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Abstract

Controllers are often tuned during plant commissioning, with a fixed process model.
However, over time degradation can occur in the process, the process model and the
controller, making it necessary to either re-tune the controller or re-identify the process
model. Authors have proposed a variety of approaches to identify plant-model mismatch
(PMM) and control performance degradation (CPD). While each approach may have its
own advantages and disadvantages, they are generally designed to function on different
timescales. The differing timescales result in the need for a multi-level hierarchical
approach to monitor, detect, and manage PMM and CPD, as illustrated through a
continuous pharmaceutical manufacturing application, i.e., a direct compression tablet
manufacturing process. This work also highlights the requirement for index-based
metrics, that enable the impact of PMM and CPD to be quantified and assessed from a
control performance monitoring perspective, to aid fault diagnosis through root cause
analysis to guide maintenance decisions for continuous manufacturing applications.

Keywords: control performance monitoring, plant-model mismatch, nonlinear model
predictive control.

1. Introduction

The pharmaceutical manufacturing industry is being pushed to transition from batch to
continuous process operation due to potential improvement in process controllability and
product quality. Additional factors such as the development cost of new medicines makes
it both desirable and feasible to produce smaller annual volumes of targeted dosages for
smaller patient populations. Due to stringent regulations placed by regulatory bodies, the
development of reliable real-time process monitoring, control and management
approaches is of crucial importance, so that deviations in critical material (CMAs) and
critical quality attributes (CQAs) can be minimized (Su et al., 2019). These include the
need for efficient estimation and control frameworks, and algorithms to monitor these
frameworks to identify and quantify plant-model mismatch (PMM) and control
performance degradation (CPD). Quantification of PMM and CPD can in turn support
higher level fault detection and diagnosis efforts.

Identification and management of PMM and CPD has received significant attention in the
control literature. PMM can arise in the continuous manufacture of oral solid dosage for
several reasons, e.g., the feeder refill step can introduce disturbances that can affect
CMA s such as bulk density (Destro et al., 2021), and this can in turn result in deviations
in the CQAs. A minimum variance-based assessment criterion was proposed by (Harris,
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1989) to assess the condition of the working control loop but was limited to single-input-
single-output (SISO) systems. More recently, partial correlation coefficient (PCC)-based
and mutual information (MI)-based approaches were proposed by (Badwe et al., 2009;
Chen et al., 2013) to identify PMM: both approaches are well-suited to handle cases
where there is high correlation between manipulated variables. Advanced estimation and
control strategies such as the moving horizon estimation-based nonlinear model
predictive control (MHE-NMPC) framework have also been employed for continuous
pharmaceutical manufacturing applications to handle the impact of PMM (Huang et al.,
2021). While identification of PMM is important, quantifying the PMM and assessing its
impact on control loop behavior will aid higher level decision making related to
maintenance and safety. (Wang et al., 2012) proposed a control performance index (CPI)
and loop robustness index (LRI), based on the integral absolute error and sensitivity
margin to quantify PMM and CPD, respectively. Each of the methods described thus far
are computed on different timescales, e.g., LRI requires identification of the transfer
functions for the MIMO system and can only be carried out during regularly scheduled
maintenance, while MI can be computed more frequently using closed operating data,
and the MHE-NMPC framework is designed to operate on a significantly shorter
timescale. Therefore, it is important to develop a multi-level hierarchical approach to
utilize the quantitative information regarding PMM and CPD from different timescales,
that will further support root cause diagnosis efforts and aid higher-level maintenance
decisions for continuous pharmaceutical manufacturing applications.

To summarize, since the LRI which is based on the sensitivity margin is limited in
applicability to SISO systems, this work seeks to extend its applicability by utilizing the
disk margin proposed by (Seiler et al., 2020) for MIMO systems. This work also proposes
a multi-level hierarchical framework to handle metrics that quantify PMM and CPD on
different timescales to support higher level decision making related to safety and
maintenance. Practical applicability will be demonstrated through an illustrative example
that focuses on the continuous manufacture of oral solid dosage. The rest of this work is
organized as follows. In Section 2, components of the hierarchical framework will be
explained. An illustrative example using a rotary tablet press will be presented in Section
3, along with a discussion on the results. Concluding remarks will be presented in Section
4.

2. Methodology

The aim of this work is to propose an approach that enables efficient interpretation and
management of quantitative information obtained from different metrics on different
timescales to support higher-level fault detection and diagnosis efforts which in turn aid
decision making related to maintenance and safety. The Quality-by-Control (QbC)
framework proposed by (Su et al., 2019) presents a 3-level hierarchical framework for
control that includes equipment-based control at Level 0, process analytical technology
(PAT)-based property feedback control at Level 1, and model-based supervisory control
at Level 2. This work seeks to demonstrate that the framework can incorporate
quantifiable metrics to carry to enable multi-level control performance monitoring. A
schematic illustration of the multi-level hierarchical framework is presented in Figure 1.
Like the original QbC framework, Level 2 hosts the MHE-NMPC framework where
online estimation and control is accomplished. Level 2 operates on the shortest timescale,
e.g., in seconds. Metrics such as the integral absolute error (IAE), magnitude-to-product
(M2P), and duration-to-reject (D2R) serve as preliminary indicators that monitor the
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effectiveness of the framework. This information is utilized to determine if attention need
to be paid to the metrics from Level 3. Level 3 operates on a longer timescale, e.g., in
minutes or hours depending on process dynamics, where closed loop operating data is
utilized to compute the MI and covariance matrix-based indices. The MI index allows the
engineer to determine the number of input-output channels affected by PMM and identify
these channels. The covariance matrix-based approach proposed by (Yu and Qin, 2008)
is utilized to track CPD. If severe deterioration in either metric is identified at Level 3,
attention needs to be paid to the metrics from Level 4. LRI for Level 4 can only be
computed during scheduled maintenance as it requires the collection of open-loop data to
re-identify transfer functions. The CPI for Level 4 also provides information regarding
the impact of PMM on control loop behavior and can be used in combination with the
LRI to determine the urgency of required maintenance. It should be noted that the
proposed hierarchy enables early detection of PMM and CPD through the monitoring of
metrics from different levels and time scales. Metrics obtained from all levels can be fed
into an analytics platform to aid maintenance decision making and root cause analysis.
However, this is out of the scope of the current work as it will require monitoring metrics
from other components of the process, e.g., condition of unit operations, to demonstrate
the strength of analytics platform, and will be addressed in subsequent work.

Control Performance Index
Loop Robustness Index
Mutual Information for PMM
Covariance matrix for CPD
MHE-NMPC
Control

Figure 1. Schematic illustration of multi-level hierarchical framework for control performance
monitoring.
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3. Case Study

The case study presented in this work utilizes the process model for the rotary tablet press
provided by (Huang et al., 2021) as the benchmark. The system consists of five input
variables: dosing position (Dose), pre-compression thickness (Ptck), main compression
thickness (Mtck), turret speed (Tret), and concentration of glidant (Csil), and four
controlled variables: tablet weight (Twei), pre-compression force (Pcom), production rate
(Prod), and tensile strength (Tstr). A process schematic listing the unit operations and
available PAT measurements is provided in Figure 2. Model parameters for three cases
of PMM (no PMM, mild PMM, and high PMM) are provided by (Huang et al., 2021).

3.1. Level 2 Monitoring

Monitoring indices for Level 2 for this case study are available in (Huang et al., 2021),
where the ability to distinguish between high PMM and the other two cases was
demonstrated. However, due to the effectiveness of the MHE-NMPC framework, the
indices were unable to clearly distinguish between the case of no PMM and mild PMM,
as PMM was effectively managed when mild. Therefore, attention needs to be paid to the
indices from Level 3 to determine if the three cases of PMM can be clearly distinguished.

3.2. Level 3 Monitoring

For Level 3, MI for PMM functions by examining the correlation between the error
residuals and the manipulated variables. A pseudo-binary random signal (PRBS) was
utilized to provide sufficient excitation to the system to compute the MI metrics. A
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summary of the results for all three cases of PMM is provided in Table 1. While the level
of PMM cannot be easily visualized using the raw MI values, the percentage difference
compared to the base case (no PMM) makes quantification of PMM straightforward. A
threshold of 10% was set for this case study. For mild PMM, five input-output channels
showed PMM, while seven input-output channels were identified for high PMM. The
channels experiencing degradation are highlighted in yellow. The percentage increase is
also significantly higher for high PMM. This result highlights the need for Level 3
monitoring indices due to its ability to distinguish between varying degrees of PMM.

Table 1. Summary of mutual information metrics.
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Figure 2. Process schematic.

The covariance matrix-based assessment criterion utilized in this work was proposed by
(Yu and Qin, 2008), where a generalized eigenvalue analysis is used to assess control
performance. Using the case of no PMM for demonstration purposes, this case study
examined three different scenarios of controller tuning, where the parameters and their
values are provided in Figure 3, with the prediction horizon, control horizon, and past
window of measurements in the MHE framework denoted by N, N, and Npas,
respectively. An eigenvalue greater than 1 implies degraded performance for a particular
control loop, and a value lower than 1 implies improved performance. A summary of the
generalized eigenvalues, and their confidence intervals is provided in Table 2.

Table 2. Summary of generalized eigenvalue analysis for controller tuning.

Adequate Tuning Poor Tuning

Loop 1 2 3 4 1 2 3 4
Eigenvalue | 1.20 | 1.02 | 1.00 | 0.99 | 2.38 | 1.07 | 1.04 | 0.94
Lower Limit| 1.09 | 0.93 | 0.91 [ 0.90 | 2.17 | 0.97 | 0.94 | 0.85
Upper Limit| 1.31 | 1.11 | 1.09 | 1.08 | 2.59 | 1.17 | 1.13 | 1.02

For cases of adequate and poor tuning the lower limit of the confidence interval for one
loop is greater than 1, confirming degraded performance. This result is important to note
as the difference between adequate and ideal tuning cannot readily be distinguished
visually from the time series plots (see production rate in Figure 3 (a) and (b)).



A Hierarchical Approach to Monitoring Control Performance and 1091
Plant-Model Mismatch

=20

——Mnasureme nt = Sel point - Mods!

25:) Ideal‘ Tuning: Np=§0, N;] 0, N, =30 . (an) Adequate Tuning: N;=10, N.=5, N,

=T i — et poin - Mol |

500 1000 1500 2000 2500 3000
Time(s)

=12 12 .
£ z ]
ELL £ |
=0 . = . |
[ S SR WIS B ) SIS G i W
= gl " L . L g T T
o 500 1000 1500 200 2500 3000 o 500 1000 1500 2000 2500 3000
Time(s) Time(s)
! 4
o 7
£o £
£ 6 ' ‘ =6 f |
F 2 o 2
0 500 1000 1500 2000 2500 3000 o 500 1000 1500 2000 2500 3000
Time(s) Time(s)

(c) Poor Tuning: N,=3, N=2, N, =10

m;

——Muasurement — St point. - Madel | |

500 1000 1500 2000 2500 3000
Time(s)

Tstr (MPa)

Figure 3. Time-series plots for different cases of controller tuning.

3.3. Level 4 Monitoring

Level 4 monitoring indices, CPI and LRI, were designed to be utilized together for
decision making. CPI is based on the IAE and provides a means to compare the
benchmark performance to current operation. While CPI is a useful indicator, the LRI
provides additional information regarding the stability and robustness of the system. To
enable use of the LRI for MIMO systems, this work utilizes the disk margin proposed by
(Seiler et al., 2020) instead of the sensitivity margin obtained from the Nyquist plot, to
make it easier to quantify and visualize the robustness of different input-output channels.
Computing the LRI is a 3-step process that involves: (1) identification of the open-loop
transfer functions of the MIMO system, (2) computation of disk margin for all channels,
(3) computation of LRI for all channels. A summary of the CPI and LRI values for the
same case study presented by (Huang et al., 2021) is provided in Table 3 and Table 4,
respectively. Negative values for both the CPI and LRI indicate degradation in control
performance and loop robustness. As the level of PMM increases, the CPI values become
increasingly negative, indicating increased degradation in control performance. In this
example, the LRI for most channels (with the exception of turret speed-tensile strength
channel) are also increasingly negative in the presence PMM, implying that the robustness
and stability of those channels are affected as well, requiring maintenance actions. The
channels with no values were open loop unstable for both the benchmark and monitored
cases. This case study demonstrated how metrics from the different timescales can be
evaluated to determine if maintenance actions are required. Indices from the shortest
timescale, i.e., Level 2, evaluate the feasibility of continued operation, but the indices
from Levels 3 and 4 allow process engineers to periodically evaluate the urgency of
required maintenance.
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Table 3. Summary of CPI metrics for different cases of PMM.

Twei | Pcom | Prod | Tstr
No PMM | 0.000 | 0.000 | 0.000 | 0.000
Mild PMM|-0.007 | -0.072 | -0.421 | -0.157
High PMM|-0.389 | -0.214 | -0.657 | -0.305

Table 4. Summary of LRI metrics for different cases of PMM.

(a) Mild PMM (b) High PMM
Twei | Pcom | Prod Tstr Twel | Pcom | Prod Tstr
Dose | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
Ptck [-0.0228 - -1.0000 - -0.0671 - -1.0000 -
Mtck (-0.0029 |-0.0174 |-0.0681 - -0.0089 | -0.0464 |-0.1101 -
Tret | 0.0000 | 0.0000 (-0.0086 | 0.0311 |-0.0004 | 0.0000 |-0.0160 | 0.0257
Csil - - - - - - - -

4. Conclusions

This work demonstrated how the QbC framework could be applied to enable multi-level
control performance monitoring by incorporating indices from different timescales.
Future work includes the development of a data analytics platform to aid decision making
for continuous manufacturing industries, and experimental validation on the pilot plant at
Purdue University.
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