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Abstract 
Active control strategies play a vital role in modern pharmaceutical manufacturing. 
Automation and digitalization are revolutionizing the pharmaceutical industry and are 
particularly important in the shift from batch operations to continuous operation. Active 
control strategies provide real-time corrective actions when departures from quality 
targets are detected or even predicted. Under the concept of Quality-by-Control (QbC), a 
three-level hierarchical control structure can be applied to achieve effective setpoint 
tracking and disturbance rejection in the tablet manufacturing process through the 
development and implementation of a moving horizon estimation-based nonlinear model 
predictive control (MHE-NMPC) framework. When MHE is coupled with NMPC, 
historical data in the past time window together with real-time data from the sensor 
network enable model parameter updating and control. The adaptive model in the NMPC 
strategy compensates for process uncertainties, further reducing plant-model mismatch 
effects. The frequency and constraints of parameter updating in the MHE window should 
be determined cautiously to maintain control robustness when sensor measurements are 
degraded or unavailable. The practical applicability of the proposed MHE-NMPC 
framework is demonstrated via using a commercial scale tablet press, Natoli NP-400, to 
control tablet properties, where the nonlinear mechanistic models used in the framework 
can predict the essential powder properties and provide physical interpretations. 

Keywords: pharmaceutical manufacturing; continuous manufacturing; process control; 
nonlinear model predictive control; moving horizon estimation. 

1. Introduction 
Several factors currently drive the transition of the pharmaceutical manufacturing 
industry from batch to continuous process operation. These include potential 
improvement in both product quality homogeneity and process controllability. Quality 
control traditionally followed a Quality-by-Testing (QbT) approach, wherein product 
quality was tested at the end of each batch processing step. However, with improved 
product and process understanding, a Quality-by-Design (QbD) approach was adopted to 
enable systematic design of the operating space using mechanistic models. More recently, 
there has been a desire to adopt a Quality-by-Control (QbC) approach, wherein 
quantitative and predictive understanding can be leveraged for active process control and 
aid robust process design and operation, thereby enabling smart manufacturing (Su et al., 
2019). 
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An important part of any real-time process monitoring and control strategy is the ability 
to identify and manage the impact of plant-model mismatch (PMM). PMM can arise in 
the continuous manufacture of oral solid dosage for numerous reasons, e.g., disturbances 
that affect critical material attributes (CMAs) such as the bulk density can be introduced 
during the feeder refill step (Destro et al., 2021). As this can result in a deviation in the 
critical quality attributes (CQAs), PMM needs to be identified and handled appropriately. 
Several approaches have been developed in order to identify and assess the impact of 
PMM, e.g., based on mutual-information (Chen et al., 2013) or autocovariance (Wang et 
al., 2017). Stringent regulations placed by regulatory bodies make it essential to track 
CQAs and CMAs online, but they may be unmeasurable in practice as process analytical 
technology (PAT) sensing methods may not be available to track these states or 
parameters, e.g., bulk density. Therefore, this work proposes the use of an on-line, real-
time parameter estimation approaches to accurately track model parameters online, to 
guide operating decisions. It is important to note that most work in the continuous 
manufacturing domain utilize linear model predictive control (MPC) strategies, that are 
derived from the linearization of the nonlinear system and may not be adequate for 
nonlinear process models and unit operations such as the rotary tablet press (Ierapetritou 
et al., 2016). 

A recent in-silico study by (Huang et al., 2021) demonstrated that a combined MHE-
NMPC framework could satisfy the dual requirement of efficient estimation and control. 
Unfortunately, there are no case studies in the literature that demonstrate the application 
of the proposed framework to real data from a continuous pharmaceutical manufacturing 
process. Therefore, the primary objective of this work is to validate the practical 
applicability of the proposed framework using a Natoli NP-400 rotary tablet press. 

2. Methodology 
The moving horizon estimation-based nonlinear model predictive framework (MHE-
NMPC) aims to satisfy the dual requirement of estimation and control, by combining the 
effective estimation capabilities of MHE with the control performance provided by 
NMPC. Given a nonlinear state-space model: 

𝑥̇𝑥 = 𝑔𝑔(𝑥𝑥,𝑢𝑢,𝜃𝜃,𝑤𝑤)         (1) 

𝑦𝑦 = 𝑙𝑙(𝑥𝑥,𝑢𝑢,𝜃𝜃, 𝑣𝑣)          (2) 

where 𝑥𝑥, 𝑢𝑢, 𝜃𝜃, and 𝑦𝑦 are vectors that represent the state variables, input variables, model 
parameters, and measurements, respectively. Process and measurement noise are denoted 
by 𝑤𝑤 and 𝑣𝑣, respectively. In this work, the model is described by a set of explicit algebraic 
equations with no differential states, and 𝑓𝑓 and ℎ will represent these algebraic equations. 
MHE can then be formulated as follows (López-Negrete and Biegler, 2012): 

min
𝜃𝜃�𝑘𝑘

 𝐽𝐽 = ∑ (𝜖𝜖𝑡𝑡)𝑇𝑇𝑊𝑊𝐸𝐸  𝜖𝜖𝑡𝑡 + �𝜃𝜃�𝑘𝑘 − 𝜃𝜃�𝑘𝑘−1�
𝑇𝑇𝑊𝑊𝜃𝜃�𝜃𝜃�𝑘𝑘 − 𝜃𝜃�𝑘𝑘−1�𝑘𝑘

𝑡𝑡=𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝       (3a) 

subject to 

𝑥𝑥�𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗+1 = 𝑓𝑓 �𝑥𝑥�𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗 ,𝑢𝑢𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗,𝜃𝜃�𝑘𝑘� (3b) 

𝑦𝑦�𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗 = ℎ(𝑥𝑥�𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗) (3c) 

𝜖𝜖𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗 = 𝑦𝑦𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗 − 𝑦𝑦�𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗 (3d) 
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𝑥𝑥�𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗+1 ∈ 𝕏𝕏, 𝜖𝜖𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗 ∈ Ω𝜖𝜖 , 𝜃𝜃�𝑘𝑘 ∈ Ω𝜃𝜃 (3e) 

𝑗𝑗 = 0, 1, … ,𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  (3f) 

where 𝜃𝜃�𝑘𝑘 are estimated uncertain parameters, bounded in compact set Ω𝜃𝜃. 𝑦𝑦𝑡𝑡 and 𝑢𝑢𝑡𝑡 are 
measurements of output and input variables at time t, respectively; 𝑦𝑦�𝑡𝑡  and 𝑥𝑥�𝑡𝑡  are 
estimated output and state values, respectively; 𝜀𝜀𝑡𝑡 are output disturbances, bounded in 
compact set Ω𝜖𝜖 ; and 𝑊𝑊𝐸𝐸  and 𝑊𝑊𝜃𝜃  are weighting matrices. Once the MHE optimization 
problem is solved at time t = k, the estimated state 𝑥𝑥�𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+1|𝑡𝑡=𝑘𝑘 is chosen as the initial 
state value for the next time step t = k + 1, i.e., 𝑥𝑥�𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+1|𝑡𝑡=𝑘𝑘+1 = 𝑥𝑥�𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+1|𝑡𝑡=𝑘𝑘 . 

This study utilizes the median of the error distribution in the past time window to 
represent output disturbances 𝜁𝜁𝑘𝑘 at time 𝑡𝑡 = 𝑘𝑘, i.e.,  

𝜁𝜁𝑘𝑘 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �𝜖𝜖𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗�,    for 𝑗𝑗 = 0, 1, … ,𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (4) 

The NMPC framework at time 𝑡𝑡 = 𝑘𝑘 is defined as follows: 

min
Δ𝑢𝑢𝑡𝑡

𝐽𝐽 = ∑ (𝑦𝑦�𝑡𝑡 − 𝑦𝑦𝑠𝑠𝑠𝑠)𝑇𝑇  𝑊𝑊𝑦𝑦�𝑦𝑦�𝑡𝑡 − 𝑦𝑦𝑠𝑠𝑠𝑠� + ∑ (Δ𝑢𝑢𝑡𝑡𝑇𝑇𝑊𝑊Δ𝑢𝑢Δ𝑢𝑢𝑡𝑡)
𝑘𝑘+𝑁𝑁𝑐𝑐−1
𝑡𝑡=𝑘𝑘

𝑘𝑘+𝑁𝑁𝑝𝑝
𝑡𝑡=𝑘𝑘    (5a) 

subject to 

𝑥𝑥�𝑘𝑘+𝑗𝑗+1 = 𝑓𝑓�𝑥𝑥�𝑘𝑘+𝑗𝑗 ,𝑢𝑢�𝑘𝑘+𝑗𝑗 ,𝜃𝜃�𝑘𝑘� (5b) 

𝑦𝑦�𝑘𝑘+𝑗𝑗 = ℎ�𝑥𝑥�𝑘𝑘+𝑗𝑗� + 𝜁𝜁𝑘𝑘 (5c) 

Δ𝑢𝑢𝑘𝑘+𝑗𝑗 = 𝑢𝑢�𝑘𝑘+𝑗𝑗+1 − 𝑢𝑢�𝑘𝑘+𝑗𝑗 (5d) 

𝑥𝑥�𝑘𝑘+𝑗𝑗 ∈ 𝕏𝕏, 𝑢𝑢�𝑘𝑘+𝑗𝑗 ∈ 𝕌𝕌, Δ𝑢𝑢𝑘𝑘+𝑗𝑗 ∈ ΩΔu (5e) 

𝑗𝑗 = 0, 1, … ,𝑁𝑁𝑝𝑝 − 1 (5f) 

where 𝑁𝑁𝑐𝑐 is the length of the control time window, and 𝑦𝑦𝑠𝑠𝑠𝑠 are the setpoints of the output 
variables. 𝑊𝑊𝑦𝑦 and 𝑊𝑊∆𝑢𝑢 are weighting matrices. Control movements ∆𝑢𝑢 are constrained in 
compact set ΩΔ𝑢𝑢 . A detailed discussion of the MHE-NMPC framework including its 
computational feasibility is provided in (Huang et al., 2021). 

3. Case Study 
3.1. Tablet press model 
The tablet press is responsible for the formation of solid tablets via mechanical 
compression. The weight of a convex tablet W and the tablet production rate 𝑚̇𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 are 
given by the following relationships (Huang et al., 2021): 

𝑊𝑊 = 𝜌𝜌𝑏𝑏𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 �1 − 𝜉𝜉1
𝑛𝑛𝑇𝑇
𝑛𝑛𝐹𝐹

+ 𝜉𝜉2
𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝐷𝐷
�  (6) 

𝑚̇𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑊𝑊𝑛𝑛𝑇𝑇𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (7) 

where D, 𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝜌𝜌𝑏𝑏, 𝑛𝑛𝑇𝑇, and 𝑛𝑛𝐹𝐹, are the diameter of the die, volume of the die cavity, 
dosing position, powder bulk density, turret speed, and feed frame speed, respectively. 
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 refers to the number of stations in the tablet press. 𝜉𝜉1 and 𝜉𝜉2 are empirical model 
parameters that are estimated from experimental data. The volume of the die cavity for 
the D-type tooling is provided by (Huang et al., 2021).  
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The pre-compression force ܨ𝑝𝑝𝑐𝑐 and the main compression force ܨ𝑝𝑝𝑢𝑢𝑛𝑛𝑐𝑐ℎ can be computed 
as follows: 

𝑝𝑝𝑐𝑐ܨ = గ𝐷𝐷మ

ସ𝑡𝑡
ቂ ఘ𝑝𝑝𝑐𝑐−ఘ𝑐𝑐
ఘ𝑝𝑝𝑐𝑐(𝑝𝑝−1)+ఘ𝑐𝑐

ቃ  (8 ) 

𝜌𝜌𝑝𝑝𝑐𝑐 = ௐ
௏𝑝𝑝𝑐𝑐ఘ𝑝𝑝

  (9) 

𝑝𝑝𝑢𝑢𝑛𝑛𝑐𝑐ℎܨ = గ𝐷𝐷మ

ସ𝑡𝑡
ቂ ఘ𝑓𝑓೙ష೏𝑓𝑓೐−ఘ𝑐𝑐
ఘ𝑓𝑓೙ష೏𝑓𝑓೐(𝑝𝑝−1)+ఘ𝑐𝑐

ቃ  (10) 

𝜌𝜌𝑓𝑓𝑛𝑛−ௗ𝑓𝑓𝑡𝑡 = ௐ
௏𝑓𝑓೙ష೏𝑓𝑓೐ఘ𝑝𝑝

  (11) 

where parameters a and b are Kawakita constants, which represent the maximum degree 
of compression and the reciprocal of the pressure applied to attain this degree of 
compression, respectively. 𝜌𝜌𝑝𝑝𝑐𝑐  and 𝜌𝜌𝑓𝑓𝑛𝑛−ௗ𝑓𝑓𝑡𝑡  are the pre-compression and in-die relative 
densities, respectively. 𝜌𝜌𝑝𝑝 refers to the true density of the powder. The pre-compression 
volume, 𝑉𝑉𝑝𝑝𝑐𝑐, and in-die volume 𝑉𝑉𝑓𝑓𝑛𝑛−ௗ𝑓𝑓𝑡𝑡  are provided by (Huang et al., 2021). 

3 .2. Applying MHE to tablet press:  Comparison of fix ed model and adaptive model 
To investigate state estimation and parameter updating, an experiment was performed via 
open-loop control. Setpoint changes of input variables were introduced to the tablet press, 
and corresponding measurements of output variables and model predictions are recorded 
and shown in F igure 1 (a) with fixed model parameters and F igure 1 (b) with adaptive 
model parameters.  
 

 
F igure 1. Real-time monitoring of PMM when uncertain parameters are (a) fixed or (b) adaptive 

with (c) error distribution of estimated output variables. 

In this study, since the mathematical model is represented by a set of explicit algebraic 
equations the MHE only updates two uncertain parameters: (1) the bulk density (𝜌𝜌𝑡𝑡𝑢𝑢𝑡𝑡𝑘𝑘), 



to compensate for the effects of disturbance on the estimated value of the tablet weight, 
which further affects estimated values of pre-compression force, main compression force, 
and the production rate, and (2) the critical relative density (𝜌𝜌𝑐𝑐) to provide flexibility to 
estimate the pre-compression and main compression forces more accurately in the 
adaptive model compared to the case of only bulk density being updated. The adaptive 
model predicts output variables more accurately compared to the fixed model. 
 
To quantify model accuracy and precision, error distributions of the estimated output 
variables are provided in F igure 1 (c), where the probability density functions (pdf) of the 
error distributions are rescaled (meaning that the area under the density curve is not 1). 
O nce MHE is applied to update the bulk and critical relative densities, the absolute values 
of the median error and error spans of all output estimations are significantly reduced, as 
shown in F igure 1 (c). However, an exception is found in pre-compression force, whose 
error span is reduced from 0.75  kN to 0.37 kN, while median error is increased from 0.07 
kN to 0.22 kN. Since pre-compression force and main compression force share the same 
model parameters as shown in Equation (8 -11), there exists the need to establish a 
compromise between the accuracy of these two output variables. 
 
3 .3 . Ex perimental verification of MHE-NMPC 
Control profiles for a representative experimental run of the 4 input variables, 4 output 
variables, and 2 uncertain model parameters are shown in F igure 2 (a), (b), and (c), 
respectively. O ffsets in the output variables are observed as open-loop control is applied 
at the start of operation (highlighted in red). When the MHE-NMPC algorithm is 
implemented from t =  200 s, offset free control is achieved. Additional setpoint changes 
are introduced for the tablet weight at t =  600 s, 8 00 s, 15 00 s, the main compression force 
at t =  1100 s, and the production rate at t =  1000 s. 

 
F igure 2. MHE-NMPC control performance of the tablet press with (a) input variables, (b) output 

variables, and (c) uncertain parameters. 

Application of MHE-based NMPC on a Rotary T ablet Press under
   Plant-Model Mismatch

2153  



 Y.-S. Huang et al. 2154 

All results of setpoint tracking are satisfactory as shown in Figure 2 (b). During the 
experimental run, an internal alarm stopped the tablet press twice at t = 820 s and t = 1160 
s (highlighted in yellow) forcing the turret speed to drop to 0 rpm. The machine stop 
prevents the distributed control system (DCS) from collecting in-house tablet weight and 
production rate measurements, where the time delay can be attributed to the 10 s moving 
average window. The strength of the MHE-NMPC algorithm can once again be noted, as 
offset-free control is quickly achieved once the tablet press resumes operation. As the 
uncertain parameters are updated in real-time as shown in Figure 2 (c), the mismatch can 
be mitigated as presented in Figure 2 (b). While mismatch for pre-compression force 
cannot be completely mitigated, as it shares the same parameters as the main compression 
force, the disturbance term used in controller model described in Equation 5c still 
guarantees offset-free control of the pre-compression force. 

4. Conclusions 
Real-time process monitoring and control are essential to enable continuous operation of 
modern pharmaceutical manufacturing processes. The MHE-NMPC framework 
demonstrates satisfactory control performance and parameter updating in the rotary tablet 
press to handle plant-model mismatch (PMM). Future work will include sensor fusion 
studies to incorporate at-line measurements with long sampling time to the framework. 
Accurate estimation is required to enable the control of critical quality attributes such as 
tensile strength, which need to be predicted from soft sensors due to limited availability 
of real-time measurements because of the destructive nature of the testing methods used. 
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