IMA Journal of Numerical Analysis (2023) 43, 1450-1484
https://doi.org/10.1093/imanum/drac014
Advance Access publication on 18 May 2022

Positivity-preserving and energy-dissipative finite difference schemes for the
Fokker-Planck and Keller-Segel equations

JINGWEI HU
Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
AND

XIANGXIONG ZHANG™
Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA
*Corresponding author: hujw @uw.edu
zhan1966 @purdue.edu

[Received on 28 April 2021; revised on 28 November 2021]

In this work we introduce semi-implicit or implicit finite difference schemes for the continuity equation
with a gradient flow structure. Examples of such equations include the linear Fokker—Planck equation
and the Keller—Segel equations. The two proposed schemes are first-order accurate in time, explicitly
solvable, and second-order and fourth-order accurate in space, which are obtained via finite difference
implementation of the classical continuous finite element method. The fully discrete schemes are proved
to be positivity preserving and energy dissipative: the second-order scheme can achieve so unconditionally
while the fourth-order scheme only requires a mild time step and mesh size constraint. In particular, the
fourth-order scheme is the first high order spatial discretization that can achieve both positivity and energy
decay properties, which is suitable for long time simulation and to obtain accurate steady state solutions.
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1. Introduction
In this paper we are interested in the continuity equation of the form

do=V-[pVH () +V+W=xp)], t>0,xe2 CR? (1)
p(0,%) = py(x), (2)
where p = p(¢,x) > 0 is the unknown density function, H(p) is the internal energy that is assumed

to be convex, V(x) is the external potential and YV (x) is the interaction potential. The typical boundary
condition of (1) is the no-flux boundary:

VH () +V+Wxp) -n=0, xecas, 3)

where n is the outward normal. Therefore, the total mass is conserved

/p(t,x)dx:/ 0o (x) dx.
Q 2
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Equations of the form (1) appear in various contexts, for example, in modeling of porous medium
Vazquez (2007), granular materials Carrillo ef al. (2003), and collective behavior of biological and social
systems Carrillo ef al. (2019). In particular, we focus on the following two cases in this paper: the linear
Fokker—Planck equation and the Keller—Segel model of chemotaxis. For both cases the internal energy
function is given by

H(p) = plogp — p. “4)
In the Fokker—Planck equation
V=Vx, W=0,

where V(x) is some given function bounded from below in £2. In this case (1) can also be written as a
convection—diffusion equation,

0,0 =Ap+ V- (pVV). (5)
In the Keller—Segel model p is the density of some bacteria and
V=0, W=xp=—c

where ¢ = c(t, X) is the density of chemical attractant satisfying an elliptic equation in 2 with a constant
o> 0:

— Ac+ ac = p. (6)
In this case (1) can be written as

dp = Ap =V - (pVo), )

which is coupled with (6) to form a system. Note that if £2 is R, W is the Newtonian potential when
o = 0 and the Bessel potential when o > 0. By integrating (6) in £2 we obtain

—Vc-n|39+a/gcdx=/9pdx.

Therefore, the boundary condition of ¢ must be compatible with the equation above. When o = 0 the
Neumann boundary condition must satisfy the compatibility condition

—Vc~n|39 :/Q,oodx.

When o > 0, if we consider the homogeneous Neumann boundary Vc - n 0 = 0, then

a/ cdx:/ Pp dx,
2 Q

i.e., the mass of c is also conserved.
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The equation (1) has a variational structure. It is the gradient flow, with respect to the 2-Wasserstein
metric, of the free energy functional (Villani, 2003):

1
E(p) =/Q (H(p)+Vp+ E(W*p)p) dx. ®)
Indeed
8& ,
— =& §=H({@E+V+Wxp,
3p
hence
4 =/ g8tpdx=/ EV - (pVE) dx=—/ pIVE dx < 0. ©)
dt o op 0 2

Note that for H given in (4) we can define

M = logr—§ — ;~(V+Wip)
With this M the equation (1) can be written equivalently as
o
oo =V - (MY (H)) . (10)

The boundary condition (3) becomes

v(ﬁ)-n=0, X € 092 (11)

Furthermore, the energy (8) can be written equivalently as

- P 1
E(p) = /Q (,0 log (/V) —-p— E(W * ,o)p) dx. (12)

When written in form (10), the original continuity equation (1) can be viewed as a ‘variable coefficient’
diffusion equation, for which we are able to construct efficient positivity-preserving and energy-
dissipative schemes, i.e., the discrete analog of (12) is decreasing in time. In the literature there are
many numerical schemes for the Fokker—Planck or Keller—Segel type equations. Recently, significant
efforts have been devoted to structure-preserving discretizations to preserve, for instance, the positivity
of the solution and energy decay at the semi-discrete or fully discrete level. We summarize some
of the recent methods according to their types of time discretization. The first kind of methods are
fully explicit schemes. For a scalar convection—diffusion equation such as (3) there are quite a few
explicit positivity-preserving schemes (Zhang et al., 2013; Li et al., 2018; Srinivasan et al., 2018;
Qiu et al., 2021), however, with a small time step constraint Az = O(Ax?), which is unacceptable
in applications requiring long time simulation. Most importantly, it is usually quite difficult to establish
energy dissipation in these positivity-preserving schemes. Some recent explicit schemes, including a
finite volume method in Carrillo et al. (2015) and discontinuous Galerkin methods in Guo et al. (2019);
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Sun er al. (2018), can indeed achieve energy dissipation, but only in the semi-discrete setting (i.e.,
the time is left as continuous). The second kind of methods are implicit or semi-implicit nonlinear
schemes. For such schemes it is possible to preserve positivity and energy dissipation in the fully
discrete setting without a small time step constraint (Almeida et al., 2019; Bailo et al., 2020; Shen
& Xu, 2020), but they often involve nonlinear systems, for which robust nonlinear system solvers are
needed. The third kind of methods are implicit or semi-implicit schemes that are explicitly solvable.
By formulating the continuity equation as in (10) and treating M explicitly one can derive a semi-
implicit scheme, in which only a linear system needs to be solved without small time-step constraint.
Note that this approach is only possible for linear diffusions (for H given by (4)) and has been used
in many previous works, for example, Jin & Yan (2011); Liu et al. (2018); Hu & Shu (2019); Hu
& Huang (2020); Hu et al. (2021). Although details vary they all use the second-order central finite
difference for spatial discretization. We use the third approach for the time discretization in this paper.
However, the proposed spatial discretization can achieve fourth-order accuracy, which is one of the
main novelties. Furthermore, we can prove the fully discrete positivity and energy decay property
for the fourth-order spatial discretization under reasonable mesh size and time step constraints. We
emphasize that the time step constraint in this paper is a lower bound, thus no small time-step constraint
like At = O(Ax?) is required. To the best of our knowledge, this is the first high order spatial
discretization that can achieve these properties for the linear Fokker—Planck and Keller—Segel type
equations.

The rest of this paper organized as follows. In Section 2 we introduce the finite difference schemes,
which are obtained by finite difference implementation of continuous finite element method with
the linear and quadratic polynomials. In Section 3 we show that both the second-order and fourth-
order schemes are monotone. It is well known that the second-order central difference or linear finite
element method for linear diffusion forms an M-matrix thus is monotone. The fourth-order accurate
scheme or the finite element method with quadratic polynomial basis no longer gives an M-matrix,
but monotonicity can still be proved under practical mesh size and time step constraints. In Section 4
we show that monotonicity implies positivity and fully discrete energy dissipation in these schemes.
Section 5 includes numerical tests on the Fokker—Planck equation and Keller—Segel system. Concluding
remarks are given in Section 6.

2. Finite difference schemes

In this section we introduce a simple numerical scheme for equation (10) with a first-order accurate
semi-implicit time discretization. For the spatial discretization we use second-order and fourth-order
accurate finite difference schemes, which are obtained from finite element method using linear and
quadratic polynomial bases, respectively. It is well known that a finite element method with suitable
quadrature is also a finite difference scheme. In particular, the fourth-order accurate finite difference
scheme considered here is equivalent to the Lagrangian Q? (tensor product of polynomials of degree 2)
finite element method with 3-point Gauss—Lobatto quadrature, which is also known as the Q? spectral
element method (Maday & Rgnquist, 1990). The main novelty here is that we can prove rigorous
positivity-preserving and energy-dissipation properties for the fully discrete scheme, especially the
fourth-order spatial discretization in one and two spatial dimensions.

In this section we mainly focus on how the finite difference schemes are defined. The explicit form
of the schemes will be given in Section 3. We only consider one and two spatial dimensions in this
paper, even though one can also derive these schemes in higher dimensions.
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2.1  Time discretization

We propose the following semi-implicit discretization of (10):

pn+l _ pn pn+1
— =V v s ISR
At MV X

where

M = e VEW")
The no-flux boundary condition (11) is imposed as

pn+1
V(Mn)'nzO, X € 052.

Note that (13) is equivalent to

=V (p"'V(og p" +V + W p"))

for discretizing the original equation (1).
We then introduce the auxiliary variables defined as

n+1
~n+1 — p n ., p

g T

and write the scheme (13) as

MG — AV - (M) = Mg

13)

(14)

s5)

(16)

Accordingly, the boundary condition (14) becomes the homogeneous Neumann boundary for the

auxiliary variable:

vitl.n=0, xein.

After multiplying a test function v € H'!(£2) to (16) and integration by parts using the boundary

condition for g**!, we obtain the variational form of (16): seek g"t! € H!(£2) that satisfies

(M2 V) + ALM VG V) = (Mg v), Vv e HY(R),

where (v,w) = f o vwdx denotes the L2 inner product in £2.
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REMARK 2.1 In the Fokker—Planck equation M = exp(—)V(x)) is a time-independent quantity and (13)
simplifies to a fully implicit scheme. For brevity our following presentation will focus on the Keller—
Segel equation for which M" = exp(c"(x)). Reduction to the Fokker—Planck case will be commented
whenever necessary.

2.2 Spatial discretization

We consider a uniform rectangular mesh §2; for the rectangular domain 2. For any rectangle e in the
mesh £2, let OF be the space of tensor product polynomials of degree k. For instance, in two dimensions,

k k
0" 0) = {pxy) =D D py.(xy) €e

i=0 j=0
Let V" be the continuous piecewise QX polynomial space defined on 2,

V' = (,(x) € C(2) : v,|, € (), Ve € 22,}.

The QF finite element method for (16) is to seek gZH € V" satisfying
(MPZH ) 4+ A M VR V) = (Mg v, Vv, € VI (17)

where M" is regarded as a given variable coefficient at time step 7.

The QF spectral element method is to replace all integrals in (17) by m-point Gauss—Lobatto
quadrature with m > k + 1 in each dimension. Standard finite element method error estimates still
holdif m > k + 1, i.e., the Qk spectral element method is (k + 1)th order accurate in L%-norm and kth
order accurate in H'-norm for smooth solutions of an elliptic equation, see Maday & Rgnquist (1990).
We consider the simplest choice of quadrature, using (k + 1)-point Gauss—Lobatto quadrature. Then the

method is to find g;;“ € V" satisfying

(MG ) + AUMIV T V) = (Mgl vy,), Yy, € VI, (18)

where (-, -) denotes that integrals are replaced by (k + 1)-point Gauss—Lobatto quadrature.

For a two-dimensional problem, a OF polynomial on a rectangular element e can be represented as a
Lagrangian interpolation polynomial at (k4 1) x (k 4 1) Gauss—Lobatto points, thus all Gauss—Lobatto
points in (18) are not only quadrature nodes but also nodes, representing all degrees of freedom. So the
Qk spectral element method (18) also becomes a finite difference scheme on all Gauss—Lobatto nodes.
For k > 3 the Gauss—Lobatto points are not uniform in each element. For k < 2 all Gauss—Lobatto
nodes on £2; correspond to a uniform grid, see Fig. 1 for an illustration of the Q? mesh. Moreover, for
k > 2, such a finite difference scheme can be proved to be (k + 2)-order accurate in discrete 2-norm for
elliptic equations (Li & Zhang, 2020b) and for parabolic equations (Li ef al., 2022), e.g., the Q? spectral
element method can be regarded as a fourth-order accurate finite difference scheme.

In this paper we only consider the linear case k = 1 and quadratic case k = 2, because only in
these two cases the schemes can be proved to be positivity preserving and energy dissipative. To derive
an equivalent matrix form of the scheme (18) let ¢;(x) (i = 1,---,N) be the ok Lagrangian basis
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at all Gauss—Lobatto points X; (i = 1,---,N) on £2,. For any piecewise polynomial u,(x) € V! let
N “
u; = uy(X;). Then u;,(x) = > u;¢;(x). Letu=| : | and w; be the quadrature weight at x;.
i=
Uy

With the notation above we have

N
(MO v =D wMIg = vTwmrg (19)
i=1
where W = diag{wy,--- ,wy} and M" = diag{ M, - -- , MY} are diagonal matrices. We also have
(MY v,y = visgtt, (20)

where S is the stiffness matrix from the same spectral element method solving a Poisson equation —V -
(M"Vu) = f in £2 with homogeneous Neumann boundary condition Vu-n = 0 on 3£2. In other words,
S is the stiffness matrix in the scheme of seeking u;, € V! satisfying

(M"Vu,, Vv,) = (f,v,), Vv, € V.
We emphasize that the stiffness matrix S depends on M?¥ > 0. It is common knowledge in finite element
theory that S satisfies two properties:
1. S is real symmetric and positive semi-definite.

2. Its null space is one-dimensional and the null vector is 1.

Here for brevity we do not give the explicit form of S. The complete scheme (18) in one and two
dimensions will be given in Section 3.

Using (19) and (20) the finite difference scheme (18) can be written in the matrix form as: find g"“
satisfying
viwM'g" !+ AT sg ! = vIwM'g", vv e RY, 1)
or equivalently
WM + Arsg" ! = wm'g". (22)
Noticing (15), (22) can also be written as
Woh + Ars(M™ " p" T = W', (23)

REMARK 2.2 Even though the scheme (23) for p does not involve any auxiliary variable g, the division
by MY is still needed in (23). Moreover, (22) gives a symmetric positive definite linear system, but (23)
does not. In practice both can be solved by preconditioned conjugate gradient methods with efficient
inversion of Laplacian as a preconditioner, see Section 7 in Li & Zhang (2020b) for implementation
details. In our numerical tests we solve the system (22) by preconditioned conjugate gradient.
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(a) All quadrature points on € (b) The corresponding finite differ-

ence grid on Qp,

FiG. 1. The 3 x 3 Gauss—Lobatto quadrature points for 0? finite element method on a uniform mesh £2j, naturally gives a uniform
finite difference grid.

2.3 The full scheme for the Keller—-Segel system

In the case of the Keller—Segel system, in addition to (22) (the discretization for (7)), one also needs to
discretize the equation (6). Here we consider @ > 0 and the homogeneous Neumann boundary condition
Ve -nlyo = 0. We use the same scheme as in (18): find ¢, € vh satisfying

(VER Vv, +alchv,) = (0" v), Vv, € V. (24)

Similarly, as in the previous subsection (24) can be written equivalently in the finite difference or matrix
form.
In one dimension the second order scheme (k = 1) can be written as

1
ﬁKc" +ac” = p",

and the fourth-order scheme (k = 2) can be written as

1
ﬁHc” + ac" = p",

where £ is the grid spacing and

—_
[ ]

s | oia
—

|
N
o o
—
|
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|
(3]
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We emphasize that N must be odd in the matrix H for the fourth-order scheme because the grid
points are from Gauss—Lobatto nodes, see Fig. 1.

In two dimensions let ¢ be a two-dimensional array with ¢;; denoting (i, /) point value. Let vec(c)
be a column vector obtained by rearranging entries in ¢ column by column. Then the second-order and
fourth-order schemes can be written, respectively, as

1 n n n
ﬁ(K(X) K)vec(c") 4+ avec(c”) = p",

and
1 n n n
ﬁ(H ® H)vec(c") + avec(c") = p".

To summarize, the full finite difference scheme for the Keller—Segel system (6)—(7) is implemented
as follows:

1. At time level n, given point values p;' at each node x;, solve (24) to obtain ¢!, then compute point
values of M} = exp(c}). In multiple dimensions the linear system can be easily and efficiently
inverted by eigenvalue decomposition of K and H, see Li & Zhang (2020b) for details.

2. With point values g := ﬁv obtain g;’“ by solving (22).

3. Update p by p{"“ = M?’g:.”‘l_

REMARK 2.3 The finite difference scheme for the Fokker—Planck equation (3) is simpler: at each node
x;, first define M; = exp(=V).

1. Attime level n, given point values p!', compute g} := /[\)/il- , then obtain g7+ by solving (22).

i

2. Update p by p ™! := M,z .

2.4 Accuracy of the spatial discretization

For the Q? finite element method with 3-point Gauss—Lobatto quadrature, it is well known that the
standard L2-norm error estimate is third order. However, when regarded as a finite difference scheme at
Gauss—Lobatto points, it can be rigorously proved that it is a fourth-order accurate scheme in the discrete
2-norm (Li & Zhang, 2020b; Li et al., 2022). In particular, this has been proved for Dirichlet boundary
conditions in Li & Zhang (2020b). Only OH3) can be proved for Neumann boundary conditions for
an operator like —V(A(x)Vu) where A(x) is a positive definite matrix, and the one half order loss is
purely due to the mixed second-order derivatives. Nonetheless, for the equations we are interested in
here, i.e., an operator like —V - (a(x) Vu) with a scalar coefficient a(x), since there are no mixed second-
order derivatives involved, the same proof in Li & Zhang (2020b); Li et al. (2022) applies to show
that the fourth-order accuracy also holds for Neumann boundary conditions of elliptic equations, see
Li (2021) for a detailed proof. So for both (22) and (24) we will refer to the Q2 scheme as the fourth-
order accurate spatial discretization, i.e., it is a fourth-order accurate scheme for solving a steady state
problem.
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For the Q! finite element method with quadrature, it is also well known that it gives the most popular
second-order central finite difference scheme. However, for the Neumann boundary condition, there is
still some subtle difference, which will be reviewed in Remark 3.3 of Section 3.

3. Monotonicity of the finite difference schemes

A matrix A is called monotone if its inverse has non-negative entries A~! > 0. In this section we discuss
the monotonicity of the matrix used in the second-order and fourth-order finite difference schemes (18),
which is the key intrinsic property implying positivity and energy dissipation.

In particular, we consider the matrix form (22), which can also be written as

(Mn + AIW—IS)gn-H =Mngn' (25)

We will discuss the monotonicity of the matrix M" + ArW~LS. For simplicity, we will drop superscript
n in M in the rest of this section.

For the second-order scheme it is well known that it forms an M-matrix thus is monotone, which
will be reviewed. For the fourth order scheme the monotonicity for Dirichlet boundary condition in two
dimensions was proved in Li & Zhang (2020a). The same results in Li & Zhang (2020a) also hold for
the Neumann boundary conditions. For completeness, in this section, we include a detailed proof for the
monotonicity of the fourth-order scheme (25) with the homogeneous Neumann boundary condition for

g"*!, which is equivalent to the no-flux boundary condition for p"*!.

3.1 M-matrices

The only viable tool in the literature to prove monotonicity is to use M-matrices. Nonsingular
M-matrices are monotone matrices and there are many equivalent definitions or characterizations of
M-matrices, see Plemmons (1977). By condition K55 in Plemmons (1977) a sufficient and necessary
characterization is as follows:

THEOREM 3.1 For a real square matrix A with positive diagonal entries and nonpositive off-diagonal
entries, A is a nonsingular M-matrix if and only if there exists a positive diagonal matrix D such that AD
has all positive row sums.

The following is a convenient sufficient, but not necessary characterization, of nonsingular
M-matrices Li & Zhang (2020a):

THEOREM 3.2 For a real square matrix A with positive diagonal entries and nonpositive off-diagonal
entries A is a nonsingular M-matrix if all the row sums of A are nonnegative and at least one row sum is
positive.

3.2 The second-order scheme in one dimension

In the one-dimensional case assume the domain is £2 = [—L, L] and the uniform grid points are —L =
X| <Xy < --- < xy = L with grid spacing h. Following derivations in Section 7 of Li & Zhang (2020b),
it is straightforward to show that the linear finite element method (25) with a variable coefficient M > 0

€20z 2unf G| Uo Jasn uojBulysep) Jo Ansioniun Aq £9/G859/0S L/€/Ew/IMe /eUlRWI WO dNo dlWapeoe)/:Sd]Y WO papeojumMoq



1460 J. HU AND X. ZHANG

can be explicitly written as:

M + MYFT — (M + Mpgit!
h2
~M_y + MPZE + My +2M; + M DE = M+ Mg

M1~n+l :Mlglil’

M+ Ar

=M, i=2-- N-1

_(MN—I + MWENT + My + Mgt

gt 4
Mygn 7

= Mygy-

It is easy to see that M" + AtW~!S is a tridiagonal matrix satisfying Theorem 3.2, thus is a nonsingular
M-matrix and monotone.

Now for the ease of presentation of the scheme we will abuse notation by introducing ghost point
values as g3 = g3, g;'\,t_ll = guth and M, := My, My, := My_,. Then the scheme can be
equivalently written as

—(My_y + MO+ My +2M, + My DT — (M, + M g
2h2
=Mgl, i=1,---,N. (27)

Mg+ Ar

We emphasize that the scheme still has a different structure at the boundary points, and here ghost points
are used only for a uniform expression of the scheme. In actual implementation there are no ghost points.

REMARK 3.3 One popular finite difference method to solve (13) is to apply the central finite difference
as

+1 n+1
n+1 Fn - F
P =P iy i

At h ’

with the flux term defined by

H_Z h 2 MH—I B Mi

+1 |
Fr I M; 4+ My, ( oy )

which is equivalent to

gt _gn = At G — Gn+1) Gl = ITM;+ M,y gl _ gt
i i hMl l+2 +2 h 2 i+1 i
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For approximating no-flux boundary condition, if simply setting G'f“ = G;“v‘:ll = 0, then the scheme
2 2
becomes

(M, + Mgt — (M + Mygs™!
2h2
—M_y + MIZ + My +2M+ My DT — (M + M )DE
212

ME + A = Mgl

Mg+ Ar (28)
= Mg, i=2--,N—1;

—(My_y + MEVEL + My + MR
242

Mygitt + Ar = Mygh.

If using the same grid —L = x; < x, < --- < xy = L with grid spacing h the scheme (28) is the
same as (26) at interior points. For boundary points (28) is only first-order accurate, which can be easily
verified for constant coefficient case M; = 1. If redefining g; and M, as point values at a staggered
uniform grid —L + g =X <X < - <xy=L-— % with spacing & (as has been done in most
papers in the past, e.g., Hu & Huang, 2020), the scheme (28) exhibits second-order accuracy in many
numerical tests. However, even on the staggered grid, the local truncation error of (28) at x; = —L + %
andxy = L— ]% is only first order, thus it is quite difficult to rigorously prove the second-order accuracy
of (28) by conventional finite difference analysis. On the other hand, it can be easily proved that (26) is
second-order accurate by standard finite element analysis.

3.3 The second-order scheme in multiple dimensions

In the two-dimensional case assume the domain is £2 = [—L, L] x [—L, L] with a uniform N x N grid
point with spacing &, which is a tensor product of the grid —L = x; < x, < -+ < xy = L. Let g be an
N x N matrix with g;; denoting the point value at the (i, /) grid point.

We introduce the ghost values for i,j = 1,--- ,N as:
~n+1 ._ ~n+l1 ~n+1 _ ~n+l ~n+l ._ ~n+l1 ~n+1 . ~n+l
80; = 82j > 8N+1j = 8n—1° 8io = 8i2 > in+1 = EinN-1"

MO,] = MZ’], MN‘FI,/ = MN*],]" Mi’o = Ml-’z, Mi,N+1 = Ml‘,N*l'

Then the Lagrangian Q' finite element method with 2-point Gauss—Lobatto quadrature (18) can be
explicitly expressed as

“nt1 “nt1 ntl
At_(Mifl,/’ +MPETL A+ My +2My + Moy D85 — (M + My D8
2h?
~n+1 ~n+1 sn+1
N At—(Mi,/—1 + MPET A Mg +2M + M DT — (M + M, D8

2h?

~ 1 ..
FME = Mgl Vij= 1o N,
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It is easy to see that M" + ArW~1S is a matrix satisfying Theorem 3.2, thus is a nonsingular M-matrix
and monotone.

REMARK 3.4 The scheme in the three-dimensional case can be similarly written, and it is also
straightforward to verify that M" + AtW~!S is a matrix satisfying Theorem 3.2, thus is a nonsingular
M-matrix and monotone.

REMARK 3.5 We have seen that using the formulation (10) the second-order finite difference scheme
with a semi-implicit time discretization is unconditionally monotone, thus always positivity-preserving
and energy-dissipative (details to be given in Section 4). This is true even for blow-up solutions.
As a comparison, for the Keller—Segel equation, one can also use the formulation (7), and apply the
second—order finite difference for both convection and diffusion operators with a semi-implicit time
discretization, but the monotonicity can only be proved under a mesh constraint /|| Ve||,, < 2. This is
one of the key advantages of solving (10) instead of (7).

3.4 Lorenz’s condition for monotonicity

For high order accurate schemes, especially for a variable coefficient problem, the stiffness matrices
are no longer M-matrices. Yet, it is possible to show that the stiffness matrix is a product of two or
more M-matrices thus still monotone (Cross & Zhang, 2020; Li & Zhang, 2020a) by using the Lorenz’s
Theorem in Lorenz (1977), which will be briefly reviewed in this subsection.

DEFINITION 1 Let N = {1,2,...,n}. For N, N, C N, we say a matrix A of size n x n connects NV,
Vip € N1, 3i, € Ny i €N st ay_ #0, k=1,---,r (29)

If perceiving A as a directed graph adjacency matrix of vertices labeled by N, then (29) simply means
that there exists a directed path from any vertex in V| to at least one vertex in N,. In particular, if
N, = ¢, then any matrix A connects | with N,.

Given a square matrix A and a column vector x we define
N(Ax) = {i: (Ax); =0}, NT(Ax) = {i: (Ax); > O}.
Givenamatrix A = [g;] € R™" define its diagonal, off-diagonal, positive and negative off-diagonal

parts as n X n matrices A;, A, AY, A7

a;, if i=j
(Ad),-,-=[0” it igy G4

a;, if a;,>0, i#]j _
Aty = 1% i , A-=A —A'".
Aa)y [O, otherwise. “ a d

The following two results were proved in Lorenz (1977). See also Li & Zhang (2020a) for a detailed
proof.

THEOREM 3.6 If A < M\M,---M;L where M|, --- , M, are nonsingular M-matrices and L, < 0, and

there exists a nonzero vector e > 0 such that one of the matrices M, - - - , M}, L connects NO (Ae) with
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N7 (Ae). Then M © le_jl M l_lA is an M-matrix, thus A is a product of £+ 1 nonsingular M-matrices
andA~! > 0.

THEOREM 3.7 (Lorenz’s condition). If A, has a decomposition: A, = A* + A% = (afj) + (af.j) with
A% < 0and A® < 0, such that

A, + A% is a nonsingular M-matrix, (30a)
n
Al < AZAJIAS or equivalently Ya; > 0 with i # j, a; < Zafkak_kl s (30b)
k=1
Je € R"\ {0},e > 0 with Ae > 0 s.t. A% or A® connects N'*(Ae) with N’ T (4e). (30c¢)

Then A is a product of two nonsingular M-matrices, thus Al >0.
It was proved in Cross & Zhang (2020) that
COROLLARY 3.8 The matrix L in Theorem 3.6 must be an M-matrix.

In practice, the condition (30c) can be difficult to verify. For the scheme we are interested in here,
the vector e can be taken as 1 consisting of all ones, then the condition (30c) can be simplified. For
the scheme (25), as long as M; > 0, we always have A1 > 0, thus NY(A1) = @ and (30c) is trivially
satisfied. We summarize it as follows:

THEOREM 3.9 Let A denote the matrix representation of the fourth-order finite difference scheme
obtained from Lagrangian Q7 finite element method with 3-point Gauss—Lobatto quadrature solving
—V - (bV)u+ cu = f with variable coefficients b > 0 and ¢ > 0, and homogeneous Neumann boundary
condition in a rectangular domain. Assume A, has a decomposition A, = A® 4 A’ with A* < 0 and
A* < 0. Then A is a product of two M-matrices, thus A~ >0, if the following are satisfied:

1. (A;+A91 # 0and (4, +AH1 > 0;
2. AF < AAJ'AC

3.5 The fourth-order scheme in one dimension

In the one-dimension case assume the domain £2 = [—L, L] is partitioned into k uniform intervals
with cell length 24. Then all 3-point Gauss—Lobatto points for each small interval form a uniform grid
—L =x; <x, <--- < xy = L with grid spacing # and N = 2k 4 1. Thus, the number of grid points
for this fourth-order scheme must be odd.

For convenience we consider an equivalent form of (25):

1 1
W—ls’“n+1 _Mn~n+1 — _M}’l n. 31
g+ Mg Mg €1V

LetA = WIS + ﬁM" and A : RV*!1 — RN*1 be the scheme operator, i.e., (31) can be written as

A(Q"H)i = %Mig?. Following the derivations in Li & Zhang (2020a,b), with the same ghost point
values notation in Section 3.2, the finite element method with quadratic basis and 3-point Gauss—Lobatto
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quadrature can be explicitly written as follows: forall i = 1,--- , N, if x; is a cell end (i is odd),
@), o OMia =My FIMOBT) — M, + DM
BT 8h?
L Misg + My + 18M, 4 4My,, + Mg
8h?
~ 1 1
—(12M; +4AM )& + GMiy = 4Miy +3MOE, M,
4+ —tg
8h? At
M,
= ; 32
At s (32)

and if x; is a cell center (i is even),

—@BMi_ + M DE +AM + Mgt _(Mi—1+3Mi+l)g’?+1l Ml bl _Mi

452 TS A
(33)

A@Th =

Next, for the matrix A, we will discuss a decomposition of its negative off-diagonal parts of
A, = A* 4 A7 such that Theorem 3.9 can be verified under suitable mesh and time step constraints. We
will use operator notations to represent all matrices. With the positive and negative parts for a number f
defined as:

+_ U+ =S
fr=—70— ==

the linear operators A, A;t are:

If x; is a cell end (i is odd),
A @Y, = (Mz‘—Z +4M;_ ) + 1BM; +4M; + M, n ﬂ) ntl,

8h2 Y AL

_ M+ M M\
if x,is a cell center (i is even), A, (@), = (% + At) L

If x; is a cell end (i is odd),
BMiy —4M_y +3IMYTEY + GMyyp —4Miyy +3M) E
8h?2 ’
if x; is a cell center (i is even), AF (g"“),. =0.
—BM,;_ + M DEH — M, + 3Mi+1)§7:11
42 :
~(BM;_y —4M_ +3M) "7 )
8h?
n —(M;_y + MY — (12M; + 4Mi+2)§7:1 GM; —4M;  +3M;5)" g’?izl
8h? '

A;— (gn+1)i =

If x; is a cell center, A7 (&1, =

if x;isacellend, A; @), =
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We can easily verify that (A; + A%)1 > 0 for the following .A%:

if x, is a cell center, A%@@"!), =0,
if x; is an interior cell end, AZ(~"+1)

—GBM;_y —4M;_; +3M)TET — [4M_y + 12M; — BM,_, — 4M,_; +3M)T g
B 8h2

N —[12M; +4M; 5 — BM; — My +3M D TIRN — BM; —4M,y +3M, o)~ gr;’j;
8h2

We can also verify that A* := A — A® <0«

_(SMifl + Mi+1)g?+1 (Ml 1t 3Ml+l)§:l-:_ll

If x; is a cell center, .A‘Y(,T;"Jrl )i = yTm) ,

If x;is a cell end,

—(BM,_y —4M_; +3IMYFTET] — M, —4M, + 3M:+2)+~;:L11

seant+1ly
A (g )i - 8]’!2

Now in order to verify AZA(;IAS > A} (entrywise inequality), we only need to compare nonzero
coefficients in A;j(g"“)i and A* (.AJI[AS(Q"H)])i for x; being a cell end. When x; is a cell end,
x;4 are cell centers, and we have

—(BM;_y + M — M,y +3MgH!

soan+1 _
A@E@ )i = o ’
As(gn+l)' _ —0GM;_ 4 —4M; 5+ 3Mi—2)+§:l+31 GM,_y —4M,_| +3M, )+~n+1
i—2 Shz ,
AT A @Y, = RAS ), —(BM_y+ MY — (M, +3IMpZ!
i-1 = M, + M, + thi—l/At) AM,_, + M, + th,'_l/At)

It suffices to focus on the coefficient of g"“ in AZ(AJI[.AS(Q"’L])])I- and the discussion for the
coefficient of gl”:le is similar. Notice that A", d [A‘( ~”Jrl)] ;o will contribute nothing to the coefficient of

2"} So the coefficient of g in AZ (A [A* @), is

BM;_y + MYAM,_5 + 12M; — BM,;_, —4M,;_; +3Mp™T )
32h2(M;_y + M; + h2M,;_, /A1)
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F1G. 2. Three types of grid points: red cell center, blue knots and black edge centers for a 0? finite element cell.

Thus to ensure Aj < A*A A%, it suffices to have the following holds for any cell end x;:

(BMi_y + MEM;_y + 12M; — BM;_p = 4M_y +3M)T) _ BM,_p —4M;_, +3Mp*
322 (M, 5+ M, + 2 M,_, /A1) = 812 '

Equivalently, we need the following inequality holds for any cell center x;:

GM,;_+ M DAM;_ +12M, —GM,_ — 4M; +3M,; )T) - GM,;_—4M; +3M; )"
3202 (M, + My, + H2M,]At) = 8h2 ‘
(34)

If 3M;_ —4M;+3M,, | < 0then (34) holds trivially. We only need to discuss the case 3M;_; —
4M; +3M,;,, > 0, for which (34) becomes

h2
GM;_ 1+ M DM +H4M; +9IM, ) > 4(Mi—1 + My +EM1‘) GM;_ = 4M; + 3 My ).

(35)

Leta = max{M,_;, M;, M;,} and b = min{M;_,, M;, M, |}, a convenient sufficient condition
to ensure (35) is

h2
56b° > 4 (2 + E) a(6a — 4b),

b2

. . . W2
which is equivalent to 2 + 7 < l4c———.

So we have proven the first result for the variable coefficient case:
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THEOREM 3.10 For the scheme (31) with M; > 0 its matrix representation A satisfies A~ > 0if (35)
holds for any cell center x;. A sufficient condition is to have the following constraints for each finite
element cell ; = [x;_1,x; ] (i is even):

h? 1 min, M?
24— <7 :

, 36
At max;, M 3 max; M — 2min;, M (56)

where

mlz_lx./\/l = max{M;_, M;, M}, n}mM = min{M,_, M;, M, ,}.

REMARK 3.11 Note that for a smooth function M the mesh and time step constraints (36) are possible
to achieve because the right-hand side of (36) will converge to 7 as h goes to zero. Furthermore, for
fixed h, the condition (36) gives a lower bound on Af (not an upper bound).

3.6 The fourth-order scheme in two dimensions

Assume the domain is 2 = [—L,L] x [—L,L] with a uniform N x N grid point with spacing h,
obtained from all 3 x 3 Gauss—Lobatto points on a uniform rectangular mesh with k x k cells. Thus
N = 2k + 1. Let g be an N x N matrix with g; denoting the point value at the (i,j) grid point. For
the Q7 finite element method on uniform rectangular meshes there are three types of grid point values,
see Fig. 2.

LetA = Wls+ ﬁM” and A : RVXN 5 RNXN be the scheme operator, i.e., (31) can be written
as A(fg"“)l-j = %Mygz With the same ghost point values notation as in Section 3.3, following the
derivations in Li & Zhang (2020a), the scheme can be explicitly written as:

M1+ M1+ M1 + Mijq
h2

- 1 -
if x;j is a cell center, Ad(g”"‘l)l-j = ( 4 EMU) g?}“;

if x;j is an edge center for an edge parallel to y -axis,

A (~n+l),,_ (Mi_pj+4M;_1j+ 18 My +4Mi 1 j + Miga) +8(M;j—1 + M;jq1) +iM" 1,
d(g ij = 2 A i gij 5

if x;; is an edge center for an edge parallel to x-axis,

A — Mijo+4M;j 1+ 18 M +4M; i1 + M, i) +8(Mi—1j + Mit1) 1 M)
@5 = 8h2 taMi)si

if x;; is a knot,
Ad(g"+1)" _ (Mi,Q‘,’ +AM; 1+ 18 M +4Migqj + Mo
Y 8h2

Mijo +4M;j 1 + 18M +4M;j1 + Miji2) 1 1
+ 8h2 + ZIMU) 8jj
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For the operator A} it is given as

if x;; is a cell center, A+(~"+1) =0;

if x;; is an edge center for an edge parallel to y-axis,

sntl |
A+(~n+1) _ (3Ml —2J 4Ml 1j + 3M )+g:l 2j + (3Mi+2,j - 4Mi+l,/' + 3M )+ 7+2,j
i 8h?2 ’
if Xjj is an edge center for an edge parallel to x-axis,
+1 +1
A+(""+l) (3Ml,] 2 4Ml‘,f*] +3M1J)+g:ld 2+(3Mi,]'+2_4MiJ+] +3M )+ ZI+2
i 8h? ’
if x;; is a knot, (g"+1)
_ (3Ml 2j 4M1 1j + 3M )+g:l+2],/ (3Mi+2,j - 4Mi+1,/' + 3M )+~:l—|-—i_21,/
84?2
~n+1 ~n+1
(3Mu 2 =AMy +3IMTELT, + BM i =AM +3M TR,

8h2

We consider the following A* < 0 and it is straightforward to see (A; + A®)1 > 0:

if x i

if x i

—GBMip; —4M;_1;+3M;;)" g gt —[4M;pj+12M;; — BM; 2 —

s a cell center, Az(g"+1),~j =0

s an edge center for an edge parallel to y-axis, A° (Q”H) ij

4Ml 1j + 3M[J)+]gn+1

n+1
ij—1

8i— 24 i—1j
B 8h2
N —[12M;j+4Mitaj — BMipaj —4Miprj + 3Mi,/)+]éfflld BGMiyoj —4Mig1j+3M;ij)~ é,"LIJ
8h2
if x;; is an edge center for an edge parallel to x-axis,
2 ~n+1 (3M1J 2= 4M1J 1+3Ml/) ~Zl 12 [4MZJ 2+12Mz/ (3Mz,] 2~ 4M1,/ 1+3Mz,1)+]g
“n+1 ~n+1
. —[12Mij + 4Mijo — GMijen =AM +3IMip I8 — GMijo — dMijr +3Mi) ™80,
8h2 '
if x;; is a knot, AZ(§"+1)ij
| —BMig — dMig+3M)” B — M+ 12Mj — G Mg — 4Mi_1j+3MipTIgt
B 8h2
~ ~n+1
N —[12M;j +4Mit2j — BMigaj —4Miy1j + 3M’J)+]gzn-jl,/ GBMigoj —4Miy1j +3M; )~ g:l_:rzd
8h2
_(3Mi‘/'72 - 4M,‘J>1 + 3Mi,j) g’?j 2 [4M1J 2+ lelJ (3MiJ 2~ 4M1J 1+ 3MIJ)+]g7f1]
_|_
8h2
ntl ~n+1
—[12M;; +4M;j12 — BM;jp2 —4Mj + 3Mi,j)+]g:l;r1 GMijra —4Mijp1 +3M; )~ Z]—:z

8h2
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Then A® = A — A% is given as:
BMy_yy Mg DB+ M,

42

~n+1
i—1j i—1y + 3M;+1J)gl+1J

if x; is a cell center, .A° (~n+1)

1 ~nt1
(3Mz,; 1t Mz,,+1)8z,+ WMo+ 3Mi¢+1)87,;5r1

4n? ’

if x;; is an edge center for an edge parallel to y-axis, AS@h i

(M AM_yj+3MPTEE = BMiyp; — 4Miyy 4+ 3M TR

8h2
~n+1
+ GM:J 1 +Ml,]+1)gw 1 (MiJ—l + 3'/\/("z/""l)g:lxﬂrl

42 ’

i-24 i—1yj

if x;; is an edge center for an edge parallel to x-axis, A’ (g”“)ij

_-BM AMij g+ 3MDTE — BMy 0 — 4M iy +3M)TE]

t,/+1
8h?
~ ~n+1
+ Mz+lg)g:l+l; (Mz 14 + 3Ml+1,/)g7-:-rl,1
4h? ’

ij—2

~(3M,_
+ Y

if x;; is a knot, A gt )ij

—(BMi_pj = My +3MNTE = GMpn; — 4My +3MTER
o 8h2
1 1
N —GM;jy =AM, + 3Mi,/)+g2]+ 1 — BMjp —4M; i + 3Mi,/)+gz;tr1
8h?

n+1

For the positive off-diagonal entries A} (") 7 is nonzero only for x;; being an edge center or a cell

center. Thus to verify AT < A?A7'A® it suffices to compare A [A;l (AS(Q"H))] _with A} (Q"H)ij
ij

for X being an edge center or a cell center.
If x;; is an edge center for an edge parallel to y-axis then x;,, ; are cell centers. Since everything here

has a symmetric structure we only need to compare the coefficients of g7+21 J in A* [ (AS (~"Jrl ))] B
ij
and A (g"“) jj> and the comparison for the coefficients of g"Jrl will be similar.

_ (3Ml —2j + M, )gtn+21/ + (Ml 2, + 3Ml,])gn+l
=l 4h2
~nt1 ~nt1
B GM;_1j1 + Mi—l,i+1)g?j_1J—1 + M_jo + 3Mi—l,j+l)gzr‘lj1,j+1
4h? ’

A @,
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n+1 ~n+1
AT A @Y, = GM; g+ M8ty + Mg, +3M)g;;
o 4(Mz 2j + M +Ml 1j+1 +Ml 1j—1 +h AtMi IJ)

(3M1 1jo1 + M 1,;+1)gz 1jo1 F Mo +3M, 1,,+1)gz Ll

AM_g;+ My + My F My 12 AtMl—l,/)

Since the coefficient of 2"} in A} @), is GM,_ 2j — 4Mi_y; +3M, )*/(Shz) we only

i—2j ij i—1y
need to discuss the case 3M,; ,; — 4M,_,; + 3M;; > 0, for which the coefficient of g:’+21J in
A* [ (.AS(N"H))]__ becomes
i
My +4M;_yj+9IM;; GBM;_»;+ M)
5 .
8h AM g+ M+ My j + My + R E M)

To ensure the coefficient of g;’jzl jin A° [.A;l (AS (Q"H))]_ is no less than the coefficient of 3"} . in

i—2j
i
AF@"), we need

My +4M;_y; +IMHGBM,_,; + M) 3/\/1, 2 — 4M,;_ 1J+3/\/1
2R (M_g+ My + My jy + My 1+h2ALtMi—1,j) - 8h?
Similar to the one-dimensional case it suffices to require
(M + 4M +9M;))BM + M)
i—2j i—1yj i—2j ij >3M,2J 4M, 1J+3M
AM; g+ My+ My + M+ 2 M)

Equivalently, we need the following inequality holds for any cell center x;;:

(M,
4(M,;

i1 T M+ OMi YOM_ + Miyy) > 3M,;

1
+Mt+l,/+Ml,/+l +MIJ 1+h AtMt,/) Y

4Ml,] + 3Mi+]J' (373)
i—1y

Notice that (37a) was derived for comparing A* [.Afl (As (g"“))] and A7 (g"+1) for x; being an
114

edge center of an edge parallel to y-axis. If x;; is an edge center of an edge parallel to x-axis then we can
derive a similar constraint:

(M +4M; +9M; 1 DOM_ + M) - M
AM g+ My + Mg+ M+ 2 EM, ) h-l

—4M;;+3M,;,y.  (37b)
i—1y

If x;; is a knot then x;, ; ; are edge centers for an edge parallel to x-axis. Since everything here has a

symmetric structure we only need to compare the coefficients of g""’l in A* [.A;l (AS (Q"H))] ~and
ij
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A;lq-(gn-i-l) ~n+1 =n+l1

jj» and the comparison for the coefficients of g; /', 2 8ij—2 and g gl g +2 will be similar.
—BM,_pj+ M DT — (M +3M;DE!
As(~n+l) i—2j 8i—2 i—2, 8ij
N —BM_yjp =AMy +3M )T :l+1,/ 1= BMy o =AMy +3M )T z+14+1
8h2
[Aé("fl“r])]i_L/
B —BM,_pj+ MPDE — My +3M, g
Z(Mz 1j— 2+4Mz 14— 1+18Mz 1J+4Ml 1j+1 +Mz 1,/+2) +4(Mz 2 +Mi,j)+4h2LMi—lJ
sn+1
(3Ml 1j-2 — 4M1 1j-1 + 3Mz l,/)+g7+l,/ 1 (3Mi—l,j+2 4Ml 1j+1 + 3Mz IJ)+gl 1j+1
(M, 1o FAM o M+ AM i+ M )+ 8(M M, )+8hZEMi,1J
For the same reason as above we still only consider the case where 3M;_, ; —4M,_; ; +3M;; > 0. So
the coefficient of /) S in A [ (AS(%H))] s
ij
1 Mipj+4M;_1j +IM;p)BM;_2;+ M;j)

A% (Mi_yjoa +AMi1jo1 + 18 Mo+ 4Mi1jo1 + Moy jg) + 8(Mi_aj + Mij) + 84 My jh?

To ensure the coefficient of 3"} in A% [.A;l (AS (g”“))] is no less than the coefficient of "% in
ij

i—2,j i—2j
Ar@th j» We only need

2M;_,; +4M
L+ 18M,

i1 IMPBM,_y; + M)
o1y TAM e+ My ) +8M i+ M, )+8At./\/l
> 3M 4M +3M

(M;_y s+ 4M

i—1j— i—1j— llJ

i-2j i—1yj

Equivalently, we need the following inequality holds for any edge center x;; for an edge parallel to
X-axis:

2(My_yj +4M;; +OM 1 DBM_yj+ M)
(Mo +4M iy + 18M 4+ 4M oy + M, o) + 8(M_y + My ) + 8¢y jh?

i—1y
i—1j
We also need the following inequality holds for any edge center x; for an edge parallel to y-axis:
2(M;i + 4./\/1‘ P+ 9MiJ+1)(3MiJ_1 + MiJ_1)
+ 18M;; + 4M,+1J + M) +8(M; i + M, ) + 8¢ h
> 3M AM;;+3M; i (38b)

(M +4M

i—2j i—1j

ij—1
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1472 J. HU AND X. ZHANG

‘We have a similar result to the one-dimensional case as follows:

THEOREM 3.12 For the scheme (31) its matrix representation A satisfies A~! > 0if (37) holds for any
cell center x;;, (38a) holds for x;; being any edge center of an edge parallel to x-axis and (38b) holds for
x;; being any edge center of an edge parallel to y-axis.

THEOREM 3.13  For the scheme (31) its matrix representation A satisfies A~! > 0 if the following mesh

constraint is achieved for all edge centers x;;:

11 K2 1 min,  M?
_ + — < 7 u

, 39
2 Ar max; M 3 max; M —2min; M %

where Jij is the union of two finite element cells: if Xjj is an edge center of an edge parallel to x-
axis, then Jij = [x;_ X ] X [yj—29yj+2]; if X;j is an edge center of an edge parallel to y-axis, then

Jij = [xi_2: %01 X [¥j_1,¥j41]- Here the maximum and minimum of M are those of grid point values

of M in Jij-

REMARK 3.14 Similarly as the one-dimensional case, for smooth M, the constraint (39) can be satisfied
for small .

4. Positivity and energy dissipation

In this section we prove a few properties of the proposed scheme (22), among which positivity and
energy dissipation are the most important ones. First of all we rewrite (22) as

Agt =o' A=T1+ AW, (40)

From the previous section we know that the matrix A is invertible and A~! > 0 under suitable mesh
size and time step constraints. Specifically, the second-order scheme is always monotone A~! > 0
(entrywise inequality) for any mesh size and time step. For the fourth-order scheme, assume that the
mesh size and time step satisfy the constraints (36) and (39) in one and two dimensions, respectively,
we also have A~! > 0.
4.1 Conservation, steady state and positivity
It is straightforward to verify the following properties:
1. Mass conservation of p. Multiplying 17 WM" from the left on both sides of (40) and using 175 = 07

gives

1TWM}’lgn+] — ITWMn n

which is

ITan+l — ITan’
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POSITIVITY-PRESERVING AND ENERGY-DISSIPATIVE FINITE DIFFERENCE SCHEMES 1473

or equivalently,
Dowie = wel.
i i
2. Mass conservation of c. By setting v, = 1 in (24) we get a(c}, 1) = (pj,, 1), thus
o Zwic;‘ = Z w;pr.
i i

3. Steady state preserving. If g" = C1 for some constant C then using S1 = 0 it can be easily seen that
g"“ = C1 is the unique solution to (40). In terms of the p variable this implies that

Pl = CM! Vi = p™' = CM!,Vi.

1

4. Positivity of p. If p!' > 0 for every i then g = p!'/ M’ > 0 for every i. When A~! > 0 holds we

~n+1 n+1

have g/ > 0, consequently p; "' = M;’g;?“ > 0 for every i.

5. Positivity of c¢. All discussion in Section 3 applies to the scheme (24) with ¢ > 0 and suitable
boundary conditions. Even though we only consider Neumann-type boundary condition in this paper
the results hold also for Dirichlet-type boundary conditions. In particular, the second-order scheme
is monotone. By setting M = 1 and Ar = é in Theorem 3.10 and Theorem 3.13, the fourth-order
scheme is also monotone if ah? < 5 in one dimension and ah? < % in two dimensions. When
monotonicity in (24) holds positivity of ¢ is implied by positivity of p.

4.2 Energy dissipation

In this subsection we show that the fully discrete scheme (40) decays energy. Following the continuous
counterpart (12) we define the discrete energy as

n

0 1 0: 1
ik o+ Ecnpn, 1> = Zwi (,o," log W - o+ ch’pl") . (41)
i

n

E" .= <,0” log

i

Note that by using ¢! we consider the Keller—Segel equation directly. In the Fokker—Planck case the last

1 n n; n i
term ¢ pj' in E" is zero.

THEOREM 4.1 Assume monotonicity holds for scheme (40), i.e., A~! > 0, for the energy defined in
(41) we have E"t! < E™,
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Proof. First of all,

En+] _ En

1 it 1, Lt oi 1
= Zwi pz{H_ log /\/lln+1 "H‘ + ZC:H_ 'Otn+ Z ('Ol log Mn - p? + 2cl lol)
i

i

n+1 p;lJrl 1 n+1 n+l 1
Zzwi P; IOgW+§Ci P; _Z P:lOgMn"'zz i

i i

=141,

where we used mass conservation in the second equality and

+ n
IO'

I:= Zw pl’H-llog A — Zwi,olnlog ./\/ll’?’
i l

1 1
=2 w, (ﬂ?“d’ — 30T = Sl ) :

i

Qn the other 'I_land, it is easy to see A~11 = 1, since A1 = 1. Let a? be the entries of A~!, then
Zj a¥ =1 and a? > O for all i, j if the monotonicity holds. Furthermore, since M" and W are diagonal
matrices, M"W = WM", thus 1"M"WA = 1"M"W(I + Ac(M")"'W~'S) = 1"M"W. So we have
1"M"WA=" = 1" M"W, which is >°; M'w,a¥ = Miw; componentwise.

The above discussion implies that g’“rl
convex, so by Jensen’s inequality,

Zj aijg;? is a convex combination. The function x log x is

g og@ ) < D alg log(gh).
J

Then

prn-l—] log(pn+1/Mn) _ ZWMH n+1 10g(gn+1) < ZWMVI Za’]gj lOg(gJ)

J

= Z (Z aw, M") g/ log(gh) = Zw Mgl log(g)) = Z w;pl log(p!'/ MP).

We thus proved I < 0. The proof is done if it is the Fokker—Planck equation.
If it is the Keller—Segel equation we still need to show II < 0. Recall that we use the scheme (24)
for c:

(VR V) 4+ a(cl,v) = (0" v), Vv, € VI (42)
At "1 this is

(Ve vy +a(cthv,) = (0" v, Wy, e VA (43)
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Subtracting (42) from (43) gives
(V(cz+1 —cp), V) + oz(cZJrl —Cp, V) = (p"t! — pv), Vv, € vh.
By setting v, = —(cZ+1 — ¢ € V" we obtain
— (oMt oy = v — ), V(T — ) — (T — et — ey <0,

On the other hand, choosing v;, = CZ_H in (42) and v;, = ¢}, in (43) and subtracting both, we obtain

n—H) n+1

(", e, ) = (", cp).

Therefore,

1 1 1
H=@”ﬁ4w—;wmm—5m“%4“>=—;w“—wﬂ%“—dnsa

5. Numerical tests

In this section we provide numerical examples to demonstrate the performance of the proposed schemes.
We will mainly focus on the Keller—Segel equation as it is more challenging than the Fokker—Planck
equation. But one example about the Fokker—Planck equation will be included.

We consider the Keller—Segel system in a square domain §2 with a source term:

9,0 =2p—V-(pVc)+f(x,y),
—Ac+c = p,

with homogeneous Neumann boundary conditions Vp - n|;5 = Ve - n|;o = 0. It is straightforward to

verify that the system above is equivalent to

- p —

Fm—vavnufmw,Am_a )
—Ac+c = p,

with boundary conditions Ve n|;o = 0and V{7 -n[;o = 0. We test the second-order and fourth-order
semi-implicit finite difference schemes for solving (44).

5.1 Accuracy test for the Keller—Segel system with a source term

The proposed semi-implicit schemes can be at most first order accurate in time. For testing the spatial
accuracy we consider an initial condition p(0,x,y) = 3cosxcosy + 3, ¢(0,x,y) = cosxcosy + 3 on
2 = (0,7) x (0,7) and a source term f(x,y) = —3 cos(2x) cos? y—3 cos? x cos(2y), so that the exact
solution is a steady state solution. The time step is set as At = Ax and errors at 7 = 1 are given in
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TABLE 1 Accuracy test for the Keller—Segel system with a source term

FD Grid The second-order scheme The fourth-order scheme
12 error Order [* error Order 2 error Order [*° error Order
9x9 2.09E—1 2.51E—1 1.37E-2 - 1.08E—2 -

17 x 17 4.11E-2 2.34 6.82E—2 1.89 7. 710E—4 4.16 1.32E-3 3.03
33 x 33 8.19E-3 2.33 1.70E—-2 2.00 4.52E-5 4.09 9.72E-5 3.76
65 x 65 1.77E-3 221 4.29E-3 1.99 2.76E—6 4.03 6.41E—6 3.92
129 x 129 4.04E—4 2.13 1.08E—3 1.99 1.71E-7 4.01 4.09E-7 3.97

Table 1 where 2 error is defined as

\/AxAy z Z |y — u(xl-,yj)l2
i

with u;; and u(x, y) denoting the numerical and exact solutions, respectively. We observe the expected
order of spatial accuracy.

5.2 A steady state solution of the Fokker—Planck equation

We now test the second-order and fourth-order schemes for solving the following two-dimensional linear
Fokker—Planck equation on §2 = (—3,3) x (—3,3):

X2 +y2

hp=Ap+ V- (pVV), V="

(45)

It is equivalent to

,\'2 +y2

dp=V- (MV%), M:=e 7,

with the boundary condition V- - n|; = 0. This equation admits an exact solution:

1 2t
p(tx,y) = me 21—~
We use p(1,x,y) as an initial condition and march to time T = 20 for approximating the steady state
1 242
Poo(,¥) = 7€ 2

To demonstrate the advantages of our schemes we also compare them to the second-order spatial
discretization with fully explicit forward Euler time discretization, which can also be proven positivity
preserving and energy dissipative, but under a small time step constraint Az = O(Ax?). In Fig. 3 we can
see that the convergence of the explicit scheme to the steady state solution is much slower. Moreover,
the small time step Af = (O(Ax?) is usually not desired in applications. The convergence to numerical
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107

> Fourth Order Scheme with Implicit Time Discretization
+ Second Order Scheme with Implicit Time Discretization
v Second Order Scheme with Explicit Time Discretization

10-3 [ m®m,,MM ]

Steady state solution error in discrete 2-norm

100 10!
Time

(a) Three schemes are used on the same 33 X 33 grid. The implicit schemes
use a time step At = O(Az) and the explicit scheme uses a time step At =

O(Az?).
Numerical Solution Exact Solution
0.15 0.15
-2
0.1 0.1
0
0.05 0.05
2
-2 0 2 -2 0 2

(b) The steady state solution. Numerical solution was generated by the fourth order scheme on a
33 x 33 grid.

FiG. 3. Linear Fokker—Planck equation on £2 = (—3,3) x (-3, 3).

steady state solution of two implicit schemes is similar. On the other hand, the fourth-order scheme
produces slightly smaller errors in the numerical steady state solution.

In Fig. 3, after T = 10, steady state solution errors of both implicit schemes stay flat, and in each
time step ||p" ! — p”|| o 18 less than 10710, which is the accuracy tolerance of preconditioned conjugate
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Numerical Solution p Numerical Solution p
-2 2 2
-1.5 1.9 1.9
-1 1.8 1.8
05 N7 1.7
0 1.6 1.6
0.5 1.5 1.5
1 14 1.4
1.5
1.3 1.3
2
-2 -1 0 1 2 -2 -1 0 1 2
(a) The second order scheme. (b) The fourth order scheme.
- Numerical Solution p - Numerical Solution p

[-—1D Cut Along the y=0| [-—1D Cut Along the y=0|

) A 0 1 2 0 1 2

(c) The second order scheme. (d) The fourth order scheme.
. o L. .. _ 60 _ _
FiG. 4. Keller—Segel system with an initial condition below critical mass p(x,y,0) = 00207 on 2 = (—2,2) x (—2,2).

The solutions at 7 = 2 are plotted. Both schemes are computed on a 101 x 101 grid.

gradient linear system solver. At 7 = 20, compared to the exact steady state, the fourth-order scheme
with implicit time stepping produces error in discrete 2-norm as 8.18 x 107#, and the second-order
scheme with implicit time stepping produces error in discrete 2-norm 8.35 x 10~*. We emphasize both
implicit schemes are used on the same grid and the difference in computational cost is marginal, thus
this is a clear advantage of using a high order accurate spatial discretization, even if the time accuracy
is only first order.

5.3 A smooth solution of the Keller—Segel system

For the Keller—Segel system it is well known that there is a critical value for total mass in ini-
tial conditions, below which a globally well-posed solution exists (Dolbeault & Perthame, 2004;
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Numerical Solution ¢

2 1.56104298
15F 1
1.56104296
ab |
o5k || {1.56104294
or 1§ 156104202
osf 1
1.5610429
i+ |
1.5F 1| 1-56104288
2
2 -1 0 1 2
(a) The second order scheme.
Numerical Solution p
2 1.5610431
150 1
1.56104305
Al |
1.561043
05t 1
1.56104295
of |
1.5610429
o05F |
1.56104285
s |
1.5610428
15} 1
1.56104275
2
2 Rl 0 1 2
(¢) The second order scheme.
-22
-24
-26 [
> N
>
T -28 -
2 g
w b
30}
.
8
321 7
0 5 10 15
Time

(e) The second order scheme.

Fig. 5. Keller—Segel system with an initial condition below critical mass p(x,y,0) =

Numerical Solution ¢

-2 -1 0 1 2

(b) The fourth order scheme.

Numerical Solution p

(d) The fourth order scheme.

5o
0000000000 °

f@"‘“"”’“r

5 10 15
Time

(f) The fourth order scheme.

60
14+40(x2+y2)

1479

1.56107364

1.56107362

1.5610736

1.56107358

1.56107356

1.56107354

1.56107375

1.5610737

1.56107365

1.5610736

1.56107355

1.5610735

1.56107345

. The plotted numerical

solutions are around the time 7' = 13.52 when ||,o”"’l —0"loo < 10~8. Both schemes are computed on a 101 x 101 grid.
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Numerical Solution p Numerical Solution p
-2 -2
-1.5 70 15 70
-1 60 -1 60
-0.5 50 -0.5 50
0 40 0 40
0.5 30 0.5 30
1 20 1 20
1.5 10 15 10
2 2
-2 -1 0 1 2 -2 -1 0 1 2
(a) The second order scheme at 7" = 0.11. (b) The fourth order scheme at T' = 0.11.
100 Numerical Solution p _— Numerical Solution p
50 [-—1D Cut Along the y=0| 46 [-—1D Cut Along the y=0|
80 1 80
70 }{ 1 70
60 ! 1 60
50 ¢ 50
40 / - 40 i
30 j 30
20 ; 20 b4
10 4___&/ N 10 j
0—2 -1 0 1 2 0—2 -1 0 1 2
(¢) The second order scheme at T' = 0.11. (d) The fourth order scheme at T'= 0.11.

F1G. 6. Keller-Segel system with an initial condition above critical mass p(x,y,0) = on 2 = (—2,2) x (—2,2).

100
14402 +y2)
Both schemes are computed on a 141 x 141 grid.

Blanchet et al., 2006). We solve the system (44) with f(x,y) = O on 2 = (—2,2) x (—2,2) with
an initial condition p(0,x,y) = ﬁgﬂz) and its mass is below the critical value. See both schemes
on the same grid of 101 x 101 points at T = 2 in Fig. 4. For both schemes Ar = Ax is used. Then
we run two schemes for longer time until || P — o o = 1078 is satisfied. Both schemes reach
ot — Pl < 10~8 around T = 13.52. See numerical solutions at 7 = 13.52 in Fig. 5. Note that
in this case the energy as defined in (41) reaches a constant value, which is an indicator that the system

has already reached the steady state.
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Numerical Solution p Numerical Solution p
-2 160 2 160
-1.5 140 -1.5 140
A . -1 120
-0.5 100 -0.5 100
0 las 0 80
0.5 60 0.5 60
1 40 1 40
1:5 20 1:5 20
2 2
-2 -1 0 1 2 -2 -1 0 1 2
(a) The second order scheme at T' = 0.2. (b) The fourth order scheme at T = 0.2.
—_— Ntvlmericaleqution p 510 Ntvjmerical'Sqution p
[-—1D Cut Along the y=0| [--—1D Cut Along the y=0|
180 180
160 160
140 140
120 T 120
100 \ 100 K
80 | 1 80
60 J 1 60
40 / 40 ] \
20 20 '
N A X o
-2 -1 0 1 2 -2 -1 0 1 2
(c) The second order scheme at T' = 0.2. (d) The fourth order scheme at T' = 0.2.

FiG. 7. Keller—Segel system with an initial condition above critical mass p(x,y,0) = on 2 = (—2,2) x (=2,2).

100
14+40G2+y2)
Both schemes are computed on a 141 x 141 grid.

5.4 A blow-up solution of the Keller—Segel system

For an initial condition with total mass above the critical mass, a blow-up will emerge in finite time for
the Keller—Segel system (Dolbeault & Perthame, 2004; Blanchet ez al., 2006), see also Carrillo et al.
(2019); Guo et al. (2019) for computational examples.

We test both schemes for an initial condition p(0,x,y) = 100 5 with total mass above the

1+40(x2+y

critical value. See solutions at 7 = 0.11 in Fig. 6, at T = 0.2 in Fig. 7 and at T = 0.8 in Fig. 8.
For both schemes At = Ax is used. Note that at T = 0.8, the solution in the fourth-order scheme is
significantly different from the second-order one, while the former is certainly more faithful due to its

higher accuracy.
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Numerical Solution p  4¢# Numerical Solution p
-2 -2
14000
-1.5 3 -1.5
12000
-1 25 -1
-0.5 -0.5 10000
2
0 0 8000
1.5
0.5 0.5 6000
1 1 1 4000
15 0.5 15 2000
2 2
-2 -1 0 1 2 -2 -1 0 1 2
(a) The second order scheme at T' = 0.8. (b) The fourth order scheme at T' = 0.8.
" «10* Numerical Solution p o «10* Numerical Solution p
[-—1D Cut Along the y=0| [--—1D Cut Along the y=0|
35 1.8
1.6
3
1.4
25 12!
2 1
15! 08
0.6
1
0.4
0-5 0.2
0 0 o
-2 -1 0 1 2 -2 -1 0 1 2
(¢) The second order scheme at T' = 0.8. (d) The fourth order scheme at T' = 0.8.

FiG. 8. Keller-Segel system with an initial condition above critical mass p(x,y,0) = on 2 = (—2,2) x (—2,2).

100
14402 +y2)
Both schemes are computed on a 141 x 141 grid.

The energy evolution of numerical solutions is shown in Fig. 9, where the discrete energy is defined
as in (41). It should be mentioned that the mesh constraints in Section 3 for achieving monotonicity
in the fourth-order scheme will be eventually impossible to be satisfied for a blow-up solution, yet
these mesh constraints are only sufficient conditions for monotonicity. In our fourth-order numerical
solutions, it has been checked that p is always positive even after blow up. Therefore, the energy
dissipation is still in good faith.

6. Concluding remarks

We have constructed two finite difference schemes that are proved be positivity preserving and energy
dissipative for the Fokker—Planck and Keller—Segel type equations. The time discretization is a first-
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-50 T T T -50
-60 1 60!
-70
-70 1
> 807 >
o o
© 90 o 80
[ c
- 100 -
_90 L
-110t
20} -100 +
-130 : : : -110 : : :
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
Time Time

(a) The energy evolution of the second order (b) The energy evolution of the fourth order
scheme. scheme.

FiG. 9. Keller-Segel system with an initial condition above critical mass p(x,y,0) = %) on 2 = (—2,2) x (=2,2).

100
144002 +y
Both schemes are computed on a 141 x 141 grid.

order semi-implicit or implicit scheme. The spatial discretizations include a second-order and a fourth-
order finite difference scheme, obtained via finite difference implementation of the finite element
method with linear and quadratic polynomials on uniform meshes. Under mild mesh size and time step
constraints for smooth solutions (a lower bound on time step rather than upper bound) the fourth-order
scheme is proved to be monotone, thus is positivity-preserving and decays energy, which is the first high
order spatial discretization with these properties. Numerical tests on both the Fokker—Planck equation
and Keller—Segel system are performed to verify the performance of the proposed schemes.

Funding

US National Science Foundation CAREER (DMS-2153208 to J.H.); US Air Force Office of Scientific
Research (FA9550-21-1-0358 to J.H.); US National Science Foundation (DMS-1913120 to X.Z.).

REFERENCES

ALMEIDA, L., BUBBA, F., PERTHAME, B. & PoucHoL, C. (2019) Energy and implicit discretization of the Fokker—
Planck and Keller-Segel type equations. Netw. Heterog. Media, 14, 23-41.

BaiLo, R., CARRILLO, J. A. & Hu, J. (2020) Fully discrete positivity-preserving and energy-dissipating schemes for
aggregation—diffusion equations with a gradient flow structure. Commun. Math. Sci., 18, 1259-1303.

BLANCHET, A., DOLBEAULT, J. & PERTHAME, B. (2006) Two-dimensional Keller—Segel model: optimal critical
mass and qualitative properties of the solutions. Electron. J. Differ. Equ. (EJDE) [electronic only], Paper—No,
2006.

CARRILLO, J. A., CHERTOCK, A. & HUANG, Y. (2015) A finite-volume method for nonlinear nonlocal equations with
a gradient flow structure. Commun. Comput. Phys., 17, 233-258.

CARRILLO, J. A., CRAIG, K. & YA0, Y. (2019) Aggregation—diffusion equations: dynamics, asymptotics, and singular
limits. Active Particles, Volume 2: Advances in Theory, Models, and Applications, vol. 2 (N. Bellomo, P.
Degond & E. Tadmor eds). Switzerland: Springer, pp. 65-108.

€20z 2unf G| Uo Jasn uojBulysep) Jo Ansioniun Aq £9/G859/0S L/€/Ew/IMe /eUlRWI WO dNo dlWapeoe)/:Sd]Y WO papeojumMoq



1484 J. HU AND X. ZHANG

CARRILLO, J. A., McCaNN, R. & ViLLANI, C. (2003) Kinetic equilibration rates for granular media and related
equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoam, 19, 971-1018.

Cross, L. J. & ZuaNG, X. (2020) On the monotonicity of high order discrete Laplacian. arXiv preprint
arXiv:2010.07282.

DOLBEAULT, J. & PERTHAME, B. (2004) Optimal critical mass in the two dimensional Keller—Segel model in R2.
Comp. Rend. Math., 339, 611-616.

Guo, L., L1, X. & YANG, Y. (2019) Energy dissipative local discontinuous Galerkin methods for Keller—Segel
chemotaxis model. J. Sci. Comput., 78, 1387-1404.

Hu, J. & Huang, X. (2020) A fully discrete positivity-preserving and energy-dissipative finite difference scheme
for Poisson—Nernst-Planck equations. Numer. Math., 145, 77-115.

Hu,J., Liu, J.-G., XIE, Y. & ZHOU, Z. (2021) A structure preserving numerical scheme for Fokker—Planck equations
of neuron networks: numerical analysis and exploration. J. Comput. Phys., 433, 110195.

Hu, J. & SHU, R. (2019) A second-order asymptotic-preserving and positivity-preserving exponential Runge—Kutta
method for a class of stiff kinetic equations. Multiscale Model. Simul., 17, 1123-1146.

JiN, S. & YaN, B. (2011) A class of asymptotic-preserving schemes for the Fokker—Planck-Landau equation.
J. Comput. Phys., 230, 6420-6437.

L1, H. (2021) Accuracy and monotonicity of spectral element method on structured meshes. Ph.D. Thesis. West
Lafayette, IN: Purdue University.

L1, H., APPELO, D. & ZHANG, X. (2022) Accuracy of spectral element method for wave, parabolic and Schrodinger
equations. SIAM J. Numer. Anal., 60, 339-363.

L1, H., X1E, S. & ZHANG, X. (2018) A high order accurate bound-preserving compact finite difference scheme for
scalar convection—diffusion equations. SIAM J. Numer. Anal., 56, 3308-3345.

L1, H. & ZHANG, X. (2020a) On the monotonicity and discrete maximum principle of the finite difference
implementation of CO-Q2 finite element method. Numer. Math., 145, 437-472.

Li, H. & ZHANG, X. (2020b) Superconvergence of high order finite difference schemes based on variational
formulation for elliptic equations. J. Sci. Comput., 82, 36.

Liu, J.-G., WANG, L. & ZHou, Z. (2018) Positivity-preserving and asymptotic-preserving method for 2D Keller—
Segel equations. Math. Comp., 87, 1165-1189.

LoRENZ, J. (1977) Zur inversmonotonie diskreter probleme. Numer. Math., 27, 227-238.

MADAY, Y. & RgNQuisT, E. M. (1990) Optimal error analysis of spectral methods with emphasis on non-constant
coefficients and deformed geometries. Comput. Methods Appl. Mech. Eng., 80, 91-115.

PLEMMONS, R. J. (1977) M-matrix characterizations. [—nonsingular M-matrices. Linear Algebra Appl., 18,
175-188.

Quu, C., Liu, Q. & YaN, J. (2021) Third order positivity-preserving direct discontinuous Galerkin method with
interface correction for chemotaxis Keller—Segel equations. J. Comput. Phys., 110191.

SHEN, J. & Xu, J. (2020) Unconditionally bound preserving and energy dissipative schemes for a class of Keller—
Segel equations. SIAM J. Numer. Anal., 58, 1674—1695.

SRINIVASAN, S., POGGIE, J. & ZHANG, X. (2018) A positivity-preserving high order discontinuous Galerkin scheme
for convection—diffusion equations. J. Comput. Phys., 366, 120-143.

SuN, Z., CARRILLO, J. A. & SHU, C.-W. (2018) A discontinuous Galerkin method for nonlinear parabolic equations
and gradient flow problems with interaction potentials. J. Comput. Phys., 352, 76—-104.

VAZQUEZ, J. (2007) The Porous Medium Equation. Oxford: Oxford University Press.

VILLANI, C. (2003) Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. Providence, RI:
American Mathematical Society.

ZHANG, Y., ZHANG, X. & SHU, C.-W. (2013) Maximum-principle-satisfying second order discontinuous Galerkin
schemes for convection—diffusion equations on triangular meshes. J. Comput. Phys., 234, 295-316.

€20z 2unf G| Uo Jasn uojBulysep) Jo Ansioniun Aq £9/G859/0S L/€/Ew/IMe /eUlRWI WO dNo dlWapeoe)/:Sd]Y WO papeojumMoq



	 Positivity-preserving and energy-dissipative finite difference schemes for the Fokker--Planck and Keller--Segel equations
	1. Introduction
	2. Finite difference schemes
	3. Monotonicity of the finite difference schemes
	4. Positivity and energy dissipation
	5. Numerical tests
	6. Concluding remarks




