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The increasing complexity of deep learning systems has pushed conventional
computing technologies to their limits. While the memristor is one of the
prevailing technologies for deep learning acceleration, it is only suited for
classical learning layers where only two operands, namely weights and
inputs, are processed simultaneously. Meanwhile, to improve the
computational efficiency of deep learning for emerging applications, a
variety of non-traditional layers requiring concurrent processing of many
operands are becoming popular. For example, hypernetworks improve their
predictive robustness by simultaneously processing weights and inputs against
the application context. Two-electrode memristor grids cannot directly map
emerging layers' higher-order multiplicative neural interactions. Addressing this
unmet need, we present crossbar processing using dual-gated memtransistors
based on two-dimensional semiconductor MoS,. Unlike the memristor, the
resistance states of memtransistors can be persistently programmed and can be
actively controlled by multiple gate electrodes. Thus, the discussed
memtransistor crossbar enables several advanced inference architectures
beyond a conventional passive crossbar. For example, we show that sneak
paths can be effectively suppressed in memtransistor crossbars, whereas they
limit size scalability in a passive memristor crossbar. Similarly, exploiting gate
terminals to suppress crossbar weights dynamically reduces biasing power by
~20% in memtransistor crossbars for a fully connected layer of AlexNet. On
emerging layers such as hypernetworks, collocating multiple operations within
the same crossbar cells reduces operating power by ~ 15 X on the considered
network cases.

KEYWORDS

memtransistor, crossbar, higher-order neural networks, input adaptive deep learning,
hypernetworks, LSTM, attention, MoS,
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1 Introduction

The increasing complexity of deep neural networks (DNN)
and their proliferating applications in embedded computing have
pushed conventional architectures and CMOS technologies to
their limits (Shukla et al., 2021b; Nasrin et al., 2021; Kim et al,,
20205 Iliev et al., 2019). As a result, there is an invigorated interest
in exploring alternative and

technologies computing

architectures to achieve a disruptive improvement in
deploying DNNs under stringent area, power, and latency
constraints. Memristors are among the most promising
emerging non-volatile memory technologies for DNNs
(Prezioso et al., 2015; Cheng et al., 2017; Li et al., 2018; Ankit
et al, 2019; Wang et al., 2019). Memristors can store DNN’s
synaptic weights in a dense and scalable crossbar architecture
with multibit precision and passive resistive programming.
Moreover, the same crossbar can be used for “compute-in-
memory” processing of certain key computations of a DNN.
Integrating storage and computations within the same structure
allows memristor crossbars to supersede conventional digital
bandwidth
becomes the key bottleneck for performance scaling (Chen
et al., 2016; Basu et al., 2018; Kim et al., 2020).

In parallel, DNN architectures are going through a
their

efficiency. In the last few years, novel layers such as

accelerators where limited memory-processor

dramatic evolution to improve computational
inception (Szegedy et al., 2016), residual layers (Szegedy
et al,, 2017), dynamic gating (Hua et al., 2018), polynomial
layers (Kileel et al., 2019), self-attention (Wu et al., 2019), and
hypernetworks (Ha et al., 2016) have been added to the
repository of DNN building blocks. Therefore, a critical
challenge for the next generation of DNN accelerators is to
exhibit high versatility in their processing flow for efficiently
mapping these various DNN layers into hardware circuits.
Emerging architectures use additional layers beyond the
classical layers, and thus, they can simultaneously correlate
multiple variables to enhance the computational efficiency
and representation capacity. For example, hypernetworks
(Ha et al., 2016) integrate the application context in their
prediction by simultaneously correlating all three, viz.,
inputs, weights, and context features to predict the output.
Likewise, recurrent layers such as gated recurrent units
(GRU) simultaneously correlate input and weight dot
products against history-dependent reset vector using
Hadamard product for long or short-term memory.

While a significant advantage of memristor crossbars is
their this
architecture imposes challenges when adapting their use

scalability via two-electrode arrays, same

for such emerging DNN layers. Due to only two
controlling electrodes, memristor crossbars are only suited
for classical DNN layers where only two operands, namely
weights and inputs, are processed at a given time. Memristor

grids cannot directly map emerging DNN layers where
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multiple operands must be simultaneously processed. A
two-electrode control of memristors also creates challenges
for computational scalability. For example, mixed-signal
operations on memristor crossbars are susceptible to sneak
current paths formed dynamically depending on the input
and weight vectors. To suppress these sneak paths, memristor
cells in a crossbar are typically integrated with additional
selector components such as transistors or diodes. Although
the selectors improve the robustness of crossbar processing,
the additional circuit elements per cell sacrifice the crossbar
other

compatibility during fabrication.

scalability and pose constraints on materials
In this work, we present a neural network crossbar based on

dual-gated memtransistors (Figure 1) to overcome the
limitations of memristor crossbars for higher-order processing
Unlike memristors,

of emerging deep learning layers.

memtransistors are multi-terminal  gate-tunable active
elements whose non-volatile resistance can be persistently
programmed but volatile channel resistance can also be
adapted dynamically by gate electrodes. The gate-tunability of
also  offers circuit and

memtransistors unprecedented

microarchitecture-level ~ co-optimization opportunities for
neural crossbars, especially for emerging deep learning layers
that rely on higher-order multiplicative interactions.
Exploiting the dual-gated MoS, memtransistors for neural
processing, our key contributions in this work on classical and

emerging neural layers are as follows:

o Classical layers on memtransistor crossbars: We propose a
higher-order neural network processing method using a
dual-gated memtransistor crossbar in the time and charge
domain. In our scheme, inputs are applied row-wise in the
time domain, and outputs are accumulated column-wise in
the charge domain. The proposed gate-tunable neural
processing significantly enhances the scalability of the
crossbar and minimizes overheads of mixed-signal
processing and peripherals. For example, we exploit gate
tunability of memtransistors to eliminate sneak current
paths in the crossbar. When time-encoded input to a row is
low, memtransistors in the respective row are configured to
a very high resistance state using gate controls to suppress
sneak current paths. In comparison, conventional

memristor crossbars require additional selectors at each

cell to control the sneak path and/or are limited to
operating with a smaller crossbar size. In addition, by
the of

conductance-emulated crossbar weights are dynamically

using gate-tunability memtransistors,
suppressed based on input patterns such that the overall
prediction accuracy is not affected but the crossbar’s
overall biasing power can be minimized. Although
similar input-adaptive weight suppression is also feasible
in memristor crossbars, only hard weight gating can be

implemented without significantly complicating the
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Dual-gated memtransistors: (A) Schematic of a dual-gated memtransistor on monolayer MoS,. (B) Top view schematic of a crossbar cell.

of
memtransistors naturally allows a soft-gating of network

physical ~ design. Meanwhile, gate-tunability

weights which opens many more excellent opportunities
for crossbar weight adaptation without sacrificing
accuracy.

Emerging layers on memtransistor crossbars: We discuss
mapping schemes for emerging higher-order neural layers
on memtransistor crossbars, namely, hypernetworks and
history-dependent gating mechanisms in long-short term
memory (LSTM) and gated recurrent units (GRU). The
reveal the
memtransistor crossbars to implement the emerging layers

implementations significant  efficiency of
than conventional memristor crossbars. Dual gate controls of
memtransistor allow quadratic order multiplications to be
implemented within a single device, reducing the total
number of operations and processing modules. For
example, for hypernetworks, quadratic multiplications
within a memtransistor crossbar are ~ 1.5 x more energy
efficient than in memristors. Furthermore, by performing
higher-order multiplications within a single crossbar, unlike
memristors, memtransistors obviate partitioning higher-order
operations into a sequence of lower-order operations which
significantly reduces the necessary workload and improves the
energy efficiency of crossbar processing. Hence, while the
emerging neural layers promise better inductive biases and
prediction capability under network size constraints,
memtransistor crossbars further improve their potential by
enabling low power implementation.

Section 2 discusses the background on fabrication and
operating characteristics of memtransistors. Section 3
discusses the advantages of memtransistor crossbars on
classical neural network layers. Section 4 presents the
benefits of memtransistor crossbars for emerging neural
network layers such as Hypernetworks and LSTM on the
memtransistor grid. Finally, Section 5 summarizes our key

advancements and concludes.
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2 Gate-tunable dual-gated
memtransistor crossbars

In prior works (Sangwan et al., 2018; Lee et al., 2020), our co-
authors Sangwan and Hersam have demonstrated a novel gate-
tunable memristive system—the memtransistor—fabricated from
polycrystalline monolayer MoS, with SiO, as the bottom gate
the
(Figure 1A), the drain and source electrodes were patterned by

dielectric. ~ For individual ~ dual-gated ~memtransistor
electron beam lithography and liftoff processes on MoS, that was
synthesized by chemical vapor deposition. This is followed by
patterning of MoS, channels by reactive ion etching (channel
length L and width W are 900 and 700 nm, respectively). The
top-gate dielectric Al,O3 (30 nm thick) were grown by atomic
layer deposition. A 300-nm-thick SiO, acted as the gate
dielectric on the doped Si wafer serving as a global bottom
gate. The dual-gated memtransistor crossbar was fabricated
using the same channel geometry, the thickness of metal
electrodes, and the thickness of dielectrics layers as the
individual devices. Figure 1B shows the channel dimensions
of each node in the fabricated crossbar. Figure 1C shows the
micrograph of a representative dual-gated 10-by-9 crossbar
array. The source and drain terminal lines are interleaved,
running in parallel, for a higher density of memtransistor
cells. The top gate lines run orthogonal to source/drain
terminals. Various other adaptations of memtransistors
have been discussed in our prior works Yan X. et al.,, 2021;
Yuan et al., 2021; Sangwan et al., 2015.

2.1 Operating principles of the dual-gated
memtransistor

Figure 2A shows the characteristic pinched memristive loop
and measured bipolar resistive switching characteristics of the
dual-gated MoS, memtransistor at different bottom gate biases
Vg with a floating top gate. The device is initially in a low

frontiersin.org
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Memtransistor characteristics and mechanism: (A) Drain current (Ips) versus drain bias (Vps) characteristics of a dual-gated MoS, memtransistor.
Gate tunable memristive switching is seen at various bottom gate biases (Vgg) while the top gate is floating. (B) Left: Schematic diagram showing a
Schottky contact and MoS, band-bending near the drain electrode in low resistance state (LRS). E¢ is the Fermi energy level. Right: Schematic
diagram showing the increased space-charge region near the drain electrode in high resistance state (HRS). Reproduced with permission
(Sangwan et al., 2018). Copyright 2018, The Authors, published by Springer Nature

resistance state (LRS) and switches to a high resistance state
(HRS) at forward bias (drain voltage Vg > 0), representing a
RESET process. In contrast, the device undergoes a SET process
(i.e., switching from HRS to LRS) at reverse bias (Vpg < 0). The
clockwise switching in SET/RESET processes and inverted
rectification polarity suggest that the bottleneck for charge
injection occurs at the drain electrode. Thus the dominant
resistive switching mechanism occurs at the forward-biased
Schottky diode (i.e., under the drain contact in RESET, source
contact in SET). This is in contrast to the dominant resistive
switching mechanism in reverse-biased Schottky diode at source
contacts in single-gated memtransistors (Sangwan et al., 2018,
2015), as shown in Figure 2B. The possible physical mechanisms
for the different behavior are discussed in detail in the Lee et al.
(2020). The reversible and dynamic modulation of the Schottky
barrier could be attributed to the migration of defects or charge
trapping events near the contacts in the underlying MoS, or
overlaying AlL,O;. Most importantly, the dual-gated
memtransistor (Lee et al., 2020) enables not only gate-tunable
learning, like the single-gated memtransistor (Sangwan et al,
2018), but also permits efficient scaling into a crossbar array
configuration by suppression of sneak currents, unlike the single-
gated memtransistor. Memtransistor-based spiking neuron
implementations were discussed in prior works Yuan et al,
2021; Yan et al, 2021b whereas this paper focuses on higher
order deep learning using the devices.

2.2 Modelling of single gate memtransistor
characteristics

In Sangwan et al., 2018, we have discussed memtransistor
modeling under a single gate adaptation of the device. A brief

Frontiers in Electronic Materials

summary is provided here. We model the memtransistor
behavior by integrating a mathematical formalism of
memristive systems with the charge transport model of a
Schottky-barrier FET (SB-FET). Memristive systems are
defined as:

d

d—l:}=f(w,V,t) and I = g(w,V,t) xV (1)
where t is the time, w is an internal state variable, and V and I are
the input (voltage) and output (current). In the sub-threshold
regime, the charge transport in SB-FET is dominated by
thermionic emission:

sl o

where A is the 2D equivalent Richardson constant, the term T**
comes from the 2D model (as opposed to T* in 3D), @, is the
barrier height. Combining SB-FET model with memristive

formalism, we derive:

oo €We V[ (Vo
ID—Dexp[ kol ][1 exp( CdeBT>]

0 e [wiAn L[ sfpen (¢p0 + AlVI)
b e N 4n 4, &
exp T

(©)

ow,
ot

= EIp{1 - [(w-0.5)’ +0.75]"} (4)
Here, A, D, E, ¢, ¢,4, p» and An are fitting parameters. We omit

greater details of the above equation here for brevity that can
be referred in our prior work Sangwan et al., 2018.
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FIGURE 3

Memtransistor characteristics simulations: (A) Scaled dimensions of memtransistor evaluated under NEGF. (B) /ps-Vgs at varying Schottky
Barrier height (Vps = 0.3 V). The potential at the top gate is sweeping while the potential at the bottom gate is set to 0 V. (C) Ips—Vps at varying SB
height. The potential at the top gate is 0.5V and at the back gate is zero.

2.3 Projection of dual-gated
memtransistor to scaled dimensions

Dimensions of our prototype memtransistors are not scaled to
achieve practical low power advantages for neural processing. While
our device scaling efforts are underway (Lee et al,, 2020), in this work,
we project dual-gated memtransistor nodes to approach tens of
nanometers and study the potential benefits of crossbar-based neural
processing using simulations. In the fabricated prototypes, non-
volatility of resistance states is experimentally verified to originate
from Schottky Barrier (SB) height modulation. Therefore, to study
the device characteristics at the nanometer scale, we integrate the
formalism of non-equilibrium Green function (NEGF)-based current
conduction and SB height modulation. A NEGF-based model can
preserve the wave (quantum-mechanical) character of carrier
electrons at the scaled dimensions, and therefore, it is more
accurate than classical current transport equations.
3A the
memtransistor with a channel length of 7 nm for simulation

Figure shows schematic of a dual-gated
using NEGF. The scaled device in the figure is used for our
ensuing discussions. The channel in the device is formed using
monolayer MoS,. Top gate is patterned on 2 nm thick Al,0;
dielectric. In the fabricated prototype, see Figure 1, MoS, is
grown on SiO, and a doped silicon layer is used as a bottom gate.
Appropriately, a bottom (or back) gate under 10 nm thick SiO, is
considered in the scaled adaptation. Under various SB height

(A¢p) programming, Figure 3B shows Ip-Vgg characteristics of
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the scaled device at Vpg = 0.3 V and Figure 3C shows Ip-Vpg
characteristics at the top gate potential being 0.5V. Due to
thermionic emission-based current conduction, Ipg through a
memtransistor is exponentially sensitive to gate voltage Vs. At
varying programming configurations, Ips changes by one to
three-orders of magnitude by switching gate voltage to zero
from 0.5 V. Therefore, to suppress sneak paths, memtransistor
crossbars can utilize gate-tunability of Ipg; the advantages of
these be
subsequently.

characteristics  will analyzed in more details

2.4 Comparison to competitive synaptic
memory technologies

Table 1 compares the proposed technology against the
technologies ~ for
crossbars. and benchmarks of
technologies are gathered from Chen 2016; Choi et al., 2020;
Cai et al,, 2017; Yu and Chen 2016; Endoh et al., 2016; Mladenov
2019, 2020; Mladenov and Kirilov 2013. Two key advantages of

memtransistors are multi-terminal control, thus eliminating the

competitive  synaptic memory neural

Characteristics other

need for dedicated selector devices, and potential for better
crossbar density due to superlative gate electrostatics even at
sub-10 nm scaling. In the demonstrated prototypes Sangwan
et al., 2018; Lee et al, 2020; Sangwan and Hersam 2020;
Sangwan et al., 2017; Yan X. et al, 2021, HRS/LRS ratio,
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TABLE 1 Comparison of device-level characteristics of memtransistor against conventional NVMs.

Technology PCRAM STT-MRAM

Device Structure 2 terminals 2 terminals

Selector Needed Needed
Write Voltage <30V <10V
Write Latency 40-150 ns 2-20 ns
HRS/LRS 10*-10° <2
Retention > 10 years > 10 years
Endurance > 10° 10"

retention, and endurance are already comparable to the best-
reported characteristics among nonvolatile memories (NVMs).
Although our current prototype has a larger dimension, at sub-
10 nm channel lengths, write voltage is expected to be less than
2V with latency less than 10 nanoseconds.

Furthermore, memtransistors have critical advantages over
dual gate synaptic transistors such as in Yan M. et al., 2021; Tian
et al, 2019. In memtransistors, the non-volatile resistive
switching is achieved by the drain bias pulses. Therefore,
one of the gate terminal can afford the tunability of the
resistive states to realize multi-state memory or change the
learning rate during neural network training. Importantly, this
can be achieved without the second gate that can be then used as
a selector to suppress the sneak current in the scaled network.
So, the second gate acts as a transistor in a 1T1M architecture of
memristor crossbars while the second gate can control learning
behavior. On other hand, dual-gated synaptic transistors Yan
M. et al., 2021; Tian et al., 2019 achieve non-volatile memory
states using pulses on one of the gates, not by the drain
electrode. So, the second gate can be used to either change
the learning rate or act as a selector, but not for both
simultaneously. Therefore, dual-gated memtransistors allow
an additional control electrode that is not feasible in dual-
gated synaptic transistors. These differences have also been
outlined in detailed comparison between different dual-gated
synaptic devices including ferroelectric devices in the review
article Yan X. et al., 2021.

3 Classical neural layers on
memtransistor crossbars

This the of dual-gated
memtransistor crossbars for classical deep learning layers. We

section  studies advantages
first discuss a time/charge-domain neural processing scheme
simplifies crossbar processing peripherals. Subsequently, we
discuss how dual-gate control of memtransitor crossbars can
be exploited to dynamically suppress sneak paths and
layer weights to maximize the energy efficiency of neural
processing.

Frontiers in Electronic Materials
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RRAM FeRAM Memtransistor
2 terminals 3 terminals 4 terminals
Needed Not needed Not needed
< 05-5V 5V <2V
20-100 ns 10 ns <10 ns
10°-10° — > 10°
> 10 years > 10 years > 10 years
10°-10" 10" > 10°

3.1 Crossbar architecture and time-
domain processing

Figure 4 shows the architecture of a crossbar where each cell
is made of a dual-gated memtransistor. The drains electrodes of
memtransistors along a row are shared and controlled together.
The source electrodes of memtransistors along a column are also
shared. Dual-gate grids are formed within a crossbar. Front gates
of memtransistors along a row are shared, creating a row-wise
front-gate grid. Back-gates along a column are shared, forming a
column-wise back-gate grid. Comparable memtransistor
crossbars were fabricated in Feng et al,, 2021. A weight matrix
is mapped on a memtransistor grid by programming the height
of each crossbar element’s Schottky barrier (SB). An input vector
is applied row-wise on the drain ends of memtransistors in the
time-domain using digital to pulse converter DAC (T-DAC).
T-DAC is digital
comparator and register to store crossbar inputs—where the

composed of digital components—a
count from a digital counter is compared against the stored input.
An active high signal is inserted if the count is less than the input.

Subsequently, the crossbar operates on time-encoded input
signals against the stored weights. Each memtransistor is
programmed so that its conductance (g;) at the applied time-
encoded input pulse between its drain to source electrodes is
proportional to the mapped weight magnitude w;. Since the
conductance of a memtransistor can only be positive, whereas the
weight matrix values can be both positive and negative, two
crossbar cells—positive and negative weight cells—are dedicated
for each weight matrix entry, as shown in the figure. The figure
shows that positive or negative weight matrix entries are written
on the corresponding cell while the other cell is programmed to
the minimum conductance.

When input pulses are applied, each memtransistor injects a
current Ij; = Ipg(¢;) along a column as long as the pulse is active.
Here, ¢; is the programmed Schottky barrier height of a
memtransistor at the i row and j¥ column, programmed
according to the corresponding weight value w; mapped at
the intersection. Along a column, columns currents are
integrated on a capacitor Cjyr using a charge integrator
circuit shown to the right side of Figure 4. At the end of
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Time-domain processing in memtransistor crossbars: Inputs are applied in the time-domain. Inputs and weights are multiplied in the charge
domain. Integrator and hold circuit for charge accumulation are shown on the right.

crossbar processing, the potential developed across the
integrating capacitor follows Y T; x I;j/Cyr. Here, T; is the
pulse-width of the encoded input vector element at row “i”
and I is the current of memtransistor at the i’ row and j
column. The front-end amplifier in the charge integrator
enforces a virtual ground on the sources of memtransistors to
improve the reliability of current integration.

An integrated charge can be held briefly using a voltage hold
cell shown to the right in the figure. Hold-cell is designed using
common-source (CS) amplifiers with both NMOS (My;) and
PMOS (Mp,) input stage to accommodate for rail-to-rail swing of
the integrator output and feedback capacitors (Cg and Cp,). The
potential at the charge-integrator output degrades over time due
to crossbar’s leakage. Such degradation will alter the biasing of
My and Mp,, causing the output of the CS stage to increase due
to negative feedback and resulting in potential differences across
feedback capacitors. The resulting current through the feedback
capacitors due to the potential difference restores charge-
integrator output and thereby enhances the retention time of
the hold-cell.

The complexity of time-domain digital to analog converter
(T-DAC) and voltage-domain analog to digital converter (ADC)
in Figure 4 increases exponentially with higher precision input and
output processing. Memtransistors can only support a limited
precision weight storage. Therefore, the operating precision of
neural crossbar is inherently limited. Higher precision inputs and
weights can be bit-sliced to alleviate precision scalability challenges, as
shown in Figure 4. For example, 8-bit input and weight values can be
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time-sliced into four-bit sections and four operation cycles can be
used for processing. Although the crossbar’s latency increases, its
design and implementation become significantly simplified. Similar
memristor and other non-volatile memory-based neural accelerators
have also been studied in prior works (Trivedi and Mukhopadhyay
2014; Manasi and Trivedi 2016; Shafiee et al., 2016; Wang et al., 2016;
Mikhailenko et al., 2018; Nasrin et al., 2019; Fernando et al., 2020; Ma
et al., 2020; Nasrin et al., 2020; Shukla et al., 2021a). However, our
subsequent discussion will highlight how dual-gated control of the
memtransistor grid can offer unique co-optimization opportunities
not available to current memristor-based crossbar designs.

3.2 Crossbar scalability with gate-
controlled sneak path suppression

A critical challenge for conventional crossbar scaling is the
presence of sneak current paths. Consider the earlier discussed
time-domain neural processing in a crossbar in Figure 5A. As a
vector of time-domain inputs is applied along the rows, charge
domain processing in the array computes input vector-weight
matrix products along with columns in voltage mode, which
must be digitized for downward processing and transmission.
Since a typical analog-to-digital converter (ADC) requires
significant area/power overhead, integrating parallel ADCs at
each crossbar column incurs excessive overhead. Thus typically,
only a limited number of integrated ADCs will multiplex over all
crossbar columns to sequentially digitize their output. Under
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Sneak current path analysis of memtransistor crossbar: (A) Sneak paths in a
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crossbar can arise due to practical considerations such as column

multiplexing with limited number of ADCs which requires unselected (floating) columns. For memristor and memtransistor crossbars: (B) average
and worse-case scalar product error at increasing crossbar size, and (C) average biasing power if unselected crossbar columns are grounded in

memristor crossbars.

TABLE 2 Memtransistor (MemTX) crossbar simulation parameters.

WhemTx 10 nm Lmemtx

VG MemTx -0.5 V(OFF), 0 V(ON) Crow

MemTX precision 4-bit T-DAC min time-step
ADC 6-bit ADC energy

such ADC multiplexing, the analog output of a column held at
the charge integrator is susceptible to degradation under charge
leakage. Therefore, to minimize the crossbar’s bias power under
ADC’s multiplexing, only a limited number of column outputs
(such as 16 in a crossbar with 128 columns) are computed in one-
time step, and the remaining crossbar columns are left floating to
prevent leakage power. However, floating crossbar columns can
form sneak paths affecting the output accuracy, whereas the
number of such sneak paths dramatically increases with
increasing crossbar size.

In a memtransistor crossbar, gate-bias of crossbar elements
can be employed to suppress such sneak paths dynamically.
Figure 5A shows the proposed scheme where timing pulses from
T-DAC are applied to both drain and gate of a memtransistor. As
T-DAC pulses deactivate, the gate voltage of memtransistors
along the row is swept from 0 V to —0.5 V, which increases their
resistance by orders of magnitude (see Figure 3B) and effectively
suppresses the sneak paths formed through floating
memtransistor columns. Although similar implementation can
be used for memristor crossbars by integrating a transistor in
each crossbar cell (Zidan et al., 2014; Yan et al., 2016; Humood
et al.,, 2019; Shi et al.,, 2020), memtransistors achieve this in a
single circuit device.

Figure 5B shows the root-mean-square (RMS) error for
memristor-based  crossbar arrays against memtransistor
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7 nm Vb MemTx 0 V(OFF), 0.3 V(ON)
3 aF/cell Ceol 3 aF/cell

0.2 ns T-DAC precision 4-bit

8.3 fJ/op Ipias (C-Int) 100 nA

crossbar arrays where gate voltages are exploited to suppress
sneak current paths dynamically. Various simulation parameters
are listed in Table 2. Memtransistors with W/L = 10 nm/7 nm are
used for each crossbar cell where ¢p programming within
~150 mV window varies drain-to-source current I; from
1-100nA at drain Vp. When the input from T-DAC
deactivates, Vp, of memtransistors along the row is grounded
and Vg is biased at —0.5 V to cut-off sneak paths as discussed
before. An equivalent resistance programming range is assumed
for memristors to highlight the advantages of gate tunability in
memtransistors specifically. Timing DACs are operated with 4-
bit precision and take a minimum time-step of 0.2 ns. 6-Bit
precision ADCs are integrated with a crossbar and one ADC
operation consumes 8.3f] based on the energy model in
Ginsburg 2007. Simulations were performed using SPICE. The
simulation results show average and worst-case performance
over hundred simulations on random input and weight
vectors. The error distribution is shown in shaded red and
green colors for memristor and memtransistor crossbars.

Note that the sneak current paths problem deteriorates in
memristor crossbars with increasing crossbar size, causing
degradation to the output, thereby limiting the size of the
largest crossbar that can be reliably processed. In the
proposed memtransistor crossbar operation, we can control
sneak current to the instrumentation noise floor since each

frontiersin.org


https://www.frontiersin.org/journals/electronic-materials
https://www.frontiersin.org
https://doi.org/10.3389/femat.2022.950487

Rahimifard et al.

gate is connected to the input. Thus, the error is almost
independent of the size of the array and is only impacted by
the non-idealities of peripherals such as limited OP-AMP gain
(~100 in our case). Moreover, the average power consumption
can be significantly reduced in the dual-gated memtransistor
crossbar, as shown in Figure 5C. If such sneak paths were to be
suppressed by grounding unselected columns in the memristor
crossbar, the resulting waste in biasing power would invariably
scale with crossbar size as shown in Figure 5C. In avoiding the
requirement to ground unselected crossbar columns,
memtransistor crossbars can achieve much better energy

efficiencies than memristor crossbars.

3.3 Input adaptive deep learning with
dynamic weights

The input-adaptive inference is becoming prominent in
improving the energy efficiency of deep learning. The central
idea in input-adaptive inference is to dynamically re-adjust
input-output connections in each layer based on the input
characteristics and complexity. For example, complex input
patterns can be processed with a more sophisticated inference
model, i.e., more weights and more levels of abstractions (DNN
layers). In contrast, simpler inputs can be operated with a low
complexity model with fewer weights yet maintaining high
prediction accuracy. For such input adaptive deep learning,
Liu et al. Liu and Deng 2018 discussed dynamic deep neural
networks (D’NN) where input-output connections in each deep
learning layer are dynamically dropped based on the input
characteristics. Channel gating neural networks were discussed
in Hua et al. (2019) where channels that contribute less to the
classification result are identified and skipped dynamically.
Dynamic slimmable networks were presented in Li et al., 2021
exploring a better mapping efficiency under such dynamic
pruning by keeping filters stored statically and contiguously in
memories.

However, most input-adaptive inference techniques
applicable for memristor crossbars show significant training
complexity related to the lack of dynamic tunability of the
that

memristor can not be modulated in runtime, only hard gating

memristor’s characteristics. ~ Since resistance of a
of output neurons can be implemented. Under such hard gating,
an output neuron is completely dropped (gated) depending on
the input pattern and thereby its associated bias power on
synaptic connections can be saved. However, hard gating of
neurons requires adding discrete optimization steps in the
learning procedure. Thereby, computationally expensive
discrete optimization methods (such as REINFORCE Cai
et al, 2018) or reinforcement learning Liu and Deng 2018 are
necessitated which significantly increases the training workload.
While hard gating of DNN neurons is essential for memristor

grids, by exploiting their gate tunability, memtransistor grids can
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utilize soft gating of neurons for enhanced opportunities for
input-adaptive bias power saving as well as simplified learning
procedures. Under soft gating, an output neuron can dynamically
scale down its synaptic strength through gate tunability of the
memtransistor grid. Since the bias power for a weight-input
product at an output neuron is proportional to the total
conductance of associated synapses, the associated bias power
can be saved by scaling down its synaptic weights. We discuss
how dual-gate control of memtransistor crossbars can efficiently
implement such input-adaptive crossbar weight modulation.
More importantly, we will discuss how dual-gate management
simplifies the input-adaptive inference training procedure.

In Figure 6B, consider input-adaptation neurons A;; to A; x
interleaved with output neurons in a crossbar mapping layer i of
a neural network. For input-adaptive crossbar energy
minimization, the scheme follows a “soft-suppression” of
output neurons by controlling their column-wise back gate
voltages based on the output from the adaptation neurons. If
an adaptation neuron suppresses an output neuron, its output
voltage is low, reducing all weights in the output neuron’s
column. We consider a block-wise input adaptation where
neuron A; regulates column-wise gate voltages of all output
neurons in the respective block Bj; as shown in the figure. The
input-adaptation transpires in two phases. In the first phase, the
output neuron’s suppression voltage are computed through
adaptation neurons while disabling regular output neurons
using column-wise gate voltages, i.e., Vpg = 0 V. Adaptation
neurons A;; in the layer perform scalar dot product of adaptation
weight matrix and layer input y; ; to compute the adaptation
voltages of the corresponding block. In the second phase, layer
outputs are computed by applying suppression voltages to the
gate grid of output neurons, as shown in the figure. Thereby,
weight matrix W; of layer i is adapted to W# =W, © g(4;))
where ¢ () voltage to conductance transfer function of
memtransistor and ® is Hadamard product operation (see left
of Figure 6B).

Notably, due to soft suppression of weights, the network is fully
differentiable, thereby doesn’t introduce training complexities
compared to typical DNNs. In Figure 6C, we consider a fully-
connected layer of size 4,096 x 4,096 from AlexNet, trained with
the CIFARIO dataset, and apply the above input-adaptive inference
with soft gating of neural weights. Weights of adaptation neurons A;
were trained by modifying the original weight matrix W; to W# =
W; © g(A;j) and adding £, norm of the adapted weight matrix
w4 1% to the cost function which forces the network to minimize the
network weight on each input from the training set. For the
illustrative results, the fully-connected layer in the network
performs input-adaptive inference with eight adaptation neurons.
The figure shows adaptation factors across eight neurons on various
example images in the dataset, demonstrating the ability of the
network to suppress neural weights based on input characteristics
dynamically. In Figure 6D, we consider a varying number of
adaptation neurons operating on equal block sizes within each
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Dynamic inference paths: (A) Input-adaptive “soft” suppression of neurons. (B) Within crossbar computations of input-adaptive suppression
factor. Input to a layer are applied to adaptation neurons which compute the suppression factor for primary neurons in the layer. Using the crossbar
architecture shown to the right, the suppression factor is applied using vertical gate grid. (C) On CIFAR10 dataset, input-adaptive neural weight
suppression factors computed for the fully-connected layer of AlexNet. (D) Bias-power saving with increasing number of adaptation neurons

on fully-connected layer of AlexNet.

crossbar. Crossbar processing power reduces with more adaptation
neurons due to fine-grained input adaptations. However, since each
adaptation neuron incurs its processing overhead, an optimal
number of them is needed for maximum energy saving. In the
figure, an optimal ~20% energy can be saved with 32 adaptation
neurons on the considered case.

4 Higher-order neural networks on
memtransistor crossbars

Several new DNN layer styles are being developed to improve
computational efficiency and to capture multiple inductive biases
in deep learning. A noticeable trend among emerging DNN layer
styles is that they exploit higher-order interaction among
operands. For example, for inputs x, weight matrix W, and
activation function f (), a classical first-order DNN layer
computes f (Wx). Comparatively, a second-order DNN layer
in hypernetworks computes f (2" Wx) (Figure 7A). Here, Wis a
3D weight tensor, and z is a higher-order multiplicand operated
along with the input x. Since memristors are two-electrode
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devices, they are suited only for first-order network layers in
classical deep learning models unless additional circuit elements
are added to each cell. Meanwhile, a single element
memtransistor cell can efficiently implement higher-order
processing steps by exploiting gate terminals. This section
presents the mapping of various emerging layer styles on
memtransistor crossbars, showing their higher degree of
versatility than memristor crossbars.

In a hypernetwork Ha et al., 2016, a neural network g
generates weights of another network f given some context z.
Hypernetworks have found critical success over traditional
DNNs for generative modeling, continuous learning, and
neural machine translation Klocek et al, 2019; Ehret et al.,
20205 Spurek et al., 2020; Suarez 2017. Prior work Jayakumar
etal., 2019 has shown that processing in hypernetworks is, in fact,
equivalent to higher-order processing of input x and context z
through a 3D weight tensor V. Figure 7A shows the mapping of
hypernetworks on memtransistor crossbars. A 2D slice of W is
mapped on one crossbar. z is applied with time-encoding row-
wise on drain terminals while x is applied column-wise on back
gate terminals. As discussed before, row-wise back gate terminals
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TABLE 3 Memtransistor vs. Memtransitors on Hypernetworks.

Higher-Order Z"Wx) =3 JZiWijkXk

Multiplicative
Interaction
Operands x € R™: Input, z € R™: Task context
W e R™™; 3D weight tensor
Workload Memristor Memtransistor
# of crossbar cell mxnxk mxnxk
multiplications
# of DAC operations mx k (m+n) xk
# of ADC operations nxk k
# of digital MAC operations 71 x k k
Energy comparison (m =n= 3945 pJ 2.64 p]

k = 64)

are exploited to suppress sneak paths. Charges pushed by all
columns can be integrated by merging them through a single
charge integrator circuit. Charge from each memtransistor flows
as long as both row-wise drain-to-source voltage pulse (encoding
z) and column-wise back-gate voltage pulses (encoding x) are
active. Thereby, the charge flown through the crossbar in one
processing step is proportional to z"W;x where W; is the slice of
W mapped on the crossbar.

Figure 7B shows a comparative mapping of hypernetworks
on the memristor crossbar to illustrate the advantages of the
memtransistor grid on such higher-order processing. Since
memristors can only perform first-order matrix-vector
multiplication, hypernetwork computations must be split into

multiple steps in Figure 7B. Therefore, first, weight-slice W; is
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processed against time-encoded context vector z using a
memristor crossbar. Then, column outputs are digitized and
multiplied digitally with input vector x. Finally, the product sum
bits are digitally accumulated. For an n x m x k-sized 3D weight
tensor W, a memristor crossbar needs to perform several extra
operations compared to the memtransistor crossbar as shown in
Table 3. For example, memristor crossbars perform n x k ADC
operations, for all #n columns in k crossbars necessary to process
W. Meanwhile, in memtransistor crossbars, only one ADC
operation per crossbar is needed, therefore only k operations
are needed. Although memtransistors require more DAC
operations due to time-encoded voltage pulses being applied
at row-wise drain terminals and column-wise gate-terminals, the
overhead of DAC operations is much less due to its digital design
compared to ADC. Memristors also require n x k digital
7B
whereas memtransistors require only k such operations, one

multiply-accumulate operations as shown in Figure

per crossbar. Furthermore, the memristor crossbar also
consumes extra power in the crossbar operation itself. Power
dissipation in a memtransistor element is proportional to the
product z; x Wy; x x; where z;, x;, and W; are the context, input,
and weight elements mapped on memtransistor at ith row, jth
column. Power dissipation in the corresponding memristor
element is proportional to z; x Wj. Considering that input
and context vectors are normalized to unity, z; x Wj; x x; is
smaller than z; x Wi, therefore, the memtransistor crossbar
consumes a reduced biasing power.

Considering a specific test-case of W of size 64 x 64 x
64 where x, z, and weights are uniformly distributed, Figure 7C
and Table 3 also compare the energy for memristor and
memtransistor grids for crossbar biasing and peripheral
operations. Simulation parameters listed in Table 2 are used
for energy estimation. By reducing operations for x and z to a
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mechanisms.

TABLE 4 Memtransistor vs. Memtransitors on Gated Recurrent Units.

Higher-Order Multiplicative Interaction

Operands

Workload

# of crossbar cell multiplications
# of DAC operations

# of ADC operations

# of Sigmoid operations

# of Digital multiplications

Energy comparison (m = n = 64)

single cycle, the memtransistor grid saves x1.5 energy than the
memristor grid. By minimizing the number of ADC and digital
MAC operations, memtransistor crossbars save ~ 15 x energy
compared to memristors on the considered test-case.

In gated recurrent neural networks (RNN), such as long short
term memory (LSTM) Hochreiter and Schmidhuber 1997 and gated
recurrent units (GRU) Ravanelli et al.,, 2018, the role of previous
output state h,_; to current predictions h, is gated based on the
predictions from a forget network r, using Hadamard product, i. e,
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I =04 W, x +Urhyy)

h; = ¢,Uy (r: © hy_y)

x; € R": Input, h,_; € R™: Output, r, € R™: Reset vector

ﬁt € R™: Candidate activation vector

W, € R™": Input-to-reset weights

U, € R™": Hidden-to-reset weights

U, € R™": Hidden-to-activation weights

g, (): Sigmoid activation, ¢ (): tanh activation

Memristor

(m+n)xm+mxm

Memtransistor

(m+n)xm+mxm

2m+n 2m+n
2m m
— m
m _
1.247 pJ 0.68 p]J

12

h,; or. Figure 8A shows such gating through coupled
memtransistor crossbars. Here, the first crossbar Xbar; computes
the gating factors r,. Xbar, is a special purpose crossbar where both
gate lines run row-wise parallel. Significantly, by directly coupling
Xbar, and Xbar,, digital conversion of gating factors from Xbar, to
Xbar, is not needed, and gating factors can be applied in the voltage
domain itself. The activation layer, such as sigmoid on gating factors,
can be implemented using an operational transconductance
amplifier (OTA). Conversely, additional digital multiplications
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and domain conversions will be necessary if gating is mapped
through the memristor crossbar. Due to such integrated
processing, in Table 4 on a 64 x 64 random LSTM/GRU matrix
operated on random inputs, memtransistors consume on average
~ 1.8 x lower processing energy. Although analog peripherals such
as OTA are needed to operate on charge integrator (C-Int) output
directly, the benefit from saving ADC’s energy supersede, and
therefore, memtransistor crossbars are more efficient. Like
hypernetworks, the energy comparison was performed using
energy models of various processing components and estimating
the necessary operations.

Likewise, attention mechanisms can be efficiently implemented
on memtransistor crossbars. In particular, recent work has shown
remarkably simpler neural architectures composed entirely of
attention mechanisms Vaswani et al,, 2017. An attention function
can be described as mapping a query and a set of key-value pairs to
an output. For a multi-headed attention in Vaswani et al. (2017),
each attention layer i computes softmax(QWbKKT) where queries
and keys are packed as a matrices Q and K, respectively. Wi, is a
linear projection matrix learned from data. Since memtransistor
crossbars can perform quadratic matrix products within a single
array, they can efficiently implement such attention mechanisms. By
performing quadratic matrix multiplications in a single crossbar,
similar to hypernetworks, memtransistor crossbars can save
significant processing energy. Similarly, metric learning is a key
operation for computer vision Bellet et al., 2015. A commonly used
distance class is Mahalanobis distances where d¢ (%, z) = ||x — z||c =
x'C'x — 2x'C"'z + z'C'z. Quadratic matrix multiplications for
metric learning can also be implemented using memtransistor
crossbars. Overall, memtransistor crossbars can be efficient on a
range of different data processing tasks that have been beyond the
limit of memristors.

5 Conclusion

We have discussed emerging trends in deep learning where
recent higher-order neural network layers and input adaptive
deep learning rely on higher-order multiplicative interactions.
Since memristors are two-terminal passive devices, they cannot
efficiently emulate such higher-order computations and cannot
take advantage of the ongoing algorithmic innovations.
Overcoming this critical gap between hardware technologies
and emerging neural network layer architectures, we have
discussed neural processing with dual-gated memtransistor

References

Ankit, A., Hajj, I. E., Chalamalasetti, S. R., Ndu, G., Foltin, M., Williams, R. S.,
et al. (2019). “Puma: A programmable ultra-efficient memristor-based accelerator
for machine learning inference,” in Proceedings of the twenty-fourth international
conference on architectural support for programming languages and operating
systems, 715-731.

Frontiers in Electronic Materials

10.3389/femat.2022.950487

crossbars. Due to dual-gate controls, memtransistor crossbars
can be dynamically adapted by suppressing sneak paths or
adapting against input characteristics. Furthermore, dual-gate
tunability of memtransistors allows mapping higher-order
computations on a single crossbar cell, which results in a
significant reduction of analog-to-digital conversions and
crossbar biasing power.

Data availability statement

The original contributions presented in the study are
included in the article/supplementary material, further
inquiries can be directed to the corresponding author.

Author contributions

AT, VS, and MH developed the ideas. LR and SL developed
device-level studies. AS and SN performed application-level

simulations.

Funding

This work was primarily supported by National Science
Foundation (NSF) Grant Number CCF-2106964.

Conflict of interest

The authors declare that the research was conducted in

the absence of any commercial or financial
relationships that could be construed as a potential conflict

of interest.

Publisher’'s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Basu, S., Bryant, R. E.,, De Micheli, G., Theis, T., and Whitman, L. (2018).
Nonsilicon, non-von neumann computing—Part i [scanning the issue]. Proc. IEEE
107, 11-18. doi:10.1109/jproc.2018.2884780

Bellet, A., Habrard, A., and Sebban, M. (2015). Metric learning. Synthesis Lect.
Artif. Intell. Mach. Learn. 9, 1-151. doi:10.2200/s00626ed1v01y201501aim030

frontiersin.org


https://doi.org/10.1109/jproc.2018.2884780
https://doi.org/10.2200/s00626ed1v01y201501aim030
https://www.frontiersin.org/journals/electronic-materials
https://www.frontiersin.org
https://doi.org/10.3389/femat.2022.950487

Rahimifard et al.

Cai, H,, Kang, W., Wang, Y., Naviner, L. A. D. B,, Yang, J., Zhao, W, et al. (2017).
High performance mram with spin-transfer-torque and voltage-controlled
magnetic anisotropy effects. Appl. Sci. 7, 929. doi:10.3390/app7090929

Cai, H., Zhu, L., and Han, S. (2018). Proxylessnas: Direct neural architecture
search on target task and hardware. arXiv preprint arXiv:1812.00332.

Chen, A. (2016). A review of emerging non-volatile memory (nvm) technologies
and applications. Solid-State Electron. 125, 25-38. doi:10.1016/j.ss¢.2016.07.006

Chen, Y.-H., Emer, J., and Sze, V. (2016). Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks. SIGARCH Comput.
Archit. News 44, 367-379. doi:10.1145/3007787.3001177

Cheng, M., Xia, L., Zhu, Z,, Cai, Y., Xie, Y., Wang, Y., et al. (2017). Time: A
training-in-memory architecture for memristor-based deep neural networks. In
2017 54th ACM/EDAC/IEEE design automation conference (IEEE), 1-6.

Choi, H.-S., Park, Y. J.,, Lee, J.-H., and Kim, Y. (2020). 3-d synapse array
architecture based on charge-trap flash memory for neuromorphic application.
Electronics 9, 57. doi:10.3390/electronics9010057

Ehret, B., Henning, C., Cervera, M. R,, Meulemans, A., von Oswald, J., and Grewe,
B. F. (2020). Continual learning in recurrent neural networks with hypernetworks.
arXiv preprint arXiv:2006.12109.

Endoh, T., Koike, H., Ikeda, S., Hanyu, T., and Ohno, H. (2016). An overview of
nonvolatile emerging memories—Spintronics for working memories. IEEE
J. Emerg. Sel. Top. Circuits Syst. 6, 109-119. doi:10.1109/jetcas.2016.2547704

Feng, X,, Li, S., Wong, S. L., Tong, S., Chen, L., Zhang, P., et al. (2021). Self-
selective multi-terminal memtransistor crossbar array for in-memory computing.
ACS Nano 15, 1764-1774. doi:10.1021/acsnano.0c09441

Fernando, B. R., Qi, Y., Yakopcic, C., and Taha, T. M. (2020). “3d memristor
crossbar architecture for a multicore neuromorphic system,” in 2020 international
joint conference on neural networks (IEEE), 1-8.

Ginsburg, B. P. (2007). Energy-efficient analog-to-digital conversion for ultra-
wideband radio. Cambridge, MA: Ph.D. thesis, Massachusetts Institute of
Technology.

Ha, D., Dai, A, and Le, Q. V. (2016). Hypernetworks. arXiv preprint arXiv:
1609.09106.

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput. 9, 1735-1780. doi:10.1162/nec0.1997.9.8.1735

Hua, W, Zhou, Y., De Sa, C. M., Zhang, Z., and Suh, G. E. (2019). “Channel gating
neural networks,” in Advances in neural information processing systems. 1886-1896.

Hua, W., Zhou, Y., De Sa, C., Zhang, Z., and Suh, G. E. (2018). Channel gating
neural networks. arXiv preprint arXiv:1805.12549.

Humood, K., Hadi, S. A., Mohammad, B., Abi Jaoude, M., Alazzam, A., and
Alhawari, M. (2019). “High-density reram crossbar with selector device for sneak
path reduction,” in 2019 31Ist international conference on microelectronics (IEEE),
244-248.

Iliev, N., Gianelli, A., and Trivedi, A. R. (2019). Low power speaker identification
by integrated clustering and Gaussian mixture model scoring. IEEE Embed. Syst.
Lett. 12, 9-12. doi:10.1109/1es.2019.2915953

Jayakumar, S. M., Czarnecki, W. M., Menick, J., Schwarz, ]., Rae, J., Osindero, S.,
et al. (2019). “Multiplicative interactions and where to find them,” in International
conference on learning representations.

Kileel, J., Trager, M., and Bruna, J. (2019). On the expressive power of deep
polynomial neural networks. Adv. Neural Inf. Process. Syst. 32, 10310-10319.

Kim, B., Lee, S., Trivedi, A. R.,, and Song, W. J. (2020). Energy-
efficient acceleration of deep neural networks on realtime-constrained

embedded edge devices. IEEE Access 8, 216259-216270. doi:10.1109/access.
2020.3038908

Klocek, S., Maziarka, L., Wolczyk, M., Tabor, J., Nowak, J., and Smieja, M. (2019).
“Hypernetwork functional image representation,” in International conference on
artificial neural networks (Springer), 496-510.

Lee, H.-S., Sangwan, V. K,, Rojas, W. A. G., Bergeron, H., Jeong, H. Y., Yuan, J.,
et al. (2020). Dual-gated MoS, memtransistor crossbar array. Adv. Funct. Mat. 30,
2003683. doi:10.1002/adfm.202003683

Li, C,, Belkin, D., Li, Y., Yan, P., Hu, M., Ge, N, et al. (2018). Efficient and self-
adaptive in-situ learning in multilayer memristor neural networks. Nat. Commun. 9,
2385. doi:10.1038/s41467-018-04484-2

Li, C,, Wang, G., Wang, B,, Liang, X,, Li, Z., and Chang, X. (2021). “Dynamic
slimmable network,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 8607-8617.

Liu, L., and Deng, J. (2018). Proceedings of the AAAI Conference on Artificial
Intelligence, 32.Dynamic deep neural networks: Optimizing accuracy-efficiency
trade-offs by selective execution.

Frontiers in Electronic Materials

10.3389/femat.2022.950487

Ma, X, Yuan, G,, Lin, S,, Ding, C,, Yu, F,, Liu, T,, et al. (2020). “Tiny but accurate:
A pruned, quantized and optimized memristor crossbar framework for ultra
efficient dnn implementation,” in 2020 25th asia and south pacific design
automation conference (IEEE), 301-306.

Manasi, S. D., and Trivedi, A. R. (2016). Gate/source-overlapped heterojunction
tunnel fet-based lamstar neural network and its application to eeg signal
classification. In Int. Jt. Conf. Neural Netw. (IEEE), 955-962.

Mikhailenko, D., Liyanagedera, C., James, A. P., and Roy, K. (2018). “M 2 ca:
Modular memristive crossbar arrays,” in 2018 IEEE international symposium on
circuits and systems (ISCAS) (IEEE), 1-5.

Mladenov, V. (2020). “A modified tantalum oxide memristor model for neural
networks with memristor-based synapses,” in 2020 9th international conference on
modern circuits and systems technologies (IEEE), 1-4.

Mladenov, V. (2019). Analysis of memory matrices with hfo2 memristors in a
pspice environment. Electronics 8, 383. doi:10.3390/electronics8040383

Mladenov, V., and Kirilov, S. (2013). “Analysis of the mutual inductive and
capacitive connections and tolerances of memristors parameters of a memristor
memory matrix,” in 2013 European conference on circuit theory and design
(IEEE), 1-4.

Nasrin, S., Drobitch, J. L., Bandyopadhyay, S., and Trivedi, A. R. (2019).
Low power restricted Boltzmann machine using mixed-mode magneto-
tunneling junctions. IEEE Electron Device Lett. 40, 345-348. d0i:10.1109/
led.2018.2889881

Nasrin, S., Drobitch, J., Shukla, P., Tulabandhula, T., Bandyopadhyay, S., Trivedi,
A. R, et al. (2020). Bayesian reasoning machine on a magneto-tunneling junction
network. Nanotechnology 31, 484001. doi:10.1088/1361-6528/abae97

Nasrin, S., Shukla, P., Jaisimha, S., and Trivedi, A. R. (2021). “Compute-in-
memory upside down: A learning operator co-design perspective for scalability,” in
2021 design, automation & test in europe conference & exhibition (DATE) (IEEE),
890-895.

Prezioso, M., Merrikh-Bayat, F., Hoskins, B., Adam, G. C., Likharev, K. K,,
Strukov, D. B., et al. (2015). Training and operation of an integrated neuromorphic
network based on metal-oxide memristors. Nature 521, 61-64. doi:10.1038/
naturel4441

Ravanelli, M., Brakel, P., Omologo, M., and Bengio, Y. (2018). Light gated
recurrent units for speech recognition. IEEE Trans. Emerg. Top. Comput. Intell.
2, 92-102. doi:10.1109/tetci.2017.2762739

Sangwan, V. K, and Hersam, M. C. (2020). Neuromorphic nanoelectronic
materials. Nat. Nanotechnol. 1-12, 517-528. d0i:10.1038/s41565-020-0647-z

Sangwan, V. K,, Jariwala, D., Kim, I. S., Chen, K.-S., Marks, T. J., Lauhon, L.
J., et al. (2015). Gate-tunable memristive phenomena mediated by grain
boundaries in single-layer MoS,. Nat. Nanotechnol. 10, 403-406. doi:10.
1038/nnano.2015.56

Sangwan, V. K., Lee, H.-S., Bergeron, H., Balla, I, Beck, M. E., Chen, K.-S., et al.
(2018). Multi-terminal memtransistors from polycrystalline monolayer
molybdenum disulfide. Nature 554, 500-504. doi:10.1038/nature25747

Sangwan, V. K, Lee, H.-S., and Hersam, M. C. (2017). “Gate-tunable memristors
from monolayer MoS,,” in 2017 IEEE international electron devices meeting
(IEEE), 5-1.

Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J. P., Hu,
M., et al. (2016). Isaac: A convolutional neural network accelerator with in-situ
analog arithmetic in crossbars. SSGARCH Comput. Archit. News 44, 14-26. doi:10.
1145/3007787.3001139

Shi, L., Zheng, G., Tian, B., Dkhil, B., and Duan, C. (2020). Research progress on
solutions to the sneak path issue in memristor crossbar arrays. Nanoscale Adv. 2,
1811-1827. d0i:10.1039/d0na00100g

Shukla, P., Muralidhar, A., Iliev, N., Tulabandhula, T., Fuller, S. B., and Trivedi, A.
R. (2021a). “Ultralow-power localization of insect-scale drones: Interplay of
probabilistic filtering and compute-in-memory,” in IEEE transactions on very
large scale integration (VLSI) systems.

Shukla, P., Nasrin, S., Darabi, N., Gomes, W., and Trivedi, A. R. (2021b). Mc-cim:
Compute-in-memory with monte-carlo dropouts for bayesian edge intelligence. arXiv
preprint arXiv:2111.07125.

Spurek, P., Winczowski, S., Tabor, J., Zamorski, M., Zieba, M., and Trzcinski, T.
(2020). Hypernetwork approach to generating point clouds. arXiv preprint arXiv:
2003.00802.

Suarez, J. (2017). “Language modeling with recurrent highway hypernetworks,” in
Advances in neural information processing systems, 3267-3276.

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A. (2017). “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in Thirty-first
AAAI conference on artificial intelligence.

frontiersin.org


https://doi.org/10.3390/app7090929
https://doi.org/10.1016/j.sse.2016.07.006
https://doi.org/10.1145/3007787.3001177
https://doi.org/10.3390/electronics9010057
https://doi.org/10.1109/jetcas.2016.2547704
https://doi.org/10.1021/acsnano.0c09441
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/les.2019.2915953
https://doi.org/10.1109/access.2020.3038908
https://doi.org/10.1109/access.2020.3038908
https://doi.org/10.1002/adfm.202003683
https://doi.org/10.1038/s41467-018-04484-2
https://doi.org/10.3390/electronics8040383
https://doi.org/10.1109/led.2018.2889881
https://doi.org/10.1109/led.2018.2889881
https://doi.org/10.1088/1361-6528/abae97
https://doi.org/10.1038/nature14441
https://doi.org/10.1038/nature14441
https://doi.org/10.1109/tetci.2017.2762739
https://doi.org/10.1038/s41565-020-0647-z
https://doi.org/10.1038/nnano.2015.56
https://doi.org/10.1038/nnano.2015.56
https://doi.org/10.1038/nature25747
https://doi.org/10.1145/3007787.3001139
https://doi.org/10.1145/3007787.3001139
https://doi.org/10.1039/d0na00100g
https://www.frontiersin.org/journals/electronic-materials
https://www.frontiersin.org
https://doi.org/10.3389/femat.2022.950487

Rahimifard et al.

Szegedy, C., Vanhoucke, V., Toffe, S., Shlens, J., and Wojna, Z. (2016). “Rethinking
the inception architecture for computer vision,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2818-2826.

Tian, B, Liu, L, Yan, M., Wang, J., Zhao, Q.,, Zhong, N., et al. (2019). Ferroelectric

synapses: A robust artificial synapse based on organic ferroelectric polymer (adv.
Electron. Mater. 1/2019). Adv. Electron. Mat. 5, 1970006. doi:10.1002/aelm.201970006

Trivedi, A. R,, and Mukhopadhyay, S. (2014). Potential of ultralow-power cellular
neural image processing with si/ge tunnel fet. IEEE Trans. Nanotechnol. 13,
627-629. doi:10.1109/tnano.2014.2318046

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N, et al.
(2017). Attention is all you need. Adv. neural Inf. Process. Syst. 30.

Wang, Y., Xia, L., Cheng, M., Tang, T., Li, B., and Yang, H. (2016). Proceedings of
the International Conference on Compilers, Architectures and Synthesis for
Embedded Systems, 1-2.Rram based learning acceleration.

Wang, Z., Li, C,, Song, W, Rao, M., Belkin, D., Li, Y., et al. (2019). Reinforcement
learning with analogue memristor arrays. Nat. Electron. 2, 115-124. doi:10.1038/
541928-019-0221-6

Wu, Y., Ma, Y,, Liu, ], Dy, J.,, and Xing, L. (2019). Self-attention convolutional
neural network for improved mr image reconstruction. Inf. Sci. 490, 317-328.
doi:10.1016/j.ins.2019.03.080

Frontiers in Electronic Materials

15

10.3389/femat.2022.950487

Yan, B., Mahmoud, A. M., Yang, J.]., Wu, Q., Chen, Y., and Li, H. H. (2016).
“A neuromorphic asic design using one-selector-one-memristor crossbar,” in
2016 IEEE international symposium on circuits and systems (IEEE),
1390-1393.

Yan, M,, Zhu, Q., Wang, S, Ren, Y., Feng, G., Liu, L, et al. (2021a). Ferroelectric
synaptic transistor network for associative memory. Adv. Electron. Mat. 7,2001276.
doi:10.1002/aelm.202001276

Yan, X,, Qian, J. H,, Sangwan, V. K,, and Hersam, M. C. (2021b). Progress and
challenges for memtransistors in neuromorphic circuits and systems. Adv. Mat.,
2108025. doi:10.1002/adma.202108025

Yu, S., and Chen, P.-Y. (2016). Emerging memory technologies: Recent trends
and prospects. IEEE Solid-State Circuits Mag. 8, 43-56. d0i:10.1109/mssc.2016.
2546199

Yuan, J,, Liu, S. E., Shylendra, A., Gaviria Rojas, W. A., Guo, S., Bergeron, H.,
et al. (2021). Reconfigurable MoS, memtransistors for continuous learning in
spiking neural networks. Nano Lett. 21, 6432-6440. doi:10.1021/acs.nanolett.
1c00982

Zidan, M. A, Eltawil, A. M., Kurdahi, F., Fahmy, H. A, and Salama, K. N. (2014).
Memristor multiport readout: A closed-form solution for sneak paths. IEEE Trans.
Nanotechnol. 13, 274-282. doi:10.1109/tnano.2014.2299558

frontiersin.org


https://doi.org/10.1002/aelm.201970006
https://doi.org/10.1109/tnano.2014.2318046
https://doi.org/10.1038/s41928-019-0221-6
https://doi.org/10.1038/s41928-019-0221-6
https://doi.org/10.1016/j.ins.2019.03.080
https://doi.org/10.1002/aelm.202001276
https://doi.org/10.1002/adma.202108025
https://doi.org/10.1109/mssc.2016.2546199
https://doi.org/10.1109/mssc.2016.2546199
https://doi.org/10.1021/acs.nanolett.1c00982
https://doi.org/10.1021/acs.nanolett.1c00982
https://doi.org/10.1109/tnano.2014.2299558
https://www.frontiersin.org/journals/electronic-materials
https://www.frontiersin.org
https://doi.org/10.3389/femat.2022.950487

	Higher order neural processing with input-adaptive dynamic weights on MoS2 memtransistor crossbars
	1 Introduction
	2 Gate-tunable dual-gated memtransistor crossbars
	2.1 Operating principles of the dual-gated memtransistor
	2.2 Modelling of single gate memtransistor characteristics
	2.3 Projection of dual-gated memtransistor to scaled dimensions
	2.4 Comparison to competitive synaptic memory technologies

	3 Classical neural layers on memtransistor crossbars
	3.1 Crossbar architecture and time-domain processing
	3.2 Crossbar scalability with gate-controlled sneak path suppression
	3.3 Input adaptive deep learning with dynamic weights

	4 Higher-order neural networks on memtransistor crossbars
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


