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Abstract—Large (extreme, high-impact) events can occur in
complex systems as a result of fat-tailed distributions of the
system behavior. Decision-making in the presence of a potential
high-impact event where the law of large numbers (LLN) cannot
be applied, is not as straightforward as decision-making in a
normal scenario where the LLN is used. In this paper, a general
framework is introduced for decision-making in the presence of
a potential high-impact event using change-of-probability mea-
sures. The idea of the proposed framework is to weigh the high
negative consequences of non-LLN decision-making problems as
a tail risk management strategy. The proposed approach is named
asymmetric change-of-probability measures (ACM) as the right
and the left tails of the distributions are treated asymmetrically.
A key to this approach is to define and satisfy required properties
so that the change-of-measure operation is performed in a prin-
cipled way. An important property is ensuring upper bounds for
the relative entropy between the distributions. We first introduce
asymmetric bounded expectation (ABE), as a special case of
the general approach. We then extend the proposed asymmetric
method to the general change-of-measure. Benefiting from the
same properties as the symmetric change-of-measure, we show
that the asymmetric approach can be potentially a promising
method for decision-making under non-LLN risk management
circumstances in complex systems. Through a practical example
from venture capital (VC) in finance, and in comparison to the
symmetric change-of-measure, we show that considering tail risk
management will result in a different decision-making outcome
where the VC is required to invest in more startups to avoid a
loss.

Index terms— Decision-making, complex systems, risk
management, expected utility, relative entropy, change-of-

measure.

I. INTRODUCTION

Financial markets, Internet, electrical power network, trans-
portation systems, spread of contagious diseases etc, are only a
handful of the popular complex systems among many of them
[1]-[3]. The presence of power-law in complex systems has
been recognized to describe many behaviors of such systems
[4]-[6]. Besides, the interconnectedness of a complex system
and the interaction between the physical parts and human
or intelligent agents demands frequent decision-makings for
each. Decisions that are made based on probabilities and their
corresponding results, known as probabilistic decision-making,
and failing in which will produce large events [7] or the so-
called high-impact events.

Probabilistic decision-making has been investigated in many
different disciplines such as information theory, artificial in-
telligence, psychology, economics, and other social sciences
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[8]-[16]. It is important to have a solid framework for decision
making, specifically, as more decisions will be made by
artificial intelligence (AI) agents in near future, [17], [18]
and when there are high-impact decisions with high undesired
consequences and very small probabilities [19].

A very common approach to decision making is the prin-
ciple of maximizing expected utility. While very useful, the
notion of expected utility and probability measures have a
fundamental limitation: They are valid when the law of large
numbers (LLN) holds, i.e., a long run of the experiment is
available. This is not the case usually when we deal with
complex systems where we face non-LLN decision-making
problems. Hence, there seems to be a lack of rigorous frame-
work to deal with decision-making in such contexts.

In our recent work, [20], we proposed a new decision-
making framework based on change-of-probability measures
to provide a systematic approach for rational decision-making
under non-LLN regimes. The main idea was to apply a change-
of-measure operation to amplify the more likely outcomes and
weaken the less likely ones, which indeed makes more sense
in a single run (or a few runs) of an experiment. A main
contribution of [20] was to ensure such change-of-measure
operations are done in a principled way. The proposed method
was shown to be a generalization of the expected utility theory
(EUT) from several perspectives.

Nevertheless, in decision-making for complex systems, a
very important goal is to manage risks. In our framework, this
is associated to left-tail risk, i.e., when the value of utility is
the least. While the proposed framework in [20] can account
for accumulation of risk, it is nevertheless symmetric in the
sense that it treats left tails and right tails in the same manner.
This is not usually sufficient to handle left-tail risks [21].

The contributions of this paper are as follows:

- We develop a more general change-of-probability mea-
sures framework that is capable of handling risk man-
agement strategies in complex systems. The idea here
is to ensure that left-tails are sufficiently included in our
decision making framework. The method is referred to as
asymmetric change-of-probability measures (ACM). This
is achieved by introducing the parameter % that controls
for risk aversion level.

- We provide carefully chosen properties that need to be
satisfied by such change-of-measure operations while at
the same time ensuring that the relative entropy between
the resulting distributions are sufficiently bounded.



- We prove that the proposed method converges to expected
utility if the number of experiments grows.

- We provide a general method to achieve such change-of-
measure operations (using consistent functions).

- Upper bounds on the distortion parameter (relative en-
tropy) are obtained. In fact, another advantage of the pro-
posed method is the use of relative entropy as opposed to
total variation distance in [20]. This is specially important
as it is suitable for future work, where communication
and control costs are incorporated in the decision making
[22], [23].

- Finally, through a practical example from finance, we
show how the ACM will affect the decision made by a
venture capital (VC) in comparison to his decision using
the symmetric change-of-measure.

A. Related Works

Decision-making is a multi-disciplinary problem from infor-
mation theory and engineering systems to medicine and social
sciences applications [8]-[16], [24]-[27].

There have been two main attitudes towards decision-
making problems: descriptive theories and normative theories.

In descriptive theory, the focus is on analyzing how human
makes decisions from a psychological point of view [28]. On
the other hand, in normative works, the goal is to design
efficient methodologies in order to make a rational decision
[29]. The most common approach in order to make a rational
decision suggested by normative theories, is the principal of
maximum expected utility which is widely used in different
disciplines [30].

The limitations of expected utility approach have been
discussed extensively, for example, in the contexts of problems
such as St. Petersburg paradox [31]. In [20], we unified
such limitations by formulating them under non-LLN regimes.
This allowed us to provide a framework that converged to
expected utility as the number of repetitions grow; while
at the same time, it delivered reasonable results when the
number of repetitions was small. In this paper, with a focus
on risk management, we generalize the work in [20] to
allow for risk management. Change-of-probability measures
has been exploited in different contexts before. For example
in information theory [32]; signal processing [33], [34]; and
fuzzy measure theory [35].

B. Organization

This paper is organized as follows: In Section II we in-
troduce the asymmetric bounded expectation (ABE) as well
as upper bounds for relative entropy. Section III provides the
general ACM. Section IV provides the systematic approach
and finally, Section V concludes the paper.

As this paper is a generalization of the work in [20], some
of the needed proofs can be easily obtained by adapting the
proofs in [20]. Such proofs are eliminated for brevity and lack
of space.

II. ASYMMETRIC BOUNDED EXPECTATION

We start by introducing a very simple ACM operation: ABE.
Due to its simplicity, ABE is very helpful in obtaining insights
about the general ACM operation. Consider a scenario where
an agent is considering one of m possible actions or choices.

The random variables that represent the rewards (utilities) of
potential actions are represented as X;, for ¢ = 1,2,--- ,m.
For clarity of exposition and to avoid measure theoretical
technicalities, we assume the random variables X; are discrete
and the countable set Rx includes all the possible values for
these random variables. Note that all the arguments can be
extended to general random variables similar to what has been
done [20].

Basically, bounded expectation (BE) introduced in [20] has
a very intuitive and interpretable definition. It is motivated
by the de minimis risk principle [36] which states that we
should ignore very small probabilities, say below €. Hence, the
basic idea of the BE is very simple: We first identify “extreme
values” (outliers) of random variables X;,7 = 1,2,...,m
from the right and left in such a way that the probabilities
of such extreme values are in total less than or equal to -=.

ABE is further the modified version of BE. The basic idea
is pretty similar: We first identify outliers of X; from the left
and right in such a way that the probabilities of such extreme
values are in total less than or equal to ;5 where € = ¢; + ¢,
is what we consider the rationally negligible probability. The
ABE of X, shown as E.[X;], is then the conditional expected

value of X; given that X; is not in the outlier region.

Hence, in symmetric BE we removed a mass of 5 unlikely
events from both tails of the distribution while in asymmetric
BE, we choose different thresholds ¢; (for the left tail) and e,
(for the right tail). Specifically, to focus on the risk, we ensure
€, > €. To easily apply our systematic approach, we could
require ¢, = ke;, where k > 1. The parameter k& shows the
level of risk aversion. An extremely risk averse agent might
set a very large value for k, i.e., as k — oo, then ¢, — 0 and
€ — €.

To have a general definition that can be applied to all
kinds of random variables, we define ABE as follows. We
can generate N random sample of X ;)s (independently), sort
the values increasingly and throw out the outliers. Doing so,
the index set of the remaining samples, known as “normal set”
will be obtained as below

Ne,
S

and the outlier index set will be {1,2,..., N} — Iy. ABE is
then the sample mean of the values in I as below:
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It is not difficult to see that the limit exists and is finite using
the LLN.

Let us denote the primary probabilities of a discrete random
variable X by P = {p1,ps,...} (e, p; = P(X = x;))
and denote the corresponding changed probability values by
Q = {q1,q,...}. Also, let D(Q||P) show the relative
entropy between ) and P. In the following lemma, an upper
bound for D(Q||P) can be obtained:

Lemma 1. If Q is absolutely continuous with respect to P,
Q < P, the relative entropy of Q and P is upper bounded as
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Fig. 1. Partitioning of the probabilities and their corresponding changed

probability measures. According to the ABE, the probability of the samples
in the shaded region will be changed to 0.
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where the first inequality results from the inequality Inax <
xz — 1, for x > 0. |

As Lemma 1 is a general axiom, we can use it to obtain an
upper bound for the relative entropy between the distributions
in the case of ABE.

Corollary 1. For ABE, the upper bound for D(Q||P) can be
obtained as below:

1 €
=~ In21-—

D(Q|P) <

since, in ABE, maxy, Z—’Z =

= €.

Nevertheless, for the special case of ABE, we can further
obtain a tighter bound through the next lemma.

Lemma 2. The relative entropy of Q and P under ABE is
upper bounded as below:
1
D(QIIP) < log, —— )

Proof. After change-of-measure by ABE, we partition the
probability space as in Figure 1.

Now, we calculate the relative entropy:

DIIP) = ZQk 10%2
Pk 1 T T
= log + log
;1— 21 1—e 22 (1—e)p,
Y Y
1 0
+1—6 ©82 (1 e)ler
1
=1 1og21 (S+z+y)
Y Y
+ log + —— log, —
1 > p, o
< logy —,

where S = ), _; pr, and the last inequality comes from the
fact that the last two terms are negative, since x < p, and
y<p,and S+zr+y=1—c¢c |

Lemma 2 obtains a tighter upper bound for D(Q||P) (for
the special case of ABE) than Corollary 1 as

1 €

D(QIIP) < log, 1—e¢ = In21—¢

Although ABE benefits from a simple and intuitive nature,
it has limitations too. The main limitation is that it partitions
the probability measures into two sets: normal and outliers
sets. Hence, it causes a sharp change in probability measures.
In the next section, we develop a framework that not only
partitions the probability space in to more than two parts, but
also changes the probability measures more smoothly.

for € > 0.

III. GENERAL ASYMMETRIC CHANGE-OF-PROBABILITY
MEASURES

Similar to the symmetric change-of-measure, in order to be
a principled operation, ACM needs to meet several important
properties. These properties are fairly similar to that of sym-
metric change-of-measure developed in [20]. In the following,
we briefly revisit them along with the mentioning the possible
differences with the symmetric case.

A. Asymmetric €4-Consistent Change-of-Measure Policies

We consider a complete probability space (2, F, P) where
the random variables X; : Q — R, for i = 1,2,---,m
represent the utilities. It is in general convenient (and not
restrictive) if we assume F is the sigma field generated by
all the involved random variables.

The goal here is to define a new probability measures Q) x;,

n (2, F) to be used in evaluating the true value of these
actions. Specifically, we would construct mapping

{X17X27"' 7—X’mﬂP} 'i; {QX”L}’
such that for any X € {X;, Xy, -+, X, }, its value v[X] is

given by

o[X] = vx[X] = / X(@)dQx (w).



We might require that all Q) x, are the same, Q) x, = Q. In this
case, we call such change-of-measure operation uniform. For
simplicity of notation, we assume uniformity in this section.

Note that although the idea of change-of-measure is to
amplify the most likely outcomes while weakening the highly
unlikely ones, by considering ACM, we wish to take the
probability of large risks in to account so that we have a robust
decision-making policy. Furthermore, our goal is to describe
mappings P — () that have desirable properties consistent
with probabilistic decision-making.

In order to be a valid operation, change-of-measure needs
to satisfy some properties. There is a lot of similarity to
the properties introduced in [20] for symmetric case. The
main difference is in Property 5 and Property 6. For the
sake of readers convenience, we revisit the properties without
mentioning the details and proofs.

Property 1. (Finiteness)
1) If P{we Q: X(w) < 00}) =1, then v[X] < oo.
2) If P{we Q: X(w) > —o0}) =1, then v[X] > —o.

Property 2. (Dominance)

If Plwe: X1(w) < Xo(w)}) = 1, then v[X1] <
’U[Xg].
Property 3. (CDF Sufficiency/Symmetry) Consider m ran-
dom variables X; Q — R for i = 1,2,--- m

with the joint cumulative distribution function (CDF)
Fx, x5, xn(@1,22, ..., Tm), and let [X1,Xo, -+, Xp] —
[U17U27"' , Um].
1) The values v; = v[X;), for i =1,2,--- ,m, are uniquely
determined by Fx, x,, . x,..
2) For any permutation 7 : {1,2,--- ;m} — {1,2,--- ;m},
we must have
(X)) Xa@2)s > Xa(m)] = [Vr1)s Ur2)s 5 V1]

Propert%f 4. (Convergence) For a sequence of random vari-
ables Xln], n=1,2,3---, on (Q,F,P), where Q" is the
corresponding measure and

X{n] a.s. X1 ’

“« ”

where RLAN indicates almost sure convergence (with
respect to P), and all the X{n]s are dominated in absolute
value by an integrable (with respect to P and Q™) random
variable Y, we have
. [n] [n] _
nhﬁngov [X1"] = v[X1].

Note that since Q[”] < P, almost sure convergence with

respect to P also ensures almost sure convergence with respect
to all QI"ls.

Property 5. (Weak linearity) v[aX + b] = av[X]| + b, for any
a>0,beR.

Note that unlike the symmetric case where this property
holds for all a € R [20], for the ACM, Property 5 holds only
for a > 0.

Property 6. (Bounded relative entropy distortion) For any
event B € 0(X1,Xs,---, Xy,), we must have

D(@IP) < €a-
Now, we have the eg-consistent policy definition:

Definition 1. We say that a change-of-measure operation is
an asymmetric €g-consistent policy if it satisfies properties 1
through 6.

If a decision is being repeated several times independently
and we define

X0 4 x@ 4 4 X0

n 9
n

then v[X,,] converges to E[X].

Theorem 1. (Limit Theorem) Let XV X3 .. X ™) pe in-
dependent and identically distributed (i.i.d.) random variables
with expected values E[X ()] = i < oc. Let v[.] be associated
with an asymmetric €q-consistent change-of-measure policy.
Assume X ,s are dominated in absolute value by an integrable
random variable Y. We have

lim v[X,] = u.

n—oo

Note that the above theorem essentially guarantees that the

proposed method converges to the expected utility as n be-
comes large. Nevertheless, the value of the proposed approach
lies in the case where we “cannot” repeat the decision-making
process a large number of times. As this is the case in almost
all high-impact decisions, the proposed method can potentially
be a promising approach. Besides, the asymmetric nature of
the operation, makes it well-suited for risk management.

IV. SYSTEMATIC APPROACH TO CONSTRUCTING
ASYMMETRIC €4-CONSISTENT POLICIES

In this section, we first introduce consistent functions for
ACM and then we develop the systematic procedure to use
the proposed method in decision-making.

Definition 2. (Consistent functions) We say that a function g :
[0,1] — [0, 1] is a consistent function with respect to random
variables X1, Xo, -+, Xy, if all of the following conditions
are satisfied:

1) g is continuous and increasing, and g(0) = 0,¢g(1) = 1.

2) (Lipschitz continuity) There exists ¢, € R such that
9(z) —9(y)| < cqlz —yl for all x € [0,1] and y € [0, 1].

3) On the interval [0, 3], g(-) is convex and g(z) < .

4) On the interval [3,1], g(-) is concave and g(x) > z.

5) For some k € N (risk aversion parameter), we have

g@)+kg(l—2)+(k—1x =k, foral xze]l0,.5].

6) For each i = 1,2,---  m, there are constants ¢; and c|
in R such that

[ s <ce, [ atrimin <o

7

Now, we have the following theorem:



Theorem 2. Let g : [0,1] — [0,1] be a consistent function
with respect to random variables X1, Xs,--- , X,,. For any
i1€{1,2,--- ,m} and x € R, define

QXi (Xz > J}) = g(P(Xi > JZ))

Then, P — Qx is a nonuniform asymmetric €g-consistent
change-of-measure policy, where

2c
€a < -2 sup |g(x) - zl. 5)
In2 ¢,
Proof. (Proof of Theorem 2) Properties 1-4 can be proved
similar to the symmetric change-of-measure as in [20]. Also,
Property 5 only holds for @ > 0. Finally, to prove Equation
(5), remember that according to the Lemma 1, we have

1 qk
D@IP) <y mx (%) 1P Q.

Hence, we need to calculate the term maxy ‘1—" based on the
consistent function. Therefore, using Equation (7), we write it
as below:
o0 o0
q _ 9 (lek Pi) — g (Zi:k+1 pi) <

Pr Dk

where the inequality comes from the Lipschitz continuity in
Property 2 of Definition 2. Also, noting that [20]

Q- P| <2 Supl] lg(z) — =,

g»

z€[0
we obtain:
2c
D(Q[|P) < =% sup |g(z) — z|. (6)
In2 z€[0,1]
|

For example, for m = 1 and non-atomic probability spaces,
g(x) of the form below results in ABE

0 T < €
T—€, . 1
(:C) _ 1—2¢, €r Sz < 2
g T—€] l<x<1_€ ‘
1—2¢ 2 == l
1 z>1—¢

A. A Systematic Approach to Decision-Making in Non-LLN
Regimes

Here, we provide specific constructions of consistent func-
tions, and briefly discuss how it can be used in a systematic
approach for decision-making in non-LLN regimes using
ACMs. In fact it can be developed similar to the symmetric
case. The only difference is the consistent function itself which
is no longer symmetric. It is instead asymmetric in such a way
that it distorts the left tail less than the right tail. Other steps of
the process is the same as before. For the reader’s convenience,
we revisit the process developed in [20] in the sequel.

We start by picking an e-consistent policy such as the
method described in the previous section using consistent
functions. We note that for the ACM, for a given k, we have
€ = (k+ 1)¢ and if we let € = 0, we obtain the same results
derived from expected utility theory. In general, let i(¢) be the
preferred option for a specific e. As we then increase €, we
take note of the possible changes in i(¢). Let €* be the value

;
g(x) = x
09|= = a=05k=1
a=2,k=1
08 a=2,k=2
07|m = @=05k=2

X

Fig. 2. A representation of g(x) with different values of o and k.

of € where the first change occurs in i(e), i.e., i(e*) # (0).
The key insights are as follows:

1) The larger the value of €*, the more stable is the choice
made by the expected utility (¢(0)). That is, it is more
likely that the expected utility is suggesting a good option.

2) On the other hand, if the value of ¢* is small, this is a
high indication that i(e*) might be the best choice.

As the problem of decision-making under non-LLN regimes
is multifaceted and most likely a simple narrow approach will
not be enough, the proposed method above, where we look at
how the preferences change as e changes, seems to be a step in
the right direction. An interesting question for further research
seems to be finding guidelines on the choice of the threshold
value of €* at which i(e*) becomes the preferred option. As a
very rough rule of thumb, one might suggest €* < 0.05 might
be used as the threshold.
Here is an example of a consistent function:

0 z < ¢,
B Q0 plta e <x<05
g(.’L’) - 1+(k—1)i—g(1—x) 05<zr<1—¢ ’
1 x Z 1-— €]

where « is a parameter that determines the distortion parame-
ter, 4. For & = 0 we have g(x) = x, so we obtain the standard
expected utility, and €¢; = 0. Furthermore, k determines the
level of risk aversion. Figure 2 shows the asymmetric g(x)
for different o and k values.

Having a consistent function, we can then use the systematic
approach proposed in [20]. The main difference here is that
we are using an asymmetric change-of-measure and this will
allow us to control for the level of acceptable risk.

Specifically, if X is a discrete random variable and bounded
from the left, we can simplify the change-of-measure operation
in Theorem 2 in the following way. Suppose {x1,z2, 23, -}
are potential values of X in an ordered way, i.e.,

T < To < T3z --.



Let p;, = P(X = «;). Then, we obtain the changed probabil-
ities, ¢;, for j =1,2,..., as below

dopi|. D

o0
A
G =Qi(X=z;)=g Zpi -9
i=j i=j11

If the range is finite, i.e.,
1 < X2 <23 < Ty,

then, for j =1,2,---

T
% =49 sz‘
i=j

,7 — 1, we obtain

™
-9 Zpi )
i=j+1

and
A

¢ = Qi(X =) = g(py).
The value of ¢; can be obtained by calculating the relative
entropy between P and Q:

s
4
€d = ZQi logy —.
— Di
i=1
The value of X is then obtained as

olX) = wlX] = 3 w05

B. Example from Financial Market

Here, we revisit the problem of angel and venture capital
(VCO) investment from [20] and apply the ACM systematic
approach. The problem is as follows:

An angel or a venture capital investment fund is supposed
to invest in technology startups. A fundamental question is
in how many startups the available funds should be divided
with a risk minimization approach? To answer this question,
we apply the proposed change-of-measure-based approach in
[20] and the ACM developed in this paper and compare their
results.

We use the same formulation as in [20]. Hence, we denote
by L the total number of companies in which the fund invests.
Also, XU, j =1,2,---, L denotes the total profit from the
investment in the jth company assuming one unit of money
being invested. For example, if the j** company fails, we let
X0U) = —1 and if the investor triples the invested amount,
we let X() = 2. For simplicity, we assume that the fund
invests equal amounts in each company. Furthermore, a typical
distribution of X)s is shown in Figure 3.

Now, assume that the investor requires a minimum profit of
140% over the length of the investment, which is usually a
few years for each startup. To reach to the desired profit, and
considering a 0.05 tolerance (i.e., € = 0.05), we have seen in
[20] that with a symmetric change-of-measure, where k = 1,
the VC needs to invest in at least 12 startups.

However, by applying the tail risk management approach we
get different results. For example, for £ = 2, we obtain L > 19
and for £ = 5, we obtain L > 30. In other words, in order to
avoid the risk, the VC is required to apply in more startups.
The results are shown in Table for readers convenience.
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Fig. 3. Distribution of U.S. venture returns between 2004 and 2013, adapted
from [37].

TABLE I
THE VC PROBLEM SOLUTION FOR DIFFERENT APPROACHES.
k=1 k=2 k=5
L>12|L>19] L>30

V. CONCLUSION

Complex systems potentially suffer from occurrence of
high-impact events with tragic consequences. In this paper,
we introduced asymmetric change-of-probability measures
(ACM) as a method to deal with the risk management prob-
lems in the complex systems. Considering the non-LLN nature
of the problem, the goal was to ensure that the left tails are
sufficiently included in the decision-making process. We first
applied the ACM to the bounded expectation as a special
case, and obtained the upper bounds for the relative entropy.
We then developed a general theory for ACM and discussed
that it benefits from most of the symmetric change-of-measure
properties. Hence, it can be a principled methodology for risk
management under the non-LLN regimes in complex systems.
Finally, we revisited the VC problem and solved it by the
proposed risk management approach. We showed that the VC
needs to increase the number of startups for his investment so
that the risk probability is kept as low as desired.
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