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Abstract—The HPC industry is inexorably moving towards
an era of extremely heterogeneous architectures, with more
devices configured on any given HPC platform and potentially
more kinds of devices, some of them highly specialized. Writing
a separate code suitable for each target system for a given
HPC application is not practical. The better solution is to use
directive-based parallel programming models such as OpenMP.
OpenMP provides a number of options for offloading a piece
of code to devices like GPUs. To select the best option from
such options during compilation, most modern compilers use
analytical models to estimate the cost of executing the original
code and the different offloading code variants. Building such
an analytical model for compilers is a difficult task that necessi-
tates a lot of effort on the part of a compiler engineer. Recently,
machine learning techniques have been successfully applied
to build cost models for a variety of compiler optimization
problems. In this paper, we present COMPOFF, a cost model
that statically estimates the Cost of OpenMP OFFloading using
a neural network model. We used six different transformations
on a parallel code of Wilson Dslash Operator to support
GPU offloading, and we predicted their cost of execution on
different GPUs using COMPOFF during compile time. Our
results show that this model can predict offloading costs with
a root mean squared error in prediction of less than 0.5 seconds.
Our preliminary findings indicate that this work will make it
much easier and faster for scientists and compiler developers
to port legacy HPC applications that use OpenMP to new
heterogeneous computing environment.
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I. INTRODUCTION

Since the end of Dennard scaling hardware developers
have improved chip performance by configuring a grow-
ing number of compute cores. This multi-core processor
technology was rapidly adopted by the High Performance
Computing (HPC) community. It requires the modification
of application codes to exploit the cores, e.g. by inserting
pthreads or OpenMP constructs into the source code. In
the last decade, General Purpose Graphics Processing Units
(GPGPUs) have been attached to the multicore processors on
many HPC platforms in order to benefit from their ability to
handle large amounts of data parallelism with low power
consumption. The trend toward heterogeneous HPC plat-
forms is clearly visible in the most recent TOP500 list; while
there are notable exceptions, a large fraction of the systems
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are heterogeneous with in most cases either NVIDIA GPUs
or Intel Xeon Phis delivering high performance per watt. The
second-ranked Summit supercomputing cluster is composed
of two IBM PowerPC9 multicore CPUs with six NVIDIA
V100 GPUs per node and three kinds of memory. Moving
forward, we expect HPC platforms to be more diverse and
potentially include domain-specific accelerators designed for
specialized paradigms like machine learning, neuromorphic
computing and ultimately quantum computing, leading to an
era of extreme heterogeneity.

The presence of a single type of accelerator on a node
already poses a challenge to current programming environ-
ments; we are not yet well prepared for a future in which
multiple types of heterogeneous accelerators may be config-
ured. Many application developers are adapting their codes
to exploit GPUs. Lattice Quantum Chromodynamics [1], an
application developed under the US Department of Energy’s
ECP project, is one such application that can greatly benefit
from the use of accelerators such as GPUs. Unfortunately,
effectively utilizing GPUs is a time-consuming endeavor
that may necessitate re-engineering data structures as well
as large regions of code in order to maximize the GPU’s
computational power while minimizing overheads. It will be
far more difficult to develop code for systems with extreme
heterogeneity containing different devices. It is therefore
imperative to develop techniques that will relieve the ap-
plication developers of the burden of such development.

Using a directive-based programming model, such as
OpenMP, the de-facto programming standard for parallel
programming in C/C++ and Fortran, is one way to handle
portability across architectures. OpenMP now supports GPU
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offloading and is planning a transition to extreme hetero-
geneity [2], rendering the underlying hardware transparent
and allowing for greater portability. Nevertheless, even with
directive-based programming models like OpenMP, opti-
mizing large scale applications with tens to hundreds of
thousands of lines of code remains an arduous task.

In this work, we explore state of the art ML techniques to
develop COMPOFF (Cost of OpenMP OFFloading), a first
of its kind compiler cost modeling tool that employs ML to
predict the execution time of an OpenMP kernel on GPUs
during compilation. We first discuss some cutting-edge work
that is related to and precedes our work in Section II, fol-
lowed by Section III’s discussion of the challenges encoun-
tered during offloading using OpenMP. In Section 1V, we
introduce static program features, that can be used to create
a static cost model using Machine Learning, independent
of compilers and hardware dependencies, as well as how
we synthesize data to train our model. The design of our
model is then presented in Section V. Section VI covers the
experiments carried out in this paper in order to predict the
cost of offloading the Wilson-Dslash stencil operator [3] for
Lattice Quantum Chromodynamics application. The results
are analysed in Section VII. Finally, we conclude our work
with future discussion in Section VIII.

II. RELATED WORK

Compiler engineers are developing a number of frame-
works [4], [5], [6] to assist application developers deal
with extreme heterogeneity more effectively. These frame-
works require analytical cost models to help them make
better decisions when selecting the choice of optimization
or transformation required by the application. However,
developing a cost function is time-consuming, and almost
all modern compilers, including LLVM/Clang, use a simple
“one-size-fits-all” cost function that does not provide the
best performance in the case of diverse architecture. Hand-
tuned cost functions are currently popular, but calculating
the costs and benefits of a compiler optimization requires
a deeper understanding of the underlying hardware. Despite
its effectiveness, manually constructing a cost model for a
single architecture can take months. Since cost functions are
critical and manual tuning is rather laborious, compiler en-
gineers are investigating Machine Learning (ML) techniques
as a means of automating this process.

Early work exploiting ML in compilers, like [7], primar-
ily explored its use to help optimize sequential programs.
However, with the proliferation of multi-core platforms and,
more recently, heterogeneous systems, its application to the
task of optimizing parallel programs has received significant
attention in the last decade. A decision-tree-based approach
has been developed to predict the scheduling policy for an
OpenMP parallel region [8]. Furthermore, [9] optimizes
OpenMP programs for scheduling policies and thread count

using ML techniques. ML has been used to determine the op-
timum degree of parallelism for transactional memory [10]
and hardware resource allocation [11]. The work presented
in [12] and [13] applies ML to complex parallel programs
and divide them among the available multi-core resources.
The Petabricks project [14] employs a genetic search to tune
algorithmic choices at compile time to reduce searching
overheads. Tree and graph-based features have also been
used by Malik et.al. [15] who present a unique graph-based
approach for feature representation. ML techniques were
used to build classifiers to determine whether to offload
OpenCL code [16], and to select a clock frequency at
which the processor should operate [17]. The work was
reported to be extremely accurate, but the benefits could
not be quantified because no modified code was generated.
The results of prior efforts from applying ML on compiler
optimizations are encouraging. However, new feature engi-
neering practices that can help ML learn more about a code
and its computational needs must be investigated.

1II. OPENMP

The OpenMP API 4.0 specification (released in 2013 [18])
includes a collection of directives that tell the compiler when
to offload a block of code to devices, like GPU, FPGA etc.
However, achieving scalable performance on large parallel
machines still necessitates significant effort in performance
tuning, particularly in terms of cache management and
locality, data and work sharing, and synchronizations.

for (int i = 0; 1 < n; 1i++) {
for (int j 0; J < n; Jj++) |
float tmp 0.0f;
for (int k = 0; k < n; k++) {
tmp += A[ixn+k] + Blk*n+j];
}
Cli*n+7j]
}
}

= tmp;

Code 1: Sequential Matrix Multiplication program

#pragma omp target
#pragma omp parallel for
for (int i 0; i < n; i++) {
for (int j J < n; J++) {
float tmp 0f;
for (int k = 0; k < n; k++) {
tmp += A[ixn+k] + Blkxn+j];
}
Cli*n+7j]
}
}

0;
0.

= tmp;
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Code 2: Matrix Multiplication on GPU using OpenMP

When each architecture supports either a distinct native
language or alternative optimization methods for the same
language, program portability becomes a major problem.
This is especially important for users whose programs must
run smoothly on systems with diverse node architectures,
such as manycore vs. GPU-accelerated nodes, or when
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Figure 1: Teams distribute parallel for

dealing with multiple device memory accesses to the same
data. In the future, the ultimate level of portability would
be if we can have developers write a sequential code, like
matrix multiplication in Code 1, and then build this code
using any compiler on any platform and expect it to exploit
all hardware and accelerator parallelism effectively.
Unfortunately, programming languages and compilers are
far away from a state where they can handle portability
without programmer intervention. Usually, a base language
lacks all of the features that a software developer needs,
and they rely on libraries to meet their performance goal.
Architecture-specific libraries, like CUDA, can be used
to extract all of NVIDIA GPU’s performance to achieve
accelerator parallelism, but portability suffers as a result.
Directive-based programming languages, like OpenMP (e.g.
Code 2), serve as a middle ground, providing a portable
way to augment the base languages, while filling in the
performance gaps required to support a specific architecture.

A. GPU Offloading in OpenMP

OpenMP provides additional information to the compilers,
which bridges a gap from serial programming languages to
parallel programming languages. GPUs are highly parallel,
and the programmer should fully utilize it’s parallel capacity
to extract maximum performance. Simply parallelizing a
code using “omp parallel for” will parallelize it for CPUs,
but will not offload the computation to a GPU. OpenMP
device offloading consists of two major components:

« Data mapping between host and device

#pragma omp target teams distribute parallel for
for (int 1 0; i < n; i++) {
for (int j 0; 3 < n; j++) {
float tmp 0.0f;
for (int k 0; k < n; k++)
tmp += A[ n + k] + B[k » n + Jj];
Cli * n + = tmp;

i«

3l

Code 3: Combined parallelism
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« Offloading computations from host to device.

All data is initially stored in CPU memory, and GPUs
have no access to it. To access host data, the GPU must
first move the data from the host (CPU) to the device
(GPU) using the data map clause, and then move the data
back from the device to the host once the computation on
the GPU is complete. The omp parallel for creates a
single contention group of threads with shared memory and
the ability to coordinate and synchronize, while the omp
target directive marks a code section for offloading. But
GPUs are not parallel worksharing machines.

On a platform like GPU, we expect a high degree of
coarse grain parallelism across the entire device. This struc-
ture limits the degree of parallelism that a GPU can exploit.
Instead, programmers can use multiple options provided by
OpenMP directives, like teams distribute, which exposes
coarse grained, scalable parallelism to the entire GPU.
OpenMP teams and distribute are directives that spawn
additional level of parallelism, as shown in Figure 1. Only
one team and one member thread are active at the start
of a target region. If we want to have multiple teams, we
use the directive teams distribute first, which distributes the
entire loop iteration space among all teams. Furthermore,
if there are more nested parallel loops, we use the parallel
for directive upon them to distribute the iterations of the
nested loops among threads within a team. When there is
only one level of parallel loops, or when the outer loop has
enough parallelism, we use the combined directive teams
distribute parallel for to distribute the iteration space of one
loop among teams and threads within a team.

Threads are organized into groups using teams, and
distribute allows to schedule a group of teams to run
a loop. As there is no synchronization primitive to act as a
barrier between threads belonging to different teams, teams
appear to be similar to CUDA threadblocks on NVIDIA
GPUs. As is usual, parallel for is used to parallelize
the threads within each team. Coarse grained parallelism
may be combined (Code 3) or split (Code 4). There could
be other transformation as well which we could use to fully
utilize the parallelism on a GPU. For instance, in Code 5
and 6 the programmer could swap the outer (iterating over
i) and inner (iterating over j) loops and apply combined

#pragma omp target teams distribute
for (int 1 = 0; i < n; i++) {
#pragma omp parallel for
for (int j = 0; J < n; J++) {
float tmp = 0.0f;
for (int k = 0; k < n; k++
tmp += A[i x n + k] + B[k » n + Jl;
C[i » n + j] = tmp;
}
}

Code 4: Split parallelism



#pragma omp target teams distribute parallel for

for (int j 0; 3 < n; j++) {
for (int i = 0; i < n; i++) {
float tmp = 0.0f;
for (int k = 0; k < n; k++)

tmp += A[i » n + k] + B[k  n + jl;
Cl[i + n + j] = tmp;

#pragma omp target teams distribute

for (int j 0; J <n; 3++) {
#pragma omp parallel for
for (int i = 0; i < n; i++) {

float tmp = 0.0f;
for (int k = 0; k < n; k++)
tmp += A[1 * n + k] + B[k » n + J];
Cli *» n + j] = tmp;
}
}

Code 5: Swap Combined parallelism

Code 6: Swap Split parallelism

#pragma omp target teams distribute parallel for \
collapse (2)

for (int i = 0; i < n; i++) {
for (int j = 0; J < n; j++) {
float tmp = 0.0f;
for (int k = 0; k < n; k++)

tmp += A[i * n + k] + Blk * n + jl;
Cl[i » n + j] = tmp;
}
}

#pragma omp target teams distribute parallel for \
collapse (2)

for (int 3§ = 0; j < n; j++) {
for (int i = 0; i < n; i++) {
float tmp = 0.0f;

for (int k = 0; k < n; k++)
tmp += A[i » n + k] + Blk » n + jl;
Cl[i » n + j] = tmp;
}
}

Code 7: Collapse Loop

and split parallelism on them as well. A programmer could
also collapse the two loops as shown in Code 7 and 8 to
exploit its full degree of parallelism. The implementation
of collapse varies depending on the compiler, as does how
it affects the outcome. But, how do we decide which of
the these transformation will be better for our kernel and
architecture? One possible approach is to take such decision
during compile time using some static cost model.

IV. MACHINE LEARNING IN COMPILERS

Despite their efficacy, designing hand tuned cost models
for each architecture is rather costly and time consuming.
To automate the process, compiler developers are turning
to machine learning techniques. Identifying the feature set
that can be used to train an ML model is the first step

Code 8: Swap Collapse Loop

toward using ML in compilers. Since the goal of this work
is to maintain portability using OpenMP, we must look
for features that are platform and compiler independent.
This means we should only consider features from the
original source code written by the programmer without
applying any compiler optimizations on them. Furthermore,
because we need to make predictions at compile time, these
features should be static in nature. For the purpose of this
research, we only consider the six transformations explained
in Section III and shown in Code 3 — 8.

After studying several GPU cost models ([19], [20], [21]),
we conclude that there are three major factors which affect
the cost of execution of a kernel on a GPU - level of paral-
lelism, memory access, and computation to be performed by

Feature Description
Outer Outer Loop of Iteration

Parallelism Inner Inner Loop of Iteration (Set to O when there is no nested loop)
Schedule static, dynamic, guided, auto, runtime
MemTo Total memory transferred to GPU in bytes
MemFrom Total memory transferred from GPU in bytes
VarDecl Total number of variable declaration

Memory RefYar Total number of yariable referenced
IntLiteral Total number of integer constant referred
FloatLiteral Total number of floating point constant referred
IntAssign Total integer assignment
FloatAssign Total floating point assignment
IntAddSub Total integer addition and subtraction
FloatAddSub Total floating point addition and subtraction
IntMult Total integer multiplication

Computation FloatMult Total floating point multiplication
IntDiv Total integer division
FloatDiv Total floating point division
Others Total logical, relational and bitwise operations

Table I: Static Kernel features independent of architectures and compilers



the kernel. To train a model which could predict the cost of
execution of above transformation, we extract static features
from kernels, which can be grouped in accordance to these
factors. A list of features that we consider in this paper can
be found in Table I. Here we group the features based on
level of parallelism, memory access and computation.

1) Level of parallelism.: To check for the level of par-
allelism we can look into the number of iterations of the
for loop, the number of available threads and how OpenMP
schedules the iterations between the threads. Usually, the
number of available threads on a GPU and the scheduling-
type used by OpenMP are present at the time of compilation,
but the number of iterations are usually a variable. For this
current study we make sure that the number of iteration in
the for loop are also constant. Predicting the cost at runtime
using variable iterations is part of the future work. The level
of parallelism can be increased by collapsing the nested
loops. In this work, we restrict the nesting of loops to two
levels only, referring to them as the outer and inner loops.

2) Memory access.: In Section III, we discussed how the
memory of the CPU and GPU differs and how data must
be synced between them for the kernel to function correctly.
Data movement between CPU and GPU (to and from) is
a big factor which affects the execution time of a kernel.
Another factor which affects the execution time of a kernel
is how many times memory locations are declared, referred
and written to.

3) Computation.: Finally we count the number of oper-
ations that occur in a kernel. One primary reason why a
generic cost model with a “one size-fits-all” cost function
(like [22]) does not deliver the best results is that it considers
the cost of running all operations to be equal. But, in practice
this is not true. For instance, a multiplication operation
will take more time than an addition or logical operation.
Also, floating point multiplication, might take different time
than integer multiplication. Hence, we need to extract the
number of times each of the operations are called. Still there
are some operations which we can assume to have same
cost of execution. For instance, we combine addition and
subtraction which has the same cost of execution.

A. Data Collection

The absence of publicly available data is the most sig-
nificant challenge that any ML engineer faces for compiler
problems. We faced the same problem as well. So, the first
step in developing a machine learning-based cost model was
to create a dataset that could be used to train our model. And
we needed a dataset which would cover all the features,
defined in our feature set. To cover all the features, we
wrote mini benchmark applications like Matrix Multipli-
cation, Laplace Equation, SAXPY, Gauss Seidel Method
and use some benchmarks from the Rodinia benchmark
suite, like the BFS, LU-Decomposition, Particle Filter, etc.
We created over 10,000 different kernels by varying the
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levels of parallelism and data used for all these benchmark
applications. Then, we extracted and collected data on the
feature set defined in Table I as well as the execution time
of each of these kernels.

B. Wilson Dslash Operator

In addition to the benchmark applications, we employ
a kernel that represents the Wilson Dslash Operator [3]
found in the Lattice Quantum Chromodynamics (LQCD)
application. QCD is the theory of the strong nuclear force,
one of nature’s fundamental forces that holds quarks together
to form protons and neutrons, which then form the nuclei of
atoms. LQCD is a computer-friendly numerical framework
for QCD, that employs the Wilson Dslash kernel, which is
essentially a finite difference operator.

The Wilson Dslash operator, D, in four space-time dimen-
sions is defined as

4
Dis(x,y) = Y (1= 2))asU ()60
p=1 (1)

+(1+ 'Y/L)uﬁU;t” (z+ ﬂ)(smﬂlﬂ/)]

where x and y are the coordinates of the lattice sites,
a, 8 are spin indices, and 4, j are color indices. U, (x) is
the gluon field variable and is an SU(3) matrix. For the
unpreconditioned Dirac operator, the complex fermion fields
are represented by one-dimensional arrays of size L x X Ly X
LZ X LT X SPINS x COLORS x 2 where LX7LY7LZ
and L are the numbers of lattice sites in the z,y, z and
t directions, respectively. SPINS and COLORS are the
numbers of spin and color degrees of freedom, typically 4
and 3 respectively.

The above equation (Eq 1), when represented in a
C++ code has four nested for loops iterating over
Lr,Lyz, Ly, Lx in that order. We modified the source code
for this study to offload this kernel to the GPU using
all six transformations described in Section III. We run
this operator for different values of Ly and Lz (the two
outer loops) to determine the runtime on Summit [23] and
Seawulf [24] HPC clusters. On both clusters, we collected
approximately 40 data points for each transformation. We
used some of these data points to train our model and
kept the rest to evaluate our model’s prediction accuracy,
as described later in Section VI.

V. TRAINING MODELS

The available data and the target execution time predic-
tions leans towards to a supervised machine learning (ML)
approach, which involves learning a feature representation
and fitting a predictive model using training data contain-
ing ground-truth targets. This can be accomplished with
a number of machine learning model types, all designed
to ultimately perform a regression task. There are several
ways of performing regression using the collected data. In



all cases, the available data — populated parameters and
corresponding measured execution time — is divided into
disjoint training and testing sets, with model’s parameters
determined by fitting on the training set, and the model’s
performance determined separately on the hold-out test set.
This split allows for the evaluation of the models’ general-
ized performance on previously unseen data.

A. Why Regression?

Since the runtime is a positive real-valued variable, the
prediction task for all ML models is a regression problem,
as opposed to classification, which has a limited set of
possible outcomes. The rationale for using machine learning
regression models to predict the cost of OpenMP offloading
is the reasonable expectation that when well-selected and
measurable kernel parameters are combined, they will be
strongly predictive of kernel execution time, but the nature of
this predictive correlation may be complex. ML approaches
are well suited to determining these correlations in a data-
driven manner — without exhaustive reasoning and debate
about the relative importance of and relationship between
particular features.

The standard linear regression approach to this problem
determines the specific linear combination of all input
parameters that best fits the target values. Although the
restriction to linear relationships is constraining in practice,
the easy-to-interpret weights and biases among features
make this a useful and accessible baseline. One addition
we made in this work was the extension of input parameters
by appending a log-transformed duplicate set, thus enabling
approximate representation of multiplicative and rational
relationships (as sums and differences of logs) as well as

omp parallel #iter
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#memory
_— #variables
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linear ones.

B. Neural Network

Linear regression applies a linear fit across all input in
the original parameter space, and the data must have a
linear relationship in order for this to work. This condition
is violated in the data we collect — some features are
strongly correlated, while relationships for others cannot
be determined in the original parameter space. In order to
find a better fitting non-linear data relationship, stronger ML
models can map inputs to a different parameter space (e.g.
in a higher dimension). Support Vector Machines (SVMs)
and Artificial Neural Networks (ANNs) are examples of
ML techniques that can learn complex feature relationships
that are impossible to capture with linear regression while
maintaining efficiency at inference time. We chose neural
networks over SVMs because they can capture even more
complex data relationships while being easier to parame-
terize and converge using gradient-based optimization algo-
rithms (e.g., Stochastic Gradient Descent).

ANNs are a very diverse family of models; the class
we employ is fully-connected feed-forward networks, also
called Multi-Layer Perceptrons (MLPs). An MLP is essen-
tially a stacked series of linear regression layers. The non-
linearity is added by activation functions such as ReL.U [25],
sigmoid, tanh, functions etc, added on top of each linear
layer. The key hyperparameters of MLPs are the number
and size of the hidden layers which build up increasingly
complex data representations before a final regression layer
is applied to perform the ultimate prediction.

Figure 2 (a) and (b), gives a basic idea of the flow of
training our model. When we want to use this model we
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Figure 2: Overview of the ML Model



extract the required features from the new kernel, append
a log-transformed duplicate set, standardize these features
using the mean (u) and standard deviation (o) from the
original model, and pass the standardized data to our model,
which returns the prediction of the kernel’s execution time
(as shown in Figure 2 (c)).

VI. EXPERIMENTS AND EVALUATIONS

Section IV already discussed multiple code level transfor-
mations which we can use to offload an OpenMP parallel
loop to the GPU. As a proof of concept for this paper,
we only consider these six transformations, and create a
model for each of them individually. We experiment on
two different HPC clusters, each with an LLVM/Clang 13.0
compiler that supports GPU offloading:

1) Summit Supercomputer with NVIDIA V100 GPUs

2) Seawulf cluster with NVIDIA K80 GPUs
Despite the fact that each node on both clusters is connected
to multiple GPUs, we only consider single GPU for the
purposes of this research. Dealing with multiple GPUs will
be left for future research. Each of these transformations has
data in our dataset, with the kernel built on both clusters.
We trained a total of twelve models, one for each of the six
transformation, on both clusters.

COMPOFF employs an MLP model with six layers — 1
input, 4 hidden and 1 output neurons. Rather than selecting
an arbitrary number of neurons in each hidden layer or
perform an exhaustive grid search, we set the number
of neurons on multiples of the number of input features
(number of neurons in the first layer). Therefore, with 33
input features, the first, second, third and fourth hidden
layers have 66, 132, 66 and 33 neurons respectively. Glorot
initialization, described in [26], is used to set the weights
of linear layers. The bias is initialized to 0. In all runs, the
batch size for training data is set to 16.

We experiment with SGD (Stochastic Gradient Descent),
Adam [27] and RMSprop [28] as the underlying opti-
mization algorithm. We choose the RMSprop optimization
algorithm with an initial learning rate of 0.01 that is stepped
down every 30 epochs by a factor of 0.1 and weight
decay of 0.0001 for 150 epochs because it gives us optimal
performance on transformations for both HPC clusters.

The objective function to train all models is based on the
Mean Square Error loss function defined by:

UG yi) = (5 — vi)”
where y; and y; represent the predicted and ground truth
runtime, respectively.

Each training dataset is divided into train (72%), valida-
tion (8%) and testing sets (20%). The model does not learn
from the validation and testing sets. Z-score standardization
is the only augmentation applied to training and validation
data. We use the training set to train the model and the
unseen validation set to validate its growth. The computed
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statistics are then applied to testing data. For our second set
of experiments with Wilson Dslash Operator data, we add 20
data points to the original dataset and hold the remaining 20
data points for evaluation. We calculate Root Mean Square
Error (R.M.S.E.), as the standard deviation of the prediction
errors. The lower this value, the more accurate our model
is. In addition, we calculate the Mean Absolute Percentage
Error (M.A.P.E.) to determine the accuracy of our model.

VII. RESULTS AND ANALYSIS

A good statistical validation technique provides us with
a thorough measure of our model’s performance across the
entire dataset. The validation set is selected at random for
each data file. The validation set helps us in understanding
the models progress. Once a training epoch is complete, we
freeze the network and compute the R.M.S.E. and M.A.P.E.
on the validation set. These values are expected to decrease
as we train and then increase eventually due to overfitting.

Following the training protocol outlined in the previous
section, we investigate the models’ fit across multiple data
files. On regular microbenchmark data, we can see that a
simple MLP performs impressively. The results are shown
in Table II. Due to the small number of data points collected
for the Wilson Dslash Operator, we can see that the model
can adapt to the new application relatively well in some
cases but not so well in others, as shown in Table III. The
new application’s few data points are clustered further apart

Transformation

Cluster | R.ML.S.E. (sec) | M.A.P.E.

Collapse Seawu!f 0.279 0.030
Summit 0.090 0.211

Combined Seawu!f 1.368 0.053
Summit 0.399 0.138

Split Seawu!f 0.420 0.044
Summit 0.112 0.227

Swap Collapse Seawu!f 1.242 0.055
Summit 0.128 0.120

. Seawulf 0.669 0.027

Swap Combined | g, 0y 0.276 0.062
Swap Split Seawu!f 0.919 0.059
Summit 0.454 0.284

Table II: Evaluation results on the microbenchmark data
files for respective transform and cluster

Transformation | Cluster ~R.M.S.E.(sec) | M.A.P.E.
Collapse Seawulf 0.143 0.576
Summit 0.067 4.201
Combined Seawulf 1.500 0.323
Summit 0.333 0.259
Split Seawulf 0.384 1.044
Summit 0.041 0.584
Swap Collapse Seawulf 8.972 3.305
Summit 0.512 2.871
. Seawulf 1.771 3.321
Swap Combined | g 0.584 2.686
Swap Split Seawulf 2.668 7.083
Summit 0.032 0.515

Table III: Evaluation results on Wilson Dslash kernel data
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from the data collected by the microbenchmark application,
resulting in a data imbalance. This is commonly referred to
as the long-tail problem seen in many real-world applica-
tions, and is not in the scope of this work.

The goal of this work is to show that ML regression
models can be used to predict the cost of OpenMP offloading
for different kernels, and it is evidenced by the strong
correlation between actual and predicted data in Figures 3
and 4. When looking at Figure 4(a), it may appear that the
predictions on Summit are dispersed. However, when the
scale of the steps on its y-axis and the R.M.S.E. values are
taken into account, we can see that the actual and predicted
data are strikingly similar. Furthermore, we see the model
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perform well on a wide range of data (from 100s of ms to a
few hundred seconds), implying that a single model can be
trained to predict high variance data with careful finetuning,
hyperparameter setup, and a large amount of data. Because
the R.MS.E. for these predictions is so low, we can ignore
the higher M.A.P.E. values observed in some cases. This
is also observed in the prediction for the Wilson Dslash
operator data as evident in Figure 5 (the x-axis represents
different Wilson Dslash kernels, sorted by actual execution
time). The blue bar in the figure represent the actual runtime
of the kernel, while the orange dashed bar represents the
prediction by COMPOFFE. We can see that in all cases, the
prediction is close enough to the actual runtime.



VIII. CONCLUSION AND FUTURE WORK

This work is a proof of concept that an ML model can be
trained and used by compiler developers to make better de-
cisions in offloading a kernel to a GPU using OpenMP. Our
findings show that this model can predict offloading costs
of several benchmark application and one real application
(Wilson Dslash operator) with a Root Mean Squared Error
of less than 0.5 seconds. It has some limitations though,
biggest of which is the lack of an exhaustive dataset. The
current dataset that we collected for the purpose of this work
is sufficient for a proof of concept. But to create a portable
cost model across multiple applications and architectures,
we need to train the ML model extensively across several
platforms, compilers and applications.

Even if we have an exhaustive dataset across various
environments, another big challenge is runtime parameters
tuning. It is observed that the same kernel, when run on
the same platform multiple times show different execution
time. It is seen that the execution time differ by a couple
of seconds. Therefore, in terms of percentage variation, for
smaller kernels which run for only a second or so, this
variation could be huge. This brings in a lot of noise in our
training set for smaller kernels. However, in large kernels,
a couple of seconds of variation in the prediction is usually
not a big issue and can be ignored. In actual practice, if
a kernel is small and does not have enough computational
work, a GPU execution is not justified. Therefore, currently,
we leave the decision of how to interpret the prediction for
smaller kernel upon the users of COMPOFF.

Other parameters that we have not considered in this work
and that may affect the execution time of a kernel are:

« Data affinity — Data affinity is not yet supported by
OpenMP and hence we are also not considering it.

« Data reuse — We have previously demonstrated [29]
that reusing data between multiple kernels improves the
overall execution time of an application. Currently, this
work does not consider data reuse between multiple
kernels, and each of the kernels are considered mutually
independent with respect to data reusability.

o Unified memory — Previous studies [30], [31] have
shown that using unified memory between CPU and
GPU, an application can significantly improve OpenMP
GPU offloading performance. However, we haven’t yet
considered unified memory in this project.

o Data overfitting occurs when a statistical model fits
exactly against its training data, but fails against unseen
data, defeating its purpose. Even though this is partially
mitigated by the use of validation sets, regularization
and dropout layers, it is not a foolproof method.

o Constants — As with most compile time cost models,
COMPOFF can only predict the execution time of
kernels whose data size and level of parallelism are
available during compile time.
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For our future work, we plan to apply ML techniques
to aforementioned challenges. We also plan to work on
improving feature selection and representation for parallel
programming models. Recently, Graph Neural Network is
gaining popularity for its performance for learning graph
representation. We plan to use it in the future to learn
characteristics of parallel code.
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