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Abstract—The HPC industry is inexorably moving towards
an era of extremely heterogeneous architectures, with more
devices configured on any given HPC platform and potentially
more kinds of devices, some of them highly specialized. Writing
a separate code suitable for each target system for a given
HPC application is not practical. The better solution is to use
directive-based parallel programming models such as OpenMP.
OpenMP provides a number of options for offloading a piece
of code to devices like GPUs. To select the best option from
such options during compilation, most modern compilers use
analytical models to estimate the cost of executing the original
code and the different offloading code variants. Building such
an analytical model for compilers is a difficult task that necessi-
tates a lot of effort on the part of a compiler engineer. Recently,
machine learning techniques have been successfully applied
to build cost models for a variety of compiler optimization
problems. In this paper, we present COMPOFF, a cost model
that statically estimates the Cost of OpenMP OFFloading using
a neural network model. We used six different transformations
on a parallel code of Wilson Dslash Operator to support
GPU offloading, and we predicted their cost of execution on
different GPUs using COMPOFF during compile time. Our
results show that this model can predict offloading costs with
a root mean squared error in prediction of less than 0.5 seconds.
Our preliminary findings indicate that this work will make it
much easier and faster for scientists and compiler developers
to port legacy HPC applications that use OpenMP to new
heterogeneous computing environment.
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I. INTRODUCTION

Since the end of Dennard scaling hardware developers

have improved chip performance by configuring a grow-

ing number of compute cores. This multi-core processor

technology was rapidly adopted by the High Performance

Computing (HPC) community. It requires the modification

of application codes to exploit the cores, e.g. by inserting

pthreads or OpenMP constructs into the source code. In

the last decade, General Purpose Graphics Processing Units

(GPGPUs) have been attached to the multicore processors on

many HPC platforms in order to benefit from their ability to

handle large amounts of data parallelism with low power

consumption. The trend toward heterogeneous HPC plat-

forms is clearly visible in the most recent TOP500 list; while

there are notable exceptions, a large fraction of the systems

are heterogeneous with in most cases either NVIDIA GPUs

or Intel Xeon Phis delivering high performance per watt. The

second-ranked Summit supercomputing cluster is composed

of two IBM PowerPC9 multicore CPUs with six NVIDIA

V100 GPUs per node and three kinds of memory. Moving

forward, we expect HPC platforms to be more diverse and

potentially include domain-specific accelerators designed for

specialized paradigms like machine learning, neuromorphic

computing and ultimately quantum computing, leading to an

era of extreme heterogeneity.

The presence of a single type of accelerator on a node

already poses a challenge to current programming environ-

ments; we are not yet well prepared for a future in which

multiple types of heterogeneous accelerators may be config-

ured. Many application developers are adapting their codes

to exploit GPUs. Lattice Quantum Chromodynamics [1], an

application developed under the US Department of Energy’s

ECP project, is one such application that can greatly benefit

from the use of accelerators such as GPUs. Unfortunately,

effectively utilizing GPUs is a time-consuming endeavor

that may necessitate re-engineering data structures as well

as large regions of code in order to maximize the GPU’s

computational power while minimizing overheads. It will be

far more difficult to develop code for systems with extreme

heterogeneity containing different devices. It is therefore

imperative to develop techniques that will relieve the ap-

plication developers of the burden of such development.

Using a directive-based programming model, such as

OpenMP, the de-facto programming standard for parallel

programming in C/C++ and Fortran, is one way to handle

portability across architectures. OpenMP now supports GPU
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offloading and is planning a transition to extreme hetero-

geneity [2], rendering the underlying hardware transparent

and allowing for greater portability. Nevertheless, even with

directive-based programming models like OpenMP, opti-

mizing large scale applications with tens to hundreds of

thousands of lines of code remains an arduous task.

In this work, we explore state of the art ML techniques to

develop COMPOFF (Cost of OpenMP OFFloading), a first

of its kind compiler cost modeling tool that employs ML to

predict the execution time of an OpenMP kernel on GPUs

during compilation. We first discuss some cutting-edge work

that is related to and precedes our work in Section II, fol-

lowed by Section III’s discussion of the challenges encoun-

tered during offloading using OpenMP. In Section IV, we

introduce static program features, that can be used to create

a static cost model using Machine Learning, independent

of compilers and hardware dependencies, as well as how

we synthesize data to train our model. The design of our

model is then presented in Section V. Section VI covers the

experiments carried out in this paper in order to predict the

cost of offloading the Wilson-Dslash stencil operator [3] for

Lattice Quantum Chromodynamics application. The results

are analysed in Section VII. Finally, we conclude our work

with future discussion in Section VIII.

II. RELATED WORK

Compiler engineers are developing a number of frame-

works [4], [5], [6] to assist application developers deal

with extreme heterogeneity more effectively. These frame-

works require analytical cost models to help them make

better decisions when selecting the choice of optimization

or transformation required by the application. However,

developing a cost function is time-consuming, and almost

all modern compilers, including LLVM/Clang, use a simple

“one-size-fits-all” cost function that does not provide the

best performance in the case of diverse architecture. Hand-

tuned cost functions are currently popular, but calculating

the costs and benefits of a compiler optimization requires

a deeper understanding of the underlying hardware. Despite

its effectiveness, manually constructing a cost model for a

single architecture can take months. Since cost functions are

critical and manual tuning is rather laborious, compiler en-

gineers are investigating Machine Learning (ML) techniques

as a means of automating this process.

Early work exploiting ML in compilers, like [7], primar-

ily explored its use to help optimize sequential programs.

However, with the proliferation of multi-core platforms and,

more recently, heterogeneous systems, its application to the

task of optimizing parallel programs has received significant

attention in the last decade. A decision-tree-based approach

has been developed to predict the scheduling policy for an

OpenMP parallel region [8]. Furthermore, [9] optimizes

OpenMP programs for scheduling policies and thread count

using ML techniques. ML has been used to determine the op-

timum degree of parallelism for transactional memory [10]

and hardware resource allocation [11]. The work presented

in [12] and [13] applies ML to complex parallel programs

and divide them among the available multi-core resources.

The Petabricks project [14] employs a genetic search to tune

algorithmic choices at compile time to reduce searching

overheads. Tree and graph-based features have also been

used by Malik et.al. [15] who present a unique graph-based

approach for feature representation. ML techniques were

used to build classifiers to determine whether to offload

OpenCL code [16], and to select a clock frequency at

which the processor should operate [17]. The work was

reported to be extremely accurate, but the benefits could

not be quantified because no modified code was generated.

The results of prior efforts from applying ML on compiler

optimizations are encouraging. However, new feature engi-

neering practices that can help ML learn more about a code

and its computational needs must be investigated.

III. OPENMP

The OpenMP API 4.0 specification (released in 2013 [18])

includes a collection of directives that tell the compiler when

to offload a block of code to devices, like GPU, FPGA etc.

However, achieving scalable performance on large parallel

machines still necessitates significant effort in performance

tuning, particularly in terms of cache management and

locality, data and work sharing, and synchronizations.

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

float tmp = 0.0f;

for (int k = 0; k < n; k++) {

tmp += A[i*n+k] + B[k*n+j];

}

C[i*n+j] = tmp;

}

}

Code 1: Sequential Matrix Multiplication program

#pragma omp target

#pragma omp parallel for

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

float tmp = 0.0f;

for (int k = 0; k < n; k++) {

tmp += A[i*n+k] + B[k*n+j];

}

C[i*n+j] = tmp;

}

}

Code 2: Matrix Multiplication on GPU using OpenMP

When each architecture supports either a distinct native

language or alternative optimization methods for the same

language, program portability becomes a major problem.

This is especially important for users whose programs must

run smoothly on systems with diverse node architectures,

such as manycore vs. GPU-accelerated nodes, or when
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omp distribute

omp for

omp teams

Figure 1: Teams distribute parallel for

dealing with multiple device memory accesses to the same

data. In the future, the ultimate level of portability would

be if we can have developers write a sequential code, like

matrix multiplication in Code 1, and then build this code

using any compiler on any platform and expect it to exploit

all hardware and accelerator parallelism effectively.

Unfortunately, programming languages and compilers are

far away from a state where they can handle portability

without programmer intervention. Usually, a base language

lacks all of the features that a software developer needs,

and they rely on libraries to meet their performance goal.

Architecture-specific libraries, like CUDA, can be used

to extract all of NVIDIA GPU’s performance to achieve

accelerator parallelism, but portability suffers as a result.

Directive-based programming languages, like OpenMP (e.g.

Code 2), serve as a middle ground, providing a portable

way to augment the base languages, while filling in the

performance gaps required to support a specific architecture.

A. GPU Offloading in OpenMP

OpenMP provides additional information to the compilers,

which bridges a gap from serial programming languages to

parallel programming languages. GPUs are highly parallel,

and the programmer should fully utilize it’s parallel capacity

to extract maximum performance. Simply parallelizing a

code using “omp parallel for” will parallelize it for CPUs,

but will not offload the computation to a GPU. OpenMP

device offloading consists of two major components:

• Data mapping between host and device

• Offloading computations from host to device.

All data is initially stored in CPU memory, and GPUs

have no access to it. To access host data, the GPU must

first move the data from the host (CPU) to the device

(GPU) using the data map clause, and then move the data

back from the device to the host once the computation on

the GPU is complete. The omp parallel for creates a

single contention group of threads with shared memory and

the ability to coordinate and synchronize, while the omp

target directive marks a code section for offloading. But

GPUs are not parallel worksharing machines.

On a platform like GPU, we expect a high degree of

coarse grain parallelism across the entire device. This struc-

ture limits the degree of parallelism that a GPU can exploit.

Instead, programmers can use multiple options provided by

OpenMP directives, like teams distribute, which exposes

coarse grained, scalable parallelism to the entire GPU.

OpenMP teams and distribute are directives that spawn

additional level of parallelism, as shown in Figure 1. Only

one team and one member thread are active at the start

of a target region. If we want to have multiple teams, we

use the directive teams distribute first, which distributes the

entire loop iteration space among all teams. Furthermore,

if there are more nested parallel loops, we use the parallel

for directive upon them to distribute the iterations of the

nested loops among threads within a team. When there is

only one level of parallel loops, or when the outer loop has

enough parallelism, we use the combined directive teams

distribute parallel for to distribute the iteration space of one

loop among teams and threads within a team.

Threads are organized into groups using teams, and

distribute allows to schedule a group of teams to run

a loop. As there is no synchronization primitive to act as a

barrier between threads belonging to different teams, teams

appear to be similar to CUDA threadblocks on NVIDIA

GPUs. As is usual, parallel for is used to parallelize

the threads within each team. Coarse grained parallelism

may be combined (Code 3) or split (Code 4). There could

be other transformation as well which we could use to fully

utilize the parallelism on a GPU. For instance, in Code 5

and 6 the programmer could swap the outer (iterating over

i) and inner (iterating over j) loops and apply combined

#pragma omp target teams distribute parallel for

for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
float tmp = 0.0f;

for (int k = 0; k < n; k++)

tmp += A[i * n + k] + B[k * n + j];

C[i * n + j] = tmp;

}
}
.

Code 3: Combined parallelism

#pragma omp target teams distribute

for (int i = 0; i < n; i++) {
#pragma omp parallel for

for (int j = 0; j < n; j++) {
float tmp = 0.0f;

for (int k = 0; k < n; k++)

tmp += A[i * n + k] + B[k * n + j];

C[i * n + j] = tmp;

}
}

Code 4: Split parallelism
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#pragma omp target teams distribute parallel for

for (int j = 0; j < n; j++) {
for (int i = 0; i < n; i++) {
float tmp = 0.0f;

for (int k = 0; k < n; k++)

tmp += A[i * n + k] + B[k * n + j];

C[i * n + j] = tmp;

}
}
.

Code 5: Swap Combined parallelism

#pragma omp target teams distribute

for (int j = 0; j < n; j++) {
#pragma omp parallel for

for (int i = 0; i < n; i++) {
float tmp = 0.0f;

for (int k = 0; k < n; k++)

tmp += A[i * n + k] + B[k * n + j];

C[i * n + j] = tmp;

}
}

Code 6: Swap Split parallelism

#pragma omp target teams distribute parallel for \
collapse(2)

for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
float tmp = 0.0f;

for (int k = 0; k < n; k++)

tmp += A[i * n + k] + B[k * n + j];

C[i * n + j] = tmp;

}
}

Code 7: Collapse Loop

#pragma omp target teams distribute parallel for \
collapse(2)

for (int j = 0; j < n; j++) {
for (int i = 0; i < n; i++) {
float tmp = 0.0f;

for (int k = 0; k < n; k++)

tmp += A[i * n + k] + B[k * n + j];

C[i * n + j] = tmp;

}
}

Code 8: Swap Collapse Loop

and split parallelism on them as well. A programmer could

also collapse the two loops as shown in Code 7 and 8 to

exploit its full degree of parallelism. The implementation

of collapse varies depending on the compiler, as does how

it affects the outcome. But, how do we decide which of

the these transformation will be better for our kernel and

architecture? One possible approach is to take such decision

during compile time using some static cost model.

IV. MACHINE LEARNING IN COMPILERS

Despite their efficacy, designing hand tuned cost models

for each architecture is rather costly and time consuming.

To automate the process, compiler developers are turning

to machine learning techniques. Identifying the feature set

that can be used to train an ML model is the first step

toward using ML in compilers. Since the goal of this work

is to maintain portability using OpenMP, we must look

for features that are platform and compiler independent.

This means we should only consider features from the

original source code written by the programmer without

applying any compiler optimizations on them. Furthermore,

because we need to make predictions at compile time, these

features should be static in nature. For the purpose of this

research, we only consider the six transformations explained

in Section III and shown in Code 3 – 8.

After studying several GPU cost models ([19], [20], [21]),

we conclude that there are three major factors which affect

the cost of execution of a kernel on a GPU - level of paral-

lelism, memory access, and computation to be performed by

Types Feature Description

Parallelism

Outer Outer Loop of Iteration
Inner Inner Loop of Iteration (Set to 0 when there is no nested loop)
Schedule static, dynamic, guided, auto, runtime

Memory

MemTo Total memory transferred to GPU in bytes
MemFrom Total memory transferred from GPU in bytes
VarDecl Total number of variable declaration
RefVar Total number of variable referenced
IntLiteral Total number of integer constant referred
FloatLiteral Total number of floating point constant referred
IntAssign Total integer assignment
FloatAssign Total floating point assignment

Computation

IntAddSub Total integer addition and subtraction
FloatAddSub Total floating point addition and subtraction
IntMult Total integer multiplication
FloatMult Total floating point multiplication
IntDiv Total integer division
FloatDiv Total floating point division
Others Total logical, relational and bitwise operations

Table I: Static Kernel features independent of architectures and compilers

394



the kernel. To train a model which could predict the cost of

execution of above transformation, we extract static features

from kernels, which can be grouped in accordance to these

factors. A list of features that we consider in this paper can

be found in Table I. Here we group the features based on

level of parallelism, memory access and computation.

1) Level of parallelism.: To check for the level of par-

allelism we can look into the number of iterations of the

for loop, the number of available threads and how OpenMP

schedules the iterations between the threads. Usually, the

number of available threads on a GPU and the scheduling-

type used by OpenMP are present at the time of compilation,

but the number of iterations are usually a variable. For this

current study we make sure that the number of iteration in

the for loop are also constant. Predicting the cost at runtime

using variable iterations is part of the future work. The level

of parallelism can be increased by collapsing the nested

loops. In this work, we restrict the nesting of loops to two

levels only, referring to them as the outer and inner loops.

2) Memory access.: In Section III, we discussed how the

memory of the CPU and GPU differs and how data must

be synced between them for the kernel to function correctly.

Data movement between CPU and GPU (to and from) is

a big factor which affects the execution time of a kernel.

Another factor which affects the execution time of a kernel

is how many times memory locations are declared, referred

and written to.

3) Computation.: Finally we count the number of oper-

ations that occur in a kernel. One primary reason why a

generic cost model with a ”one size-fits-all” cost function

(like [22]) does not deliver the best results is that it considers

the cost of running all operations to be equal. But, in practice

this is not true. For instance, a multiplication operation

will take more time than an addition or logical operation.

Also, floating point multiplication, might take different time

than integer multiplication. Hence, we need to extract the

number of times each of the operations are called. Still there

are some operations which we can assume to have same

cost of execution. For instance, we combine addition and

subtraction which has the same cost of execution.

A. Data Collection

The absence of publicly available data is the most sig-

nificant challenge that any ML engineer faces for compiler

problems. We faced the same problem as well. So, the first

step in developing a machine learning-based cost model was

to create a dataset that could be used to train our model. And

we needed a dataset which would cover all the features,

defined in our feature set. To cover all the features, we

wrote mini benchmark applications like Matrix Multipli-

cation, Laplace Equation, SAXPY, Gauss Seidel Method

and use some benchmarks from the Rodinia benchmark

suite, like the BFS, LU-Decomposition, Particle Filter, etc.

We created over 10,000 different kernels by varying the

levels of parallelism and data used for all these benchmark

applications. Then, we extracted and collected data on the

feature set defined in Table I as well as the execution time

of each of these kernels.

B. Wilson Dslash Operator

In addition to the benchmark applications, we employ

a kernel that represents the Wilson Dslash Operator [3]

found in the Lattice Quantum Chromodynamics (LQCD)

application. QCD is the theory of the strong nuclear force,

one of nature’s fundamental forces that holds quarks together

to form protons and neutrons, which then form the nuclei of

atoms. LQCD is a computer-friendly numerical framework

for QCD, that employs the Wilson Dslash kernel, which is

essentially a finite difference operator.

The Wilson Dslash operator, D, in four space-time dimen-

sions is defined as

D
ij
αβ(x, y) =

4∑

µ=1

[((1− γµ))αβU
ij
µ (x)δx+µ̂,y

+ (1 + γµ)αβU
†ij

µ (x+ µ̂)δx−µ̂,y)]

(1)

where x and y are the coordinates of the lattice sites,

α, β are spin indices, and i, j are color indices. Uµ(x) is

the gluon field variable and is an SU(3) matrix. For the

unpreconditioned Dirac operator, the complex fermion fields

are represented by one-dimensional arrays of size LX×LY ×

LZ × LT × SPINS × COLORS × 2 where LX , LY , LZ

and LT are the numbers of lattice sites in the x, y, z and

t directions, respectively. SPINS and COLORS are the

numbers of spin and color degrees of freedom, typically 4

and 3 respectively.

The above equation (Eq 1), when represented in a

C++ code has four nested for loops iterating over

LT , LZ , LY , LX in that order. We modified the source code

for this study to offload this kernel to the GPU using

all six transformations described in Section III. We run

this operator for different values of LT and LZ (the two

outer loops) to determine the runtime on Summit [23] and

Seawulf [24] HPC clusters. On both clusters, we collected

approximately 40 data points for each transformation. We

used some of these data points to train our model and

kept the rest to evaluate our model’s prediction accuracy,

as described later in Section VI.

V. TRAINING MODELS

The available data and the target execution time predic-

tions leans towards to a supervised machine learning (ML)

approach, which involves learning a feature representation

and fitting a predictive model using training data contain-

ing ground-truth targets. This can be accomplished with

a number of machine learning model types, all designed

to ultimately perform a regression task. There are several

ways of performing regression using the collected data. In
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all cases, the available data – populated parameters and

corresponding measured execution time – is divided into

disjoint training and testing sets, with model’s parameters

determined by fitting on the training set, and the model’s

performance determined separately on the hold-out test set.

This split allows for the evaluation of the models’ general-

ized performance on previously unseen data.

A. Why Regression?

Since the runtime is a positive real-valued variable, the

prediction task for all ML models is a regression problem,

as opposed to classification, which has a limited set of

possible outcomes. The rationale for using machine learning

regression models to predict the cost of OpenMP offloading

is the reasonable expectation that when well-selected and

measurable kernel parameters are combined, they will be

strongly predictive of kernel execution time, but the nature of

this predictive correlation may be complex. ML approaches

are well suited to determining these correlations in a data-

driven manner – without exhaustive reasoning and debate

about the relative importance of and relationship between

particular features.

The standard linear regression approach to this problem

determines the specific linear combination of all input

parameters that best fits the target values. Although the

restriction to linear relationships is constraining in practice,

the easy-to-interpret weights and biases among features

make this a useful and accessible baseline. One addition

we made in this work was the extension of input parameters

by appending a log-transformed duplicate set, thus enabling

approximate representation of multiplicative and rational

relationships (as sums and differences of logs) as well as

linear ones.

B. Neural Network

Linear regression applies a linear fit across all input in

the original parameter space, and the data must have a

linear relationship in order for this to work. This condition

is violated in the data we collect – some features are

strongly correlated, while relationships for others cannot

be determined in the original parameter space. In order to

find a better fitting non-linear data relationship, stronger ML

models can map inputs to a different parameter space (e.g.

in a higher dimension). Support Vector Machines (SVMs)

and Artificial Neural Networks (ANNs) are examples of

ML techniques that can learn complex feature relationships

that are impossible to capture with linear regression while

maintaining efficiency at inference time. We chose neural

networks over SVMs because they can capture even more

complex data relationships while being easier to parame-

terize and converge using gradient-based optimization algo-

rithms (e.g., Stochastic Gradient Descent).

ANNs are a very diverse family of models; the class

we employ is fully-connected feed-forward networks, also

called Multi-Layer Perceptrons (MLPs). An MLP is essen-

tially a stacked series of linear regression layers. The non-

linearity is added by activation functions such as ReLU [25],

sigmoid, tanh, functions etc, added on top of each linear

layer. The key hyperparameters of MLPs are the number

and size of the hidden layers which build up increasingly

complex data representations before a final regression layer

is applied to perform the ultimate prediction.

Figure 2 (a) and (b), gives a basic idea of the flow of

training our model. When we want to use this model we

Kernel

omp parallel
for loop

...

#iter

#memory

#variables

#inst

(a) Feature Extraction

Training Programs

...

...

...

... ...

...

Standardized
Feature set

Runtime

Dataset
Neural Network

COMPOFF

(b) Training Model

New Kernel

...

Feature Extraction

...

Standardization

COMPOFF

Runtime Prediction

(c) Prediction

Figure 2: Overview of the ML Model
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extract the required features from the new kernel, append

a log-transformed duplicate set, standardize these features

using the mean (µ) and standard deviation (σ) from the

original model, and pass the standardized data to our model,

which returns the prediction of the kernel’s execution time

(as shown in Figure 2 (c)).

VI. EXPERIMENTS AND EVALUATIONS

Section IV already discussed multiple code level transfor-

mations which we can use to offload an OpenMP parallel

loop to the GPU. As a proof of concept for this paper,

we only consider these six transformations, and create a

model for each of them individually. We experiment on

two different HPC clusters, each with an LLVM/Clang 13.0

compiler that supports GPU offloading:

1) Summit Supercomputer with NVIDIA V100 GPUs

2) Seawulf cluster with NVIDIA K80 GPUs

Despite the fact that each node on both clusters is connected

to multiple GPUs, we only consider single GPU for the

purposes of this research. Dealing with multiple GPUs will

be left for future research. Each of these transformations has

data in our dataset, with the kernel built on both clusters.

We trained a total of twelve models, one for each of the six

transformation, on both clusters.

COMPOFF employs an MLP model with six layers – 1

input, 4 hidden and 1 output neurons. Rather than selecting

an arbitrary number of neurons in each hidden layer or

perform an exhaustive grid search, we set the number

of neurons on multiples of the number of input features

(number of neurons in the first layer). Therefore, with 33

input features, the first, second, third and fourth hidden

layers have 66, 132, 66 and 33 neurons respectively. Glorot

initialization, described in [26], is used to set the weights

of linear layers. The bias is initialized to 0. In all runs, the

batch size for training data is set to 16.

We experiment with SGD (Stochastic Gradient Descent),

Adam [27] and RMSprop [28] as the underlying opti-

mization algorithm. We choose the RMSprop optimization

algorithm with an initial learning rate of 0.01 that is stepped

down every 30 epochs by a factor of 0.1 and weight

decay of 0.0001 for 150 epochs because it gives us optimal

performance on transformations for both HPC clusters.

The objective function to train all models is based on the

Mean Square Error loss function defined by:

l(ȳi, yi) = (ȳi − yi)
2

where ȳi and yi represent the predicted and ground truth

runtime, respectively.

Each training dataset is divided into train (72%), valida-

tion (8%) and testing sets (20%). The model does not learn

from the validation and testing sets. Z-score standardization

is the only augmentation applied to training and validation

data. We use the training set to train the model and the

unseen validation set to validate its growth. The computed

statistics are then applied to testing data. For our second set

of experiments with Wilson Dslash Operator data, we add 20

data points to the original dataset and hold the remaining 20

data points for evaluation. We calculate Root Mean Square

Error (R.M.S.E.), as the standard deviation of the prediction

errors. The lower this value, the more accurate our model

is. In addition, we calculate the Mean Absolute Percentage

Error (M.A.P.E.) to determine the accuracy of our model.

VII. RESULTS AND ANALYSIS

A good statistical validation technique provides us with

a thorough measure of our model’s performance across the

entire dataset. The validation set is selected at random for

each data file. The validation set helps us in understanding

the models progress. Once a training epoch is complete, we

freeze the network and compute the R.M.S.E. and M.A.P.E.

on the validation set. These values are expected to decrease

as we train and then increase eventually due to overfitting.

Following the training protocol outlined in the previous

section, we investigate the models’ fit across multiple data

files. On regular microbenchmark data, we can see that a

simple MLP performs impressively. The results are shown

in Table II. Due to the small number of data points collected

for the Wilson Dslash Operator, we can see that the model

can adapt to the new application relatively well in some

cases but not so well in others, as shown in Table III. The

new application’s few data points are clustered further apart

Transformation Cluster R.M.S.E. (sec) M.A.P.E.

Collapse
Seawulf 0.279 0.030
Summit 0.090 0.211

Combined
Seawulf 1.368 0.053
Summit 0.399 0.138

Split
Seawulf 0.420 0.044
Summit 0.112 0.227

Swap Collapse
Seawulf 1.242 0.055
Summit 0.128 0.120

Swap Combined
Seawulf 0.669 0.027
Summit 0.276 0.062

Swap Split
Seawulf 0.919 0.059
Summit 0.454 0.284

Table II: Evaluation results on the microbenchmark data

files for respective transform and cluster

Transformation Cluster R.M.S.E.(sec) M.A.P.E.

Collapse
Seawulf 0.143 0.576
Summit 0.067 4.201

Combined
Seawulf 1.500 0.323
Summit 0.333 0.259

Split
Seawulf 0.384 1.044
Summit 0.041 0.584

Swap Collapse
Seawulf 8.972 3.305
Summit 0.512 2.871

Swap Combined
Seawulf 1.771 3.321
Summit 0.584 2.686

Swap Split
Seawulf 2.668 7.083
Summit 0.032 0.515

Table III: Evaluation results on Wilson Dslash kernel data
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Figure 3: Validation of Combined Offload on Summit and Seawulf
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Figure 4: Validation of Collapse Offload on Summit and Seawulf
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Figure 5: Wilson Dslash operator prediction on Summit and Seawulf

from the data collected by the microbenchmark application,

resulting in a data imbalance. This is commonly referred to

as the long-tail problem seen in many real-world applica-

tions, and is not in the scope of this work.

The goal of this work is to show that ML regression

models can be used to predict the cost of OpenMP offloading

for different kernels, and it is evidenced by the strong

correlation between actual and predicted data in Figures 3

and 4. When looking at Figure 4(a), it may appear that the

predictions on Summit are dispersed. However, when the

scale of the steps on its y-axis and the R.M.S.E. values are

taken into account, we can see that the actual and predicted

data are strikingly similar. Furthermore, we see the model

perform well on a wide range of data (from 100s of ms to a

few hundred seconds), implying that a single model can be

trained to predict high variance data with careful finetuning,

hyperparameter setup, and a large amount of data. Because

the R.MS.E. for these predictions is so low, we can ignore

the higher M.A.P.E. values observed in some cases. This

is also observed in the prediction for the Wilson Dslash

operator data as evident in Figure 5 (the x-axis represents

different Wilson Dslash kernels, sorted by actual execution

time). The blue bar in the figure represent the actual runtime

of the kernel, while the orange dashed bar represents the

prediction by COMPOFF. We can see that in all cases, the

prediction is close enough to the actual runtime.

398



VIII. CONCLUSION AND FUTURE WORK

This work is a proof of concept that an ML model can be

trained and used by compiler developers to make better de-

cisions in offloading a kernel to a GPU using OpenMP. Our

findings show that this model can predict offloading costs

of several benchmark application and one real application

(Wilson Dslash operator) with a Root Mean Squared Error

of less than 0.5 seconds. It has some limitations though,

biggest of which is the lack of an exhaustive dataset. The

current dataset that we collected for the purpose of this work

is sufficient for a proof of concept. But to create a portable

cost model across multiple applications and architectures,

we need to train the ML model extensively across several

platforms, compilers and applications.

Even if we have an exhaustive dataset across various

environments, another big challenge is runtime parameters

tuning. It is observed that the same kernel, when run on

the same platform multiple times show different execution

time. It is seen that the execution time differ by a couple

of seconds. Therefore, in terms of percentage variation, for

smaller kernels which run for only a second or so, this

variation could be huge. This brings in a lot of noise in our

training set for smaller kernels. However, in large kernels,

a couple of seconds of variation in the prediction is usually

not a big issue and can be ignored. In actual practice, if

a kernel is small and does not have enough computational

work, a GPU execution is not justified. Therefore, currently,

we leave the decision of how to interpret the prediction for

smaller kernel upon the users of COMPOFF.

Other parameters that we have not considered in this work

and that may affect the execution time of a kernel are:

• Data affinity – Data affinity is not yet supported by

OpenMP and hence we are also not considering it.

• Data reuse – We have previously demonstrated [29]

that reusing data between multiple kernels improves the

overall execution time of an application. Currently, this

work does not consider data reuse between multiple

kernels, and each of the kernels are considered mutually

independent with respect to data reusability.

• Unified memory – Previous studies [30], [31] have

shown that using unified memory between CPU and

GPU, an application can significantly improve OpenMP

GPU offloading performance. However, we haven’t yet

considered unified memory in this project.

• Data overfitting occurs when a statistical model fits

exactly against its training data, but fails against unseen

data, defeating its purpose. Even though this is partially

mitigated by the use of validation sets, regularization

and dropout layers, it is not a foolproof method.

• Constants – As with most compile time cost models,

COMPOFF can only predict the execution time of

kernels whose data size and level of parallelism are

available during compile time.

For our future work, we plan to apply ML techniques

to aforementioned challenges. We also plan to work on

improving feature selection and representation for parallel

programming models. Recently, Graph Neural Network is

gaining popularity for its performance for learning graph

representation. We plan to use it in the future to learn

characteristics of parallel code.
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[4] G. Mendonça, B. Guimarães, P. Alves, M. Pereira, G. Araújo,
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