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Abstract. In this work, we are concerned with a Fokker—Planck equation related to the non-
linear noisy leaky integrate-and-fire model for biological neural networks which are structured by
the synaptic weights and equipped with the Hebbian learning rule. The equation contains a small
parameter e separating the time scales of learning and reacting behavior of the neural system, and
an asymptotic limit model can be derived by letting ¢ — 0, where the microscopic quasi-static states
and the macroscopic evolution equation are coupled through the total firing rate. To handle the
endowed flux-shift structure and the multiscale dynamics in a unified framework, we propose a nu-
merical scheme for this equation that is mass conservative, unconditionally positivity preserving, and
asymptotic preserving. We provide extensive numerical tests to verify the schemes’ properties and
carry out a set of numerical experiments to investigate the model’s learning ability, and we explore
the solution’s behavior when the neural network is excitatory.
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1. Introduction. In biological neural networks, neurons transmit information in
two ways: one is conveying rapid and transient electrical signals on their membranes,
and the other is sending neurotransmitters at a synapse. The learning and memory
of the network is based on the connection weights of the synapses among the neurons
[27]. How a neural network with a given structure reacts to the environment and how
the neural network’s infrastructure is modified by the environment in the long run
are two of the essential topics in neural science.

Mathematically, there have been plenty of models describing the neural net-
works’ behavior from all scales and sizes. The most successful single-neuron model
is undoubtedly the Hodgkin—Huxley model [16] and its simplification, the Fitzhugh—
Nagumo model [14]. However, when modeling large-scale biological neural networks,
these models are far too complicated and impractical. Therefore, scientists and math-
ematicians usually adopt the integrate-and-fire model [22] when modeling the system
that consists of a large number of neurons [6, 8, 9, 4, 13, 5]. One of the most widely
used versions of the integrate-and-fire model is the nonlinear noisy leaky integrate-
and-fire model (NNLIF). In this model, when the firing event does not occur, the
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membrane potential V(¢) of a neuron is influenced by a relaxation to a resting poten-
tial V7, an incoming synaptic current Z(¢) from other neurons, and the background.
The current Z(t) is approximately decomposed into a drift term and a term of Brown-
ian motion. The SDE, in the simplest form, is given by

(1.1) AV = — (V = V;)dt + pdt + 0dB;,

where the parameters p and o are determined by the synaptic current Z(¢). The
distinguishing feature of this model is the incorporation of the firing event: when a
neuron reaches a firing potential Vg, it discharges itself and the potential jumps to
a resetting potential Vi immediately [11, 12]. Here, we assume, Vg < Vg, and the
firing event is expressed by

(1.2) V(tT)=Ve, V(') =V

(1.1) and (1.2) constitute the stochastic process for the NNLIF model, which is a SDE
coupled with a renewal process. By It0’s formula, one can derive the time evolution
of the density function p(v,t) [26, 25], which represents the probability of finding a
neuron at the voltage v and given time ¢:

(1.3) % + %(hp) — a% =N(t)d(v—Vg), te€(0,00),v€ (—o0,VF),
p(v,0) =po(v), p(—o0,t)=p(Vp,t) =0,

where

(1.4) N(t) = —a%(Vp,t)

stands for the firing rate of the network, a = 02/2 stands for the amplitude of the
noise, d(-) stands for the Dirac delta function, and

(1.5) h=h(v,N) = —v+I+wN(t)

stands for the rate of the rising of the neurons’ potential, consisting of a decay term
—uv, an external input function I, and a group reaction term wN (t). The coefficient
w in (1.5) can be either positive or negative. In the simplest scenario, w is a constant.
We say that the neural network is excitatory when w > 0 and inhibitory when w < 0.
When it comes to the learning behavior of the biological neural network, the most
seminal work is the Hebbian rule [15], stated as a motto “neurons that fire together
wire together.” A very simple mathematical setup of this rule is as follows: assuming
that the strength of weights w;; between two neurons i and j increases when the
two neurons have high activity simultaneously. For M neurons in interactions, the
classical Hebbian rule relates the weights to the activity N; of the neuron ¢ as

%wij:kijNiNjfwij, ISZ,]SM

In [29], the authors designed a model that integrates the NNLIF model and the
Hebbian rule stated above. They considered a heterogeneous population of homoge-
neous neural networks structured by their synaptic weights w € (—oo, +00), negative
sign standing for inhibitory neurons and positive sign standing for excitatory neurons.
They introduced a learning rule in order to modulate the distribution of synaptic
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weights H and allow the network to recognize some given input signals I by choosing
an appropriate heterogeneous synaptic weight distribution H adapted to the signal
I. They assumed that the subnetworks interact only via the total firing rate N, with
synaptic weights described with a single variable w. And they gave the following
interpretation: all the subnetworks parametrized by w may modulate their intrinsic
synaptic weight w with respect to a function ® which depends on the intrinsic activity
N(w) of the network parametrized by w and of the total activity of the network N.
Then, the proposed generalization of the Hebbian rule consists in choosing

(1.6) ®(N(w),N) = NN(w)K(w), N:/Oo N(w)dw

where K (-) represents the learning strength of the subnetwork with synaptic weight
w. Adding the above choice of the learning rule, they obtained the following equation:
dp 0 — 0 0?
S+l (—vHI(w)+wo (N (#)pl+e - [(@—w)pl—a% s = N(w, )3 (v = Vi),
where ¢ stands for a time scale ratio which takes into account that learning is slower
than the typical voltage activity of the network.

If we want to study the learning behavior of the model, we may further perform
a time rescaling t — t/e for (1.7) to arrive at

(L.7)

310
o [(N( )N (w, ) K(w) — w)p]
(1.8) é{ (Tp %[(—v+[(w)+wo(ﬁ(t)))p] +N(w,t)5(v—VR)}
for (v,w,t) € (—o0, Vi) X (—o0,+00) x (0,T),
N(w,t) = *Q%(VFfovw’t) 0, / N(w, t)d

where 22 5 (Ve —0,w,t) means the left derivative in the v direction and the correspond-
ing 1n1t1al and boundary conditions are

(19) p(VFawat) = 07 p(—oo,u),t) = 07 p(’l),:l:OO,t) = 07 p(v,w,O) = po(v,w).

Here p(v,w,t) at a fixed time ¢ describes the probability density of finding a neuron
with synaptic weight w and voltage v; henceforth the probability density of finding a
single neuron with synaptic weight w is defined as

Ve
(1.10) H(w,t) = / p(v,w, t)dv,

— 00

and the normalization condition of probability ensures that | _4—;0 H(w,t)dw = 1 holds
for all t > 0. N(w,t) describes the firing rate of the neurons with synaptic weight
w, at time ¢, and N(t) describes the entire network’s firing rate at time ¢ summing
over all the synaptic weights. a is a positive noise coefficient. The model is a multi-
scale transport equation, where the v-wise transport represents the integrate-and-fire
dynamics of the neural network, and the w-wise transport represents the network’s
learning behavior.

Systematic understanding of the model (1.8) is largely lacking, although some of
its properties were proved in [29]. Particularly, the numerical studies are far from
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sufficient for understanding the possible uses and limitations of this model. In this
work, we further explore this model from a numerical perspective. Specifically, we aim
to design a structure-preserving numerical scheme for (1.8) and further explore this
model with extensive numerical experiments to investigate possible solution structures
and interpretations.

In our work, we propose a numerical scheme with the positivity preserving and
asymptotic preserving properties. There are two key ingredients that make our scheme
meet the desired properties. The first one is the Scharfetter—-Gummel symmetric
reconstruction [21] of the v-wise convection and diffusion terms in (1.8). The second
one is that we treat the flux shift term Nd§(v — Vg) in (1.8) implicitly. With the
symmetric reconstruction and this implicit treatment, we can prove that implementing
our scheme means inverting a so-called M-matrix at each time step, and the positivity
preserving properties of the scheme are independent of the respective ratio between
At and Av or e. The only grid ratio requirement is that At/Aw has to satisfy the w-
wise CFL condition, which is a natural requirement. Furthermore, when letting ¢ — 0
without adjusting At, we obtain a numerical scheme consistent with the asymptotic
behavior of the model, consisting of a w-wise convection equation for H(w,t) defined
in (1.10) and a v-wise quasi-steady equation for p(v,w,t) with given H (w,t).

Numerical methods for Fokker—Planck type equations are abundant in the liter-
ature. In recent years many works have been proposed to preserve the structure of
the solution such as mass conservation, positivity, entropy decay, and steady state
preserving. This often relies on a delicate choice of numerical fluxes and suitable time
discretization. Without being exhaustive, we mention a few relevant works. Regard-
ing spatial discretization, there are mainly two kinds of methods: one is based on
formulating the equation into the transport form and using upwind fluxes [2]. This is
later extended to general nonlinear aggregation and diffusion equations [7]. The other
is based on formulating the equation into the diffusion form (i.e., Scharfetter—-Gummel
form). Depending on how to choose the fluxes, it bifurcates into several variants, for
example, the Chang—Cooper scheme [10] and its generalization [28], the symmetrized
finite difference scheme [21], and more recently the high order finite difference scheme
[20]. Regarding time discretization, high order explicit or semi-implicit schemes can
be used; for example, high order semi-implicit methods have been developed in full
generality in [3] and then applied to Fokker—Planck type equations in [28]. However,
we mention that to get positivity preserving implicit schemes for Fokker—Planck type
equations, one is basically limited to a first order scheme [24, 17, 1, 31]. The only
exception we are aware of is the second order exponential method in [19], which is ap-
plicable to the linear Fokker—Planck equation and hard to generalize to more general
cases. For the above reason, we limit ourself to a first order method in this paper.

In the numerical experiment part, we verify the scheme’s order of accuracy (first
order for w,t, and second order for v) and asymptotic preserving properties, test
the model’s recognition properties presented in [29], and further explore the model’s
behavior when the solution p(v, w, t) is supported in the region w > 0. The numerical
results suggest that this model shows great potential in distinguishing a general input
by producing distinct and unsymmetrical responses to orthogonal basis functions.
When w > 0, the solution p(v,w, t) may either develop to a steady state supported in
a region w € [0, A] for some positive A or expand its support rapidly toward w — oo.

The rest of the paper is organized as follows. In section 2, we present our schemes
in detail, including the equations and their implementations; in section 3, we give a de-
tailed analysis of our schemes’ properties, including conservation, positivity preserving
properties, and asymptotic preserving properties; and in section 4, we present the
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numerical results including the verification of the schemes’ accuracy, asymptotic pre-
serving properties, numerical exploration of the model’s learning and recognition abil-
ity, and the behavior of the model with positive synaptic weights.

2. The schemes. Our work aims to provide a numerical scheme for (1.8). In
this section, we will give a detailed description of the schemes we designed.

This section is organized as follows: in sections 2.1 and 2.2, we introduce the grid
point settings and the numerical scheme for (1.8), including a v-wise semi-implicit (v-
SI) implementation and a v-wise fully implicit (v-FI) implementation; and in section
2.3, we introduce the matrix form of the v-SI and v-FI schemes, from which we

introduce a useful matrix M jﬁ to formulate further analysis.

2.1. Grid point settings and discretizations. Our scheme is a grid-based
method, and this subsection gives the basic grid point settings of our scheme.

We assume that p(v, w,t) vanishes fast enough as v — —oo or w — 00 such that
we truncate the domain into the bounded region

(U,U)) S [Vmirn VF] X [Wmina Wmax] X [OaTmax]»

and suppose that p(v, w, t) is negligible out of this region. Then we divide the intervals
[Vinins VE], [Wnin, Wiax), [0, Tax] into 1y, na,, ny equal subintervals with size

(21) Ay = M’ Aw = M’ Al — Tmax’

Ny N N

respectively, so that the grid points are assigned as

v; = Vipin + 1Av, 1=0,1,2,...,n,,
(2.2) wj = Whin + jAw, §=0,1,2,... 1y,

t™ = mAuw, m=0,1,2,...,ny,

and then p;”; represents the numerical approximation of p(v;,w;,t™). We always
assume that there is an index r satisfying

(23) VR = Up,

which naturally treats the derivative’s discontinuity at v = Vi. Actually it can also
be seen from (2.1) and (2.2) that v,,, = Vg, so the two points related to flux shift are
both aligned with the grid point.

For the discretization of N = —adp/dv|y=v;, we approximate the derivative with
the first order finite difference

m p? j Pr,—1,5 Pr,—1,5
2.4 N™ — _ v>J v=1j _ v—1,j
24 J “ Av @ Av

(here we have applied the boundary condition p;;" i = 0); for the discretization of

N(t) = ffooo N(w,t)dw, we apply the simplest rectangular rule of numerical integra-

tion

(2.5) N" =Aw) N,
j=0
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which can also be explained as a trapezoidal rule of numerical integration since the

boundary values Ng* and N are supposed to be negligible (zero); furthermore, we
Vr

also denote the discrete representation of H(w,t) = [" p(v,w,t)dv as

—00
(2.6) H"=AvY p.
i=1
2.2. The numerical scheme for the Fokker—Planck equation (1.8). We
design a scheme with a finite volume construction: for each ¢ = 0,1,...,n, — 1,
7=0,1,...,ny4, m=0,1,...,n; — 1, we have the difference equation
m+1 m m —_Hm m _ mm

27) Pig — Py Pilgrye =P 1ER e By

' At Aw € Av ’

or, in an equivalent splitting form,

* m _HFm
pzT _pZLj 4 (I)i,j+1/2 q)i,j—1/2 -0

2.
(28) At Aw ’
+1 *m m _mm
(2.9) 2 _ lFi+1/2,j Fi71/2,j
' At € Av '

This splitting form is introduced only for convenience when discussing the scheme’s
properties in section 3.3. Our scheme is not based on the idea of operator splitting.

For the w-wise transport, we take the following explicit flux construction adapted
from Godunov’s method (see, for example, (13.24) in [23]):

min { @75, O 1}y P < Pl — 0. e —1
% — Yy ey 9
(2.10) @ =1 |max{®7}, 1}, Py > P
07 j: _ana
where
(2.11) o7 = (N"N"K(wj) —w;)pl; for j =0, ne.

For the v-wise transport, we need to treat the operator partially implicitly in
an appropriate way such that the scheme’s stability is not limited by the grid ratio
At/(Av)? and the stiffness introduced by the smallness of e. We inherit the idea
from [18], which implements a Scharfetter—Gummel symmetric reconstruction for the
convection-diffusion operator and imposes a flux-shift from the boundary Vz back to
VR, but we treat the flux shift operator No(V — Vi) implicitly:

(2.12)
MY mtl 1
i+1/2,j Pit1,; D, j m+1 ;
m a ~« ~o + N; 77('U¢+1/2—VR), 120,1,...,711,—2,
Fi+1/27j = Av (Mijil,j Mil,\; !
07 1= —1,TLU - 1,

where 7(-) is the Heaviside function (n(z) = 1 when 2 > 0 and n(z) = 0 when z < 0),
and

_ oo e (2 -~ NN

(2 13) MN& _ 7[ it I( 722+ [G) MN“ o 2MZ,J MZ+1»]
: ij =€ v Miviye T R Ne
M5 + Mty
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Now to complete the scheme, the only thing that remains is to specify the expres-
sion of N”. As we shall see, the choice of N “ will highly affect the implementations
and properties of the scheme. Here we propose two choices of N “. either N or

N We call the scheme (2.7)7(2.13) with
N =N"
the v-SI scheme and the scheme (2.7)7(2.13) with

N _ N7rz+1
the v-FI scheme. The advantage of the v-SI scheme is that its implementation is
free of nonlinear solvers and thus is the main focus of this work. The v-FI scheme is
introduced mainly for comparison.

To avoid ambiguity, when discussing the v-SI scheme, we add a superscript “SI”
for all the variables, which will be put at the first place and separated with other
superscripts by a semicolon:

. —SI; .
piy, N, N , Hi"  are written as pZSIJm stl’m,N m,HjSLm for the v-SI scheme;

and a similar set of notation will be introduced for the v-FI scheme:

~m . FI FLm =7FLm . FI;
piy N N H™ are written as - p; /7, N N H™ for the v-FI scheme.

’"L

We still use p;”;, N }",Nm, H7" when discussing the properties that the v-SI scheme
and the v-FI scheme have in common (like the conservation and positivity preserving
property).

It is worth noting that, in (2.12), the flux-shift part is N"*! for both the v-ST and
v-FI construction of the scheme. This is an apparently small but important difference
from the scheme proposed in [18]. This difference will be proved to make the scheme
(unconditionally) positivity preserving for all ¢ and Awv.

2.3. The matrix problem involved in the schemes and the iterative
methods for the v-FI scheme. In this subsection, we introduce the matrix equation
one will face when implementing the proposed schemes. To begin with, we define the
class of matrices which will frequently appear throughout our work.

~ DEFINITION 2.1. For a given N eR and j =0,1,...,n,, we define the matriz

M;V as an n, X n, matric such that

*M1£V3/2]/M1£V2g’ l=Fk—-1,
M, 1/2,]/ kg l=k+1,
_ (Mliv3/23+Mk 1/2]>/Mk 1, l=Fkandl#1 n,,
(2.14) (M§V>kl =M 3/2, J/ —1 L L=k =n,,
1/2j/M,J7 l=k=1,
-1, k=r+1andl=n,,
0 otherwise,
where
(2.15) M = R g MY, = LJZNMﬁNl i
’ Mz‘,j +Ml+1]
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M JN is tridiagonal except for one entry at k = r + 1, [l = n,, and its properties will

be further discussed in section 3.2. For now, having defined MY
matrix form of the proposed schemes.
For the v-SI scheme, assume that we have already solved pSI T from the explicit

; » we can write the

convection step (2.8), and then one easily checks! that solving the v-wise transport
step (2.9) means solving the system

alAt NS\ gr i ST;em
(2.16) ( I+ B0)? Mj >p:7j =ep.;
for each j =0,1,...,n,, where
SI;m—+1 SI;m+1 _SI;m—+1 SI;m+1 T
p;7j’ (po] ap1,J 7--~,pnu_17j> s
SLixm __ SIix+m _SI;xm ST;xm T
P.;  =\Poj; Prj --iPny-1j) >

—SI;m
I is the n x n identity matrix, and M jv follows the definition given in (2.14).

(2.16) is a linear equation for pSE s+l

For the v-FI scheme, solving the v-wise transport equation means solving the
system

A NS i S W o P FI;+m
(2.17) (5I + (AU)QMJ >p:7j =P, ;
for each j =0,1,...,n,, where
.
FIym+1 FI; m+1 FI;m+1 FI;m+1
p.j = \Poj i Py )
Flixm Fl;xm Flxm FI;xm T
v \Pog 0Py oo Pag—1y
FI m—+1 .
(2.17) is a nonlinear system since the matrix M depends directly on the un-
—FI;m+1

solved variable N
solver.
We propose a fixed point iteration method as follows. We set the initial guess as

P2 = pFm hence N = N, and then for k =0,1,2,..., let

. Therefore, we have to solve such a system with a nonlinear

At N .
<5I+ (aiMN )p.(klﬂ) = spf;’m for 7 =0,1,...,ny,

A’U)Q J 5J

(2.18) kD) ny oy p(k+11)
N — A'lUZN(kJrl) Z Ny — 7.7’
where
-
(k+1) _ (k+1)  (k+1) (k+1)
P = \Poj P oo Pn-1y
IThe only notable detail here is that N;H'l in (2.12) should be replaced with apn 71 J/Av

according to (2.4).
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—(K K
We iterate K rounds to satisfy the stopping criterion |N( ) _ ( )

small enough ¢, and then take

| < € for some

pﬁ‘;;m-&-l _ p(f)) NJFI;m-{—l _ NJ(K)’ NIt _ N(K).

3. The properties of the scheme. Having proposed the scheme in section 2.2,
we discuss how it preserves the properties of the original model.

We show that both the v-SI and the v-FI schemes proposed in section 2.2 are
mass-conservative and positivity-preserving as long as the w-wise CFL condition is
satisfied (no matter how small € and Awv are). As for the AP property, the v-FI scheme
and the v-SI scheme preserve the asymptotic limit in slightly different forms.

3.1. Conservative properties. Being total mass invariant is one of the most
basic properties of our model (1.8), and our scheme satisfies the conservation property
naturally thanks to the finite volume construction.

THEOREM 1. The scheme (2.7) 7(2.13) satisfies

Ny N Ny Moy
(3.1) PIPB D DY
i=0 j=0 =0 j=0

Proof. Summing (2.7) over i from 0 to n, — 1 and over j from 0 to n,, and using
(2.10) (2.12), we have

(3n2u)—1 N Ny—1 Ny Ny—1 Ny
ZO Zopzlj—i_l = ZO Zopz,] SA ZO ZO 2+1/2] 1/2,])
i=0 j= % J ? J
Ny —1 Ny
Z Z i, j+1/2 zj71/2)
=0 j5=0
—1 Ny Naw
= Z me EAU Z(F':Z—l/lj _Finl/2,j)
=0 j5=0 7=0
A Ny —1
e YW e = W)
i=0
Ny —1 Ny, Z At nv—l Ny —1 Ny,
=Y St A Z 0-0) =2 Dl
i=0 j=0 z:O i=0 j=0

and because of the boundary condition py’ ; = 0, we can change “Z?:val” on both
ends of (3.2) into Y ", which gives us (3.1).

3.2. Properties of the matrix MJN . Before discussing the properties of our

schemes, we first investigate the matrix M ;V defined in (2.14) and (2.15). This matrix
has a one-dimensional kernel spanned by a strictly positive vector. This property will
help us to show the positivity of the schemes.

The main result in this section is the following.

LEMMA 1. For all N > 0, M]ﬁ defined in (2.14) and (2.15) has a unique (up to

a positive multiple) right eigenvector ¢ = (qo,- -+ ,qn,—1)' for eigenvalue O which is
strictly positive.
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Proof. We want to study the solution of
(3.3) MYg=o.

We left-multiply both sides of (3.3) by the n x n bidiagonal matrix

1, k=l+1lork=1,

L= 11 , or entry-by-entry: Ly, = .
. . 0 otherwise,

1 1
obtaining (LM Jﬁ)q = 0 (note that L is nonsingular, so LM jﬁ has the same kernel

with M jﬁ)7 which can be rearranged into the following system:

; = M i=r—1,r—2,...,0

qi Mﬁ-‘_lql-‘rla ) yeeey Yy
2,

_ My MY -
(34) qi = N qi+1 + Niqnfla ? —7’L—3,7’L—4,...77’7 d

i,5+1 i,j4+1/2
MmN,  MN_

qz:( =2 4 ;“>qn1, i=n-2.
Mi’n71 Mz’,n—3/2

One can derive from (3.4) recurrently (in a reversed order, from i = n—2 to i = 0) that
Qn—2,qn—3,---,qo can all be written as a positive multiple of ¢, _; whose expressions

only contains entries of Mjﬁ This implies strict-positiveness and uniqueness (up to
a positive number multiplication) of q.

3.3. Positivity preserving properties. Solutions being nonnegative is an-
other basic property of model (1.8); hence we also expect our scheme to be positivity
preserving. In Theorem 2.2 [18], it is proved that the scheme’s positivity preserving
property relies on the grid ratio At/(Av)2. In this section, we see that the positivity
preserving property of our scheme does not rely on At/(Av)? or ¢, and this improve-
ment comes from our implicit treatment to the flux-shift operator that is stated in
section 2.

We start with the general matrix form of our problem (both for the v-SI scheme
and for the v-FI scheme):

(ZAt N& m—+1 *m
(35) (€I + WM] ) p] = €p:7j 5
where
1 T
P = (ehy )
e
P = P00y PR )

A crucial property of system (3.5) is that the to-be-inverted matrix eI + (Z%;‘ M jﬁa is
the so-called M-matrix, which is an important topic in the area of positive operators.
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n [30], the authors provided forty equivalent statements that ensure a Z-matrix (a
matrix with all diagonal entries nonnegative and all nondiagonal entries nonpositive)
is an M-matrix. We pick out the statements F16 and K33 in this article, forming the
following lemma.

LEMMA 2 (equivalence of statements F16 and K33 of Theorem 1 in [30]). A semi-
positive Z-matriz is an M-matriz, and henceforth monotone. Specifically, if an n X n
matric M satisfies

Mi,j207 j:Z7
M;; <0, j#i,

and there exists a strictly positive (every entry is positive) n x 1 vector v* > 0 such
that Mv* > 0, then M is a nonsingular M-matriz, and henceforth Mv > 0 implies
v >0. Here

e v > 0 means that all the entries of v are positive, and

e v > 0 means that all the entries of v are nonnegative.

With Lemma 2, we can further prove the following lemma.

LEMMA 3. For (3.5), p!' > 0 indicates pi’}“ > 0.

Proof. First, it is not hard to check that eI + (Z%f‘z M; N is a Z-matrix according
to the definitions. Second, we notice that

n|
aAt
<1+(A 2 MN )QJ —EQJ

5 ), and

the matrix eI + (aAf M is a nonsingular M-Matrix, and henceforth p;™ > 0

indicates p}"“ > 0.

since Qlﬁa is in the kernel of M jﬁa, according to Lemma 2 (taking v* as QF

Applying Lemma 3 and (2.8), we can give out the following sufficient conditions
of the positivity preserving property of the proposed schemes.

THEOREM 2 (positivity preserving properties). p:"j'l > 0 holds for alli =0,...,n,
and j =0,...,n,y as long as
(3.6) Piji ™ Aw ((I) j+1/2 ‘I)i,j_1/2) >0

holds for all i =0,...,my,7 =0,...,Ny.

(3.6) tells us that as long as the grid ratio At/Aw is not too big (which is the
most basic requirement for almost all numerical schemes for the hyperbolic conser-
vation law, and is also known as the CFL condition), the numerical solution will be
nonnegative. Such a property is unrelated to the grid ratio At/Av? or the scaling pa-
rameter €. This means that we can take arbitrarily small Av and ¢ without worrying
about violations of the positivity of the solutions.

Especially, as we can take ¢ arbitrarily small for a fixed At, it becomes possible
for us to futher analyze the asymptotic behavior of the scheme when & — 0.

3.4. Asymptotic preserving properties. We first discuss the asymptotic
properties of the original continuous model (1.8).
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Integrating the first equation of (1.8) over v from —oo to Vg and applying the
boundary condition, we get

8H 0

(3.7) 2 T aall

N(#)N(w, t) K (w) — w)H] = 0,

where H = H(w,t) is defined in (1.10). When taking ¢ — 0 in (1.8), we have

2
%782[( v+ I(w) + wo(N(t))p] + N(w, t)d(v — Vg) =0,
(3.8) v Yoo _
N(w,t) := —a%(V —0,w,t), / N(w,t)d

According to Theorem 3.1 in [29], the solution of (3.8) is guaranteed to exist and be
unique when H(w,t) is given. Equations (1.10), (3.7), and (3.8) give the asymptotic
limit equation of (1.8) as € — 0, where (3.7) can be viewed as the macroscopic equation
governing the slow dynamics while (3.8) gives the local microscopic equilibrium of the
fast dynamics. We consider our scheme with only time ¢ discretized:

(3.9

i + i[(N”N”(w)K(w) — w)p"]

At ow
2, n+1 e
= %{ aapv2 - %[(*U + I(w)+wa(N ))p”Jrl] + Nn+1(w)5(1) . VR)}

for (v,w,t) € (—o0, Vr) X (—00,+00) x (0,T)
9p

N w) o= —a gl (Ve — 0,w,1), N :/ N () du,

where « is n and n 4 1 for the v-SI scheme and v-FI scheme, respectively.
For the v-FI scheme, integrating the first equation in (3.9) and applying the
boundary conditions, we have

H™ —H' 9 [0 . o
(3.10) — 35 [(N N™(w)K (w) — w)H"] =0,

which is a discretization of (3.7); and when € — 0, (3.9) becomes
(3.11)

82 n+1 o o
"5 a&(v+n>+de*Hm“H N“%)&vfwa:a
Nt (w) = —a%(v —0,w,t), N" / N (w

which is directly the same as (3.8).
For the v-SI scheme, integrating the first equation in (3.9) and applying the
boundary conditions, we obtain (3.10) again, while taking £ — 0 in (3.9), we have
82pn+1 o o o o
0Pl D (v )+ wo (N )] 4 N @)oo — Vi) =0,
(3.12) v v

N (w) = —a%(vp —0,w,t), J / N (w)dw.

We remark that the local equilibrium (3.12) can be viewed as a linearization of (3.11)
such that the nonlinear coefficient O’(Nn+1) is replaced by o(N").
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The schemes (3.10) and (3.12) can be viewed as the limiting scheme for the
following time rescaled maybe “delayed” equation as e — 0
(3.13)
9
3t T g (VAN (w, 1) K (w) — w)p]
2
. {a% - %[(—er(w) +wo(N(t = At)p] + N(w, 0)d(v — Vi) |
for (v,w,t) € (—o0, Vr) x (—o0,+00) x (0,T),

3

N(w) := —a%(VF —0,w,t), N= N(w)dw.

—00

Therefore, the v-SI scheme is asymptotic preserving up to a At time delay. In other
words, when ¢ — 0, it is still a consistent first order in time discretization to the limit
of the original model.

4. Numerical results. This section gives the numerical results obtained from
our schemes, involving both the tests on the schemes’ performance and the explo-
rations of the model by our scheme. In section 4.1, we numerically test the order
of accuracy of our schemes; in section 4.2, we numerically validate the asymptotic
preserving properties of our schemes; in section 4.3, we test the model’s learning and
discrimination abilitites; in section 4.4, we focus on exploring the model’s behavior
when the neural system is excitatory.

4.1. Order of convergence. In this part, we test the order of accuracy of the
v-SI schemes. Since the exact solution is unavailable, we estimate the order of the
error by

Hw}l Y
21llp
)

Op,pr» = log, ’

‘wﬁ — Wh
2 4 p
where wy, is the numerical solution with step length h. The term O, above is an
approximation for the accuracy order. Errors in both L' and L? norms are examined.

We choose Vi = 2, Vg = 1,Viuin = —4,a = 1,6 = 0.5, Whpin = —1.1, Wiax =

0.1,6(N) =N, I(w) =0, and

{sinQ(ﬂ'v) sin(mw) —l<w<Oand —1<v<1,
Pinit = .
0 otherwise
throughout this section, and we test the accuracy for both Ti.x = 0.1 and Tiax = 1.
We test the numerical results on v, w,t directions by fixing two of At, Aw, and Awv
while adjusting the third one. The results are shown in Tables 1, 2, and 3, respectively.
It can be seen that when T}, = 0.1, the scheme shows the expected second order
convergence rate in the v direction and the first order convergence in w, ¢ directions.
However, when Ty, = 2.5, the v- and w-wise orders of accuracy decrease a bit. This
may be caused by the w-wise nonlinearity of (1.8). Indeed, when T' = 2.5 the solution
has already developed into a discontinuous pattern (Figure 1).

4.2. Asymptotic behaviors of the v-SI and v-FI schemes. In this subsec-
tion, we numerically validate the asymptotic preserving properties of both the v-SI
scheme and the v-FI scheme by validating that with fixed grid size, the numerical
solution of the scheme converges to the v-wise quasi-steady state at the discretized
level as € — 0.
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TABLE 1
v-wise order of accuracy: At = 1073, Aw = 1072 are fized. Upper table: Tmax = 0.1; lower
table: Timax = 2.5.

Av ||pAv —PAv 2H1 OAU Lt ”pAv — Pav 2”2 OAU L2
2.0e-1 1.1337e-03 2.0818 3.5479e-03 2.0675
1.0e-1 2.6781e-04 2.0122 8.4643e-04 2.0080
5.0e-2 6.6390e-05 1.9340 2.1044e-04 1.8739
2.5e-2 1.7374e-05 - 5.7417e-05 -

Av ||pA’U — PAv 2H1 OAU Lt ”pAv — Pav 2”2 OA'U,L2
2.0e-1 1.4571e-01 1.8905 2.8929e-01 1.7984
1.0e-1 3.9299e-02 1.7441 8.3168e-02 1.7309
5.0e-2 1.1731e-02 1.7872 2.5056e-02 1.8471
2.5e-2 3.3990e-03 - 6.9641e-03 -

TABLE 2

w-wise order of accuracy: At = 1073, Av = 1071 are fized. Upper table: Tmax = 0.1; lower
table: Tmax = 2.5.

Aw ”pAw —PAw 2”1 OAw Lt ”pAw — PAw 2”2 OAw L2
4.0e-2 4.2858e-03 0.9550 9.9587e-03 0.9543
2.0e-2 2.2108e-03 1.0038 5.1394e-03 1.0030
1.0e-2 1.1025e-03 0.9849 2.5643e-03 0.9801
0.5e-2 5.5703e-04 - 1.3000e-03 -

Aw | llpaw = Pawselll | Oawrt | IPAw —Paws2ll2 | Opw,r2
4.0e-2 4.5348e-01 1.0102 3.9149e-01 0.7353
2.0e-2 2.2514e-01 1.0095 2.3516e-01 0.7557
1.0e-2 1.1183e-01 0.9717 1.3928e-01 0.6145
0.5e-2 5.7022e-02 - 9.0971e-02 -

TABLE 3

t-wise order of accuracy: Av = 10—, Aw = 10~2 are fized. Upper table: Tmax = 0.1; lower
table: Tmax = 2.5.

At lpat — patyalli | Oaprr | llPac —paesell2 | Oarr2
2.0e-3 3.8523e-04 0.9730 1.2219e-03 0.9647
1.0e-3 1.9625e-04 0.9686 6.2608e-04 0.9626
5.0e-4 1.0028e-04 1.0093 3.2125e-04 1.0089
2.5e-4 4.9819e-05 - 1.5963e-04 -

At [[pat *pAt/QHI Ong 1 lpat *pAt/2”2 Oat,L2
2.0e-3 4.9612e-03 0.9473 4.5521e-03 0.9676
1.0e-3 2.5729e-03 0.9884 2.3278e-03 0.9954
5.0e-4 1.2969e-03 0.9781 1.1677e-03 0.9895
2.5e-4 6.5836e-04 - 5.8810e-04 -

First we introduce a discretized version of the time-independent quasi-steady
state equations (1.10) and (3.8) for a given H = H(w). This will serve as a reference
solution. We denote the solution of the continuous time-independent quasi-steady
state equations (1.10) and (3.8) for a given H = H(w) as PH(v,w). Since (3.8)
means that P (v, w) should nullify the stiff operator in (1.8), our discretized version
can also be directly defined to nullify the stiff terms (order 1/e terms) in the main
equation (2.7) in our scheme. For a given discretized grid function H; such that
Aw Z?’_"O H; = 1 the v-wise quasi-steady state in the discretized level P£ and

corresponding NV, jH ,WH is defined to satisfy the following equations:
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147

jury
T
iy

-0.6 -0.4 -0.2 0 0.2 -0.6 -0.4 -0.2 0 0.2
w w

Fic. 1. When t = 2.5, there is a discontinuity in the numerical solution. Left: p(v,w,t = 2.5),
with the marked data showing that small variance along the w direction causes a big variance of p;
Right: N(w,t=2.5).

N,—1
(4.1) Av Z Pﬂ-:Hj for j =0,1,...,n,
(4~2) Fgl/z,j - F£1/2,j =0,
(4.3)
M’LJYFI;{/2 J P1+1 j PH .
Ry = 0 (S s ) NS = Vi), = 0Ly =2
1 sJ K
0, 1=—-1,n, — 1,
(4.4) NE =aP? | /At N7 = Aw NI

To generate this discretized v-wise quasi-steady state for a given H; with
Av Z?‘:”O H; =1, one may solve the system

Ny—1
va
MY PEY — 0 and At ST P = H for j = 0,1,
(4.5) =0 LD

N A ZN(k+1)—AwZ "”*“

iteratively from some initial guess of N(O), and take P/% = Pi(j.(), NI =N ;K),NH =

(K) for sufficiently large K that satisfies some stopping criterion like |N+1 —

N&E)| < ¢ for some small enough e.
The numerical experiments are conducted as follows:
1. Fix all the scheme parameters except € (these parameters include all the grid
lengths, initial/boundary values, and coefficients; especially, At is fixed), and
solve the scheme. The solution for a fixed ¢ is denoted as p..
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2. Having solved for p., find H. by (2.6) , and thereafter the corresponding
discretized v-wise quasi-steady state P= by (4.1)7(4.4), which can be nu-
merically obtained by implementing the iterations described in (4.5).

3. Plot ||p — PH"|| versus t™ for each ¢ (the norm is taken at a single time layer,
chosen as L' norm in our numerical test). AP property means that after a
short period of time (the length of which decreases with ¢), the difference be-
tween the solution p* and the corresponding discretized v-wise quasi-steady
state PH<" should drop to a small value which vanishes as ¢ — 0, i.e.,

e—0
—_—

(4.6) oz — PE ) <25,

In our simulations,lve ch@se Ve=2,Vr=1,Vain=—4,a=1,Wpin = —1.1, Whpax =
0.1, Tiax = 0.3,0(N) = N, At =5 x 107%, Av = 0.1, Aw = 0.01,

(4.7) L SiHQ(ﬂ'U)SiHQ(Ww), —l<w<0Oand —1<wv<l1,
‘ Pinie = 0 otherwise,
and
1
(4.8) I(w) = 567(10w+5)2'

We perform the aforementioned AP test for both the v-FI scheme and the v-SI
scheme, choosing ¢ ranging from 10~! to 1077, and the results are shown in Figures 2
and 3, respectively.

From Figure 2, we can see that for the v-FI scheme, the difference between p*
and PHZ" is decreasing when £ — 0; we can even assert [|[p”* — PH"|| = o(e) from the
figure.

From Figure 3, we can see that for the v-SI scheme, the difference between pl*
and PH" is also decreasing when ¢ — 0. However, this decreasing trend is halting

10°

——e=10"!
=107
e=107%]
102} ——c=10"

- ——e=10"°
= e=10"6
7, =107
S

10
5‘&1
= \

(
108 i
10-8 T I 1 ]
0 0.05 0.1 0.15 0.2

t

Fic. 2. AP property of the v-FI scheme. ||pf"™ —pHIT™ || is plotted overt € [0,T), discretized
with the time step At = 5 x 10™%. The discretized quasi-steady state PHIT™ s obtained by the
iterations described in (4.5). It can be roughly seen that when ¢ is small, ||pE"™ — pHI™ || = o(e)
after a few time steps.
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0 At=5x10"1 0 At=5x1073
10 107§
e=10"!
e=10"2
e=10"°
e=10"*
e=10"° |
e=10""°
e=10""
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

t t

FiG. 3. AP property of the v-SI scheme. ||p§1;m _ pHZE™ || s plotted over t € [0,T), discretized
with the grid size At = 5 x 10~% (left) and 5 x 1073 (right). The discretized quasi-steady state
PHfl;m is obtained by the iterations described in (4.5). Comparing to the v-FI scheme, the property

||pfl;m —pHZ'™m | is of order € when ¢ is comparable to or greater than At. When € < At (which is

the case when € = 107%,1076,10~7 in the figure, represented by the green, cyan, and blue curves,

respectively), prl;m — pHZ™ || becomes roughly of order of At, so smaller € does not make this

difference uniformly smaller as it does for the v-FI scheme.

when ¢ = 107° for At = 5 x 107% and € = 107 for At = 5 x 1073, and further
decrease of € does not uniformly draw p* and PH closer. This can be explained by
the time-delayed effect of the v-SI scheme, which was presented in section 3.4. This
time-delay effect introduces an o(At) difference between p™ and PH:" | which will not
further decrease when & becomes a small number comparing to At. We may say that
[p7 — PH|| = o(At) when ¢ < At and [|p* — PH"|| = o(e) when ¢ >> At for the
v-SI scheme.

4.3. Learning and reacting. From this subsection on, we explore model (1.8)
with our scheme. We always use the v-SI scheme in the rest of this section.

In this subsection, we test the model’s learning and discrimination abilities. We
let the model perform learning-testing tasks that were originally proposed in [29],
containing a learning phase and a testing phase:

Learning phase. A heterogeneous input I(w) is presented to the system, while the
learning process is active. The learning rule is determined for the inhibitory weights
by —N(w)N by taking K(w) = —1 if w < 0. After some time, the synaptic weight
distribution H(w,t) converges to an equilibrium distribution Hj(w), which depends
on I.

Testing phase. A new input J(w) is presented to the system. This time, the
neural system reacts to J but does not learn it. In this stage, there is only v-wise
transport and no w-wise convection. To achieve this goal, we implement the v-wise
quasi-steady state solver (4.5) with I replaced by the testing signal J, during which
we keep Hj(w) we obtained in the learning phase.

The pattern recognition property of the system is that it can detect whether the
new input J(w) is actually the same one that has been presented during the learning
phase, i.e., I(w): indeed, in this case, N} ;(w) = w1l[—A,0) has a very specific shape
that does not depend upon the original input I that has been learned in the learning
phase.
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For the learning phase, we implement the v-SI scheme; for the testing phase,
we implement the v-wise quasi-steady state solver (4.5), replacing the input function
I(w) with the testing input function J(w).

In our numerical experiments, the learning and testing input functions are chosen
from the set

(4.9) {hi(10w +5) +1]i = 0,1,...,4},

where ;(z) stands for the ith normalized Hermite function defined recursively as

1

doly) =7 e 2V Py(y) =7 iV 2ye 1Y,

(4.10) Uns1(y) = \/zywn(y) — nL_'_l'@/Jnfl(y)

This set of functions is well known for forming a set of bases for the Hilbert space
L?(—00,+00). The functions in (4.9) are illustrated in Figure 4. We take the argu-
ment 10w + 5 so that the input functions are centralized at w = —1/2 and almost
entirely supported in our truncated solving region; and the extra “+1” term widens
the support of the solution so that it can react to input signals at a wider range of
w. We choose Vp = 2, Vg = 1,Viuin = —4,a = 1,6 = 0.1, Wpin = —1.1, Wiax =
0.1, Tmax = 5,0(N) = N,At = 0.005,Av = 0.1, Aw = 0.01, and pj,i; as given as
(4.7).

For each 4,7 =0,1,...,4, we let the model perform the aforementioned task with
I(w) = 1;(10w+5) and J(w) = 1;(10w +5), and the corresponding network activity
N (w) is shown in the (i + 1)th row, (j + 1)th column in Figure 5. It can be seen that,
when the learned input I(w) and the testing input J(w) are the same (corresponding
to the diagonal entries in the figure), the firing pattern is of the nice triangular shape
Nt j(w) = wl[—A,0); but when I(w) and J(w) are different, the firing pattern is not
in a regular shape. It is worth noting that in [29], the authors provided a primitive
numerical result for the same learning-testing task; the network’s firing pattern after
reacting to the same learned input signal, shown in the article’s Figure 3, turned out
to be quite zigzag. In comparison, with our numerical method, an almost-perfect
triangular-shaped pattern is produced after the model learns and reacts to the same
input (see the subfigures in the diagonal entries in Figure 5).

4.4. Positive synaptic weights. This subsection focuses on exploring the
model’s behavior when the neural system is excitatory, i.e., the solution is supported

2 —
1.5F
A\
1k N
@o(10z +5) + 1
p1(10z +5)+1
0.5F ©2(10z +5) + 1
p3(10z +5) + 1
p4(10z +5) +1
0 1 1 1 1 1 1 ]
-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

Fi1G. 4. The candidate input functions ¢;(10w + 5) + 1, where i = 0,1,2,3,4 and ¢; stands for
the ith normalized Hermite functions.
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1 2 5
’
05 0.5 1 0.5 1
0 0 0 0 0
1 05 0 1 05 0 1 05 0 1 05 0 1 05 0
5 5
1 2 2
0.5 1 1
0 0 0 0 0
1 05 0 -1 05 0 1 05 0 1 05 0 1 05 0
5 4 5
2 1
2
1 0.5
0 0 0 0 0
1 05 0 1 05 0 1 05 0 1 05 0 1 05 0
4 4 2
] 2
2 2 1
0.5 1
0 0 0 0 0
1 05 0 -1 05 0 -1 05 0 -1 05 0 1 05 0
4
2 2 2 1
2
1 1 1 0.5
0 0 0 0 0
1 05 0 1 05 0 1 05 0 1 05 0 1 05 0

Fi1G. 5. Test on the neural network’s recognition property. The pattern recognition task described
at the beginning of subsection 4.3 is done for all possible pairs of input functions given in (4.9).
For each i,5 = 0,1,--- ,4, the subfigure at the (i + 1)th row, (j + 1)th column gives the final firing
pattern N;"J(w) versus after learning the signal I(w) = ¢;(10w + 5) + 1 and reacting to the signal

J(w) = ¢j(10w+5) + 1. For each subfigure, the horizontal coordinate represents w, and the vertical
azis represents N(w) at the end of the task. It can be seen that, when the learned input I(w) and
the testing input J(w) are the same (corresponding to the diagonal entries in the figure), the firing
pattern is of the nice triangular shape N ;(w) = wl[—A,0); but when I(w) and J(w) are different,

the firing pattern will not be reqular-shaped.
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Fic. 6. Solution with positive synaptic weight.

it did with negative synaptic weights.

tic it 02% With I =0, a =1, € = 0.2, initial condition
given as (4.7), o(N) = N/(1+N), At =5x 1073, Av = 0.1, Aw = 0.01, Tmax = 5, K(w) = 1. The
solution finally develops to a steady-state with N*(w) forming the right triangular pattern just like
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in the region w > 0. In [29], the authors’ analytic work focuses mainly on inhibitory
networks. And for the excitatory neural system, they provided that, under some
choice of parameters, the steady-state solution may not exist. We further explore
with our numerical scheme the behavior of the solution when the synaptic weights are
positive.

Our numerical exploration shows that in the excitatory cases, the network can
either develop to a steady state like it did in the inhibitory cases or exhibit a trend of
accelerating expansion unlike it did with inhibitory cases under different parameter
settings.

4.4.1. Long-time steady solution. We first test some scenarios in which the
solution’s present behavior similar to it would present with negative synaptic weights
w.

We choose I = 1, a =1, = 0.2, 0o(N) = N/(1+ N), At =5 x 1073, Av =
0.1, Aw = 0.01, Thpax = 5, K(w) = 1, and initial condition given as (4.7). As shown
in Figure 6, the solution finally develops to a steady-state with N*(w) forming a right
triangular pattern supported in a single interval w € [0, A] for some A > 0, just like
it did with negative synaptic weights. This is the case that corresponds to the correct
biological picture.

Indeed, as long as it can develop to a steady state, the excitatory neural network
also has the recognition ability shown in subsection 4.3. To show this, we perform a
similar learning-testing task as we did in the last subsection. The parameter settings
are the same as they were in the last subsection except that the initial condition
Pinit 18 supported in the region with w > 0, K(w) = 1, o(N) = N/(1 + N) and the
candidate input functions become

(4.11) (10w —5)+1, i=0,1,...,4,

so that the inputs are centered at +1/2 instead of —1/2 for the inhibitory cases. The
results are given in Figure 7. The arrangement of the figures is the same as that
of Figure 5. It can be seen that w — N(w) subfigures at the diagonal entries are in
perfect right triangular shape, which is the same as it is in Figure 7.

4.4.2. Unsteady solution. Now we turn our attention to a different case, where
the solution is not converging to a steady solution. In [29], it was presented that even
if we choose the firing function o to be bounded

— N
(4.12) o(N) = kﬁ,

we may still face some scenarios that a steady state does not theoretically exist. And
we further explore the solution’s behavior in this case.

We choose I(w) = 1, k = 3, and the rest of the parameters were the same as they
were in the first numerical experiment in sub-subsection 4.4.1. The solution turns out
to propagate to the region with greater w. The w-wise right boundary of the support
of N grows increasingly fast (Figure 8 right), and henceforth N grows increasingly
big (Figure 8 left). It should be noticed that our result shown in Figure 8 does not
necessarily imply that this is a blow-up solution, since we are not sure whether N (¢)
will grow to oo in a finite time.

Even if the solution is not a blow-up one, it still does not practically make sense
that the network’s synaptic weight grows increasingly fast to oo. Therefore, the
solution’s fast growing behavior is a nonphysical effect of our model.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/22/22 to 205.175.106.216 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

A NUMERICAL SCHEME FOR THE STRUCTURED NNLIF MODEL

B1065

0.5 0.5 0.5
0 0 0 0
0 05 0 05 0 05 1 0 05 0 05 1
2
2
2 1 2
1 05 1 1 !
0 0 0 0 0
0 05 0 05 0 05 1 0 05 0 05 1
2 2
2 1 1
1 1
1 05
0 0 0 0 0
0 05 0 05 0 05 1 0 05 0 05 1
5 4
2 ] 2
M 2 1 ” 1
0 0 0 0 0
0 05 0 05 0 05 1 0 05 0 05 1
) 2
2 2 1
1 1 1 1 0.5
0 0 0 0 0
0 05 0 05 0 05 1 0 05 0 05 1

F1c. 7. Test of the recognition property of excitatory neural networks. The pattern recognition
task described at the beginning of subsection 4.3 is done for all possible pairs of input functions given

in (4.9). For each i,j = 0,1,..

., 4, the subfigure at the (i + 1)th row, (j + 1)th column gives the

final firing pattern N}“’J(w) versus after learning the signal I(w) = ¢;(10w — 5) + 1 and reacting to

the signal J(w) = (10w — 5) + 1. For each subfigure, the horizontal coordinate represents w, and
the vertical azis represents N(w) at the end of the task. It can be seen that, when the learned input
I(w) and the testing input J(w) are the same (corresponding to the diagonal entries in the figure),
the firing pattern is of the nice triangular shape N ;(w) = w1(0, A); but when I(w) and J(w) are
different, the firing pattern will not be reqular-shaped.

6r

0 0.5

1 1.5

25
t=0.1
t=0.5
2 t=0.9
t=1.3
t=1.7
- 1.5
=
Z 1
0.5
ol '
0 2 4 6

w

Fic. 8. Solution with positive synaptic weight. With I(w) =1, a =1, e = 0.2, nitial condition
given as (4.7), o(N) = 3N/(1+ N), At =5 x 1073, Av = 0.1, Aw = 0.01, Tmax = 5, K(w) = 1.
Left: In the unsteady scenarios, N grows with accelerate. Right: The solution turns out to propagate
to the region with greater w. The w-wise right boundary of the support of N grows increasingly fast.
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5. Conclusion. In this work, we have proposed a numerical scheme for the
Fokker—Planck equation of structured neural networks (1.8), which is shown to be
conservative, positivity-preserving, and asymptotic-preserving.

The key to the success of our scheme is the implicit treatment for flux shift
operators in (1.8), based on which the numerical scheme has an improved positivity
preserving property: there is no v-wise grid ratio constraint to guarantee the positivity,
which is otherwise a major bottleneck for efficient simulation.

As for numerical exploration, we have conducted the learning-testing numerical
experiments and yielded numerical solutions that not only match the theoretical re-
sults perfectly, but also fully demonstrate the recognition ability of the model and
provide insights for potential uses and future studies. The numerical tests are also
extended to the cases of excitatory neural networks. We have also explored with our
numerical experiments the behavior of the model when a steady state solution does
not exist. These numerical experiments are successful in capturing partial long time
trends of the solution but are still preliminary. Further numerical experiments can be
done to explore, for example, the model’s behavior when the input signal I becomes
time-dependent, or alternative learning rules that can prevent N(t) from growing to
infinity for the excitatory cases.
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