemiology
Investigating the relationship between human mobility
and spread of Covid-19 [24]

a tumor cell to kill it); in contrast, B cell-tumor cell interactions

are more indirect. Lastly, point patterns possess different proper-

ties (e.g., invariance to permutation), which means the classifier

needs to meet the same requirements to achieve a robust surrogate

representation.

Most of the prior works to identify spatial relationships in multi-

category point patterns can be classified into hand-constructed

features using spatial association measures (e.g., Pearson correla-

tion, G-cross, Ripley’s cross-k, Participation index) [3, 16, 18, 23].

For example, [18] uses the classical statistics measures (e.g., Pearson

Correlation), which are sensitive to the choice of spatial partition-

ing. In addition, neighbor-graph-based approaches (e.g., [3, 25])

are primarily a function of distance, which may not accurately

model the true spatial relationships among categorical points on

a three-dimensional surface (e.g., organ). In more recent work, a

spatial-relationship aware neural network (SRNet) [15] aims to con-

found these limitations by leveraging machine-constructed features

to model spatial relationships between points of different categories.

However, SRNet is limited to only binary spatial relationships, and

the importance between distinct binary category pairs is assumed

to be equal.

To overcome these limitations, we propose a Spatial-interaction

Aware Multi-Category deep neural Network (SAMCNet) archi-

tecture for spatially explainable AI classification and contribute

novel local reference frame characterization and point pair prioriti-

zation layers. SAMCNet provides a promising way to identify the

importance between different point pair instances and the most

discriminative N-way spatial relationships. As shown in Fig. 1a, we

first aim to provide a better way to represent spatial information

using a multi-scale local reference frame characterization (LRFC)

and spatial feature decomposition (described in Section 5.1) before

applying an EdgeConv operation [29]. As indicated in Fig. 1b, a

point pair prioritization sub-network is designed to specify a weight

on point pair instances that are more important in an N-way spa-

tial relationship (described in Section 5.3). A point pair instance

describes the spatial relationship between a point belonging to one

category and its neighbor belonging to the same or a different cat-

egory. Two- and three-way spatial relationships are indicated by

hyperedges connecting vertices belonging to different categories

(Fig. 1b). Lastly, we use an asymmetric function (e.g., average pool-

ing) to aggregate information across all points neighboring the

center point 𝑣𝑖 . The thickness of different edges shows the contri-

bution of distinct category pairs in the overall representation of 𝑣𝑖 .

Fig. 1 shows the overall framework of the proposed SAMCNet.

This paper makes the following contributions:

• It proposes a dynamic point pair prioritization sub-network

to learn the most discriminative features in N-way spatial

relationships (e.g., tertiary, ternary, etc.) and uses it in a

Spatial-interaction Aware Multi-Category deep neural Net-

work (SAMCNet).

• It experimentally shows that the proposed model outper-

forms existing baseline methods, and is also computationally

more efficient than the competing DNN architecture (e.g.,

SRNet).

• It presents case studies on two cancer datasets which show

the proposed model is able to identify high-order spatial

patterns that are ignored by the related work and has the

potential to advance scientific discovery.

Scope:We aim to identify N-way spatial relationships to help dis-

tinguish between point patterns belonging to two different classes.

Analyzing the presence of noisy points in the building of a neigh-

borhood graph and the evaluation of standard data augmentation

techniques (e.g., rotation) are not considered. Field trials to assess

the clinical value of the proposed method also fall outside the scope

of this study. Patient privacy and the propriety nature of the data

prevent us from publishing the dataset.

Organization: The rest of the paper is organized as follows: Sec-

tion 2 briefly describes an important application domain of this

problem. Related work is reviewed in Section 3. Section 4 formally

defines the problem. Section 5 describes the details of our proposed

work. In Section 6, we present the experimental results and case

study. Finally, Section 7 concludes the paper and outlines some

future research.

2 AN ILLUSTRATIVE APPLICATION DOMAIN

The recent development of multiplex immunofluorescence (MxIF,

Fig. 3a) technology has enabled exploration into the complexity of

tumor-immune microenvironments (TME) within spatially-prese-

rved metastatic tissue and in the therapeutic context of immune

checkpoint inhibitors (ICI). ICI therapy works by augmenting the

antitumor properties of pre-existing tumor-specific CTL, which

become more efficient in infiltrating tumor masses and destroying

cancer cells. Through cyclic rounds of antibody staining, imaging

and dye inactivation, MxIF technology provides a state-of-the-art

method to visualize and identify many cell subtypes (e.g., immune

and malignant) and their corresponding spatial coordinates using

single-cell analysis of formalin-fixed paraffin-embedded (FFPE) tis-

sue sections including metastatic melanoma lymph nodes. With the

continuous refinement of these techniques, it is currently possible

to identify over 50 cellular phenotypic markers (e.g., CD3, FoxP3,

CD14) and their corresponding cellular phenotypic and functional

characteristics within a single tissue section.

Emerging research in this area has begun to highlight the need

for an automated process to analyze the complex spatial relation-

ships among different cellular subsets and functional states in the

context of ICI therapy, in order to identify critical intercellular in-

teractions relevant to clinical outcomes. Furthermore, it is clinically

crucial to examine the importance of cell species along with their

activation status in a spatially informed manner due to the clinical

implications of interactions in close spatial proximity (See Fig. 2).

For example, a CTL will likely be unable to kill a cancer cell if it

is nearby a tumor-associated macrophage that expresses PDL1 on

its surface. In contrast, a CTL is more likely to kill a cancer cell

if it is expressing Granzyme B and is not in close proximity to

FoxP3-expressing regulatory T cells (Treg).
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(a) Amulti-scale spatial representation learning using local reference

characterization and EdgeConv operation. For simplicity, we are only

showing one edge feature.

(b) Learning a point pair importance 𝑎 based on categorical attributes

(node colors) in N-way spatial relationships.

Figure 1: The overall framework of SAMCNet.

Many metastatic diseases (e.g., lung, breast, prostate cancers)

beyond current case studies (e.g., metastasis melanoma) in the

therapeutic context of ICI treatment could benefit from a spatially

informed analysis to reveal new insights. We highlight that direct

contact between immune and malignant cells is needed for CTLs

to kill cancer cells. Therefore, a neighborhood distance should be

chosen to allow direct bio-chemical interactions among tumor and

immune cells. Finally, unlike the cell-count-based methods of the

traditional clinical research, spatial associationmeasures allow iden-

tifying critical spatial relationships relevant to clinical outcomes

in a complex TME landscape. For example, both responder and

non-responder patients undergoing ICI therapy have tissue with

both killer cells (e.g., CTLs) and tumor cells. Therefore, baseline

techniques (i.e., data-driven spatial quantification methods) can

potentially identify the missing mediators between these groups to

improve clinical diagnosis. Our proposedmethod aims to provide an

algorithmic description of the importance of different relationships

to characterize spatial patterns better in a tumor-microenvironment,

potentially revealing insights to enhance the manual visual assess-

ments provided by pathologists.

3 RELATEDWORK

The related work can be classified into two major categories: (1)

Data-driven spatial quantification and (2) Machine-constructed fea-

tures using deep neural networks (DNN).

Data-driven spatial quantification: A spatial association (i.e.,

spatial co-location) is an intuitive representation to help under-

stand the spatial interactions of a multi-category point pattern by

identifying a subset of points frequently located in close spatial

proximity to one another [25]. Spatial association interest measures

(e.g., Pearson correlation, Cross-k, G-cross, Participation index) are

commonly used in spatial data mining to quantify multi-category

Figure 2: Importance of spatial analysis in evaluating the

effectiveness of ICI therapy in killing tumor cells [19].

point patterns. Previously, a spatial association between tumor and

immune cells in breast cancer digitized images of hematoxylin/eosin

(H&E) stained tissues was studied using classical statistical methods

(e.g., Pearson correlation coefficient) after imposing a spatial grid

partitioning on a two-dimensional map of the cell center points

[18]. However, the classical statistics measures are sensitive to the

choice of spatial partitioning. More recent work used neighbor-

graph-based spatial statistical measures such as G-cross to quantify

the spatial association between cancer and immune cells in lung

cancer [3]. The limitation with this approach is that it is used in

isotropic space, with the same intensity regardless of measurement

direction, which may not be enough to capture relevant spatial

interactions (e.g., surrounded by) that might be biologically signif-

icant. Finally, quantifying spatial associations between different

communities (e.g., at the sub-graph-level) [16] does not reveal criti-

cal information regarding the spatial relationship between distinct

categorical points within each community.

Machine-Constructed features using DNN: A new approach

that begins to address these limitations leverages machine-construc-

ted features using a spatial-relationship aware neural network (SR-

Net) [15] to model the spatial relationships between points of dif-

ferent categories. However, SRNet is limited to only binary spatial

relationships, and the importance between distinct binary category

pairs is assumed to be equal. Also, SRNet uses a fixed-neighborhood

distance to construct the input graph to the network, and no op-

erator is defined to work with different sized neighborhoods. All

the feature-based DNNs reviewed in a recent computational pathol-

ogy survey [7] use images, i.e., a regular grid, as the input. Hence,

they cannot handle a simple but significantly important geometric

structure, the point pattern 1.

4 PROBLEM FORMULATION

4.1 Basic Concepts

Definition 4.1. A spatial object is the representation of an entity

or phenomenon in a 2/3-dimensional geographical space, e.g., a

point representing a hospital or a tumor cell.

Definition 4.2. A categorical feature refers to the conceptual

abstraction of a set of spatial objects with the same feature type,

such as cell types, plant species, or a business category.

1Weprovide a detailed description of DNN architectures for point cloud data [21, 22, 29]
in appendix Section C.
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Definition 4.3. Amulti-category point pattern is a collection

of spatial objects with their corresponding categorical features

(e.g., immune and tumor cells). Fig. 3a illustrates the point patterns

between two classes responder and non-responder, indicating two

clinical responses to immunotherapy treatment. Each data point

shows the centroid coordinates of a cell in a pixel and the color of

its corresponding cell type.

Before to understand spatially explainable AI, we need to

define explainable AI (XAI). XAI is creating a suite of machine

learning techniques that produces more explainable models (e.g.,

understood by humans) while maintaining a high level of learning

performance (e.g., prediction accuracy). Interested readers can refer

to [2], which provides a more detailed taxonomy on XAI and related

concepts.

Definition 4.4. Spatially explainable AI classification is the

process of classifying data into a given number of classes and deter-

mining the most discriminative features according to their spatial

arrangement. For example, Fig. 3b shows a simple decision tree

separating responder class from non-responder class at the tumor-

margin region according to the spatial the arrangements between

pairs of cells (e.g., B cells and Regulatory T cells) based on the

participation index values [25].

4.2 Problem Statement

The problem of spatially explainable AI classification can be ex-

pressed as follows:

Input: multi-category point data from two classes

Output:

• A classifier algorithm separating two classes

• Most discriminative explanatory features

Objective: High classification performance on selected metrics

(e.g., accuracy)

Constraints: Points are in a planer Euclidean space

Givenmulti-category point data from two classes (Fig. 3a (a1, a2)),

an example of spatially explainable AI classification is indicated in

Fig. 3b separating two classes (e.g., responder and non-responder).

We used hand-constructed spatial association measures (e.g., partic-

ipation index) as explanatory features (e.g., B cell and Regulatory T

cell, Fig. 3a (a3, a4)). The decision-tree root-node uses a threshold

of 0.43 on the participation index ((B cells, Regulatory T cells), dis-

tance = 50 pixels), which is the minimum of the probability of the

presence of B cells within 50 pixels (17 micrometers) of Regulatory

T cells or vice-versa. We argue that traditional spatial association

measures (e.g., cross-k, participation index) are primarily suited to

describe spatial arrangements between pairs and cannot capture

clinically relevant features (e.g., surrounded by).

Our model has three key building blocks. The first is a multi-

scale local reference frame characterization (LRFC), which takes as

input a neighborhood graph that models the spatial distribution of

one point and its neighbors. The second block uses an EdgeConv

[29] operation to learn local and global information and a semantic

representation by dynamically updating the neighborhood graph

at each layer (Section 5.2). The third is a prioritization sub-network

to distinguish between point pair instances that belong to differ-

ent categories by learning the importance of each distinctive pair

(a) MxIF point patterns of responder (a1) and non-responder (a2)

detailing all cell classes. MxIF point patterns detailing spatial ar-

rangements between B cells and Regulatory T cells (a3, a4).

(b) A simple decision tree to distinguish between responder and non-

responder at the tumor-margin.

Figure 3: Spatially explainable AI classification via a spatial

association measure, participation index (PI).

(Section 5.3). We use an asymmetric function (e.g., average pool) to

aggregate the information of one point and all its neighbors.

5 THE PROPOSED WORK (SAMCNET)

The primary objective of the proposed neural network architec-

ture is to learn N-way spatial relationships in a multi-category

point pattern. The main difference between SAMCNet and tradi-

tional data-driven association interest measures is LRFC, which

allows categorical points belonging to different distributions (e.g.,

clustering versus even distribution) to be represented through a

multi-scale representation, overcoming the inefficiency of intrin-

sically single-scale methods like radial basis function kernels or

discretization. Furthermore, SAMCNet differs from the competing

state-of-the-art DNN architecture SRNet in two distinct ways. First,

it incorporates a point pair prioritization sub-network, which learns

the importance of point pairs in N-way spatial relationships based

on their categorical attributes. Second, the connectivity of nodes

in a locally connected graph allows SAMCNet to learn relevant

high-order spatial patterns based on the input 𝑘 nearest neighbors

and aggregation choice.

5.1 Local Reference Frame Characterization

Given a point set 𝑃 = {𝑝𝑖 = (𝑐𝑖 , 𝑓𝑖 )|𝑝1, ..., 𝑝𝑛}, where 𝑐𝑖 = (𝑥𝑖 , 𝑦𝑖 )

are the spatial coordinates and 𝑓𝑖 is the categorical attribute
2, we

compute directed graph 𝐺 = (𝑉 , 𝐸), where 𝑉 and 𝐸 are the vertices

and edges. We construct𝐺 as the 𝑘-nearest neighbor graph of each

𝑐𝑖 point ∈ IR𝐹 , where 𝐸 = 𝑉 × 𝐾 . Note that the neighborhood

graph of each consecutive layer in SAMCNet relies on the output

of the preceding layer, which is dynamically updated based on

dimension 𝐹 , which represents the feature dimensionality of the

2The categorical feature 𝑓𝑖 associatedwith each𝑝𝑖 is preserved throughout the network
using a skip connection for point pair prioritization sub-network computations (See
Fig. 4).
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given layer. For example, in the beginning, neighborhood graph

𝐺 is constructed as the k-nearest neighbor points of each 𝑐𝑖 point

∈ IR2, which represent the spatial coordinates. This approach allows

the network to learn how to build the graph G utilized in each layer,

rather than using a fixed constant graph established before the

network is evaluated. Reconstructing the neighborhood graph in

the embedding space produced by the hidden layer is empirically

beneficial in related classification tasks (e.g., [29]).

The next step is to use local reference frame characterization

(LRFC) to model the distribution of one point and its neighbor us-

ing only spatial coordinates. This technique allows us to model

the relative distance between a given point 𝑐𝑖 with respect to its

nearest points 𝑐 𝑗 , where 1 ≤ 𝑗 ≤ 𝑘 , into a corresponding edge 𝑒 ′𝑖 𝑗 .
The intuition behind LRFC is that spatial coordinates are illustra-

tive location indicators; using discretization or feed-forward neural

network techniques is insufficient to capture the spatial distribu-

tion due to the lack of feature decomposition between spatial and

categorical attributes. Inspired by a multi-scale periodic represen-

tation of grid cells in mammals [1] and a vector representation of

self-position [10], Mai et al. [17] proposed a multi-scale embedding

method namely, positional encoding 𝑃𝐸, which uses sine and cosine

functions of different frequencies to represent positions in space.

We adopt this idea in our network as follows.

Given a point 𝑐𝑖 in a studied 2D space, 𝑒[𝑐𝑖 ] = 𝐸𝑑𝑔𝑒𝐶𝑜𝑛𝑣(𝑃𝐸𝑠 (𝑐𝑖 )),

where 𝑃𝐸(𝑐𝑖 ) is a multi-scale representation 𝑠 𝑗 , 1 ≤ 𝑗 ≤ 𝑠 , to capture
the distribution of mixture multi-category point patterns. The over-

all formulation of local reference frame characterization (LRFC) is

as follows:

𝑃𝐸𝑠 (𝑐𝑖 ) = [𝑃𝐸𝑠,1(𝑐𝑖 ); ...; 𝑃𝐸𝑠,𝑠 (𝑐𝑖 )], (1)

𝑃𝐸𝑠,𝑗 (𝑐𝑖 ) = [cos(
⟨𝑐𝑖 , 𝑎 𝑗 ⟩

𝜆𝑚𝑖𝑛 · 𝑔𝑠/(𝑆−1)
); sin(

⟨𝑐𝑖 , 𝑎 𝑗 ⟩
𝜆𝑚𝑖𝑛 · 𝑔𝑠/(𝑆−1)

)],

∀𝑗 = 1, 2, 3,

(2)

where 𝑎1 = [1, 0]𝑇 , 𝑎2 = [−1/2,
√
3/2]𝑇 , and 𝑎3 = [−1/2,−

√
3/2]𝑇

are unit vectors, the angles between every pair of vectors is 2𝜋/3;

𝜆𝑚𝑖𝑛 and 𝜆𝑚𝑎𝑥 are the minimum and maximum grid scales; and

𝑔 = 𝜆𝑚𝑎𝑥
𝜆𝑚𝑖𝑛

. We define the embedding along each edge as as the

distance between the center point 𝑐𝑖 and its k-nearest neighbors 𝑐 𝑗 ,

|𝑃𝐸(𝑐𝑖 ) − 𝑃𝐸(𝑐 𝑗 )|), where 1 ≤ 𝑗 ≤ 𝑘 .
5.2 Local and Global Quantification

The EdgeConv operation is defined as edge feature 𝑒𝑖 𝑗 = ℎΘ(𝑐𝑖 , 𝑐 𝑗 ),

where ℎΘ : 𝑅𝐹 × 𝑅𝐹 → 𝑅𝐹
′
is a nonlinear function with a set of

learnable parameters Θ. Lastly, an asymmetric operation (e.g.,
∑

or Max) is applied to aggregate information along all the edge

features neighboring center node 𝑐𝑖 . The choice of ℎΘ is critical

in defining EdgeConv, such as using the dot product between a

set of filters Θ = {𝜃1, ..., 𝜃𝑀 } and image pixels 𝑥 𝑗 in a regular grid

and aggregating the information using
∑

results in a standard

convolution. A detailed discussion of different forms of ℎΘ can be

found in [29].

We have adapted the EdgeConv operation from DGCNN [29] in

our network to learn both global shape structure, captured by the

center coordinates 𝑐𝑖 , and local neighborhood information, captured

by |𝑐𝑖 − 𝑐 𝑗 |. The overall formulation is as follows:

𝑒
′′
𝑖 𝑗 = 𝑙𝑒𝑎𝑘𝑦𝑟𝑒𝑙𝑢(𝜃𝑚 .|𝑃𝐸(𝑐𝑖 ) − 𝑃𝐸(𝑐 𝑗 )|+𝜙𝑚 .𝑐𝑖 ), (3)

where 𝜃𝑚 and 𝜙𝑚 are learnable parameters for local and global

information, respectively, and 𝑃𝐸 is the positional embedding to

represent the relative distances along each edge starting at 𝑐𝑖 .

5.3 Point Pair Prioritization Sub-Network

Thus far, we have built the graph and defined the edge embeddings

in terms of strictly spatial features. If we follow existing point pat-

tern graph-based DNN architectures (e.g., Pointnet++ [22], DGCNN

[29]), we would simply concatenate the categorical features into the

embedded feature space. However, the importance of interactions

between vertices of categorical features 𝑓𝑖 and 𝑓𝑗 ∈N𝑖
would not be

learned in this way. As a result, the model would be confined to

learning individual category features. Instead, the classifier should

learn how to correctly weight diverse point pair associations as

a stronger inductive bias. To this end, we propose a point pair

prioritization layer to learn the importance (i.e., strength) of the

spatial relationship between different category pairs, followed by

an average pooling layer to weigh different subsets accordingly.

As a whole, this layer is analogous to a weighted average pooling

function, where the weights correspond to the importance of the

categorical interaction.

The input to this layer is an edge embedding 𝑒 ′′𝑖 𝑗 , which is the

output from the EdgeConv layer. In the prioritization layer, we

first derive 𝑒𝑖 𝑗 , an edge embedding augmented by the strength of

categorical pairwise association:

𝑒𝑖 𝑗 = ®𝑎𝑇
𝑓𝑖 𝑓𝑗
𝑊𝑒 ′′𝑖 𝑗 , (4)

where𝑊 is a learnable linear transformation on the original em-

bedding to aid prioritization expressivity, and ®𝑎𝑓𝑖 𝑓𝑗 is our learned
pairwise association weight vector for categorical point pair fea-

tures (𝑓𝑖 , 𝑓𝑗 ).

In this formulation, we have included 𝑓𝑗 ∈N𝑖
, where ®𝑎𝑓𝑖 𝑓𝑗 is a

learned self-weighting based only on the categorical feature of 𝑣𝑖 .

We also note that interactions are assumed invariant with respect

to the ordering of the categories; for example, 𝛼C1C2 ≡ 𝛼C2C1 .
Similar to other prioritization (i.e., attention) layers, we then apply a

LeakyReLU (LR) activation function, followed by a softmax function,

resulting in the normalized pairwise association:

𝛼 𝑓𝑖 𝑓𝑗 =
exp(LR(𝑒𝑖 𝑗 ))∑

𝑘∈N𝑖
exp(LR(𝑒𝑖 𝑗 ))

, (5)

where 𝛼 𝑓𝑖 𝑓𝑗 is the learned categorical pairwise association for each

neighbor, such that 𝑓𝑗 ∈ IR𝑘 . With this normalized attention coef-

ficient, 𝛼 𝑓𝑖 𝑓𝑗 , we can calculate the weighted average pooling and

produce the final vertex embedding:

𝑣𝑖 = 𝜎

(
1

|N𝑖 |
∑︁

𝑗 ∈N𝑖

𝛼 𝑓𝑖 𝑓𝑗𝑊𝑒 ′′𝑖 𝑗

)
. (6)

This formulation can be extended to 𝐾 heads, following other

prioritization networks such as GAT [26], where each head learns

a separate categorical pairwise association 𝛼𝑘
𝑓𝑖 𝑓𝑗

and linear trans-

formation weight𝑊 𝑘 followed by an aggregation operation (AGG)

over the different head outputs:

𝑣𝑖 = AGG𝐾
𝑘=1

𝜎

(
1

|N𝑖 |
∑︁

𝑗 ∈N𝑖

𝛼𝑘
𝑓𝑖 𝑓𝑗
𝑊 𝑘𝑒 ′′𝑖 𝑗

)
, (7)

where 𝜎 is a non-linear activation function such as LeakyRelu and

the aggregation operation can take the form of an average or a
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Figure 4: SAMCNet Architecture. The network architecture takes as input a multi-category point set containing 𝑛 points, where

a local reference frame characterization (LRFC) layer calculates an embedding for each point using its spatial coordinates and

neighborhood spatial distribution. The embeddings are then passed into an EdgeConv layer to specify an edge feature set of

size k for each point. The categorical features are passed using a skip connection, where a point pair prioritization sub-network

calculates the importance between a point and its k nearest neighbors belonging to different category pairs. Lastly, an average

pooling function aggregates the information from all 𝑘 points to the center point. Notice that since a K-nn graph is built in the

LRFC layer, the reconstructing of the K-nn graph in the first EdgeConv layer is skipped.

concatenation. Since this layer preserves the identity of the center

vertex, it can also be extended to multiple layers of the network by

maintaining the categorical features of vertices between layers with

a skip connection. We do this by adding point pair prioritization

after each layer’s EdgeConv operation. In the context of hierarchical

feature learning, our network is therefore effectively capable of

learning the importance of categorical N-way interactions in a

hierarchical feature space.

Finally, we note that the choice of aggregation is not limited

to average pooling; for example, one may choose to select a large

number of k-nearest neighbors when building the graph, while

taking only a top-𝑘 ′ subset of highest features to pool, in order

to filter out an overpowering number of weak interactions. Max

pooling can be demonstrated as a special case of this concept, where

only the top-1 of a neighbor’s features is selected.

6 VALIDATION

6.1 Experimental Settings

Evaluation Tasks:We validated our proposed approach with (1) a

comparative analysis to evaluate the proposed SAMCNet against

classical spatial association interest measures and state-of-the-art

DNN architectures on this problem, (2) a sensitivity analysis to

evaluate the impact of key building blocks (e.g., self-prioritization)

along with key parameters on selected performance metrics (Sec-

tion B in appendix), and (3) a feature selection analysis to evaluate

the impact of the prioritization sub-network in learning the

importance of different point pair instances and identify the most

relevant N-way spatial relationships.

Model Architecture: Fig. 4 shows the proposed SAMCNet archi-

tecture. The proposed SAMCNet was implemented in Pytorch. For

local reference frame characterization, the grid-scale, minimal grid

cell size and maximal grid cell size were set to 5, 1, and 100, respec-

tively. The number of k nearest neighbors was set to 6. We followed

the same settings for the 4 EdgeConv layers, residual block con-

nection, batch normalization, activation functions, and dropout as

described in [29]. We used the Adam optimization algorithm with

a learning rate of 10−3 and cross-entropy loss for 200 epochs to

train the SAMCNet. The batch size, momentum, and prioritization

heads were set to 7, 1, 0.9, respectively. All hyper-parameters were

set through tuning on the validation set. DNN candidate methods

were tested with the same setting described above.

Baseline Methods: We compared our proposed framework on

selected classification metrics with the following baseline methods.

First, point patterns were composed of hand-constructed features

using participation index (PI) [25], then PI values were fed into

a (1) decision tree with a max depth of 2 (PI+DT), (2) Random

Forest with similar depth (PI + RF), and (3) fully connected neural

network (PI + NN) with four Relu hidden layers and 2048 neurons.

Under similar settings, we used point patterns composed of cross-k

[13] values fed into similar classifiers previously described, giving

us three more candidate methods: (4) cross-k + DT, (5) cross-k +

RF, and (6) cross-k + NN. We used a fixed-neighborhood distance

of 50 pixels to construct participation index and cross-k values.

Traditional classifiers and fully connected neural network were

implemented with the Python scikit-learn package, with hyper-

parameters set to default values unless otherwise stated. We also

evaluated proposed model with three state-of-the-art DNN archi-

tectures: (7) PointNet [22], a neural network architectures that

directly consume point sets for applications ranging from object

classification to part segmentation; (8) DGCNN [29], a dynamic
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Table 2: Model performance on all datasets.

Model Tumor-Margin classification

Precision Recall F1-Score Acc

PI + DT 0.93 0.93 0.93 0.93

Cross-K + DT 0.60 0.50 0.44 0.50

PI + RF 0.85 0.82 0.82 0.82

Cross-K + RF 0.61 0.61 0.61 0.60

PI + NN 0.32 0.57 0.41 0.57

Cross-K + NN 0.71 0.70 0.71 0.70

PointNet 0.82 0.68 0.66 0.68

DGCNN 0.76 0.46 0.33 0.46

SRNet 0.90 0.89 0.89 0.89

SAMCNet
(ours)

0.97 0.96 0.96 0.96

Model Tumor-Core classification

Precision Recall F1-Score Acc

PI + DT 0.70 0.62 0.64 0.62

Cross-K + DT 0.52 0.72 0.60 0.72

PI + RF 0.73 0.75 0.70 0.75

Cross-K + RF 0.52 0.72 0.60 0.72

PI + NN 0.75 0.75 0.75 0.75

Cross-K + NN 0.52 0.72 0.60 0.72

PointNet 0.68 0.67 0.67 0.67

DGCNN 0.49 0.33 0.29 0.33

SRNet 0.96 0.95 0.95 0.95

SAMCNet
(ours)

0.96 0.95 0.95 0.95

Model Disease classification

Precision Recall F1-Score Acc

PI + DT 0.76 0.77 0.76 0.77

Cross-K + DT 0.85 0.85 0.85 0.85

PI + RF 0.82 0.80 0.78 0.80

Cross-K + RF 0.84 0.82 0.80 0.82

PI + NN 0.84 0.78 0.75 0.78

Cross-K + NN 0.40 0.63 0.49 0.63

PointNet 0.76 0.6 0.48 0.60

DGCNN 0.54 0.57 0.46 0.57

SRNet 0.78 0.77 0.76 0.77

SAMCNet
(ours)

0.94 0.94 0.94 0.94

graph convolutional neural network architecture for CNN-based

high-level point cloud tasks such as classification and segmentation;

(9) SRNet [15], a DNN architecture for binary spatial relationships

in multi-category point patterns.

Dataset: Experiments were conducted on twomulti-category point

pattern cancer datasets from MxIF images. The first dataset was

used for two distinct classification tasks, (1) tumor-margin classi-

fication and (2) tumor-core classification. The second dataset was

used for a (3) disease classification task. In the tumor-margin

classification task, we used 145 FOV point sets indicating two dif-

ferent clinical outcomes of ICI therapy, 68 of which were labeled as

responders, and 77 labeled as non-responders for individuals who

progressed and experienced recurrence in less than a year. In the

tumor-core classification task, we used 103 FOVs point sets, 30

of which were labeled as responders and 73 non-responders, ex-

tracted from tumor area of metastatic lymph nodes. In the disease

classification task, we used 143 point sets of chronic pancreatitis

and 53 pancreatic ductal adenocarcinomas (PDAC).

Evaluation Metrics: The model performance was measured by

using the weighted average of precision, recall, F1-score, and accu-

racy (ACC).

Data Preparation: In each classification task, we divided the data

into 80% training and 20% testing. Ten percent of the training set

was selected to be the validation set. Due to the limited number of

learning samples, we used data augmentation techniques, whereby

each learning sample was rotated 12 degrees clockwise five times

during the training procedure. We restricted rotation to only five

times due to potential overfitting issues. We uniformly sampled

1,024 points from each point set for the underlying classification

task.

Platform:We used a K40 GPU composed of 40 Haswell Xeon E5-

2680 v3 nodes. Each had 128 GB of RAM and 2 NVidia Tesla K40m

GPUs. Each K40m GPU has 11 GB of RAM and 2880 CUDA cores.

6.2 Experimental Results

Comparative Analysis: We tested the candidate methods on the

three classification tasks described in Section 6.1. Results on selected

classification metrics are presented in Table 2. Results show the

superiority of the proposed SAMCNet over traditional data-driven

spatial association interest measures and existing DNN competi-

tion (i.e., PointNet, DGCNN, SRNet). Most notably, we were able to

improve accuracy over SRNet by a margin of 7.0%, and 17.0% on

tumor-margin, and disease classifications, respectively. These re-

sults suggest that local reference frame characterization (LRFC) and

specifying different weights to points of the same neighborhood

with the distinct categorical attribute are beneficial.

Table 3: Model time complexity on all datasets.

Model
Time (second)

tumor-margin tumor-core disease

SRNet 30.51 25.34 19.18

SAMCNet 4.04 2.41 5.77

In addition, we used the model inference time on the three clas-

sification tasks as a measure of the model’s computational time

complexity and examined the trade-off between time complexity

and classification accuracy. In this experiment, we compared our

proposed model only with SRNet since it is specifically designed to

learn spatial associations in multi-category point patterns. Result

showed SAMCNet is not only more accurate than SRNet, but it also

runs from 3 to 10 times faster on the three classification tasks. Table

3 provides the details on each classification task. Pytorch Profiler 3

was used to measure the inference time across different candidate

methods.

Sensitivity Analysis: To evaluate the performance of the pri-

mary building blocks inside our suggested DNN architecture, we

asked: How does the model perform in the presence and absence

of important components? To answer this, we incrementally added

key elements of the model (e.g., LRFC, self-prioritization (self-prt),

neighbor-prioritization (neighbor-prt), etc.) and assessed perfor-

mance using a variety of classification measures.

Results on selected classification metrics are presented in Ta-

ble 4. The results show that using a prioritization sub-network is

beneficial to filter out the exponential number of weak interac-

tions caused by center points (e.g., center cells) and neighboring

points (e.g., neighboring cells). In addition, it can be observed that

the local reference frame characterization (LRFC) plays a critical

role in representing relative distances and mixture distributions

caused by neighboring points (e.g., cells), where LRFC combined

with a prioritization sub-network (i.e., self or neighbor prioritiza-

tion) provides better classification performance in most cases. This

last result suggests that the proposed model performs best when

local reference frame characterization layer is integrated with the

point pair prioritization sub-network as a whole.

Impact of Prioritization Sub-network: The goal of this experi-

ment was to demonstrate the interpretability of SAMCNet by mea-

suring the impact of various point pair values (e.g., contribution

between distinct cells) for distinguishing between point patterns

of different classes (e.g., responder and non-responder). However,

DNN architectures require non-linear activation functions for learn-

ing complex configurations, making ML models hard to interpret

and this task challenging. To address this problem, we separated

3https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
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Table 4: Model performance based on different building blocks on all datasets.

Model Tumor-Margin classification

Precision Recall F1-Score Acc

Only LRFC 0.64 0.61 0.6 0.61

Only self-prt 0.94 0.93 0.93 0.93

Neighbor-prt 0.86 0.86 0.85 0.86

LRFC+
self-prt

0.89 0.89 0.89 0.89

LRFC+
Neighbor-prt

0.93 0.93 0.93 0.93

self-prt +
Neighbor-prt

0.86 0.82 0.81 0.82

Entire model 0.97 0.96 0.96 0.96

Model Tumor-Core classification

Precision Recall F1-Score Acc

Only LRFC 0.44 0.66 0.53 0.67

Only self-prt 0.83 0.81 0.81 0.81

Neighbor-prt 0.83 0.81 0.81 0.81

LRFC+
self-prt

0.87 0.86 0.86 0.86

LRFC+
Neighbor-prt

0.87 0.86 0.86 0.86

self-prt +
Neighbor-prt

0.85 0.81 0.78 0.81

Entire model 0.96 0.95 0.95 0.95

Model Disease classification

Precision Recall F1-Score Acc

Only LRFC 0.66 0.66 0.66 0.66

Only self-prt 0.84 0.83 0.82 0.83

Neighbor-prt 0.83 0.83 0.83 0.83

LRFC+
self-prt

0.87 0.83 0.82 0.83

LRFC+
Neighbor-prt

0.9 0.89 0.88 0.89

self-prt +
Neighbor-prt

0.87 0.86 0.86 0.86

Entire model 0.94 0.94 0.94 0.94

Figure 5: The relative importance values between distinct

cells that were learned through different layers of the point

pair prioritization sub-network.

the feature vector indicating the relevance of distinct point pairs

from the pooling layer and non-linear activation functions. We

transformed the feature vector from each distinct point pair to a

scaler value 𝑝𝑝𝑖 using a vector norm [14] to measure the magnitude

(i.e., importance) of the learned associations. We divided each 𝑝𝑝𝑖
by the maximum value found across all point pair scalars to further

normalize them for a direct comparison.

The feature vectors were composed of distinct cell values ex-

tracted at layer-1 and layer-4 from the point pair prioritization

sub-network, an indication of the ability of SAMCNet to learn hier-

archical feature representations. These values represent a vector

norm of ®𝑎𝑇
𝑓𝑖 𝑓𝑗

in equation 5. Results are presented in Fig. 5, where it

can be observed that the spatial interactions between points within

the same category (e.g., {Tumor Cell, Tumor Cell}, {Vasculature, Vas-

culature}) remain critical across all layers. By contrast, the spatial

interactions between distinct pairs (e.g., {Tumor Cell, Macrophage})

are adjusted through out the different prioritization layers, while

still remaining relatively important in learning the N-way spatial

relationships separating the two distinct classes (e.g., responder and

non-responder) in the tumor-core. Note that we chose the tumor

enriched areas of the lymph node (tumor-core) to interpret the pro-

posed SAMCNet because tumor-core is primarily used in oncology

analysis to determine the efficacy of ICI therapy by examining the

various spatial interactions and variability between different cell

species.

Most Relevant N-way Spatial Relationships: Thus far, we have

demonstrated how the most distinctive point pairs are discovered;

Table 5: Most relevant spatial relationships

Rank Center cell Neighboring cells

1 [Macrophage] [Macrophage, Neutrophil, Tumor Cell]

2 [Tumor Cell] [Tumor Cell, Vasculature]

3 [Tumor Cell] [Macrophage, Tumor Cell]

4 [Vasculature] [Tumor Cell, Vasculature]

5 [Vasculature] [Neutrophil, Tumor Cell,Vasculature]

but the main purpose of this work is to show SAMCNet’s abil-

ity to identify the most significant high-order spatial interactions.

Hence, each sample point pattern was represented by extracting

its corresponding feature vectors composed of all N-way spatial

relationships (e.g., tertiary, ternary) with respect to its center and

neighboring points (e.g., different cell categories). To be more pre-

cise, the trained SAMCNet was used to extract features after the

point pair prioritization network at layer-4, where the model has

learned both spatial and categorical associations. Thus, we have a

feature vector ®𝑣 = 𝑀𝑒𝑎𝑛([𝑘 ′′ ∗ 𝑓 ′]) for each N-way spatial relation-

ship, where each composed of an aggregation (e.g., mean) over 𝑘 ′′

representing the distinct point categories located around the center

point and 𝑓 ′ representing the embedded feature space (e.g., 256).

An example of a 3-way spatial association is having a tumor cell

as a center cell (i.e., data point) and unique counts of macrophages

and neutrophils as neighboring cells.

We evaluated the importance of the identified spatial relation-

ships, namely, the SAMCNet representation for different category

subsets, through permutation feature importance. This metric mea-

sures the importance of a given feature by the increase observed in

the prediction error caused by randomly shuffling the feature space.

The relevance of the discovered N-way spatial relationships was

measured in this experiment by the classification accuracy after

exchanging the corresponding elements in the representation vec-

tors. The top five most relevant spatial associations found within

the tumor-core are shown in Table 5.

6.3 Clinical Implications

While the pro-tumor (non-responder) relationship between tumor-

associated macrophages and tumor-associated neutrophils has been

studied in past works [6], its nature remains not entirely clear.

Tumor-associated macrophages appear to play a protective role

against antitumor immunotherapy, and the association of tumor-

associated macrophages with tumor cells preferentially in patients

who do not respond is consistent with established biology. How-

ever, added to this is the effect of tumor-associated neutrophils

which also appear to promote tumor cell survival and lack of re-

sponse to immunotherapy. The latter phenomenon is less well

understood, with notable findings indicating that tumor-associated

neutrophils are relevant to tumor progression but not necessarily to
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immunotherapy resistance or a relationship with tumor-associated

macrophages.

These findings suggest a previously unknown shared biology

among these two populations of myeloid cells (macrophages and

neutrophils) and provide new insight into the possibility of a rela-

tionship between tumor-associated macrophages and tumor-associ-

ated neutrophils as they engage tumor cells in the tumor core. This

is an intriguing pattern that has not yet been studied. Future re-

search is warranted to understand the relationships of macrophage,

tumor cell, and neutrophil sub-populations in these interactions.

7 CONCLUSION AND FUTURE WORK.

In this paper, we propose SAMCNet, a neural network architecture

with local reference frame characterization and a point pair priori-

tization sub-network. SAMCNet provides a promising way to help

understand the spatial configuration of multi-category point pat-

terns and most relevant N-way spatial relationships. Experimental

evaluation shows that the proposed model outperforms existing

DNN techniques.

In the future, we plan to investigate a dynamic local reference

frame characterization layer to learn the spatial distribution of an

embedded feature space between a given point and its neighbor. We

also plan to identify a multi-category public benchmark dataset for

a larger and broader evaluation of the proposed method. We plan

to extend this work to consider spatial variability by learning point

pair importance based on density and distribution of multi-category

points in different sub-regions.
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A REPRODUCIBILITY

Code and Implementation Details: To promote open science

and reproducibility, we made the code used in the experiments

available through Github 4.

Patient privacy and the propriety nature of the data prevent

us from publishing the dataset. A recent paper (Astropath) high-

lighted a similar dataset used in the experiments on big data for

cancer immunology and conducting spatially-preserved analysis

[4]. This dataset may use to evaluate the capability of the proposed

model. However, this dataset was not publicly available at the time

of submission. A more detailed discussion on this can be found

here: https://ventures.jhu.edu/news/astronomy-pathology-biopath-

biomarkers-cancer/.

Table 6 presents the details of all parameters used to train SAM-

CNet.

Table 6: Details of the parameter settings in proposed model.

Parameters Value

Epoch 200

Batch Size 7

Learning rate 0.001

momentum 0.9

num_points 1024

num_heads

(prioritization head)
1

dropout 0.5

k (nearest neighbor) 6

emb_dims

(shared fully-connected layer to

aggregate multi-scale features)

1024

min_grid_scale 1

max_grid_scale 100

grid_scale_count 5

B ADDITIONAL EXPERIMENTS

We further evaluated our proposed model by varying key param-

eters, namely grid scale count, k-nearest neighborhood size, and

prioritization head count.

As shown in Fig. 6a, the trends show that classification accuracy

is sensitive to the choice of scale representation, where increasing

grid-scale does not guarantee better performance. For example, the

classification accuracy drastically dropped to lower than 0.75% in

disease classification when the grid-scale count (i.e., s in equation

1) for a multi-scale representation was set to 10. While we did

not thoroughly test all feasible grid-scale counts, our intuition is

that representing the relative distance in an embedded space very

close or even higher than the first multi-layer perceptron (i.e., first

EdgeConv in layer-1); makes it challenging to approximate local

information.

We tested our model with different sizes of 𝑘 nearest neighbor-

hoods. As shown in Fig. 6b, a large k neighbor size results decreases

classification performance. Beyond a certain threshold density, the

4https://github.com/majid-farhadloo/SAMCNet_2022

locally connected neighborhood graph fails to approximate geo-

desic distance and destroys the geometry of each patch, as discussed

in [29]. This confirms result the hypothesis that a large size of 𝑘

allows an overpowering amount of weak point pair interactions

contributing to the overall representation of the center node. Hence,

as discussed in Section 5.3, one may investigate in a combination

of different aggregation operations as the size of K increases.

Lastly, we also tested SAMCNet with a different number of heads,

𝐻 = {1, 2, 4}, at each layer. As shown in Fig. 6c, our point pair con-

vincingly learned point pair interactions between various categori-

cal attributes. This implies that compared to a multi-head attention

network, our one-head prioritization sub-network provides the best

trade-off in model complexity, computational time complexity, and

classification performance in terms of learning fewer parameters

and taking less time.

C DNN ARCHITECTURES FOR POINT
PATTERN CLASSIFICATION

The success of convolutional neural networks (CNNs) in many

pattern recognition tasks (e.g., [5, 9]) has inspired researchers to

generalize convolution-like operations to directly apply to 2D/3D

point cloud data without any computationally expensive interme-

diate conversion layers. PointNet [21], the first neural network

architecture that directly applies to point cloud data, learns point

features independently through several fully connected neural net-

work layers and aggregates them using an asymmetric function

operation (e.g., Max pooling). PointNet++ [22], a variation of Point-

Net, accounts for the local structure by applying a graph coarsening

operation and a shared PointNet recursively to a set of local points

chosen by farthest point sampling and subsequently their k-nearest

neighbors. However, these techniques are limited in learning fine-

grained local structures since they largely treat points indepen-

dently at a localized scale to preserve permutation invariance.

DGCNN [29] proposes a dynamic graph CNN that dynamically

updates the graph network at each layer by learning both local and

global information. This work is inspired by PointNet using a simple

operation known as EdgeConv, where rather than independently

applying to individual points, a locally connected neighborhood

graph is constructed to exploit from both center nodes and edge

features.

Many other efforts have been made to learn local structure. How-

ever, these approaches are not designed to learn spatial relationships

in multi-categorical point sets. In addition, they do not fully exploit

the spatial distribution of points beyond simply measuring rela-

tive distance or applying a discretization or feed-forward neural

network to coordinates.

D BACKGROUND: SPATIAL CO-LOCATION
MEASURES.

Cross-K Function: Spatial statistics [13] uses the cross-K func-

tion, a generalization of Ripley’s K function, to detect spatial re-

lationships between point patterns with more than one feature.

The cross-K function 𝑘(ℎ) for binary spatial features is defined as

𝐾𝑖 𝑗 (ℎ) = 𝜆
−1
𝑗 𝐸 |# type 𝑗 instances within distance ℎ

of a randomly chosen type 𝑖 instance|, where 𝑖 and 𝑗 represents two
category types, 𝜆 𝑗 is the density of type 𝑗 instances,ℎ is the distance,
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(a) Grid-Scale count (b) Number of nearest neighbors, k (c) Number of heads in prioritization sub-network.

Figure 6: Key parameters evaluation.

and 𝐸 |.| is the expectation. The cross-k function could be estimated

in the form of 𝐾ˆ𝑖 𝑗 (ℎ) =
1

𝜆𝑖𝜆 𝑗𝑊
Σ𝑘Σ𝑙 𝐼ℎ(𝑑(𝑖𝑘 , 𝑗𝑙 )), where 𝑑(𝑖𝑘 , 𝑗𝑙 ) is the

distance between the 𝑖𝑘 instance and the 𝑗𝑙 instance, 𝐼ℎ is an indi-

cator function, and𝑊 is the study area [25]. The value of cross-k

is a function of neighborhood distance ℎ, which implies the spatial

relationship between categorical points at different scales.

Participation Index: The interest measure for co-location pat-

terns most related to the cross-k function is the participation index.

The participation index, an upper-bound approximation of the cross-

K function, possesses an anti-monotone property that can be used

for computational efficiency. The participation index is based on

another interest measure, the participation ratio. The participation

ratio 𝑃𝑟 (𝐶, 𝑓𝑖 ) of feature 𝑓𝑖 in a co-location pattern C = {𝑓1, ..., 𝑓𝐾 },
1 ≤ 𝑖 ≤ 𝑘 , is the fraction of spatial objects of feature 𝑓𝑖 in the

neighborhood of instances of co-location C. Thus, participation

index 𝑃𝑖(𝐶) is defined as the minimum participation ratio of the

features in a co-location pattern, that is 𝑃𝑖(𝐶) =𝑚𝑖𝑛𝑓𝑖 ∈𝐶 {𝑃𝑟 (𝐶, 𝑓𝑖 )}.
The overall formulation of the participation ratio is as follows:

𝑃𝑟 (𝐶, 𝑓𝑖 ) =
Number of distinct 𝑓𝑖 in instances of C

Number of 𝑓𝑖
(8)

From this equation, it can be observed that the value of the

participation index is between 0 and 1. A large 𝑃𝑖(𝐶) value shows

that events of 𝑓𝑖 tend to be located in close spatial proximity of

other events of features in C. We used the cross-k function and

participation index to quantify the spatial relationship between

categorical point sets. For example, given a point set containing

points belonging to 𝑔 categories and a set of neighborhood distance

thresholds 𝐻 = {ℎ1, ..., ℎ𝑠 } and 1 ≤ 𝑖 ≤ 𝑠 , there will be 𝑔(𝑔 − 1) ∗ 𝑠
cross-k functions or participation index pairs.

E LRFC

Local reference frame characterization is proposed based on the

following theorem whose proof is given in [10].

Theorem E.1. Let Ψ(𝑥) = (𝑒𝑖 ⟨𝑎 𝑗 ,𝑥 ⟩, 𝑗 = 1, 2, 3)𝑇 ∈ C3 where

𝑒𝑖𝜃 = cos𝜃 + 𝑖 sin𝜃 and ⟨𝑎 𝑗 , 𝑥⟩ is the inner product of 𝑎 𝑗 and 𝑥 .
𝑎1, 𝑎2, 𝑎3 ∈ R2 are 2D vectors such that the angle between each pair

is 2𝜋/3,∀𝑗, ∥𝑎 𝑗 ∥= 2
√
𝛼 . Let 𝐶 ∈ C3×3 be a random complex matrix

such as 𝐶 ∗ 𝐶 = 𝐼 . Then 𝜙(𝑥) = 𝐶Ψ(𝑥), 𝑀(∆𝑥) = 𝐶𝑑𝑖𝑎𝑔(Ψ(∆𝑥))𝐶∗
satisfies

𝜙(𝑥 + ∆𝑥 ) = 𝑀(∆𝑥 )𝜙(𝑥 ) (9)

and

⟨𝜙(𝑥 + ∆𝑥 ), 𝜙(𝑥 )⟩ = 𝑑(1 − 𝛼 ∥∆𝑥 ∥2) (10)

where 𝜙(𝑥 ) is the representation of location 𝑥 , 𝑑 = 3 is the dimension

of 𝜙(𝑥 ), and ∆𝑥 is a small displacement from 𝑥 .

Ψ(𝑥 ) is represented as a concatenation of the position embedding

(𝑃𝐸) at 𝑆 scales.
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