
Proceedings of the 14th International Symposium on Process Systems Engineering – PSE 2021+ 

June 19-23, 2022, Kyoto, Japan © 2022 Elsevier B.V. All rights reserved. 

A Comprehensive Framework for the Modular 

Development of Condition Monitoring Systems for 

a Continuous Dry Granulation Line 

Rexonni B. Lagarea*, M. Ziyan Sheriffa, Marcial Gonzalezb, Zoltan Nagya, 

Gintaras V. Reklaitisa 

aDavidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA 
bSchool of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA 

rlagare@purdue.edu 

Abstract 

The development of condition monitoring systems often follows a modular scheme 

where some systems are already embedded in certain equipment by their manufacturers, 

and some are distributed across various equipment and instruments. This work 

introduces a framework for guiding the modular development of monitoring systems 

and integrating them into a comprehensive model that can handle uncertainty of 

predictions from the constituent modules. Furthermore, this framework improves the 

robustness of the modular condition monitoring systems as it provides a methodology 

for maintaining quality assurance and preventing unnecessary shutdowns in the event of 

some modules going off-line due to condition-based maintenance interventions. 

Keywords: Condition Monitoring, Probabilistic Programming, Modular, Machine 
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1. Introduction 

The challenges in modeling pharmaceutical powder processes, as outlined in Rogers and 

Ierapetritou (2014), has put an emphasis on the use of data-driven models as the basis 

for developing condition monitoring (CM) systems. While this approach offers a 

practical solution, as Webb and Romagnoli (2021) recently demonstrated for the 

Tennessee Eastman Process (TEP) case study, it ignores the modular nature of process 

control system development.  

Since the data-driven models often require data spanning multiple unit operations in 

order to maximize the usage of process data, CM applications are likely to be on levels 

1 and 2, which are distributed control systems in the process control implementation 

hierarchy introduced by Su et al. (2019). These modules are also likely to be focused on 

process faults, which differ from the CM modules at level 0, which are directly 

embedded into more advanced equipment. Because embedded modules are developed 

by the vendors, whose priority is on the safe and reliable operation of the equipment, 

they tend to focus on safety-related faults like electrical and mechanical faults.  

All the aforementioned fault types need to be considered holistically, especially since 

they are likely correlated with each other. However, the varying levels at which these 

modules are installed in the process control implementation hierarchy, and the 

difference in their goals, create an integration challenge that needs to be addressed in 

order to have a safe and reliable operation of a continuous processing plant. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50257-8 
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2. Condition Monitoring Framework Development 

A natural framework for addressing this integration issue would be the probabilistic 

graphical modeling methodology, which is commonly used to implement hierarchical 

Bayesian models. As recently demonstrated by Radcliffe and Reklaitis (2021), this 

methodology is effective in systems where data is limited and there is significant 

uncertainty in the model parameters. Since this method is fundamentally based on 

modularity, where complex physical systems are constructed from simpler parts, it is 

sensible to utilize it for the CM module integration problem.  

Under this methodology, the basic parts of the system are random variables with 

uncertain values, which are depicted as nodes in the graphical model. Conditional 

dependencies may be assigned based on expert knowledge on the system, and arcs can 

be drawn between one or more nodes to capture these relationships. Altogether, the 

nodes and the arcs comprising the probabilistic graphical model (PGM) form a compact 

representation of joint probability distributions where probability theory can be used to 

model the uncertainty in these variables and to make inferences on variables of interest.  

2.1. A Probabilistic Condition Monitoring Model for Continuous Dry Granulation 

The continuous dry granulation line of the Purdue University Pilot Plant comprises 

several unit operations that can blend pharmaceutical excipients and active 

pharmaceutical ingredients (API), granulate them, and then compress them into tablets 

using a rotary tablet press (see Figure 1). At the heart of this process is the granulation 

step, which takes place in an Alexanderwerk WP-120 roller compactor (RC). In the RC

unit, the pharmaceutical blend is compacted into a ribbon, cut into flakes, and 

subsequently broken down into the desired granule size distribution in a classifier mill. 

For clarity in presenting basic concepts, the remaining discussion will focus on the RC. 

 

Figure 1. Dry granulation line at the Purdue University pilot 

plant. 

 

Figure 2. Roller compactor 

condition monitoring model. 

A condition monitoring model can be constructed by considering two types of condition 

variables, the material condition and the equipment condition, and then forming 

appropriate relationships between them. For the RC, this model is shown in Figure 2. 

The roll and mill variables (green nodes) represent the condition of the respective roller 

compactor components. The WP-120 RC has a built-in condition monitoring system for 

each of these components, so these variables also represent “embedded” or “level 0” 

CM modules. The blend, ribbon, and granules variables do not have condition 

monitoring systems by default; so, these need to be developed as “distributed” or “level 

1” CM modules that require the integration of additional PAT tools. Discussing the 

development of these modules is beyond the scope of the current paper, so they will be 
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assumed to provide uncertain values for their corresponding variables, as is the case for 

the embedded modules. 

At this stage, the model in Figure 2 serves as a useful guideline for the modular 

development of CM modules that supports the complete observability of variables 

pertinent to Quality-by-Design (QBD) principles. Under QBD, the Critical-Quality-

Attributes (CQA) targets of a unit operation should be achieved by controlling the 

Control Process Parameters (CPP) and the CQA of the preceding unit operation. For the 

RC model, the ability to control the CPP is represented by the condition of the 

equipment (i.e., the rolls and the mill), and the CQAs are represented by the condition 

of the material (i.e., blend, ribbon, and granules).  

Each random variable in this graph, whether it is a material condition (blue node) or 

equipment condition (green node), can have discrete states: normal or a faulty state. 

With multiple variations possible for each faulty state, each node represents a 

categorical distribution, which assigns a probability for each possible state. For clarity, 

these distributions are depicted as probability tables that are linked to its corresponding 

node via broken lines in Figure 3. Moreover, the variables are assumed to take only two 

possible states, whereas in reality, they can have up to “N” number of states, depending 

on the number of faulty conditions that are recognized for each node.  

 

Figure 3. A probabilistic condition monitoring model for the roller compactor. 

2.2. Probabilistic Programming and Inference 

By the basic laws of probability, the entire graph represents the joint probability of all 

the condition monitoring variables per the following equation: 

𝑃(𝐵𝑙𝑒𝑛𝑑, 𝑅𝑜𝑙𝑙𝑠, 𝑅𝑖𝑏𝑏𝑜𝑛, 𝑀𝑖𝑙𝑙, 𝐺𝑟𝑎𝑛𝑢𝑙𝑒) = 

𝑃(𝑅𝑜𝑙𝑙𝑠)𝑃(𝑀𝑖𝑙𝑙)𝑃(𝐵𝑙𝑒𝑛𝑑)𝑃( 𝑅𝑖𝑏𝑏𝑜𝑛 ∣ 𝐵𝑙𝑒𝑛𝑑, 𝑅𝑜𝑙𝑙𝑠 )𝑃( 𝐺𝑟𝑎𝑛𝑢𝑙𝑒 ∣ 𝑀𝑖𝑙𝑙, 𝑅𝑖𝑏𝑏𝑜𝑛 ) 
(1) 

With this model, interesting analysis tasks such as probabilistic inference can be 

performed. For example, given observations on the condition of the roll and the ribbon, 

e.g., both are at normal state so their values equal 0, it is possible to directly compute 

the posterior distribution of the condition of the blend using Bayes’ Rule. 

𝑃( 𝐵𝑙𝑒𝑛𝑑 ∣ 𝑅𝑜𝑙𝑙𝑠 = 0, 𝑅𝑖𝑏𝑏𝑜𝑛 = 0 ) =
𝑃(𝐵𝑙𝑒𝑛𝑑,𝑅𝑜𝑙𝑙𝑠=0,𝑅𝑖𝑏𝑏𝑜𝑛=0,𝑀𝑖𝑙𝑙,𝐺𝑟𝑎𝑛𝑢𝑙𝑒)

𝑃(𝑅𝑜𝑙𝑙𝑠=0,𝑅𝑖𝑏𝑏𝑜𝑛=0)
  (2) 

where: P(Rolls = 0, Ribbon = 0) =  

∑ 𝑃(𝐵𝑙𝑒𝑛𝑑, 𝑅𝑜𝑙𝑙𝑠 = 0, 𝑅𝑖𝑏𝑏𝑜𝑛 = 0, 𝑀𝑖𝑙𝑙, 𝐺𝑟𝑎𝑛𝑢𝑙𝑒)𝐵𝑙𝑒𝑛𝑑,𝑀𝑖𝑙𝑙,𝐺𝑟𝑎𝑛𝑢𝑙𝑒   

(3) 
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However, with modularity in mind, this model is expected to get bigger as adjacent unit 

operations along the manufacturing line are integrated. The increasing number of 

variables will slow down the exact inference computations to a point that makes it 

impractical for monitoring applications. To circumvent this, the graphical model can 

instead be encoded in a probabilistic programming framework like Infer.NET (Minka et 

al., 2018), where approximate inference tasks can be quickly performed via efficient 

message passing algorithms. 

3. Results and Discussion 

3.1. Parameter Learning 

As demonstrated, a fully-defined model such as shown in Figure 3 can make useful 

predictions on variables based on observations from other variables. However, in 

practice, these parameters are not always initially available. Fortunately, the graphical 

modeling methodology can perform parameter learning by simply adding the 

parameters as variables in the graph, and then using the same approximate inference 

techniques to infer parameter values. Figure 4 shows the modified graph that addresses

parameter learning; the yellow nodes represent the prior probabilities of the CM 

modules, and the block arrows depict message passing during the inference of the prior 

probabilities. In order for the message passing algorithms to remain computationally 

tractable as more modules are integrated, the probabilities of the parameter variables are 

assigned a Dirichlet distribution, which is a conjugate prior for a categorical 

distribution. This conjugacy ensures that the number of distribution parameters do not

increase intractably during the implementation of the message passing algorithms. 

(Winn, Bishop, and Diethe 2015)  

 

Figure 4. Parameter learning in 

a probabilistic graphical model. 

 

Figure 5. Dataset required for parameter learning (where 

all condition variables are observed). 

Initially, the prior variables can be assigned either non-informative or weakly 

informative priors. Then, parameter learning can be performed on data acquired when 

all the CM modules are functional (see Figure 5), and message passing algorithms can 

be used to infer the posterior distributions of the parameter variables. As more data is 

collected, the inferred distribution of the parameter variables would be more “informed” 

and have less variance.  

This can be observed from the results in Figure 6, which shows the inferred 

probabilities of the blend and mill condition. After just 100 observations, the 

comprehensive model was able to correctly infer the “true” probabilities of the model 

shown in Figure 3, which is from where the dataset was randomly sampled. Beyond this 
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number of observations, the mean of the inferred probability distributions barely 

changed, while the variance continued to decrease significantly. 

 

Figure 6. Learned probabilities for the blend, mill, and roll condition at varying sizes of 

training data. 

3.2. Predictive Modeling 

One of the main challenges in monitoring the CQA of the RC is the lack of current 

capability to measure the condition (e.g., flowability and tabletability) of the granules in 

real-time. Fortunately, the graphical modeling framework allows for the inference of the 

granule condition given observations from other CM modules. This scenario is shown in 

Figure 7, with the block arrows indicating message passing from observed variables that 

are not d-separated(Bishop 2006) from the granule variable. Results of this inference are 

shown in Figure 8, where based on observations from the surrounding CM modules, the 

probability of the granule condition changes correspondingly.  

 

Figure 7. Granule Condition Inference 

Scheme 

 

Figure 8. Inference Results on the Granule 

Condition 

Throughout the operation of a continuous processing line, some CM modules might 

break down, rendering the condition of the actual material and equipment to be 

unobservable. For the RC example, the NIR sensor observing the ribbon could be 

undergoing maintenance because of fouling. While this temporary lack of observability 

could compromise quality assurance of the process, it should not be a reason for 
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shutting down. Using the message passing scheme shown in Figure 9, the condition of 

the granule could still be inferred from available CM modules such as the blend, rolls, 

and the mill condition monitoring modules. The results of these predictions are shown 

in Figure 10, for varying conditions of the blend, rolls, and the mill. 

 

Figure 9. Inference Scheme with Multiple 

Unobserved Variables. 

 

Figure 10. Inference Results on the Granule 

Condition with Unobserved Ribbon Condition. 

4. Conclusions 

A comprehensive condition monitoring model for a roller compactor was developed by 

first considering material and equipment condition variables that are involved, and then 

establishing logical relationships between them. The condition variables were assumed 

to be categorical variables with discrete states, and their relationships were encoded into 

a probabilistic programming framework. This framework was able to efficiently 

perform approximate inference to learn the parameters of the model, and most 

importantly, to infer the condition of other less-visible variables like the granule 

condition based on observations from other condition variables. 
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