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1 Flood Risk of Embanked Areas and Potential Use of Dredge Spoils as

2 Mitigation Measures in the Southwest Region of the Ganges-
3 Brahmaputra-Meghna Delta, Bangladesh
4 Abstract

5 In the 1960s, earthen embankments, locally known as polders, were first

6 constructed in the Ganges-Brahmaputra-Meghna (GBM) delta with the

7 intention of protecting agricultural lands from salinity; however, unintended
8 consequences of the barriers negatively impact the region. Once-active

9 distributary channels have morphed into terminal, headless tidal channels as
10 the sediment-laden water that was once dispersed across the tidal deltaplain
11  is now restricted by embankments. Elevation loss within embankments and
12 channel siltation adjacent to embankments are deleterious consequences of
13 hard engineering and pose significant flood risk when effective sea level rise
14 is considered. The purpose of this study is to assess the current and future
15 flood risks of the embanked areas in the southwest region of the GBM delta
16 and to expand on the potential for local-based solutions (e.g., mud plinths
17 and embankments). We propose a novel source of material for these

18  structures—repurposed dredge spoils.

19 Project sites are along terminal tidal channels proximal to coastal towns in
20 the southwest region of the delta. We calculate here as the effective sea

21 level rise will continue to increase in the years to come, the flood risk will
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correspondingly increase (>67%). Geospatial analyses reveal several
prominent tidal channels have reduced in width over the last 30+ years, and
recent dredging operations removed ~1.7 x 10° m3 of sediment infill. Using
conservative values, we estimate the dredge spoils could be used to elevate
~20,000 houses on mud plinths or raise 18 km of existing embankments. On
a delta-wide scale, if all infilled tidal channels were dredged to 10% of their
original widths, ~547,000 houses could be raised above the flood levels and
~500 km of embankments could be elevated. With a mean household
population of 4.3 people, repurposing dredge spoils can positively impact

~2.4 million people within the vulnerable SW region of the GBM delta.

Keywords: deltas, poldering, dredge spoils, tidal channel siltation,

effective sea level rise
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1. Introduction

Earthen embankments are employed worldwide in deltaic regions to
protect surrounding lands from fluvial and tidal flooding, salinity incursion,
and storm surges (James P. M. Syvitski et al., 2009). While the
embankments provide a layer of defense, the lack of sediment input from
fluvial and tidal processes and subsequent subsidence of the embanked land
(locally called ‘polder’) poses a significant flood risk during prolonged
precipitation events or if the embankments fail (James P. M. Syvitski et al.,
2009; Meade and Moody, 2010; Wang et al., 2012; Smaijgl et al., 2015).
The embanked southwest region of the Ganges-Brahmaputra-Meghna (GBM)
delta is particularly vulnerable to catastrophic flooding, as the embanked
lands have lost an estimated 1-1.5 m in elevation since the construction of
the polders (Alam, 1996; Pethick and Orford, 2013; Auerbach et al., 2015).
Overbank flooding during high tides and storm surges previously distributed
sediment throughout the tidal deltaplain, but the embankments have
restricted new sediment deposition to unembanked lands and tidal channels
(Alam, 1996; Auerbach et al., 2015). Furthermore, accelerated compaction
and subsidence within the polders has taken place as mangrove forests were
cleared and farming practices involve the seasonal drying of agricultural
fields (Auerbach et al., 2015). Widespread siltation within the tidal channels

(>600 km to date; 90km?2) blocks sluice gates, further exacerbating flooding
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and waterlogging within the polders (Alam, 1996; Rahman et al., 2013;

Brammer, 2014; Auerbach et al., 2015; Wilson et al., 2017).

Compounding this flood risk, tides amplify as much as 1-2.5 m as they
propagate inland through the poldered regions (Pethick and Orford, 2013;
Wilson et al., 2017). Previously, flood risk in the GBM delta was assessed
using the relative mean sea level (RMSL), which takes the average of
measured high and low water levels. However, a study by Pethick and Orford
(2013) showed this does not include tidal amplification. They thus quantified

that effective sea level rise (ESLR) is more applicable to the region:

Eq. 1 ESLR =TA+ Sb + Eu + FwQ

where TA is tidal amplification, Sb is land subsidence (caused by a myriad of
factors, e.g., compaction, dewatering, fluid withdrawal, organic biomass
degradation), Eu is eustatic sea level change rate, and FwQ is fresh water
input (Pethick and Orford, 2013). ESLR highlights the trend of increasing
high water maxima (as TA increases), providing a more accurate evaluation
of flood risk in the SW embanked regions of the GBM where embankments
could be overtopped or breached by mesoscale tides or periodic storm
surges. In particular, (Pethick and Orford, 2013) found the RMSL rise
decreases from the coast to Khulna, 120 km inland (from 7.9 to 2.8 mm a-
1), while the ESLR rate (Eqg. 1) increases significantly (from 10.7 to 17.2 mm

a1). In addition to excluding ESLR, many flood risk assessments are based
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on the original Shuttle Radar Topography Mission (SRTM) digital elevation
models (DEMs) originally collected in 2000, meaning that 20 years of
subsidence of embanked regions (and likewise accretion in the unembanked
regions) is unaccounted for. Additionally, the original SRTM data did not
remove vegetation cover, thus tree-lined roads look exaggerated compared
to rice paddies and aquaculture ponds. The CoastalDEM re-processing of this
data (shown in Fig 1;(Kulp and Strauss, 2019)) attempted to better remove
this vegetation cover, providing more accurate elevations, however for a

survey conducted now decades ago.

Channel siltation within the GBM delta not only affects the flooding
potential of the polders but also blocks waterway traffic, a main mode of
transportation (Rahman et al., 2013). The most common solution is a
combination of hydraulic and mechanical dredging, where the infilled
material is excavated and placed alongside the channel margins (Rahman et
al., 2013; Hossain, Khan and Shum, 2015; Sultana, Uddin and Analysis,
2017). Over the next 50 years, the Bangladesh Inland Water Transport
Authority (BIWTA) plans to dredge 178 rivers (> 10,000 km) to ensure
navigability (The Daily Star, 2020). While efforts are underway to implement
large scale dredging operations, small-scale sediment redistribution efforts
are also recommended to ameliorate elevation deficits in embanked areas by
flushing sediment from tidal channels (a practice locally called Tidal River

Management; Shampa and Pramanik, 2012; Amir et al., 2013; Gain et al.,
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2017). Mitigation for flood risk requires data-driven investigations on the
effectiveness and feasibility of these different methods, and incorporation of

accurate, up-to-date information.

This study combines established ESLR rates with newer, high resolution
(<20 mm accuracy) elevation data obtained with a Leica GNSS unit and
relates these elevations to measured local tidal water fluctuations to provide
a more accurate flood assessment of the study region. We assess the
sedimentological properties of unembanked and embanked regions to
characterize the sedimentary deposits where tides still distribute sediment
and where they are precluded, respectively. Finally, we quantify how much
sediment is removed from tidal channels during recent dredging practices
and make suggestions for the repurposing of this dredge material in line with

common practices for this delta and other deltas worldwide.

2. Study Area

The tidal-dominated landscape of the GBM delta experiences semi-diurnal
mesoscale (2-4 m) tides. In the 1960s, the Bangladesh government began
constructing earthen embankments to protect agricultural land from salinity
incursion, and the land within the embankments are referred to as polders
(Allison and Kepple, 2001; Bricheno, Wolf and Islam, 2016; Ayers et al.,
2017; Bomer, Wilson and Datta, 2019). While the embankments provide a
layer of protection, elevation surveys of Polder 32 from Auerbach et al.

(2015), revealed embanked elevations were 1.0-1.5 m below adjacent
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unembanked elevations in the Sundarbans, the world’s largest mangrove
preserve (Fig. 1). The elevation data collected from Polder 32, combined
with SRTM data, was then extrapolated deltawide to assess flood risk.
However, the applicability of the data in calculating present-day and future

flood risk is limited due to the outdated SRTM data.

The Baleswari River demarcates the boundary between the tidal-
dominated and fluvio-tidal dominated landscapes (Fig. 1), with the fluvio-
tidal region receiving year-round fluvial input from the Lower Meghna River
on the scale of 50,000-100,000 m3/s during the monsoon season to 5,000-
30,000 m3/s during the dry season (EGIS, 2000; Whitehead et al., 2015).
Tides dominate in the western region as discharge from the main source of
fluvial input, the Gorai River (a distributary of the Ganges), has decreased
40% over the past 50 years - from an average monsoonal discharge of
5,500 m3/s to 3,000 m3/s and an average dry season discharge waning from
2900 m3/s to <1000 m3/s (Mirza, 1998; EGIS, 2000; Pethick and Orford,
2013). The decrease in discharge along the Gorai is often attributed to the
construction of the Farraka Barrage along the Ganges River in India, but the
morphology of the offtake angle of the Gorai River is likely another
significant contributing factor (Mirza, 1998; Winterwerp and Giardino, 2012).
As the Gorai River approaches the Bay of Bengal, elevation and fluvial flow
velocities decrease, and the river divides into a network of distributary tidal

channels, including the Pussur, Sibsa, and Baleswari Rivers (Fig. 1) that
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receive most of their water through bi-directional tidal currents that

propagate >100 km inland from the Bay of Bengal.

The Pussur and Sibsa Rivers are two of several high order channels in
the tidal-dominated SW region of the GBM delta (Fig. 1), connected ~60 km
upstream from the coast by a series of transverse conduit channels, and
both have an estimated net tidal prism (m3) on the scale of = 107, (Bain,
Hale and Goodbred, 2019; Hale et al., 2019). Previous research has shown
that poldering in the SW region of the delta near these two tidal rivers has
caused numerous smaller order channels to become “dead end” and infill as
the tidal prism is reduced; many have to be dredged periodically to maintain
navigability (Rahman et al., 2013; Wilson et al., 2017). For this study, we
focus on three representative second-order tidal channels (average width
<300 m) that stem from the Pussur channel (locally called Rupsa River) near
the cities of Khulna, Dacope, and Rampal, and the surrounding embanked
areas (Fig. 1). All three channels are bounded by embankments and have
infilled over the past 35+ years, and subsequently been dredged within the
last ten years with dredge spoils deposited along the margins (Fig. 2).
Combining our elevation surveys with local tide data allows for flood risk
assessments of the unembanked and embanked areas adjacent to the tidal
channels. By calculating rough estimates for channel water and sediment
volumes for three representative tidal channels in the lower deltaplain, we

can quantify how tidal channels and adjacent land surface elevations are
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evolving under natural and anthropogenic forces and how much sediment

has been historically dredged from these channels.

3. Methods

3.1. Elevation measurements and relationship to tidal water level
datums

Elevation transects were measured (relative to elevation datum EGM
96) using an RTK (real-time kinematic) GPS system with a Leica GS36 base
antenna and GS38T rover. Leica GS38T has tilt compensation with <20 mm
accuracy (tilt angle <30°). When surveying an area, a general grid pattern
with perpendicular transects was generated, and the rover automatically
measured point data (X, Y, Z) every 3 m. Extensive aquaculture ponding
posed a challenge to obtain large-scale, contiguous surveys at all locations
except for the Khulna outside embankment (“Khulna_out_"); thus, multiple
small-scale surveys were conducted at the other sites. Once the points were
measured, elevation profiles were created using kriging interpolation in
Surfer 17®. Studies have shown kriging is useful in small areas as it
distributes weight based on statistical autocorrelation, and the result is a
smoother grid/3D surface than that of other commonly used interpolation

methods (e.g., nearest neighbor or bilinear (Arun, 2013)).

To obtain the water surface elevations relative to EGM 96, HOBO®
pressure sensors were deployed at locations that received tidal input, then
water surface elevations (relative to EGM 96) were measured with the Leica

GPS system from the shoreline, noting the time. The water surface
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measurements taken with the Leica GNSS system were cross-referenced
with the relative water surface elevations (HOBO®) to calculate absolute
water surface levels at different tidal stages relative to EGM 96. It was
necessary to obtain water surface elevations in the EGM 96 datum to
compare the values to those from local tide datums (i.e., the Bangladesh
Public Works Datum [PWD] or individual tide gauge Chart Datum), as no
clear relationship currently exists between the three datums. This is
especially important when assessing the flood risks of the study areas by
comparing elevation data (in EGM 96) to predicted ESLR rates (which is

currently in PWD; see Supplemental Section 2 for more details).

3.2 Coring and Sedimentological Analyses

In-depth sediment analyses are pertinent to this study as bulk density,
grain size, and organic mass content provide the necessary information to
understand the elevation dynamics and accurately estimate the volume of
dredge spoils that are needed for the two repurposing methods -
constructing plinths and elevating existing embankments. Sediments were
characterized in two focus areas of 12 cores extracted in October 2019 (Fig.
3). Core locations were chosen based on infilling observed in historical
imagery (1984-present). All twelve cores were extracted along the
representative terminal tidal channels shown in Figure 1; six cores were
extracted outside the embankments and the other six cores were extracted

inside the embankments (Fig. 3). Two coring methods were utilized for this
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210 project - auger coring and vibracoring—to achieve maximum penetration
211  and recovery. Auger cores were extracted by hand using a 5.08-cm diameter
212 Edelman combination auger to an average depth of 3.8 meters, subsampled
213  in the field at 20 cm intervals. Compaction during auger coring is minimal.
214  Vibracores were collected following the methods of Lanesky et al. (1979),
215 using a 6 m section of 7.5-cm diameter aluminum pipe and cement vibrator.
216  Vibracores were then taken to the Department of Environmental Science at
217  Khulna University where they were split, photographed, and subsampled in
218 10 cm increments. Only 3 vibracores were analyzed due to high compaction
219 and/or plugging in most locations. All core samples were then shipped and
220 analyzed at Louisiana State University Sedimentology lab for bulk density,

221 organic content via loss-on-ignition, and grain size detailed below.

222  Bulk Density

223 For each core, ~10 g of sediment was sampled every 20 cm using a 10
224 mL syringe to create a measured sample volume of sediment. Sediment wet
225 mass was determined (m,; g) and samples were then dried in an oven at
226 60° C for 72 hours and reweighed to determine the dry mass (mg). The dry
227 mass was divided by the volume (v) of each sample to calculate the bulk

228 density:

229 Eq. 2 bulk density = mgy/ v.

230 Loss-on-Ignition

http://mc.manuscriptcentral.com/esp
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Using the sediment subsamples from all cores, ~5-10 g of dried
sediment was homogenized using a mortar and pestle, combusted in a
muffle furnace at 550°C for 5 hours, and reweighed to yield weight loss on
ignition. This method is commonly used to calculate percent organic matter

from soil samples (Heiri et al., 2001; Hoogsteen et al., 2015):

mp

Eq. 3 % organic matter = |~ x 100

m

where my, is the biomass and mg is the sample mass before burning.
Grain-Size Analysis

Approximately 2 g of sediment (pre-combustion) from each subsample
was placed into 50 mL centrifuge tubes, and ~2 ml of 30% hydrogen
peroxide was mixed to oxidize organic matter. Then ~15 ml of 0.05%
sodium metaphosphate was added to each test tube to deflocculate clay
particles. Finally, the samples were run through a Beckman Coulter Laser
Diffraction Particle Size Analyzer (Model LS 13 320) to calculate volumetric

abundance of grain sizes from 0.37 to 2000 microns.
3.3 Channel Infilling Analyses and Geometric Calculations

Detailed channel infilling and erosion were analyzed using historical
imagery in ArcMap 10.7.0 along with GIS-based geometric calculations.
Three moderately sized representative tidal channels that collectively span
60+ km in the lower tidal deltaplain were chosen for these analyses (Fig 1).

For years 1984-2010, LandSat imagery (resolution 30 meters) was used for

http://mc.manuscriptcentral.com/esp
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252 the analyses. For years 2010-2020, imagery procured from Google Earth
253 and the Copernicus Open Access Hub with a much higher resolution of 2.5
254 meters were used. The images were cross-referenced with tide data to

255 ensure all were representative of low tide stages — increasing the accuracy
256  of the channel width measurements. Only tidal channels outside of polder
257 embankment walls were analyzed because the resolution prior to 2010 was
258 not fine enough to accurately map smaller channels within the embankments
259 whose widths were <30 meters. While dredging was observed remotely and
260 in person during field campaigns, detailed reports as to the exact locations
261 and volumes of dredged sediment is not public information; therefore,

262 dredge spoil volumes for the 3 channels are estimated through channel

263 width measurements.

264 To measure channel width, channel centerlines were traced from the
265 imagery using polylines for each year. Using the Channel Migration Toolbox
266 in ArcMap, perpendicular transect lines were generated with 200 meter

267 spacing starting at the mouth of each tidal channel. Each channel was then
268 segmented into 100 transects, covering 20 continuous kilometers of the tidal
269 channel. The channel widths were measured by hand at each transect. After
270 20 kilometers, the widths of several channels were too narrow to accurately
271 measure in the LandSat images due to the lower resolutions. Measured

272 channel widths were then used to calculate average channel depths using
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the width:depth equation established in this delta region by Bain et al.
(2019):

Eq. 4 d* =017 xw*"®

where d* is channel depth and w* is channel width. This equation is
applicable to tidal channels that are >10 km inland from the coast; as
channels will shoal with proximity to the coast, depth calculations would be
overestimated for channels <10 km from the Bay of Bengal (Bricheno, Wolf
and Islam, 2016; Bain, Hale and Goodbred, 2019). The cross-sectional area
of each transect was then calculated using the equation of a half-ellipsoid as
this shape best represents overall channel geometry without involving
intensive calculus formulas and was based on bathymetric profiles collected
in local tidal channels (Rahman et al., 2013; Auerbach et al., 2015; Wilson

etal., 2017):

w
EXdXTl'

Eq. 5 CA= 5

where w is the channel width, d is the channel depth calculated from
Equation 4, and CA is the cross-sectional area of a transect. As the tidal
prism is decreasing, the entirety of the channels is infilling from upstream to
downstream. That is, the channel bed and flanks are simultaneously
aggrading (Rahman et al., 2013). Once cross-sectional areas were
calculated, estimates of the volume of water between individual transects

could be made using the following equation:

http://mc.manuscriptcentral.com/esp



Page 29 of 155

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

Earth Surface Processes and Landforms

!
Eg. 6 Volume; _, =3 * (CA1 + CA; ++/CA1CA2)

where /is the length between the two transects (=200 m), CA; and CA, are
cross-sectional areas of the two transects, respectively. Subsequently, all
inter-transect volumes are summed to calculate a total volume of the 20 km
segment, which is an estimate of the tidal prism, or total volume of water
accommodated over a tidal cycle (see Supplemental Section 5 for more

details).

If a channel is infilling with sediment over time, it can be
assumed/postulated that the volume of water within the channel will
decrease. By subtracting the water volume of the channels before dredging
from the respective channel’s water volume of 1984, the amount of
sediment deposition within the channels over time was calculated. If a
channel is subsequently dredged, a significant amount of the infill material is
removed and the channel water volume will increase. In this region, dredged
material is typically deposited on either side of the channel, forming an
artificial levee. Error for the volume estimates was calculated based on the
same channel width measurements but different depths calculated from Eq

4, as this is the largest uncertainty (£1 m).
4. Results

4.1 Elevation Data

http://mc.manuscriptcentral.com/esp
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Table 1 compiles all site elevation data measured. In general, elevation
decreases with proximity to the coast, and sites outside of embankments
(designated nomenclature *_out_") are higher in elevation than sites within
embankments (*_in_") by at least 1 m. In particular, the Khulna_out_ sites
(~120 km from the Bay of Bengal coast) had an average elevation of 4.54 +
0.06 m compared to Khulna_in_ sites (2.86 £ 0.04 m) (Table 1; Fig. 4).
Rampal_out_sites (~90 km from Bay of Bengal) had an average elevation
of 3.98 m x 0.09 m, while the corresponding Rampal_in_sites average
elevation was 2.91 £ 0.03 m (Table 1; Fig. 5). Typical elevation variability
with tidal river morphology outside of embankments was also observed: a
measured cutbank (Khulna_out_1) had an average height of 5.08 £ 0.05 m
(ranging from 2.00 to 7.01 m), while the opposite point bar (Khulna_out_2
and Khulna_out_3) had a lower average elevation of 3.52 £ 0.05 m (ranging
from 2.27 to 5.37 m; Table 1; Fig. 4). Note all of these elevations were

greater than the elevations within the embankment.

Water surface points (x, y, z) were combined with HOBO® sensor data to
calculate the absolute tide levels and compare to land surface elevation with
respect to EGM 96. Khulna_out_ sites were temporarily disconnected from
the tide as dredging was ongoing. While HOBO® pressure data was not
collected for the site, the water surface elevation was 2.0065 = 0.05 m
relative to EGM 96 during the field survey on October 26, 2019.

Alternatively, the Khulna_in_sites remain connected to the tides through a
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sluice gate ~6.5 km downstream as evidenced by small tidal fluctuations
(<0.2 m observed), but the water surface elevation measurements could not
be cross-referenced with the HOBO® data as the two data sets were
measured on different days. For the Rampal_out_sites, HOBO® data was
collected over a 6 hour period, exhibiting a water surface elevation range of
1.126 m. This data was compared to predicted astronomical tide charts for
Mongla, a nearby (~15 km) port city on the Pussur River (Fig. 5). The water
surface elevation at Rampal at high tide during the survey period was
calculated to be ~2.5 meters relative to EGM 96; this is 1.4 m below the
average elevation of the Rampal_out_ sites and only 0.4 m below the
average elevation of the Rampal_in_ sites (Fig. 5; Table 1). However, the
predicted monthly Mean High Water (mMHW), the average of all tidal high
water during spring and neap tides, is 3.5 m relative to EGM 96, which is still
below the average elevation of the Rampal_out_sites but exceeds the

average elevation of the Rampal_in_sites by 0.6 m (Fig. 5; Table 1).

4.2 Sedimentological and Stratigraphic Analyses

Figure 6 shows a representative core, a vibracore from an
unembanked Rampal location, which is exemplary of all cores collected. The
presence of tidalites and other small bedding structures such as flaser and
lenticular bedding were visible in the vibracores (Fig. 6). Auger coring
destroys such bedding, but small fluctuations in grain size are evidence of

such tidal signatures. All cores were silt-dominated (named simply here as
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“silt”), with median grain size ranging 11-55 ym (6.5 to 4.2 ®), averaging
32 um (5.0 @), and clay and sand grain sizes independently comprising
<25% of the substrate. Shepard’s diagram was used to determine the
nomenclature (“silt”, “sandy silt”, “clayey silt”) of each sample (Shepard,
1954). All the cores had multiple sandy silt beds, ranging in thickness from
10 to 260 cm, averaging 45 cm. Only one sample of clayey silt was present
in all the cores (Rampal_out_3 core at a depth of ~260-270 cm). Bulk
densities for all sites, embanked and non-embanked, ranged from 1-1.8
g/cm3, with an average of 1.4 £ 0.2 g/cm3. Organic content for every core
averaged <5%. In figure 4, all the cores from the Khulna sites are plotted
with their respective elevations (relative to EGM 96) - the embanked sites
having a much lower average elevation of 2.86 = 0.04 m compared to that
of the unembanked sites 4.54 = 0.06 m (Table 1). The unembanked Khulna
sites also have more sandy silt beds near the surface, indicative of
hydrologic connectivity to the tides. The elevations for the embanked and
unembanked Rampal sites also offset from each other by ~1 m, and the
stratigraphy closely resembles the Khulna sites — sandy silts at depth with
finer silts near the surface. All core logs, including stratigraphy, lithology,
median grain size, bulk density, and organic content can be viewed Section

3 of the Supplemental.

4.3 Channel Infilling Rates
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Between 1984 and 2020, average channel width decreased 39%, 87%,
and 72% for Khulna, Dacope, and Rampal channels, respectively. Detailed
graphs of channel width variability are available and described in the Section
5 of the Supplemental. In general, average channel width decreased most
notably in the upstream reaches (>10 km upstream from channel mouth). It
is evident from aerial imagery that all 3 channels were extensively dredged

between 2010 and 2020.

Figure 7 and Table 2 quantify the water volume accommodated in the
3 representative channels from 1984 to 2020, including notation when
dredge operations began and completed. Dacope experienced the most
infilling, with water volume of 16.2 x 10 m3in 1984 to 0.39 x 10 m3 in
2012 before dredging, a 97% reduction (Fig. 7). From 1984 until dredging,
Khulna and Rampal experienced reduction in water volumes of 47% and
93%, respectively (Fig. 7). From these measurements, there was a
cumulative deposition of 24.2 x 105 m3 of sediment for all three channels
between 1984 and 2010 (Table 2). All three channels were subsequently
dredged, but the channels were not dredged to their original widths (original
widths averaged ~165 m, dredged widths averaged ~52 m). As a result, we
calculate a total of 1.7 x 10® m3 of sediment was removed by dredging

operations in these three channels between 2010 and 2020 (Table 2).

5. Discussion
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5.1 Elevation and Hydrologic Connectivity Controls on Sedimentation

The coastal zone of Bangladesh has been identified as one of the
world’s most vulnerable “sinking” deltas as much of the region is subsiding
and susceptible to tides, storm surges, and relative sea level rise (James P.
M. Syvitski et al., 2009). The embanked regions are particularly vulnerable
as the polders preclude sediment exchange from the tides, greatly reducing
sediment input that would otherwise increase the relative elevation (James
P. M. Syvitski et al., 2009; Auerbach et al., 2015; Dunn et al., 2019). This
trend is seen among the Khulna and Rampal sites — the average elevations
outside of the embankments are greater than the elevations of embanked
regions by 1-1.5 m (Table 1; Fig. 4), which aligns with previously estimated
elevation loss within embankments in the southwest region of Bangladesh
(Auerbach et al., 2015). This means that embanked landscapes are
particularly vulnerable to flooding and storm surges, as evidenced by
breaching and subsequent flooding of Polder 32 by Cyclone Aila in 2009
(Auerbach et al., 2015) and more recent catastrophic breaches in the

southwest from Cyclone Amphan in 2020 (Khan et al., 2020).

Deltas across the world are experiencing natural tidal amplification as
a byproduct of sea level rise (Holleman and Stacey, 2014), and polders
compound the problem of tidal amplification by having a funneling effect.
That is, the tides that once flooded the delta plain are now forced to flow

through a much smaller area outside embankments. Pethick and Orford
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(2013), note that the Relative Mean Sea Level (RMSL, an average of the
hourly sea level over months or years) at Hiron Point, a coastal area directly
south of the study area, is increasing at a rate of 8.8 mm/yr. Meanwhile,
~120 km inland near Khulna, the RMSL is only increasing by 2.8 mm/yr.
They determined this does not reflect the actual effect of tidal amplification,
opting to calculate the Effective Sea Level Rise (ESLR) instead. The ESLR at
the coast is 10.9 mm/yr (greater than the 8.8 mm/yr RMSL rise), and inland
sites near Rampal and Khulna are at much greater risk with ESLR rates of
14.5 mm/yr and 17.2 mm/yr, respectively (Pethick and Orford, 2013). This
is a serious threat to all coastal regions, but especially embanked regions as
their average elevations are often more than 1 m below surrounding
unembanked areas (this study; Auerbach et al., 2015). With ESLR, the
embankments are more important than ever as much of the poldered
landscape is below the mMHW (the monthly Mean High Water, which is the
average of all tidal high water during spring and neap tides) — meaning that
without embankments, the landscape would flood multiple times every year,

sometimes multiple times a day (Fig. 5B).

We compare our measured elevation data of embanked and
unembanked regions to the ESLR measured by Pethick and Orford (2013) to
assess current and future flood risk of embanked regions in SW Bangladesh.
Pethick and Orford (2013) detail the monthly mean high water, mMHW, for

the region, but they used a local datum—PWD (Public Works Datum)—
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instead of EGM 96. We determined that updated elevation data measured in
this study (in EGM 96) can be converted to PWD with the following equation

(see Supplemental Section 2 for conversion information):

Eq. 7 PWD (m) = EGM 96 (m) - 0.48 m

The predicted mMMHW water levels in Khulna from Pethick and Orford (2013),

Eq. 8 y = 0.0172x - 32.02

can be used to calculate the year (x coefficient) in which the mMHW (y
coefficient) has/will exceed the average embanked elevations. If y, in this
case, is the average embanked elevation we measured at our Khulna sites
(located ~ 8 km east of the Khulna tide gauge = 2.86 m EGM 96), we can
convert this elevation to PWD (using Eq. 7: 2.86 m EGM 96 - 0.48 m = 2.38
m PWD), then plug into Eq. 8: 2.38 = 0.0172x -32.02. Solving for x, we
calculate the mMHW surpassed the average elevation of embanked locations
near Khulna in 2000. Tidal data from BIWTA reveals that the maximum daily
water level never exceeded the embanked elevations from 1996 through
2010, except for 6 days in total. However, from 2013 to 2016, the maximum
daily water level surpassed 2.86 m (relative to EGM 96) an average of 30x
each year. Pethick and Orford (2013) also provide an equation for the
estimated rate for increase in mMHW in Mongla, which is 20 km southwest

of our Rampal sites on the Pussur River:

Eqg. 9 y = 0.0145x - 26.252
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Given the proximity to Rampal as well as the synchronous tides (Fig. 5A),
the estimate for Mongla is applicable to the Rampal study area. Using the
average embanked elevation of Rampal (2.91 m EGM 96 = 2.43 m PWD) to
solve for x, mMMHW in Rampal exceeded the embanked elevations over 40
years ago in 1978. Since 2011, the maximum daily water level has exceeded
the embanked elevation an average of 58x each year, and the frequency in

which this occurs is increasing over time (Fig. 5B).

Figure 8 shows that monthly MHW (mMHW) near Khulna and Rampal
consistently exceed the average embanked elevations in these regions of the
tidal deltaplain. Furthermore, we show this trend will increase in magnitude
over the next 30 years with measured rates of ESLR from Pethick and Orford
(2013), with inundation depth increasing from 0.3 at present to 0.9 m by
2050 at Khulna, and from 0.6 to 1 m at Rampal - increases of 200% and
67%, respectively (Fig. 8). As such, we show the area will become
progressively more vulnerable to catastrophic flooding if an embankment
wall fails during times of high water level. By comparison, unembanked
regions near Khulna and Rampal appear to have kept pace with measured
rates of ESLR (Fig. 8). Similar elevation pacing has been observed on
unembanked regions along riverbank terraces southwest of Mongla
(Auerbach et al., 2015) and in the Sundarbans (Bomer et al., 2020). Our

results highlight the critical importance of sediment delivery to maintaining
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elevation in the face of ESLR in this delta, and without mitigation measures,

flood risk will significantly rise over the next 30 years.

While elevation surveys performed here corroborate with previous
work that emphasizes the elevation loss in poldered vs non-poldered
landscapes due to the loss of hydrologic connectivity (e.g. Auerbach et al.,
2015; Bomer et al., 2020; Hossain et al., 2015), the stratigraphy and
lithology of poldered lands is also elucidated. Our results corroborate with
previous data from cores extracted from an infilled tidal channel near
Dacope (outside embankment), displaying similar silt-dominated tidal
signatures, with an overall fining upward sequence (Chamberlain et al.,
2017; Wilson et al., 2017), but we provide new data from cores extracted
within embankments for comparison. With hydrologic disconnect, finer
sediment deposition (silts, clays, and organic rich sediment) at the
embanked sites is expected due to a reduced tidal prism and subsequent
decrease in tidal velocities (Hesselink, Weerts and Berendsen, 2003; Davis
and Dalrymple, 2011). This correlates with the predominance of silt in the
top meter of cores from embanked sites (Fig. 4; see also Supplemental
figures S4 and S5). All Khulna_out cores are dominated by sandy silt in the
top meter, while all Khulna_in cores are dominated by finer-grained silt
layers. The grain-size difference in the top meter of all Rampal cores is less
noticeable, but there is a general fining of sediment between what is

deposited outside vs inside embankments: Rampal_out_1 and 3 are capped
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by sandy silt beds, while Rampal_out_2 and all Rampal_in_ cores are capped
by silt beds. At depth, all cores have sandy silt and silt beds, with tidal
signatures evidenced by tidalites and fluctuating fine-grain size (Fig. 6 and
S6, S7, S8, and S9). Since all cores are silt-dominated and representative of
the study region, we can assume that the sediment throughout the SW of
the GBM delta dewaters and compacts with time, creating accommodation
space due to the high porosity of silts and clays as well as their flat, platy
mineralogic structure which allows for great compaction (Meckel, Ten Brink
and Williams, 2007; Duncan, Wright and Brandon, 2014; Brain, 2016). The
unembanked sites, which are hydrologically connected to diurnal mesoscale
tides, receive new sediment that fills this accommodation space and even
keeps pace with ESLR (Fig. 8; Bomer et al., 2020). However, the embanked
sites (i.e. polders) have gained little to no elevation since being
hydrologically disconnected from the tides, leaving its land and inhabitants
increasingly vulnerable to flooding should an embankment fail (Fig 8;
(Syvitski et al., 2009; Auerbach et al., 2015; Wilson et al., 2017). While the
unembanked regions can keep pace with ESLR, there is excessive

sedimentation in the tidal channels, compounding the waterlogging problem.

5.2 Channel Infilling and Dredge Spoil Repurposing

Over the past 50+ years, tidal channels adjacent to and within
embankments have been rapidly infilling, effectively blocking navigation

(Wilcox, 1930; Mukerjee, 1938; Majumdar, 1941; Alam, 1996; Rahman et
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al., 2013; Brammer, 2014; Chamberlain et al., 2017; Wilson et al., 2017).
The widely accepted solution to this problem is channel dredging, and
Bangladesh has begun to implement a master-plan that will ultimately
dredge 178 major rivers throughout the country in the next 50 years (The
Daily Star, 2020). However, we show here that with mechanical dredging in
the southwest region of Bangladesh: (1) the 2"d and 3™ order channels are
only dredged to ~10% of their original widths (Fig. 3) - just enough to allow
waterway traffic, and (2) the dredge spoils are often disposed alongside the
dredged channels, forming an artificial levee outside the embankment walls
(Figs. 2 & 4). Rahman et al. (2013) detail the infilling, dredging, and
subsequent backfilling of the Mongla-Ghasiakhali route, a significant
navigation channel. The study concluded that dredged tidal channels will
rapidly backfill, especially during the dry season due to tidal pumping and
decreased fluvial velocities (Rahman et al., 2013). We propose that instead
of discarding dredge spoils along channel margins, dredge material should
be removed and repurposed, preferably for flood mitigation purposes in this
flood-prone region of the delta. This material could be used to: (1) elevate
houses and/or (2) elevate existing embankment walls (Fig. 9). Repurposing
the dredged material would not only mitigate the rapid backfilling by moving
the sediment away from the channel but also provide added protection to
local people from elevation deficits and enhanced flood risk with ESLR. Both

repurposing methods are widely used throughout the GBM delta, with over
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553 US$220 million going towards the rehabilitation and improvement of existing
554 polders in the Coastal Embankment Improvement Project (CEIP), funded by
555  World Bank (Arifuzzaman and Zaman, 2013; BWDB, 2013). Thus, we are not
556 introducing foreign mitigation measures but instead embracing local flood

557 solutions.

558 As much of the GBM delta is prone to flooding and waterlogging, locals
559 alleviate this problem by elevating their houses above the MHW on earthen
560 foundations called plinths (Arifuzzaman and Zaman, 2013). If the dredge

561 spoils from the three representative channels (total amount of sediment

562 removed was 1.70 x 105 m3; detailed in Table 2) is repurposed for elevating
563 houses, we estimate 16,700-20,100 houses can be raised above the

564 predicted mMHW for 2050 (calculations in Table S1 in Supplemental

565 Material). This estimate was calculated using the following assumptions: (1)
566 housing plinths are 7.5 m x 7.5 m x 1.5 m (average house size, local

567 observations) and (2) dredge spoils have gone through the natural process
568 of dewatering (consolidation) after excavation (Duncan et al., 2014) and (3)
569 maximum secondary compaction of the dredge spoils is 20% (factor of 1.2;
570 see Supplemental Section 4; Holtz, Kovacs and Sheahan, 1981). If little to
571  no secondary compaction takes place, the total volume of a typical plinth is
572 estimated to be 84.375 m3. However, with maximum secondary compaction

573 the amount of sediment required to construct each plinth is 101.25 m3.
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Alternatively, the dredge spoils can also be repurposed to maintain
and elevate embankments. If the volume of available dredged sediments
from the 3 study sites calculated here (1.70 x 105 m3) was used exclusively
for raising embankments above predicted storm surges, 15-18 km length of
embankments could be raised to a height of 6.8 m (calculations in Table S1
in Supplemental Material). This calculation was based on the dimensions for
interior polders in the GBM delta tidal delta plain detailed by World Bank
(Dasgupta et al., 2010) and proposed embankment elevations detailed by
the Coastal Embankment Improvement Project (CEIP) - Phase I report
(BWDB, 2010) and the Bangladesh Delta Plan 2100 (Rahman et al., 2019).
The dimensions for the interior polders at present-day are as follows: a top
base of 4.3 m, an average height of 3.8 m, and an average bottom base of
22.8 m (Fig, 9). Thus, to increase the height of a 1 km segment of
embankment to 6.8 m while maintaining the slope ratios on the embanked
(1:2) and unembanked (1:3) sides, an additional volume of 92,400 m3 of
sediment is required. Factoring in @ maximum estimate for secondary
compaction as previously mentioned (=1.2x), this would equate to 110,880
m?3 of sediment. It is important to note that while CEIP proposes increasing
the embankment elevations, most embankment failures are not caused by
overtopping from storm surges; rather it has been reported that the
structural integrity of the embankments fail due to thrust forces during

storm surges (Haque et al., 2019). Therefore, while embankments need to
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be elevated to maintain elevation deficits caused by ESLR, the strength of

the entire structure should be assessed.

While 16,700 housing plinths and 15 km length of embankments may
not seem substantial, they only account for ~60 km length of channels
reported here outside of embankments that have been recently dredged.
Previously, Wilson et al. (2017) quantified that >600 km of tidal channels
have silted in over the entire southwest GBM delta, and the volume of
sediment contained within these infilled channels (locally called ‘khas-land”)
is 462 x 105 m3. From the aerial imagery analyses from this project, it is
estimated that only 10% of the channel widths are dredged, i.e., the
channels are not dredged to their original width, only to a width required to
maintain vessel navigation. Thus, if we take these trends and extrapolate
that further dredging could supply 10% of the 462 x 10® m3 of sediment
available for repurposing after dredging operations, this would result in 46.2
x 10% m3 of sediment dredged - which could elevate 456,000 - 547,000
houses with mud plinths or elevate 415 - 500 km of embankments. With a
mean household of 4.3 persons (Carrico et al., 2020), repurposing the
dredge spoils can impact ~2.4 million people throughout the Ganges delta
(nearly 35% of the population in the tidal deltaplain west of the Baleswari

River).

5.3 Mitigating Flood Vulnerability — Dredge Spoil Repurposing vs.

Tidal River Management
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Dredge spoil repurposing is not a novel idea, with many different uses
proposed and employed in various deltas today (Ford, Cahoon and Lynch,
1999; Brandon and Price, 2007; Daniels, Whittecar and Carter, 2007; Allison
and Meselhe, 2010; Sheehan and Harrington, 2012; Mao et al., 2018;
Baptist et al., 2019). Much like other densely populated deltas, the Yellow
River delta (YRD) is forced to cultivate salt-affected soils as demand for food
increases with population and soil salinity increases with sea-level rise (Fan
et al., 2012; Dasgupta et al., 2015; Daliakopoulos et al., 2016). New studies
suggest that dredged material — poorly graded sand - from the YRD can be
mixed with the saline, clayey flood plain soils to improve agricultural
productivity (Mao et al., 2016, 2018). Additionally, YRD sediments are
deposited on agricultural lands adjacent to underground coal mines to

combat subsidence and reduce waterlogging (Duo and Hu, 2018).

Sediment redistribution is also used to attenuate subsidence in the
Mississippi Delta (MD) of Louisiana where marshes and coastal wetlands are
rapidly deteriorating from lack of sediment supply. Both anthropogenic and
natural mechanisms contribute to regional subsidence in the MD (e.g.,
compaction of organic-rich Holocene sediments (Toérnqvist et al., 2008),
sediment loading (Blum et al., 2008), tectonics (Gagliano et al., 2003;
Dokka, Sella and Dixon, 2006), glacial isostatic adjustment (Gonzalez and
Tornqgvist, 2006), hydrocarbon extraction (Morton and Bernier, 2010), and

artificial drainage (Dixon et al., 2006)). Sediment diversions aim to restore
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640 and nourish the wetlands by increasing elevation through new sediment

641 input from the Mississippi River (Allison and Meselhe, 2010). Various small-
642 scale dredge repurposing projects within the MD have been conducted over
643 the past 30 years, showing promising results for the rehabilitation of

644 uninhabited wetlands (Ford, Cahoon and Lynch, 1999; Baptist et al., 2019),
645 but sediment diversion plans are large-scale and perceived as cost effective
646 over time (Wiegman et al., 2018). Instead of active sediment redistribution,
647 sediment diversions are a more “nature-based” solution to sediment

648 starvation caused by levee and dam construction as they mimic fluvial

649 crevasse splays and sediment delivery to receiving basins (Meade and

650 Moody, 2010; Xu et al., 2019).

651 In the GBM delta, embanked coastal lands are subsiding from lack of
652 sediment input (Alam, 1996; Hoque and Alam, 1997; Auerbach et al.,

653 2015), and small scale sediment diversion operations, locally called Tidal
654 River Management (TRM) have been implemented in Bangladesh to reduce
655 waterlogging by increasing land elevation (Amir et al., 2013; Khadim et al.,
656 2013; Hossain, Khan and Shum, 2015). TRM utilizes engineering to create a
657 nature-based solution, similar to the planned diversion projects in the MD,
658  but this practice is intended to raise inhabited lands, where millions of

659 coastal people live. TRM consists of creating an artificial canal, called a link
660 canal, to connect the embanked landscape to an adjacent tidal river channel

661 (Amir et al., 2013). During high tide, water enters the embankment through
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the link canal, and suspended sediment is deposited during slack high water.

With a higher sediment carrying capacity during ebb tide, the water flows
out through the link canal, eroding sediment near the canal entrance and
adjacent tidal channel (Amir et al., 2013). Thus, the benefits of TRM are
two-fold - embanked landscapes gain elevation, and the external tidal

channels increase in width and depth allowing for water to drain out of the

embankment during low tide, reducing waterlogging (Mutahara et al., 2018).

Previous studies postulate that TRM elevates the embankments by 1-3 m
over a period of several years - alleviating flood risk in the near-future
(Khadim et al., 2013; Gain et al., 2017; Tasich, Gilligan and Goodbred Jr.,
2019; Adnan et al., 2020). Eventually, the link canals are closed, and the

land can be inhabited and farmed once again.

While TRM results in raising the embanked landscape, it takes 3-5
years for the sediment to accumulate (Amir et al., 2013; Khadim et al.,
2013; Tasich, Gilligan and Goodbred Jr., 2019). During this time, the
landowners and inhabitants of the affected area are essentially unable to
farm or work on the land, and they are commonly not compensated for this
loss (Amir et al., 2013). Additionally, TRM has only been implemented in
small (~10 km2), low-lying areas called “beels”, which were wetlands prior
to human occupation; polders are much larger in scale, often exceeding 100
km2. We propose that repurposing material that is currently being dredged

from local tidal channels to maintain navigability and reduce water logging
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684 can be used in conjunction with TRM or as a short-term solution to flooding.
685 Specifically, we recommend repurposing this material to elevate houses

686 and/or augment embankments. Repurposing the spoils has fewer social

687 inconveniences because: (1) houses and embankments can be elevated

688 immediately, and (2) the land can be used continuously. Certainly, TRM can
689 be more sustainable for the future as it addresses the root of the problem of
690 flooding by attenuating elevation deficits caused by preclusion of sediment,
691 compaction, subsidence, and ESLR within the embanked lands. However,
692 TRM does not provide immediate protection, and the entire process takes
693 years, as mentioned earlier. In the meantime while mechanical dredging is
694 an ongoing practice, dredge spoil repurposing has the potential to provide a
695 relatively rapid and straightforward solution to flood risk, while still allowing

696 for TRM in the future.

697 6. Conclusions

698 This study analyzed the elevations, channel infilling, and stratigraphy
699  within and outside embankments in the southwest region of the GBM delta
700 near the cities of Khulna, Dacope, and Rampal. Elevation studies revealed
701 that embankments have starved the region of sediment, resulting in

702  elevation differences of ~1-1.5m between the embanked land and adjacent,
703  higher unembanked land, expanding earlier elevation studies from Auerbach
704 et al. (2015). Stratigraphical analyses show the regional stratigraphy

705  between both embanked and unembanked land is silt dominated. Factoring
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in ESLR, the embanked lands are at considerable risk of inundation during
flood events - the mMMHW already exceeds the average embanked elevations
at Khulna and Rampal (by 0.3 and 0.6 m depth, respectively), and the
potential inundation depth will increase by >200% for Khulnha and >67% for
Rampal over the next 30 years. Using aerial imagery, channel width
analyses revealed that channels proximal to the polders have all infilled over
the past 30+ years — average channel widths near Khulna, Dacope, and

Rampal have decreased by 39%, 87%, and 72%, respectively.

Channel infilling and width reduction pose a serious challenge to
waterlogging, flood risk, and navigation, and the most common method to
remedy the problems is mechanical dredging. However, the dredge spoils
are deposited along the channels instead of being repurposed. This study
proposes repurposing dredge spoils to elevate houses and embankments
above the predicted mMHW for 2050, thus reducing the flood vulnerability of
the embanked regions (as evidenced by elevation studies and ESLR). If all
infilled tidal channels throughout the GBM delta are dredged to 10% of their
original widths, approximately 46.2 x 10® m3 of sediment will be available for
repurposing. This sediment could elevate ~547,000 houses or elevate ~500
km length of embankments. While TRM is a sustainable method of
replenishing land elevations and maintaining navigability of surrounding

channels, repurposing dredge spoils can protect the embanked lands from
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727 increasing storm surges and flooding in the near future, while allowing

728 continued habitation and agricultural use of land.
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983 Figure Captions

984

985 Figure 1. Study region in the southwest GBM delta located near Khulna,

986 Dacope, and Rampal with embankments outlined in black. Elevation is

987 created from CoastalDEM (© Climate Central), a 3 arcsecond (90 m)

988 horizontal resolution corrected from SRTM (2000) data, with elevation

989 relative to EGM 96. All elevations equal to or less than 0 meters are shaded
990 blue. The fluvial-tidal delta plain and tidal delta plain are geographically

991 divided by the Baleswari River; west of the Baleswari River, there is minimal
992 fluvial input. Inset B is a closer view of three representative tidal channels
993  off the Pussur River, near their respective cities. Similar to many channels in
994 the SW GBM delta, these once-active tidal channels are silting in, impeding
995 water navigation (see Fig. 3). Periodically, these channels are dredged to
996 maintain navigability (see Figs. 2 & 4). The additional white boxes on the
997 right are the coring locations shown in Figure 3. The dashed white box

998 indicates the location of cores previously collected by Wilson et al. (2017)

999 and Chamberlain et al. (2017).

1000

1001  Figure 2. (A) Active dredging operations near Rampal in October 2019 and

1002  (B) Khulna 3 years post-dredging in October 2019. Dredge spoils are
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deposited on either side of the channels, forming an artificial levee outside of

existing polders (outlined in white). See Figure 1 for site locations.

Figure 3. Core locations from Khulna and Rampal sites (see Figure 1 for site
locations). A total of 12 cores were taken - 3 outside the embankments

(blue) and 3 inside the embankments (pink) for both sites.

Figure 4. Cross-sections with elevation and lithology of cores from the
unembanked (“out”, left) and embanked (“in”, right) Khulna sites. The
unembanked cores were taken across a point bar and cutbank along the
Rupsa-Pussur River ~60km upstream of the mouth near Khulna. The
channel has been silting in for decades, and dredging operations were
ongoing from 2015-2020; the cross-section also displays where dredge
spoils have been emplaced post-2017. Average elevation inside the
embankment is much lower than outside the embankment. The stratigraphy
is similar at depth with sandy silts being overlain by silt. However, the
unembanked cores have more sandy silt packages near the surface, which is
indicative of hydrologic connectivity with the tides. The elevations for the
embanked and unembanked Rampal sites also offset from each other by ~1
m, and the stratigraphy closely resembles the Khulna sites — sandy silts at

depth with finer silts near the surface.
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Figure 5. (A) Astronomical tide predictions for Mongla during a spring-neap
cycle in October 2019 (~15 km southwest of Rampal sites on the Pussur
River; data provided by Bangladesh Inland Water Transport Authority
[BIWTA]), along with measured water level obtained using a HOBO®
pressure sensor on October 26 at Rampal sites outside of the embankment
(locations in Fig. 1). The dashed pink line denotes the average embanked
elevation at Rampal while the light blue line represents the averaged
unembanked elevations (see Table 1). As evidenced by the graph, the water
level at the nearest tide gauge station exceeds the Rampal embankment
elevations during seasonal spring high tides, noted by the monthly mean
high water for 2019 [mMMHW(2019)]. (B) Number of days when the
measured maximum water level at Mongla exceeded the average embanked

Rampal elevation (2.91 m relative to EGM 96).

Figure 6. Representative vibracore stratigraphy from the non-embanked
Rampal site (Rampal_out_1). A) Entire core from 0 to 363 cm. B) Picture of
0-33 cm in the core, where tidal rhythmites, cross-bedding, and lenticular
bedding were observed. C) Tidal rhythmites at 180-190 cm. D) Mottled
bedding at 346-378 cm. E) Core lithologic column displaying median grain

size (D50).
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Figure 7. (A) Changes in water volume (m?3) of three representative tidal
channels in the southwest GBM delta from 1984 to 2020. A decrease in
water volume results from silting in measured from a reduction in the
average channel width. All three channels have significantly silted in since
1984. (B) Google Earth images of the Khulna site for years 2000, 2003,
2017, and 2019. Channel width reduction from siltation can be observed in
the upper reaches (>10 km upstream of mouth; >transect 50). Dredging

operations were ongoing from 2015-2020.

Figure 8. Box and whisker plot of the measured elevation points for the
embanked (pink) and unembanked (blue) sites near Khulna (left) and
Rampal (right). The upper outliers for both embanked sites are the
elevations along the embankments themselves. The lower outliers for the
embanked sites near Khulna are points measured in an aquaculture pond.
The dark gray boxes mark the boundaries of the monthly Mean High Water
(mMHW) and monthly Mean Low Water (mMLW) in 2019 for the Khulna and
Rampal sites, while the lighter gray boxes mark the boundaries of the
mMHW and mMLW predicted by 2050 for both sites. Note that while the
mMMHW is higher at Rampal, Khulna experiences greater ESLR (most

noticeable in the mMLW) as indicated by Pethick and Orford, 2013.
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1066 Figure 9. Two methods of repurposing dredge spoils. (A) Elevating houses
1067 above Mean High Water (MHW) by constructing housing plinths and (B)
1068 elevating existing polders above MHW and storm surge levels (modified from

1069 Dasgupta et al., 2010).

1070

http://mc.manuscriptcentral.com/esp



1071

1072

1073

1074

1075

1076

1077

1078

1079

Earth Surface Processes and Landforms

Page 68 of 155

Tables
Table 1
Height
Locations Latitude Longitude (relative to EGM 96, m)
Khulna_out_1 22.800567° 89.637325° 5.45
Khulna_out_2 22.799805° 89.635692° 3.08
Khulna_out_3 22.799995° 89.634790° 4.44
Khulna_out_avgt --- --- 4.54 + 0.06
Khulna_in_1 22.772268° 89.652463° 1.88
Khulna_in_2 22.769355° 89.652346° 2.08
Khulna_in_3 22.755045° 89.652881° 3.00
Khulna_in_avgt ---- ---- 2.86 +0.04
Rampal_out_1 22.605659° 89.652447° 2.96
Rampal_out_2 22.604081° 89.651358° 2.91
Rampal_out_3 22.594744° 89.654705° 2.55
Rampal_out_avgt - - 3.98 £ 0.09
Rampal_in_1 22.593812° 89.658463° 2.42
Rampal_in_2 22.594336° 89.657483° 2.83
Rampal_in_3 22.593569° 89.656903° 2.86
Rampal_in_avgt -—-- ---- 2.91+0.03

Table 1: The core locations with respective heights measured with the Leica
RTK GNSS system. Also listed are the average elevations for all 4 sites. Note

that elevations decrease with proximity to the coast, and elevation inside the

tnumber of elevation points for each average:
Khulna_out_avg =472
Rampal_out_avg =109 Rampal_in_avg =258

Khulna_in_avg =354

embankments is ~1-1.7 m lower than outside the embankments (see also

Fig. 8).
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1080 Table 2

Water Volumes and Subsequent Dredge Spoil Volumes
for Study Sites

. Post-
Water Pre-Dredging Dredging Total Amount of
Volume Water .
. Water Sediment
in 1984 Volume 3
3 3\ % Volume Removed (m3)t
(m3) (m3) (m3)*
Khulna 6,861,083 421,218 1,159,788 738,570
Dacope 16,183,502 384,326 800,248 415,922
Rampal 7,618,765 241,796 781,113 539,317

tIndicates volumes that are only representative of dredged areas.
For Khulna - transects 50-100; Dacope - all transects; Rampal - transects 1-70
The initial water volume is calculated for all transects for all three locations.

1081

1082 Table 2. The total water volumes of the three study tidal channels in 1984
1083  (column 2). The proceeding volumes (columns 3-5) only consider transects
1084 that were dredged. For Dacope, all transects were dredged, but only

1085 transects 50-100 and 1-70 were dredged for Khulna and Rampal,

1086 respectively. While Dacope had the greatest infilling, it had the least amount

1087 of sediment dredged.

1088

1089

1090

1091

1092
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SUPPLEMENTAL MATERIAL

Supplemental Contains the Following Sections:

1) Elevation Survey

2) Tide Datums and Conversion of PWD to EGM 96

3) Coring and Sedimentological Data

4) Dredge Spoil Consolidation and Compaction

5) Channel Infilling Analyses and Geometric Calculations

1) Elevation Survey
Example of elevation survey measured with Leica GNSS at Khulna_out

Site
k}

g~
Elevation (m)|
o Me

UG~

Point bar

o

4
3
2
1
0

Supplemental Figure S1: Google Earth Imagery from January 2019 of the Khulna non-
embanked site with elevation contours (from ~420 GPS points) overlain. Note the cutbank
has a much higher average elevation than the point bar, however, the highest points along
the cutbank are from the placement of dredge spoil along the length of the river, forming an
artificial levee.
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2) Tide Datums and Conversion of PWD to EGM 96

Water level data for Mongla is available from multiple sources, but the
tide datums vary. Bangladesh Inland Water Transport Authority (BIWTA)
uses the Public Works Datum (PWD), which was assumed to be the MSL at
Calculatta over 100 years ago. The Bangladesh Water Development Board
(BWDB) uses the Chart Datum (CD), which is based on “Indian Spring Low
Water” and uses an extended harmonic analysis as detailed in Mondal
(2001). BIWTA then converts their CD data to MSL by subtracting 1.54 m.
Auerbach et al. (2015) recorded their water levels with respect to the Earth

Gravitational Model 1996 (EGM 96), which is a geodetic datum.

There are disagreements in the literature on the relationship between
PWD (Public Works Datum) and MSL with respect to Bangladesh. Multiple
sources state that PWD = MSL + 0.46 m (Choudhury, Paul and Paul, 2004;
Hussain and Hoque, 2020), while others state PWD = MSL - 0.46 m
(Jakobsen et al., 2006; Amin et al., 2015; Islam, Hofstra and Sokolova,
2018). Based on tide and elevation data recorded here, it appears that PWD
is in fact below MSL. However, the conversion of 0.46 m was established
over 50 years ago, and is based on the MSL at the Karnaphuli River in
Chittagong (Mondal and Bangladesh Inland Water Transport Authority,
2001). The mean tidal range at Chittagong is ~50% greater than at the

Sundarbans on the southwest coast (EGIS, 2000), meaning the relationship
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of PWD to MSL for Chittagong is not applicable to the study area.

Additionally, there is no established conversion between CD and PWD.

Ultimately, we used the MSL calculated by Auerbach et al. (2015), 1.12 m
EGM 96, which was measured near Mongla in 2012-2013 (Fig. S2). Auerbach
et al. (2015) calculated the MSL (1.12 m EGM 96) based on pressure gauge
data collected at 10-minute intervals, with the instrument height being
surveyed with a GPS unit to tie the data to the EGM 96 geodetic datum. This
value for mean sea level closely agrees with BIWTA’s MSL (which was
converted from CD by subtracting 1.54 m) for the same time period, which
is 1.11 m. While BIWTA’s calculated MSL closely agrees with Auerbach’s
(2015) EGM 96 MSL, Pethick and Orford (2013) base their sea-level rise

calculations on PWD; thus, we need to compare EGM 96 with PWD.

Tide gauge information for Mongla (in m PWD) was available from August
2005-December 2014 and January 2015 - March 2016. The PWD values for
the time that was concurrent with Auerbach et al. (2015) were not used due
to inaccuracies (Fig. S3), but the January 2015 - March 2016 data did not
have any discernible errors; therefore, the 2015-2016 water levels (mPWD)
were used for comparison. The MSL, or average of all the values, for this
data is 0.66 m PWD (Fig. S2). Using the rate of MSL change for Mongla
(6.25 mm a1) from Pethick and Orford (2013), we calculated that the MSL
for Mongla in 2016 = 1.12 + (3 x 0.00625 m) = 1.14 m in EGM 96 (Fig. S2).

The difference between the two MSL values for Mongla in 2016 is 0.48 m
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(1.14 m (EGM 96) - 0.66 m (PWD)). Therefore, we conclude that EGM 96 =

PWD + 0.48 m for the southwest region of Bangladesh.

3 Average Yearly Water Levels (m) for Mongla, Bangladesh
25
2
E
915
o
% 1 r'Ooooo--.--oooo-nolo-oo--oo-c-o-.onoo---gi.'.'... resaeneseieinng
s * ¢ L 2 ]—1.14 (EGM96) — 0.66 (PWD) = 0.48 m
0.5
0 T T T T T T T T T T T T T T T T T T T T T
1998 2003 2008 2013 2018
Public Works Datum (BWDB) MSL (BIWTA; MSL = CD - 1.54 m)
® EGM96 (Auerbach et al., 2015) Chart Datum (BIWTA)

# Public Works Datum inaccurate/incomplete

Supplemental Figure S2: Water Level Data for Mongla, Bangladesh, from 1998-2016 from
various sources. The black trendline represents Pethick and Orford’s (2013) estimate for
relative mean sea level for Mongla (based on water levels from 1998-2010), which is

0.00625 m year-i. While PWD water levels were measured during 2012-2013, the data has
inaccuracies (detailed further in Fig. S3).
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Mongla Water Levels (m) in Public Works Datum and Chart Datum from August 2005-2014

Water level (m)

2006 2007 2008 2009 2010 2011 2012 2013 2014

Chart Datum (BIWTA) PWD (BIWTA) == PWD data inaccurate/incomplete

Supplemental Figure S3: Water level data for Mongla in two different tide datums - PWD
and CD. The PWD is from BWDB, and the CD is from BIWTA. The Chart Datum values are
typical of what's seen in the GBM Delta, with monsoon and dry season fluctuations as well
as spring and neap tide fluctuations. The red lines indicate time ranges when the CD data is
standard, but the PWD data is inconsistent. Even though PWD data was available during the

time (2012-2013) of pressure gauge data from Auerbach et al. (2015), the PWD data was
not used due to its inaccuracies during that time.
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3) Coring and Sedimentological Data

depth (m)

Core lithology and geotechnical measurements (bulk density, grain size,
organic content) for all core locations

Khulna_out_1  Khulna_out_2  Khulna_out_3 Khulna_in_1 Khulna_in_2 Khulna_in_3
silt ysand clay,  silt psand clay, silt ysand clay,  silt p sand

cla

clay, silt psand clay, silt L sand

Supplemental Figure S4: Core stratigraphy and grain size distribution at the embanked
and non-embanked sites at Khulna (Khulna_in_1,2,3 and Khulna_out_1,2,3, respectively).
Core locations shown in Fig 3 in main text. All cores were silt dominated with all cores
having sandy silt beds throughout, with overall average grain size ranging from medium to
coarse silt, median grain size 12.8-66.53 pm (6.29 to 3.9 @) for each core.
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Rampal_out_1 Rampal_out_2 Rampal_out_3 Rampal_in_1 Rampal_in_2 Rampal_in_3
0 clay, sitt__,sand clay, silt isand  clay, silt  ,sand clay, silt ,sand clay,  silt g5and  clay, silt | sand

depth (m)

Supplemental Figure S5: Core stratigraphy and grain size distribution at the embanked
and non-embanked sites at Rampal (Rampal_in_1,2,3, and Rampal_out_1,2,3,
respectively). Core locations shown in Fig 3 in main text. All cores were silt dominated with
all cores having sandy silt beds throughout, and one clayey silt bed for Rampal_out_3 from
262-273 cm. The overall average grain size ranged from medium to coarse silt, with median
grain size 19.46-81.05 pm (5.68 to 3.62 ®) for each core.

For the cores outside the embankment near Khulna
(Khulna_out_cores), there is minimal change in bulk density with depth
(ranging from 1.0-1.5 g/cm3; averaging 1.2 £ 0.2 g/cm3), the organic
matter determined from loss-on-ignition also varies minimally, ranging from
1.8-5.7 % and averaging ~3.5 £ 0.7 % for each core. All three cores were
silt dominated, with no clear fining-upward or coarsening-upward sequences.

These cores displayed similar grain size to that found by Wilson et al. (2017)
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in an infilling channel near Dacope (Fig. 1; Supplemental figures S6-S9), and
there similarly appears to be no discernible pattern between depth and grain
size . The presence of tidalites and other small bedding structures such as
flaser and lenticular bedding were visible in the cut cores (Fig. 6), but are
evidenced by small fluctuations in grain size. The embanked Khulna cores
(Khulna_in_), like the Khulna_out_cores, do not exhibit any relationship
between bulk density and depth (ranging from 1.0-1.5 g/cm3, averaging 1.3
+ 0.1 g/cm3) but grain size does appear to slightly fine upwards. The organic
content of the embanked cores has a slightly larger range of 2.2-7.4 %,
averaging 4.3 £ 1.1%. The depths with the highest organic matter

percentages were from ~50-100 cm.

For the cores outside the embankment near Rampal (Rampal_out_),
the bulk densities ranged from 1.1-1.8 g/cm3, averaging 1.4 £ 0.2 g/cm3.
Rampal_out_1,2 displayed a slight increase in bulk density with relation to
depth, but Rampal_out_3 displayed no such relationship. The percent
organic matter for all Rampal_out_cores averaged 4.2 £ 1.3%, ranging from
1.6 - 12.4%. The embanked Rampal cores (Rampal_in_) all show a slight
increase in bulk density with increasing depth, and the values range from
1.1 - 1.8 g/cm3, averaging 1.4 £ 0.2 g/cm3. The median grain size for
Rampal_in_1,2,3 shows no discernible pattern. The percent organic matter
for Rampal_in_2,3 decreases with depth, while there is no apparent

relationship between percent organic matter and depth for Rampal_in_1.
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The percent organic matter for all 3 cores ranges from 2.7 - 7.6 %,

averaging 4.4 £ 1.0%.
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Supplemental Figure S6: Median grain size (um), dry bulk density (g/cm?3) and loss-on-
ignition % for all Khulna_out_ cores. The median grain size for the KHLC core in Wilson et
al. (2017) is also graphed for comparison. The depth for the Wilson core extends to 540cm.
Horizontal error bars for dry bulk density and loss-on-ignition (LOI) are standard error for
all samples within a core, while the vertical error bars are fixed at 10cm as the samples
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were collected in 20 cm intervals. Median grain size is predominantly silt and fines upwards
for Khulna_out_1 and Khulna_out_2. LOI % values were all relatively low (<6%), indicating
low organic matter, and the bulk densities ranged from 1.0 to 1.5 g/cm3.

Khulna_in_Cores

Median Grain Size (um) Dry Bulk Density (g/cm?3) Loss-on-ignition (%)

0 20 40 60 0 0.5 1 1.5 2 0 5 10

o

o 3 EES
+*+<$ .
Lt | | %

- Y W § e
B _ g

o ¢ % o] w] T
s | |
250 ++¢{>« 250 250

ST A B ‘?‘%%

"
4

o8-

; ¢

o g

o

§ 4 I | 5
w] 3 ol i
J} B ‘5&

Supplemental Figure S7: Median grain size (um), dry bulk density (g/cm?3) and loss-on-
ignition % for all Khulna_in_ cores. Horizontal error bars for dry bulk density and loss-on-
ignition are standard error for all samples within a core, while the vertical error bars are
fixed at 10cm as the samples were collected in 20 cm intervals. Median grain size is
predominantly silt and generally fines upwards for all 3 cores. LOI % values were all
relatively low (<7.5%), indicating low organic matter, and the bulk densities ranged from
1.0 to 1.5 g/cm3.
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Supplemental Figure S8: Median grain size (um), dry bulk density (g/cm?3) and loss-on-
ignition % for all Rampal_out_ cores; all Rampal_out_ cores were vibracores. Horizontal
error bars for dry bulk density and loss-on-ignition are standard error for all samples within
a core, while the vertical error bars are fixed at 5 cm as the samples were collected in 10
cm intervals. There was no discernible relationship between median grain size and depth for
the 3 cores, and the predominant grain size is silt. The average LOI for the three cores was
4.2%, with Rampal_out_2,3 both having higher subsamples at depths of 90-100 cm (12.4%
organic matter) and 10-20 cm (11.2% organic matter), respectively. The bulk densities
ranged from 1.1 to 1.8 g/cm3, with Rampal_out_2 having the most pronounced increase of
bulk density with depth.
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4) Dredge Spoil Consolidation and Compaction

After excavation, dredge spoils are deposited alongside the channel
margins, unmoved for years (Fig. 2). Thus, there is sufficient time for the
sediment to dewater (consolidate) before being used in construction (Fig.
S10; Duncan, Wright and Brandon, 2014). Housing plinths constructed in
Bangladesh are manually compacted - no heavy machinery is used in the
process. Therefore, it can be inferred that the maximum compaction of
sediment will not exceed the natural consolidation of the sediment - a 1:1
ratio for bulk densities. However, for conservative estimates, we assume
that the maximum amount of compaction, if it exceeds the 1:1 ratio, will not

exceed 20%. Thus, the “compaction factor” used in our calculation is 1.2x.
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Supplemental Figure S10: Modified from Duncan et al. (2014): All cores extracted in
this study were silt-dominated, with <25% clay content except for one 20 cm thick
deposit at depth (>2.5 m) that had >25% clay content in Rampal_out_3. The drainage
path length, which is strictly in the +y direction, is at its greatest at the apex of the
dredge spoil “artificial levees”. Assuming a maximum height of 8 meter, the dredge
spoils undergo dewatering, or primary consolidation, within a matter of days (as shown
by the red shading).
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Volumetric (m?) Estimates for Constructing Housing Plinths and Augmenting Existing Embankments

Volume (m3) for 1
plinth
(dimensions 7.5 m x
7.5mx1.5m)

Total # of plinths
that can be built with
1.70 x 10% m3

Volume (m3) to elevate 1 km length
of embankment (dimensions detailed
in Fig. 10B)

Total length (km)
of Embankments
Elevated with 1.70 x 106 m3

Secondary
Compaction
1:1

Secondary
Compaction
1:1.2

7.5mx7.5mx1.5m
= 84.375 m3

84375m3x1.2=
101.25 m3

(1.70x 106 m3)/
84.375m3=
20, 148 plinths

(1.70x 10% m3)/
101.25 m3=

16, 790 plinths

Area of 6.8 m height embankment —
Area of 3.8 m height embankment =
92.4 m?

92.4m?x 1000 m =
92,400 m3

92,400 m3x 1.2 =
110,880 m?

(1.70 x 10° m3)/ 92,400 m3=
18.4 km

(1.70 x 105 m?3)/110,880 m? =
15.3 km

Supplemental Table S1: Calculations for how many housing plinths or km-lengths of
augmented embankments could be constructed using the dredge spoils (1.70 x 106 m3). For
each repurposing idea (plinths vs augmented embankments), there are two calculations -
one assuming no secondary compaction and one assuming a secondary compaction of 20%
(factor of 1.2), For the embankment dimensions, see Fig. 10, which is modified from
Dasgupta et al., (2010).
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5) Channel Infilling Analyses and Geometric Calculations

Channel Width Measurements

A Change in Channel Width along Terminal Tidal Channel near Khulna, 1984-2020
Distance Upstream from Channel Mouth (km)
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Supplemental Figure S11: Channel width measured along transects 1-100 for Khulna
(A), Dacope (B), and Rampal (C) tidal channels. For all three sites, channel width decreases
over time, with the largest average decrease at Dacope (B). All graphs are accompanied by
2019 Google Earth images of the sites, showing the three channels and associated
transects.

Figure S11A, displays the change in channel width for each transect along
the Khulna tidal channel during individual years 1984, 1991, 1995, 2000,
2005, 2010, 2014, and 2020. In general, average channel width decreased
most notably in the upstream reaches. For example, transects 50-100 from
years 2000 to 2015 decreased in width from 118 to 29 m (a 75% decrease),
and transects 25-50 between years 2015 to 2020 decreased in width from
122 to 75 m (a 39% decrease). Then, dredging operations for transects 50-
100 were evident, as observed as an increase in average channel width

between 2015 and 2020 from 28 to 68 m.

Figure S11B, displays the change in channel width for the transects
near Dacope during individual years 1984, 1991, 1995, 2000, 2005, 2010,
2017, and 2020. The upstream reaches (transects 40-100) experienced
large channel width reductions starting in 2000 (from an average channel
width of 60 m in 2000 to <10 m in 2010, >83% decrease), and the
transects closer to the mouth (transects 1-40) experienced large channel
width reductions in 2005 (from an average channel width of 83 m in 2005 to
36 min 2010, 57% decrease). Ultimately, dredging was started after 2010
and completed in 2017 (transects 1-86) and 2020 (transects 87-100). For

transects 1-86, the average channel width pre-dredging in 2010 was 17 m
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and post-dredging in 2017 was 37 m. For transects 87-100, the average
channel width pre-dredging in 2017 was <10 m and post-dredging in 2020
was 19 m. However, for transects 1-86, the channels began infilling post-
dredging as the average channel width decreased from 37 m in 2017 to 31

m in 2020 - a 16% decrease in just 3 years.

Figure S11C, depicts the channel width changes for the channel near
Rampal for individual years 1984, 1991, 1995, 2000, 2005, 2012, 2016, and
2020. Once again, the upstream channel reaches (transects 49-100)
experienced a greater change in channel widths, with the largest changes
evident from 1995 to 2000. While the lower reaches (transects 1-48) also
decreased during this time (from an average width of 166 to 125 m, 25%
decrease), the upper reaches (transects 49-100) experienced significantly
more infilling, decreasing from an average width of 93 to 55 m, a decrease
of 41%. After 2005, transects 70-100 were cut off from the lower transects
by a small, earthen dam constructed by locals. Dredging operations for
transects 1-69 started after 2012 and ended in 2016, and average channel
width increased from 18 to 31 m. Additional dredging started after 2018 and
was still ongoing for transects 1-48 during May 2020 as evidenced by
Copernicus imagery. Between 2016 and 2020, the average channel width for

transects 1-48 increased from 34 to 50 m.
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Supplemental Figure S12: A schematic of a tidal channel, with equally spaced transects
denoted by dashed lines. A reducing tidal prism and velocities are causing the channel
banks and beds to infill. The formulas for calculating the channel volumes are given.
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