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Abstract

The development of condition monitoring systems often follows a modular scheme
where some systems are already embedded in certain equipment by their manufacturers,
and some are distributed across various equipment and instruments. This work
introduces a framework for guiding the modular development of monitoring systems
and integrating them into a comprehensive model that can handle uncertainty of
predictions from the constituent modules. Furthermore, this framework improves the
robustness of the modular condition monitoring systems as it provides a methodology
for maintaining quality assurance and preventing unnecessary shutdowns in the event of
some modules going off-line due to condition-based maintenance interventions.
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1. Introduction

The challenges in modeling pharmaceutical powder processes, as outlined in Rogers and
Ierapetritou (2014), has put an emphasis on the use of data-driven models as the basis
for developing condition monitoring (CM) systems. While this approach offers a
practical solution, as Webb and Romagnoli (2021) recently demonstrated for the
Tennessee Eastman Process (TEP) case study, it ignores the modular nature of process
control system development.

Since the data-driven models often require data spanning multiple unit operations in
order to maximize the usage of process data, CM applications are likely to be on levels
1 and 2, which are distributed control systems in the process control implementation
hierarchy introduced by Su ef al. (2019). These modules are also likely to be focused on
process faults, which differ from the CM modules at level 0, which are directly
embedded into more advanced equipment. Because embedded modules are developed
by the vendors, whose priority is on the safe and reliable operation of the equipment,
they tend to focus on safety-related faults like electrical and mechanical faults.

All the aforementioned fault types need to be considered holistically, especially since
they are likely correlated with each other. However, the varying levels at which these
modules are installed in the process control implementation hierarchy, and the
difference in their goals, create an integration challenge that needs to be addressed in
order to have a safe and reliable operation of a continuous processing plant.
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2. Condition Monitoring Framework Development

A natural framework for addressing this integration issue would be the probabilistic
graphical modeling methodology, which is commonly used to implement hierarchical
Bayesian models. As recently demonstrated by Radcliffe and Reklaitis (2021), this
methodology is effective in systems where data is limited and there is significant
uncertainty in the model parameters. Since this method is fundamentally based on
modularity, where complex physical systems are constructed from simpler parts, it is
sensible to utilize it for the CM module integration problem.

Under this methodology, the basic parts of the system are random variables with
uncertain values, which are depicted as nodes in the graphical model. Conditional
dependencies may be assigned based on expert knowledge on the system, and arcs can
be drawn between one or more nodes to capture these relationships. Altogether, the
nodes and the arcs comprising the probabilistic graphical model (PGM) form a compact
representation of joint probability distributions where probability theory can be used to
model the uncertainty in these variables and to make inferences on variables of interest.

2.1. A Probabilistic Condition Monitoring Model for Continuous Dry Granulation

The continuous dry granulation line of the Purdue University Pilot Plant comprises
several unit operations that can blend pharmaceutical excipients and active
pharmaceutical ingredients (API), granulate them, and then compress them into tablets
using a rotary tablet press (see Figure 1). At the heart of this process is the granulation
step, which takes place in an Alexanderwerk WP-120 roller compactor (RC). In the RC
unit, the pharmaceutical blend is compacted into a ribbon, cut into flakes, and
subsequently broken down into the desired granule size distribution in a classifier mill.
For clarity in presenting basic concepts, the remaining discussion will focus on the RC.
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Figure 1. Dry granulation line at the Purdue University pilot ~ Figure 2. Roller compactor
plant. condition monitoring model.

A condition monitoring model can be constructed by considering two types of condition
variables, the material condition and the equipment condition, and then forming
appropriate relationships between them. For the RC, this model is shown in Figure 2.
The roll and mill variables (green nodes) represent the condition of the respective roller
compactor components. The WP-120 RC has a built-in condition monitoring system for
each of these components, so these variables also represent “embedded” or “level 07
CM modules. The blend, ribbon, and granules variables do not have condition
monitoring systems by default; so, these need to be developed as “distributed” or “level
1” CM modules that require the integration of additional PAT tools. Discussing the
development of these modules is beyond the scope of the current paper, so they will be
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assumed to provide uncertain values for their corresponding variables, as is the case for
the embedded modules.

At this stage, the model in Figure 2 serves as a useful guideline for the modular
development of CM modules that supports the complete observability of variables
pertinent to Quality-by-Design (QBD) principles. Under QBD, the Critical-Quality-
Attributes (CQA) targets of a unit operation should be achieved by controlling the
Control Process Parameters (CPP) and the CQA of the preceding unit operation. For the
RC model, the ability to control the CPP is represented by the condition of the
equipment (i.e., the rolls and the mill), and the CQAs are represented by the condition
of the material (i.e., blend, ribbon, and granules).

Each random variable in this graph, whether it is a material condition (blue node) or
equipment condition (green node), can have discrete states: normal or a faulty state.
With multiple variations possible for each faulty state, each node represents a
categorical distribution, which assigns a probability for each possible state. For clarity,
these distributions are depicted as probability tables that are linked to its corresponding
node via broken lines in Figure 3. Moreover, the variables are assumed to take only two
possible states, whereas in reality, they can have up to “N” number of states, depending
on the number of faulty conditions that are recognized for each node.
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Figure 3. A probabilistic condition monitoring model for the roller compactor.

2.2. Probabilistic Programming and Inference

By the basic laws of probability, the entire graph represents the joint probability of all
the condition monitoring variables per the following equation:

P(Blend, Rolls, Ribbon, Mill, Granule) = (1)
P(Rolls)P(Mill)P(Blend)P( Ribbon | Blend, Rolls )P( Granule | Mill, Ribbon)

With this model, interesting analysis tasks such as probabilistic inference can be
performed. For example, given observations on the condition of the roll and the ribbon,
e.g., both are at normal state so their values equal 0, it is possible to directly compute
the posterior distribution of the condition of the blend using Bayes’ Rule.

P(Blend,Rolls=0,Ribbon=0,Mill,Granule) (2)
P(Rolls=0,Ribbon=0)

P(Blend | Rolls = 0,Ribbon =0) =

where: P(Rolls = 0, Ribbon = 0) = 3)
Y Blend,mitl,cranute P(Blend, Rolls = 0, Ribbon = 0, Mill, Granule)
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However, with modularity in mind, this model is expected to get bigger as adjacent unit
operations along the manufacturing line are integrated. The increasing number of
variables will slow down the exact inference computations to a point that makes it
impractical for monitoring applications. To circumvent this, the graphical model can
instead be encoded in a probabilistic programming framework like Infer. NET (Minka et
al., 2018), where approximate inference tasks can be quickly performed via efficient
message passing algorithms.

3. Results and Discussion
3.1. Parameter Learning

As demonstrated, a fully-defined model such as shown in Figure 3 can make useful
predictions on variables based on observations from other variables. However, in
practice, these parameters are not always initially available. Fortunately, the graphical
modeling methodology can perform parameter learning by simply adding the
parameters as variables in the graph, and then using the same approximate inference
techniques to infer parameter values. Figure 4 shows the modified graph that addresses
parameter learning; the yellow nodes represent the prior probabilities of the CM
modules, and the block arrows depict message passing during the inference of the prior
probabilities. In order for the message passing algorithms to remain computationally
tractable as more modules are integrated, the probabilities of the parameter variables are
assigned a Dirichlet distribution, which is a conjugate prior for a categorical
distribution. This conjugacy ensures that the number of distribution parameters do not
increase intractably during the implementation of the message passing algorithms.
(Winn, Bishop, and Diethe 2015)
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Figure 4. Parameter learning in Figure 5. Dataset required for parameter learning (where
a probabilistic graphical model. all condition variables are observed).

Initially, the prior variables can be assigned either non-informative or weakly
informative priors. Then, parameter learning can be performed on data acquired when
all the CM modules are functional (see Figure 5), and message passing algorithms can
be used to infer the posterior distributions of the parameter variables. As more data is
collected, the inferred distribution of the parameter variables would be more “informed”
and have less variance.

This can be observed from the results in Figure 6, which shows the inferred
probabilities of the blend and mill condition. After just 100 observations, the
comprehensive model was able to correctly infer the “true” probabilities of the model
shown in Figure 3, which is from where the dataset was randomly sampled. Beyond this
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number of observations, the mean of the inferred probability distributions barely
changed, while the variance continued to decrease significantly.
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Figure 6. Learned probabilities for the blend, mill, and roll condition at varying sizes of
training data.

3.2. Predictive Modeling

One of the main challenges in monitoring the CQA of the RC is the lack of current
capability to measure the condition (e.g., flowability and tabletability) of the granules in
real-time. Fortunately, the graphical modeling framework allows for the inference of the
granule condition given observations from other CM modules. This scenario is shown in
Figure 7, with the block arrows indicating message passing from observed variables that
are not d-separated(Bishop 2006) from the granule variable. Results of this inference are
shown in Figure 8, where based on observations from the surrounding CM modules, the
probability of the granule condition changes correspondingly.
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Figure 7. Granule Condition Inference Figure 8. Inference Results on the Granule
Scheme Condition

Throughout the operation of a continuous processing line, some CM modules might
break down, rendering the condition of the actual material and equipment to be
unobservable. For the RC example, the NIR sensor observing the ribbon could be
undergoing maintenance because of fouling. While this temporary lack of observability
could compromise quality assurance of the process, it should not be a reason for
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shutting down. Using the message passing scheme shown in Figure 9, the condition of
the granule could still be inferred from available CM modules such as the blend, rolls,
and the mill condition monitoring modules. The results of these predictions are shown
in Figure 10, for varying conditions of the blend, rolls, and the mill.
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Figure 9. Inference Scheme with Multiple Figure 10. Inference Results on the Granule
Unobserved Variables. Condition with Unobserved Ribbon Condition.

4. Conclusions

A comprehensive condition monitoring model for a roller compactor was developed by
first considering material and equipment condition variables that are involved, and then
establishing logical relationships between them. The condition variables were assumed
to be categorical variables with discrete states, and their relationships were encoded into
a probabilistic programming framework. This framework was able to efficiently
perform approximate inference to learn the parameters of the model, and most
importantly, to infer the condition of other less-visible variables like the granule
condition based on observations from other condition variables.
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