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Abstract 

We report progress of an ongoing work to develop a virtual sensor for flowability, which 

is a critical tool for enabling real time process monitoring in a granulation line. The sensor 

is based on camera imaging to measure the size and shape distribution of granules 

produced by wet granulation. Then, statistical methods were used to correlate them with 

flowability measurements such as ring shear tests, drained angle of repose, dynamic angle 

of repose, and tapped density. The virtual sensor addresses the issue with these flowability 

measurements, which are based on off-line characterization methods that can take hours 

to perform. With a virtual sensor based on real-time measurement methods, the prediction 

of granule flowability become faster, allowing for timely decisions regarding process 

control and the supply chain. 
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1. Introduction 

The manufacturing of tablets often relies on a granulation step to improve the 

processability of a pharmaceutical powder blend. By converting them into granules, 

flowability, tabletability, compressibility, and compactibility can be improved. These 

properties are considered to be the critical quality attributes (CQA) of the granulation 

unit; and in a wet granulator, the monitoring of these properties is considered critical. 

Unfortunately, characterization tests for these CQAs are usually off-line methods that can 

take hours to measure and require sample reduction procedures that can lead to significant 

sampling errors. It is thus important to develop faster ways to estimate the CQAs and 

minimize sampling error. 

 

In a wet granulation platform employing a fluidized bed, it is possible to measure the size 

and shape distribution of a finished batch of granules as it discharges from the product 

hopper. If these real-time measurements of size and shape can be used to automatically 

predict the CQA of the discharging granules, decisions regarding the batch and the 

process could be made much faster. This time advantage could save future batches from 

failure, provide valuable information about the raw material, and allow optimization of 
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the control process parameters of downstream unit operations to match the characteristics 

of each batch of granules. 

 

Particle size and shape distributions are known to be strong indicators of granule 

properties, so they have a great potential to be reliable predictors of a granule’s CQA’s. 

However, their measurement result in a large number of data points that are difficult to 

manage and process. In practice, these distributions often get reduced to 1 to 3 D-values 

(i.e., D10, D50, D90) prior to analysis. There has been demonstrated success in this 

strategy, but this practice can lead to significant loss of information from the dataset, 

especially when the distributions have statistical central tendencies that do not fall close 

to those selected D-values. An ideal solution would be to employ all available information 

from the size and shape distribution measurements, and then to use an appropriate data 

reduction technique that maximizes the relevant information from the distribution 

measurements. By implementing this with an appropriate feature extraction technique, 

the reduced dataset should maximize correlatability with properties of interest such as 

flowability. 

 

Aside from the predictor variables (i.e., size and shape distribution), the need for data 

reduction and feature extraction is also applicable for the predicted variables (i.e., the 

CQA’s), especially for flowability. Since there is no singular measure for it, several 

methods exist to characterize flowability. Often, the goal in characterization is to select 

the method with test conditions that can closely match the conditions to which the 

granules are subjected to during processing. For some applications, a single method might 

suffice. But if granules will be subjected to tablet pressing, they will be subjected to quasi-

static flow conditions in the hopper of the tablet press, as well as dynamic flow conditions 

inside the feed frame. Hence, several methods are required to ensure that the granules 

would result in quality tablets. Furthermore, each of these methods produce multiple test 

result parameters that are highly correlated. This can potentially result into a large dataset 

that needs to be appropriately reduced to make it more manageable and maximize its 

predictability with real-time measurements of granule size and shape distributions. 

 

2. Methods 

2.1. Data Reduction: Principal Component Analysis (PCA) 

PCA is a method that reduces the dimensionality of large datasets while retaining most 

of its information. This is achieved by taking an orthogonal decomposition of the 

covariance matrix of process variables along the directions that explain the maximum 

variation of the data. (Wold et al., 1987) While this method gives the same number of 

principal components as the original variables in the dataset, it also puts maximum 

possible variance in the first few principal components, making it possible to drop the rest 

of the principal components without losing much information. With the appropriate 

selection of principal components, data analysis and exploration can be performed on 

lower number of dimensions. 

2.2. Latent Variable Regression 

2.2.1. Linear Regression: Partial Least Squares (PLS) 

With both the predictor and the predicted variables requiring data reduction through PCA, 

linear regression on their projections to latent spaces can be performed (i.e., projection to 

their principal components). This process is known as Partial Least Squares, and it is a 
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widely used technique in areas such as chemometrics bioinformatics, neurosciences, and 

sensor development, to name a few.(Liu and Chen, 2014) 

3. Materials and Equipment 

3.1. Granules 

The granules used in this study are made with varying compositions of lactose and 

microcrystalline cellulose as the excipient, acetaminophen (APAP) as the active 

pharmaceutical ingredient (API), and either hydroxypropyl cellulose (HPC) or 

polyvinylpyrrolidone as the liquid binder solution. The excipient, API, and binders are 

prepared in varying compositions and wet granulation process conditions to produce 

granules with different flowability characteristics. This work studied four types of 

granules labelled as: HHIU1, HHIU2, HHIU3, and HHIU4.  

3.2. Granulation Equipment 

The granules are produced by wet granulation using the Xelum platform manufactured 

by Syntegon. Xelum employs a fluidized bed, where the pharmaceutical powders are 

automatically dosed and pneumatically charged with the liquid binders that facilitate the 

formation of granules. Moreover, granulation and drying takes place in the same process 

chamber, which eliminates the need to transfer wet granulate and improves the system’s 

reliability. 

3.3. Size and Shape Distribution Measurement 

The size and shape distribution of the granules are measured using Eyecon2, which is a 

direct imaging particle analyzer developed by Innopharma Technology. By using a 

camera to take images of the particles at-line or inline, this tool uses image analysis 

algorithms to detect particle boundaries and fit an ellipse around them. The ellipse gives 

a major and a minor diameter, which when averaged gives a third dimension to estimate 

a 3D volume of the particle using the equation: 

𝑉𝑜𝑙𝑢𝑚𝑒 =
𝜋

6
× 𝐷𝑚𝑖𝑛 × 𝐷𝑚𝑎𝑥 × 𝐷𝑎𝑣𝑒  Equation 1 

 

Using this volume, an equivalent spherical diameter is computed, and this diameter is the 

basis for the size distribution reported by Eyecon2. Size distributions are reported as D-

values, which are based on the cumulative size distribution. Reporting distributions in 

this manner fixes the number of variables for every possible form of size distributions. 

 

The major and minor diameters of each particle are also reflective of its shape, which may 

be quantified as eccentricity, as shown in the following equation.  

𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 = √1 − (
𝐷𝑚𝑖𝑛

𝐷𝑚𝑎𝑥
)

2

 Equation 2 

 

Eyecon2 inherently acquires a distribution of eccentricity/shape but reports, by default, 

the distribution as a mean and relative standard deviation. 

3.4. Flowability Measurements 

The set of flowability measurements employed in this study covers both quasi-static flow 

and dynamic flow. Quasi-static flow is characterized by the ring shear tester and partly 

by tapped density analysis, while dynamic flow is characterized by drained and dynamic 

angle of repose. 
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3.4.1. Ring Shear Tester (RST) 

The Schulze ring shear tester is an essential tool for hopper design since it is mainly 

concerned with quasi-static flow. In this technique, powder is loaded normally to a 

specific bulk density and then seared until the material begins to flow. Data is collected 

as yield strength as a function of normal stress. From these measurements, the flow 

function coefficient can be computed, which may also be referred to as flowability. 

Additionally, other parameters such as internal friction, wall friction, and bulk density 

can be determined from the Schulze RST. 

3.4.2. Drained Angle of Repose and Jamming Onset 

The drained angle of repose is measured using the FlodexTM tool, which essentially 

measures the ability of a powder to fall freely under gravity through an orifice. Initially, 

the powder is contained in a hopper with a flow disk at the bottom. The disk has an orifice 

that can be opened via a discharge valve to start the powder flow. After opening the 

discharge valve, not all the powder in the hopper would be able to flow out and this 

residual powder would remain between the edge of the orifice and the hopper walls. The 

angle between the surface of this residual powder and the orifice disk is called the drained 

angle of repose and is correlated with the flowability of the powder. 

3.4.3. Dynamic Angle of Repose 

The dynamic angle of repose is measured using a rotary drum developed by GranuTools 

called the GranuDrumTM. The powder is loaded into a drum that can be rotated at a set 

rotating speed. As the drum is rotated from rest, the angle of the powder surface increases 

from horizontal until an avalanche occurs. The angle at which this happens may be 

referred to as the yield point and is correlated with flowability. Thereafter, the powder 

surface is maintained at an angle from horizontal, and this is recorded automatically using 

back-lit cameras as the dynamic angle of repose. As the rotation speed of the drum 

changes, the dynamic angle of repose also changes, revealing interesting rheological 

behaviors of powder during flow. 

3.4.4. Tapped Density Analyzer 

Tapped density analysis is performed by another tool developed by GranuTools called 

GranuPackTM. This tool minimizes operator error during filling and volume 

measurements using automation and sensor technologies. Powder is loaded onto a 

cylinder container and its density is monitored as the container is tapped continuously. 

As the powder is tapped, the density increases until it asymptotically approaches a 

maximum. The density may be expressed as the Hausner ratio, which is basically the ratio 

between the tapped density and the poured density. The dynamics of the compaction 

during tapping is also automatically captured via the parameters characteristic number 

and tau. The characteristic number is the number of taps at which the density is between 

between the poured density and the asymptotic density (i.e., density at infinite number of 

taps), while Tau is another characteristic number extrapolated from an exponential model 

(Philippe and Bideau 2003) fitted onto the compaction curve. 

4. Results and Discussion 

4.1. Principal Component Analysis on Size and Shape Distributions 

Size and shape distributions measurements can result in at least 24 variables as shown in 

the x-axis of Figure 1. Applying principal components analysis (PCA) on the dataset 

reduced the number of variables into just 3 principal components (PC), which can explain 

up to 97% of the variance in the original dataset. 

1108

Lagare et al. R. B. 



 1085  

 
Figure 1. Explained variance per size and shape distribution variable 

 

  
Figure 2. Loadings of size and shape distribution variables on principal component 1 (left 

figure) and principal component 2 (right figure) 

 

This drastic reduction of variables suggests that many of them are highly correlated, as 

shown in the loadings plot in Figure 2. This is the case for the size distribution variables, 

as they dominate influence on the first principal component, which explains 89% of the 

variation in the original data. On the other hand, shape-related variables (i.e., the shape 

mean and relative standard deviation) have the strongest influence on the second principal 

component, supporting the importance of measuring shape distributions, and not just size. 

4.2. Predicting Flowability Data 

Measurements from the Schulze RST can lead to 9 different parameters (or variables) that 

are related to flowability. Similar to the Eyecon2 data, most of the variation in these 

parameters (up to 98%) can be explained by only three principal components.  Hence, by 

applying partial least squares using three principal components onto the Eyecon2 data (as 

the predictor variables) and the RST data (as the predicted variables), the parity plot of 

the flow function coefficient (FFC) shown in Figure 3 show good prediction performance. 

Although not shown, similar performance was also observed for the rest of the variables.  

 

 

Figure 3. Predicted vs observed flow function 

coefficients measured from Schulze RST. 

 

Figure 4. Ranking of variable importance to 

the PLS projections. 
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Figure 5. Parity plots for selected dynamic flow test parameters: drained angle of repose (left), 

Hausner ratio (middle), and dynamic angle of repose (right). 

The performance of the PLS model can be attributed to the effectiveness of using all 

available information instead of selecting some and then ignoring the rest. Figure 4 shows 

the how the larger D-values (e.g., D85, D90, and D100) and the shape parameters 

contribute the most to the PLS projections and hence its performance. This not only 

corroborates the importance of measuring shape distributions, but also the folly of 

selecting certain D-values such as D50, D10, and D90. As shown in Figure 4, those 

variables are not the most important. Using the aforementioned techniques, similar results 

were achieved from the dynamic flow tests, as shown in Figure 5 for selected parameters 

from the Flodex (left figure), GranuDrum (middle figure), and GranuPack (right figure) 

measurements. 

5. Conclusions  

Using PLS regression, sensor models were developed to predict flowability 

measurements based on size and shape distribution of granules, and parity plots show 

good predictability for all flowability measurements. The importance of shape 

measurements as well as using the complete size distribution, instead of selecting a few 

D-values, in the predictive performance was highlighted. 
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