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Abstract—Because of their potential ubiquity, unmanned aerial
vehicles (UAVs) are often viewed as a threat to people’s privacy.
However, the users of UAVs for applications such as package
delivery can also have their own privacy compromised by obser-
vations of UAV behavior by an adversary. Hence, this paper looks
at privacy-preserving path-planning for a UAV. In particular,
we consider a UAV which is delivering a package or operating
a service, e.g. a health-emergency service, for users while an
adversary tries to infer the UAV’s destination by observing its
trajectory. We consider two models for the UAV motion for
which we provide privacy-preserving path-planning mechanisms
(PPPMs) while taking into account the UAV’s energy consumption
as well. We obtain the tradeoff between privacy and energy
consumption guarantees and show that the proposed PPPMs not
only satisfy the privacy guarantees but also meet the energy
efficiency criteria.

Index Terms—Privacy-preserving path-planning, UAV, trajec-
tory, energy efficiency.

I. INTRODUCTION

The promise of unmanned aerial vehicles (UAVs) has led to
a rapid increase in their application areas, ranging from UAV-
based wireless access points to search and rescue (SAR) and
delivery operations [1]. In particular, using UAVs as a delivery
mechanism is an interesting application with broad societal
impact that has been under development by Amazon Prime
Air delivery since 2013 [2]. Importantly, the UAVs might not
only deliver commercial packages but also provide emergency
and health-related services at the destinations [3].

Privacy can be defined in a number of ways, but the
main idea is to protect users’ identities from internal and
external adversaries. And privacy in UAV applications can be
investigated from several points of view. In fact, UAVs are
often viewed as being a threat to users’ privacy by providing
a ubiquitous observation platform; however, their own privacy
can be violated as well [4], which is the focus of this paper.
Here, we consider the loss of privacy when UAV destinations
may be undesirably identified by an adversary who is observing
the UAV’s path. In particular, we consider a scenario in which
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a UAV that is delivering packages or providing health services
to residents is observed by an adversary. The adversary tries to
identify the UAV’s destination based on its trajectory. Hence,
the goal is to manipulate the trajectory in a randomized way
so that the adversary cannot simply infer the destination.

Thus, in the path privacy scenario considered here, there
exists an agent or a set of agents (e.g., UAVs) that follow
trajectories to achieve a certain goal G. A potential adversary
can observe a portion or all of the trajectories (depending on
the strength of the adversary) and is aiming to infer some
sensitive information about the goal G.

For example, we might have a drone that delivers a package
to a destination, and we may want to hide the delivery location
from the adversary. If there were no privacy constraints,
the drone might travel with an optimal speed along an
approximately straight line from the source location X to
the destination Y , drop the package, and return to X again on
a straight line. However, due to the privacy concerns, we might
have to deviate from the “optimal” path planning algorithm.
Of course, we will pay some price for this in terms of energy
consumption, delivery time, etc.

A. Related Work

As mentioned above, privacy may be compromised when
UAVs monitor and obtain excess information about their
operation area other than accomplishing their main task [5], [6].
In this regard, privacy in UAV applications has been extensively
studied before [7]–[13]. In [7], [8], the authors provided an
algorithm based on the physical stimulus and the corresponding
change in the channel traffic in order to determine whether a
point of interest (PoI) is being video streamed illegitimately.
A central management system was proposed in [9] where
given the restrictions and UAV’s applications, it is in charge
of the permission to the applications as well as monitoring
the drone, in order to detect and handle violations at runtime.
In [12] a novel detection system for privacy invasion caused
by a customer drone was proposed based on the low-cost
hardware and using RF signals under a non-line-of-sight
(NLOS) condition. Through scrambling windows in images



and videos that UAVs are shooting during their mission, [13]
proposed a method to prevent the violation of people’s privacy.

For a UAV’s trajectory, the authors in [10] proposed a privacy-
aware path planning where, given the privacy-restricted zones,
the optimal path for UAV is designed while collision avoidance
and a time budget are considered. In [14], the number of UAV’s
movements is minimized given the private areas and differential
permission of their owners.

On the other hand, UAVs can be under different kinds of
privacy and security invasions as well [15]. In this regard, a
machine learning (ML)-based attack was trained in [16] to
decipher a UAV’s location using both the encrypted location
data that the UAV transmits and observing its actual location.
To preserve privacy, [17] has proposed an authentication scheme
based on hyperelliptic curve cryptography in order to design a
low computation and communication cost privacy-preserving
mechanism. A mutual authentication protocol for UAV-ground
terminal and UAV-UAV authentication was proposed in [18]
using physically unclonable functions. A path planning algo-
rithm was proposed in [19] to protect UAV-ground station data
transmission from an eavesdropper using a modified particle
swarm optimization (PSO). [20] proposed a network-coding
based pseudonym to provide privacy for the ground users’
location data collected by drones and outsourced to an untrusted
cloud database.

The most similar work to this paper is [21], where the
authors proposed privacy-preserving path design algorithms for
a UAV while there is an adversary trying to infer the UAV’s
destination from its path. The authors consider two scenarios:
the adversary can and cannot see the destinations, and they
propose path planning algorithms to hide the destinations from
the adversary. Our work is different from [21] in several aspects
discussed in the next section.

B. Contributions and Organization

Our goal is to develop privacy-preserving path planing
mechanisms (PPPMs) that provide a satisfactory tradeoff
between privacy and efficiency. Our work is different from
[21] in the following ways:
• In contrast to the “Adversary Monitors Source Location”

scenario in [21], we consider a scenario where all parts of
the zone are observable by the adversary. In other words,
there is no safe zone available and the adversary can
observe the entire path.

• In contrast to the “Adversary Monitors Destinations”
scenario in [21], which is closer to our formulation: (i) we
consider a single destination scenario where the privacy
is obtained independent of the other possible destinations;
(ii) we define a privacy guarantee for the scenarios in
hand and prove that it is achievable through the design
parameters; and (iii) we consider the UAV’s energy
efficiency constraint as well as the privacy guarantee and
investigate the existing tradeoff.

The problem considered in this paper is analogous to privacy
in other areas, for example in social networks where the
friendship links of users are anonymized in order to prevent
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FIGURE 1: The piecewise linear paths

further inference by adversaries [22]–[24]. Preserving location
privacy of users when their data is shared for location-based
services can be also thought of as another analogy to the
presented problem [25]–[28]. Also, privacy of vehicle location
data in which, for example, users’ home addresses are preserved
from being leaked [29], [30] can be thought of as a counterpart
in transportation engineering.

Note that throughout this paper, ||.|| is the L2 norm and E[.]
is the expectation operator.

This paper is organized as follows: In Section II, we provide
the first scenario descriptions and in Section III, we propose
the corresponding PPPM. Subsequently, in Sections IV and V,
we propose the second scenario and the corresponding PPPM,
respectively. Finally, Section VI concludes the paper.

II. SCENARIO I: PIECEWISE LINEAR PATH

In this section, we provide the first system model and
assumptions in detail.

A. UAV’s Trajectory Model

First we assume that the trajectory is a combination of
linear segments. The goal is to design privacy-preserving
trajectories that guarantee energy efficiency as well, and analyze
the tradeoff between the two performance metrics. In this
regard, we consider a drone which flies with constant speed
in a piecewise linear paths with different lengths denoted by
di, i = 1, 2, . . . , n as shown in Figure 1.

B. Adversary Model

We assume that the adversary can observe the entire path.
However, he cannot observe the drone’s speed. We also assume
that the adversary has no prior knowledge about the destinations.
In other words, before observing the path, from the adversary
points of view, the destination is distributed uniformly in the
area that includes the entire path. This assumption will be
relaxed in the second scenario of the problem.

C. Energy Consumption Model

In this model, in order to analyze the energy consumption,
we first define the energy consumption for a distance unit as
E0. In other words, E0 is the energy consumed by the drone
when traveling a distance unit with a constant speed, i.e.,
E0
4
= E(d = 1). With this definition, the energy consumption

of a path with length di is Ei = diE0. Besides the energy on
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the linear path, we also define an energy unit for a turning
point. In this regard, we assume that the drone consumes ζ
amount of energy when it changes its direction. Therefore, the
total amount of energy in a path with n different line segments
is obtained as

ET =
n∑
i=1

diE0 +
n−1∑
j=1

ζE0

= E0

(
n∑
i=1

di + (n− 1)ζ

)
.

Now assume that the drone is supposed to travel from a
source X to the destination Y on a single straight line of length
d. In this scenario, the energy consumption of the UAV for a
round trip is simply E = (2d+ ζ) E0. Obviously, the adversary
can easily infer the exact location of Y . Hence, Ỹ = Y , where
Ỹ is the adversary inference of Y . In the next section, we
propose the privacy-preserving path planning for this scenario.

III. PPPM I: FLY A RANDOM TRIANGLE

In order to design a PPPM, we intend to randomize the
trajectory. To do so, we define the random variable Θ ∼
arcsin

[
U(−l,l)

d

]
which is a deviation angle from the straight

path. Figure 2 shows the schematic model of the privacy-
preserving path. As shown in this figure, instead of the path
X − Y −X , the drone goes along the path X − Y1 − Y2 −X .
Intuitively, as the Θ increases, which is equal to a larger l, the
path becomes longer which increases the privacy. On the other
hand, the energy consumption increases as well.

Hence, in the next theorem, we obtain the privacy and
energy consumption guarantees as a function of l. The privacy
guarantee is defined as

Gp
4
= Inf E||Ỹ − Y ||2,

where Inf is taken over all estimators of Y . We also define the
energy consumption guarantee as

Ge
4
= P

[
Ep
EOpt

≥ 1 + δ

]
= 0,

where Ep is the energy consumption of the proposed privacy-
preserving path and EOpt is the optimal energy consumption
obtained when the drone travels through the X − Y −X path.
Also, δ is obtained in (4). Now we state the following theorem.

Theorem 1. For the proposed PPPM, the privacy and energy
consumption guarantees can be obtained as

Inf E||Ỹ − Y ||2 ≥ l2

3
, (1)

and

P
[
Ep
EOpt

≥ 1 + δ

]
= 0, (2)

respectively, where δ is obtained in (4).

Proof. For the proof of Equation (1), we first note that given
the adversary’s observation denoted by ψ, Y has a uniform
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FIGURE 2: The privacy-preserving path and the corresponding
parameters. The optimal path is shown by green arrow and the privacy-
preserving path is shown by the red arrows.

distribution over the line Y1 − Y2, i.e., Y |ψ ∼ U [Y1, Y2]. This
is essentially resulted from the proposed privacy-preserving
mechanism where we have assumed that Θ ∼ arcsin

[
U(−l,l)

d

]
.

Using the proposed definition of Θ and Figure 2, we have

sin Θ =
U(−l, l)

d

=
Y

d
,

which gives us Y ∼ U(−l, l). In other words, the adversary is
estimating a uniform random variable in the interval (−l, l).
Now, we note that considering a minimum mean squared error
(MMSE) criterion, the best estimator is the mean value and
the least estimation error is the variance, i.e.,

E||Ỹ − Y ||2 =
(2l)2

12
=
l2

3
,

which completes the proof for Eq. (1).
To prove Eq. (2), we need to obtain the upper bound for
Ep
EOpt

and the corresponding δ. To do so, we note that in the
worst case scenario, the energy consumption is

Ep = 2
√
d2 + l2 + 2l + 2ζ.

This is obtained since in the worst case scenario, Y is exactly
in the middle of Y1−Y2. Therefore, we can write the following
equation

Ep
EOpt

=
2
√
d2 + l2 + 2l + 2ζ

2d+ ζ

<
2
√
d2 + l2 + 2dl + 2l + 2ζ

2d+ ζ

=
2d+ ζ + 4l + ζ

2d+ ζ
(3)

= 1 +
4l + ζ

2d+ ζ

= 1 + δ.

Therefore, we obtain

δ =
4l + ζ

2d+ ζ
, (4)

3



1

3
2

4

2𝑙𝑙

2𝑙𝑙
2𝑙𝑙 2𝑙𝑙

𝜃𝜃1X

𝜃𝜃2
𝜃𝜃3

𝜃𝜃4

FIGURE 3: The extended PPPM I for a 4-destinations scenario. The
green simple line path is the optimal path, the red arrowed path is
the privacy-preserving path, the green dashed lines show the shortest
path from each point to the next destination, and the black dotted
lines are the vertical perpendicular to show the random parameter of
the design algorithm, θ.

and Eq. (2) is concluded.

Discussion 1. Equations (1) and (2) represent a tradeoff
between the privacy guarantee and energy consumption based
on l, such that the larger the l is, the tighter the privacy
guarantee becomes. However, this increases the upperbound
of the energy efficiency, i.e., 1 + δ, which is undesired. Hence,
one needs to determine l such that a given privacy and energy
guarantee are met.

Discussion 2. We can extend PPPM I to a multi-destination
scenario where the UAV follows a trajectory similar to Figure
1. The difference is that, after completing its mission, the UAV
moves toward the next destination through another privacy-
preserving path from Y2 in Figure 2 instead of returning to the
origin X . Figure 3 shows the optimal and the extended PPPM
I applied to a 4-destinations scenario. The detailed analysis for
the multi-destination case is left for the longer version of this
paper.

In the next section, we propose the second scenario and the
corresponding PPPM.

IV. SCENARIO II: CURVED PATH

In this section, we provide the second system model.
Again, the goal is to design privacy-preserving trajectories that
guarantee energy efficiency as well, and analyze the tradeoff
between the two performance metrics. In the following, we
provide the assumptions for this scenario.

A. UAV’s Trajectory Model
We assume that the drone can use any of the following two

possible movements at each segment of its trajectory: (1) flying
at a constant speed vl on a linear line segment, or (2) flying at
a constant speed vc on a circular path. By a circular path, we
mean an arc of a circle. It is assumed that vc and vl are given
and are potentially determined to ensure an optimal operation.

𝜔

Θ

X

𝑂

A

B

FIGURE 4: The privacy-preserving path mechanism: The green arrow
is the optimal path, and the red arrows represent the privacy-preserving
path.

B. Adversary Model

We assume that the adversary can observe the entire path.
However, he cannot observe changes in the drone’s speed.
Hence, he cannot infer if the drone stops at a location. The
adversary also has no prior/side information about the direction
of the destination. Specifically, assuming a polar coordinate
for destination point denoted by X , i.e., X = (R, θX), he has
no information about θX . This means that before observing
the path, from the adversaries perspective, θX is distributed
uniformly in [0, 2π).

C. Energy Consumption Model

To model the energy consumption of the proposed system
model, as before, we define E0 as the energy consumed by the
drone when traveling a unit of distance on a straight line with
the assumed constant speed, i.e., E0

4
= E(d = 1). With this

definition, the energy consumption of a path with length di
is Ei = diE0. Besides the energy on the linear path, we also
define the energy consumption for the arc path. In particular,
for an arc with angle θ and radius R, we model the energy
consumption as below

Ep(R, θ) = θRkE0,

where k ≥ 1 is due to the excess energy consumption resulting
from the nonzero centripetal acceleration and a potential
difference between vl and vc.

Without loss of generality, we assume that the drone is
initially located at location O(0, 0) and is supposed to deliver
a package to the destination at X . From the energy consumption
perspective, the optimal way would be to travel from the source
O to the destination X on a single straight line (length R).
Hence, in this scenario, the energy consumption is simply
EOpt = 2RE0.

Now, in the next section, we propose our PPPM for this
scenario.
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FIGURE 5: The privacy-preserving path for Scenario II and the
corresponding parameters.

V. PPPM II: FLY A RANDOM ARC

In this part, we explain the randomization method used in
the path-planning in order to provide a privacy-preserving path.
The idea is to deviate the UAV’s trajectory randomly from its
original and optimal path. This is shown in Figure 4 where
a scheme of the privacy-preserving path is illustrated by red
arrows. According to this mechanism and as shown in Figure 4,
instead of the path O−X −O, the drone goes along the path
O −A−B −O. In this mechanism, ω is a uniform random
variable, i.e., ω ∼ U(0,Θ), where Θ is the design parameter.
Intuitively, as Θ increases, the path becomes longer which
improves the privacy but degrades the energy consumption
undesirably.

Now in the next theorem, we obtain the privacy and energy
consumption guarantees as a function of Θ. The privacy
guarantee is defined as

G′p
4
= Inf E||X̃ −X||2.

To obtain an energy consumption guarantee, similar to the
first scenario, we require that

G′e
4
= P

[
Ep
EOpt

≥ 1 + δ

]
= 0,

where Ep is the energy consumption of the proposed privacy-
preserving path, EOpt is the optimal energy consumption
obtained when the drone travels through the O − X − O
path, and δ shows the energy efficiency (obtained in (7)).

Theorem 2. For the second proposed PPPM, the privacy and
the energy consumption guarantees can be obtained as

Inf E||X̃ −X||2 = R2

(
1− sinc2 Θ

2

)
, (5)

and

P
[
Ep
EOpt

> 1 + δ

]
= 0, (6)

respectively, where δ = kΘ
2 , and sinc(x) , sin(x)

x .

Proof. Let ψ show the observation of the adversary, that is,
the path O−A−B−O. For the proof of (5), we note that the
adversary knows R based on his observation, ψ. Hence, given
ψ, the phase of X has a uniform distribution over (−Θ

2 ,
Θ
2 ). In

other words, X|ψ = (R,φ ∼ U(−Θ
2 ,

Θ
2 )). This is essentially

resulted from the proposed privacy preserving mechanism
where we have assumed that ω ∼ U(0,Θ). Therefore, with the
MMSE criterion, the best estimator for X in polar coordinate
is

X̃ = E [X|ψ] = (0,E(R|ψ))

= (0,E [R cosφ]).

Therefore, X̃ is estimated in polar coordinates as X̃ = (0, a),
where a

4
= E [R cosφ] and is obtained as

a = R

∫ Θ
2

−Θ
2

1

Θ
cosφdφ

= 2R
sin Θ

2

Θ

= R sinc
Θ

2
,

where we assume that sincα = sinα
α .

Thus, the squared error ||X̃ −X||2 is the distance between
X and X̃ as shown in Figure 5, and the mean squared error
is obtained using the Cosine rule as below

E||X̃ −X||2 = a2 +R2 − 2aRE[cosφ]

= R2 sinc
Θ

2
+R2 − 2R2 sinc2 Θ

2

= R2

(
1− sinc2 Θ

2

)
,

which completes the proof.
To obtain the energy efficiency’s upperbound, we first note

that the energy consumption for the proposed PPPM is

Ep = 2RE0 + ΘRkE0.

Therefore, we can write the following equations:

Ep
EOpt

=
2RE0 + ΘRkE0

2RE0

= 1 +
Θk

2
= 1 + δ,

where

δ = k
Θ

2
. (7)

Discussion 3. It can be seen from Theorem 2 that Θ has a
crucial rule in the tradeoff between the privacy and energy
guarantees, such that increasing Θ will improve G′p while at the
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same time it degrades energy efficiency by increasing δ. Hence,
one should consider this tradeoff to balance the performance
of both guarantees as desired.

VI. CONCLUSION

In this paper, we proposed two PPPMs for UAVs. Particularly,
we considered two scenarios in which the trajectory of a UAV
is being observed by an adversary to infer the destination.
In the first scenario, we assume that the UAV has only
linear movements, while in the second scenario, it can have
semi-circular movements too. Considering both privacy and
energy consumption guarantees of the UAV, we proposed
randomization mechanisms for each scenario. We showed that
the proposed PPPMs can provide a privacy guarantee as well
as energy efficiency as long as the design parameters are being
adjusted carefully. Privacy-energy tradeoff analysis for more
sophisticated scenarios such as multi-destination scenario along
with stronger adversary are left for our future work.
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