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Abstract—Wearebeingconstantlyjudgedbyautomated
decisionsystemsthathavebeen widelycriticisedforbeing
discriminatoryandunfair.Sinceanalgorithmisonlyasgood
asthedataitworkswith,biasesinthedatacansignificantly
amplifyunfairnessissues.
Inthispaper,wetakeinitialstepstowardsintegratingfairness

conditionsintodatabasequeryprocessinganddatamanagement
systems.Specifically,wefocusonselectionbiasinrangequeries.
Weformallydefinetheproblemoffairness-awarerangequeries
asobtainingafairquerywhichismostsimilartotheuser’squery.
Weproposeasub-lineartimealgorithmforsingle-predicaterange
queriesandefficientalgorithmsformulti-predicaterangequeries.
Ourempiricalevaluationonrealandsyntheticdatasetsconfirms
theeffectivenessandefficiencyofourproposal.

I.INTRODUCTION

Intheeraofbigdataandadvancedcomputationmodels,
weareallconstantlybeingjudgedbytheanalysis,algorithmic
outcomes,and AI modelsgeneratedusingdataaboutus.
Suchanalysisarevaluableastheyassistdecision makers
takewiseandjustactions.Forexample,theabundanceof
largeamountsofdatahasenabledbuildingextensivebigdata
systemstofightCOVID-19,suchascontrollingthespread
ofthedisease,orinfindingeffectivefactors,decisions,and
policies[1].Similarexamplescanbefoundinalmostall
cornersofhumanlifeincludingresourceallocationandcity
policies,policing,judiciarysystem,collegeadmission,credit
scoring,breastcancerprediction,jobinterviewing,hiring,and
promotion,tonameafew.Inparticular,letusconsiderthe
followingasarunningexample:

Example1.(Part1)Consideracompanythatwouldliketo
makeapolicydecision,targetedatits“profitable”employees.
Followingourrealexperimentin§V-B,supposethecompany
hasaround150Kemployees.Usingsalaryasanindicatorof
howprofitableanemployeeis,thebusinessmanagementoffice
ofthecompanyconsidersthequerySELECT*FROMEMP
WHEREsalary≥$65K,whichincludesaround18%ofem-
ployees.Surveyingthisgroup,thecompanywantstodevelop
somemechanismstomotivateandretaintheseemployees.

Lookingattheseanalysesthroughthelensoffairness,
algorithmicdecisionslookpromisingastheyseemtoeliminate
humanbiases.However,“analgorithmisonlyasgoodas
thedataitworkswith”[2].Infact,theuseofdatainall
aforementionedapplicationshavebeenhighlycriticisedfor
beingdiscriminatory,racist,sexist,andunfair[3],[4].Proba-
blythemainreasonisthatreal-lifesocialdataisalmostalways

“biased”[2].Usingbiaseddataforalgorithmicdecisionscreate
fairnessdilemmassuchasimpossibilityandinherenttrade-offs
offairness[5],[6],[7].Besideshistoricalbiasesandfalse
stereotypesreflectedindata,othersourcessuchasselection
biascanamplifyunfairnessissues[2].Tohighlightareal
example,letuscontinuewithExample1:
EXAMPLE1.(Part2)Asweshalllaterelaboratein§V-B,

itturnsoutthecompanyhasmorefemaleemployeesthan
male.Still,duetotheknownhistoricaldiscrimination[8],the
selectedgroupofemployeescontainnoticeablymoremales.As
aresult,targetingthisgroupfortheanalysis,thecompanywill
endupfavoringthepreferencesofthemaleemployees,which
isunfairtofemaleemployeesandwill,inafeedbackloop,
resultinlosingmoreofthe“profitable”femalecandidates.
Fortunately,recentlydifferentcomputersciencecommuni-
ties,suchasmachinelearningand,inparticular,datamanage-
ment,havetakenfairnessissuesseriously.Inpastthreeyears
alone,therehavebeenmanypublicationsinrelatedtopicssuch
asfairness-awaredatarepair,cleaning,andintegration[9],
[10],[11],[12],databiasdetection/resolution[13],[14],
[15],[16],[17],[18],[19],anddata/modelannotation[20],
[21],systems[22],[23],[24],ranking[25],[26],[27],[28],
crowdsourcing[29],aswellasdifferentkeynotes[30],[31]
andtutorials[32],[33],[3]dedicatedtothistopicinpremier
databaseconferences,thatunderscorethiscommunity’srole
inproperlyaddressingthisproblem.
Despiteextensiveeffortswithinthedatabasecommunity,
thereisstillaneedtointegratefairnessrequirementswith
databasesystems.Existing workislimitedtoqueryfor-
mulationforachievingdatacoverage(minimumcounton
demographic(sub)groups)[34],[35],[36].Toourknowledge,
thispaperisthefirsttointegratefairness(parityoncounts)
with(selection)queryanswering.Inparticular,asourfirst
attempt,weconsiderrangequeriesandpayattentiontothe
facts:(i)theconditionsintherangequerymaybeselected
intuitivelybythehumanuser.Forinstance,inExample1the
usercouldhavechosen$65Kasthequeryboundbecauseit
was(roughly)agoodchoicethatwouldmakesenseforthem;
(ii)consideringtheethicalobligationsandconsequences,the
usermightbeinterestedinacceptinga“similarenough”query
totheirinitialchoice,ifitreturnsa“fair”outcome.
InExample1,wenotethatthecompanycould,forinstance,
inapost-queryprocessingstep,removesomemaleemployees
fromtheselectedgroup,oritcouldaddsomefemalestothe
selectedpool,eventhoughtheydonotbelongtothequery
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result.Whilesuchfixesaretechnicallyeasy,thoseareillegal
inmanyjurisdictions[37],becausethoseamounttodisparate-
treatmentdiscrimination:“whenthedecisionsanindividual
userreceiveschangewithchangestohersensitiveattribute
information”[38],[2],[25].Forinstance,onecannotsimply
increaseordecreasethegradeofastudent,becauseoftheir
raceorgender.Instead,theyshoulddesigna“fairrubric”that
isnotdiscriminatory.Therefore,insteadofpracticingdisparate
treatment,weproposetoadjustingtherangetofindarange
(similartofindingarubricforgrading)withafairoutput.

Followingtheaboveargument,oursystemallowstheuserto
specifythefairnessandsimilarityconstraints(inadeclarative
manner)alongwiththeselectionconditions,andwereturnan
outputrangethatsatisfiestheseconditions.Tofurtherclarify
this,letuscontinuewithExample1inthefollowing.

EXAMPLE1.(Part3)Beingawareofthehistoricaldiscrim-
ination,ethicalobligations,andthepotentialnegativeimpacts
onthecompany,besidesknowingthatthechoiceofsalary
lower-boundhasbeenfuzzy,thebusinessmanagementoffice
wouldliketofindaquerywhoseoutputissimilarenoughto
theinitialqueryandthenumberofmaleemployeesreturned
isatmost1000(around5%)morethanthefemales.Usingour
system,theycanissueaSQLquerytofindsuchaset.Asex-
plainedin§V-B,oursystemfoundthemostsimilarfairrange
asSELECT*FROMEMPWHERE$60.5K≤salary≤$152K.
Itsoutcomeis75%similartotheinitialrangequery,and
satisfiesthefairnessrequirement.ObservingthehighJaccard
similaritybetweenthesetwosets,thecompanynowhasthe
optiontousethisfortheiranalysis,tomakesuretheyare
notdiscriminatingagainsttheirfemaleemployees,hencenot
losingtheirvaluablecandidates.

Oursystemprovidesanalternativetotheinitialquery
providedbytheuser.Thisisusefulsinceoftenthechoice
offilteringrangesisad-hoc,henceoursystemhelpstheuser
responsiblytunetheirrange.Ifthediscoveredrangeisnot
satisfactorytotheuser,theycanchangethefairnessand
similarityrequirementsandexploredifferentchoicesuntilthey
selectthefinalresultinaresponsiblemanner[39],[25].

Summaryofcontributions:Initiatingfairness-awarequery
answering,inthispaperwetacklenon-trivialtechnicalchal-
lengesandproposeproperalgorithmstoaddressthem.In
particular,wemakethefollowingcontributionsinthispaper:

•Weinitiateresearchonintegratingfairnessconditionsinto
databasequeryprocessinganddatamanagementsystems.
Whilethespecificprobleminvestigatedinourpaperfocuses
onfairnessinrangequeries,wehopethisworkwillspur
furtherresearchinthisimportantandemergingfield.

•Westudytheproblemoffairness-awarerangequeries.That
is,findingthemostsimilarfairrangetoauser-provided
rangequeryforthedatabaseD.WeproposeusingSQLfor
declaringthefairness-awarequeries.

•Forsingle-predicate(SP)rangequeries,weproposethe
algorithmSPQAwithsub-linearquerytime.Thealgorithm
usesaninnovativelinear-sizeindexJumppointers.

•We modeltheproblemfor multi-predicate(MP)range

id A0 A1 color id A0 A1 color
t0 3.1 1.5 red t7 13 5.4 red
t1 0.7 2.3 red t8 11.3 2.6 blue
t2 8 0.65 blue t9 2.3 8.4 blue
t3 10.9 1.5 red t10 5.6 4.7 red
t4 4.4 8.7 blue t11 12.7 2.8 red
t5 1.2 4.1 red t12 7 0.3 blue
t6 6.2 6.3 blue t13 9.1 9.4 red

TABLEI:AtoyexampledatabaseDwithtwoattributesA0and
A1andthesensitiveattributecolor.

queriesasthetraversaloveragraphwherenodesrepresent
differentqueriesandthereisanedgebetweentwonodesif
theiroutputsdifferbyonetuple.Inparticular,wepropose
BestFirstSearchMP(BFSMP)algorithmthat,startingfrom
theinputrange,efficientlyexploresneighbouringnodesto
findthemostsimilarfairrange.

•InspiredbytheA*algorithm,weproposeInformedBFSMP
thatimprovesBFSMP,usinganupper-boundontheJaccard
similarityforeffectivegraphexploration.

•WeconductcomprehensiveexperimentstoevaluateourSP
andMPalgorithms.Ourresultsdemonstratetheefficiency
andefficacyofSPQAforSPqueries.Similarly,IBFSMP
performswellforMPqueries.

II.PRELIMINARIES

A.DatabaseModel

Database:WeconsiderarelationDwithnobjects,t1totn.
EachobjectinD,consistsofnumericattributesA1toAd.
Werefertothevalueofattribute Aj∈Rofobjecttias
ti[j]. WhilethenumericattributesofthedatabaseDcanbe
usedforrangequeries,objectsmayalsoconsistofcategorical
attributes.Thesecategoricalattributesareusedforfilteringthe
objectsbasedontheuser’scriteria.
AtoyexampleofadatabasecanbeseeninTableIwith14
objectst0tot13.Theattributesofthisdatabaseareintheform
ofAi,namelyA0,A1.Thedatabasealsoincludesthenon-
ordinalattributecolorusedinthefairnessmodel.Weusethis
databaseforillustratingvarioustechniquesacrossthepaper.

RangeQuery:GivenadatabaseD,arangequeryismadeup
ofconjunctionofrangeconstraintsplacedonsome/allofthe
attributesofD.Arangeconstraint{start,end}(akaarange
predicate)onanattributeAifilterstheobjectssuchthatthe
attributeAilieswithinthefilterrange(start≤Ai≤end).For
instance,Query1isaquerywithonerangepredicateonthe
toyexampleofTableIthatreturnstheobjects{t4,t6,t10,t12}:

QUERY1:selectidfromD where4≤A0≤7

Inthispaper,weconsidertheconjunctionofmultiplerange
predicatesusing“and”operation.

SimilarityMeasure:Thedistancebetweentworangequeries
isthedissimilarityofthetwoqueries.Withoutlossofgener-
ality,thedistancemeasuredbetweentworangequeriescanbe
normalizedtolieintherange[0,1].Thesimilaritybetween
tworangequeriescanbecomputedasoneminusdissimilarity.
Varioussimilaritymodelscanbeusedtomeasurethesimilarity
betweentworangequeries.Withoutlossofgenerality,weuse
Jaccardsimilarityandleaveothermodelsforfuturework.
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Jaccardsimilaritybetweentworangequeriescanbecomputed
bytheratioofintersectionbetweentheoutputofthetworange
queriestotheunionoftheoutputtothetworangequeries.

SIM(Q1,Q2)=
out(D,Q1)∩out(D,Q2)

out(D,Q1)∪out(D,Q2)

whereoutistheoutputoftherangequeryonD.

QUERY2:selectidfromD where3≤A0≤6.2

Forinstance,thesimilaritybetweentheexamplequeries
Query1andQuery2(out(D,Query2)={t0,t4,t6,t10})is:

SIM(Query1,Query2)=
|{t4,t6,t10}|

|{t0,t4,t6,t10,t12}|
=0.6

B.FairnessModel

Ourdefinitionoffairnessisbasedongroupfairness[40]
andthenotionofdemographicparity,akastatisticalparity
anddisparateimpact[41],[42],[40],[2],[3].

Sensitiveattribute:Groupfairnessisdefinedasparityover
differentdemographicgroupssuchaswhiteandblack.The
demographicgroupsareidentifiedbyanon-ordinalattribute,
suchasraceorgender,knownassensitiveattributes.
Inmanyoftheexistingapplications,sensitiveattributesare
binary,separatingaminoritygroup(e.g.female)fromthe
majorities(e.g.male).Therefore,inthispaper,wefollowthe
existingworksuchas[43]andconsiderthesensitiveattribute
tobebinaryinnature. Weleavethenon-binarysensitive
attributesandmoregeneralcasesforthefuturework.

AshighlightedinoursampledatabaseintableI,weusethe
attributecolor(withtwovaluesredandblue)toabstract
thesensitiveattribute(andthedemographicgroups).

Fairnessconstraint:Thefairnessmeasureisdefinedasthe
parityoverthedemographicgroups,identifiedbythecolors
blueandred.Theparityconditionisidentifiedusinga
criteriathatdecideswhethertheoutputofaqueryisfair.Let
CrandCbbethenumberofredandblueobjectsintheoutput.

Insomeapplication,theparitycanbedefinedashaving
equalnumberofobjectsfromthedemographicgroupsinthe
outputset.Thatis,Cr=Cb.Inotherwords,theobjectsin
theselectedsetshouldhaveequalchanceofbelongingtoeach
demographicgroup.Forinstance,Query1inourtoyexample,
returnsthreeblueobjects({t4,t6,t12})andoneredobject
({t10})anddoesnotsatisfytheparityconditionCr=Cb,
whileQuery2returnstwoblue({t4,t6})andtworedobject
({t0,t10})–hencesatisfiestheparitycondition.

Alternatively,someapplicationsconsidertheunderlying
distributionsandrequirethatthesetofselectedobjectsto
representtheunderlyingdemographicfromwhichtheywere
chosenfrom.Inotherwords,theobjectsfromdifferentdemo-
graphicgroupsshouldhaveequalchancesofbeingselectedin
theoutputset.Thatis,Cr/nr=Cb/nb,wherenrandnbare
thetotalnumberofredandblueobjectsinD.Similarly,
differentapplicationsmayrequiredifferentnotionsofparity
basedonsocietalnorms.Tosupportallthesecasesunderthe
samefairnessmodel,weabstractthefairnessconstraint,using

FAIRRANGEQUERYPROBLEM: Givenadatabase
D,arangequeryQandadisparityvalueε,findafair
rangethatismostsimilartoQwithadisparityvalue
atmostε.

Fig.1:ProblemFormulation

DECLARATIVEFAIRNESS-AWAREQUERY:
SELECT...FROMDATABASE
WHERE

RANGE-PREDICATES
SUBJECTTO

|WrCr-WbCb|<=eps andSIM>=tau

Fig.2:DeclarativeQuery Model

aweightparameterW asfollowing:WrCr=WbCb.Specif-
ically,werefertothecasewhereW1=W2asunweighted
fairnessandothercasesasweightedfairnessmodel.
Achievingperfectdemographicparityinformofequalityis
rarelypracticalinthereal-world,henceweuseathresholdε
toidentifyanacceptabledisparity[41].Usingthisthreshold,
thefairnessconstraintcanberewrittenas

|WrCr−WbCb|≤ε (1)

C.Problemdefinition

Havingformallydefinedthedatabaseandfairnessnotions,
wearenowreadytoprovideourproblemformulation. We
considertheproblemoffindingthemostsimilarfairrangeto
auserprovidedrangequeryforthedatabaseD.Figure1pro-
videstheformalformulationofthefairrangequeryproblem.
Thisproblemformulationhelpsthedatascientiststoslightly
changetheirquerytofindthedatathatissimilartotheirinitial
queryoutputandisalsofair.
Declarativequerymodel:Ourproblemformulationfollows
adeclarativefairness-awarequery modelasspecifiedin
Figure2.Usingthisdeclarativeinterface,weexpecttheuser
toeasilyformulatethefairness-awarequeries.Inparticular,
werealizethattheusermightnotbeinterestedtoacceptthe
queriesthatarefarfromtheirinitialchoices,hencemight
requiretoidentifyaconstraintontheminimumsimilaritythey
wouldfindrelevant.This,alongwiththefairnessconstraint,is
identifiedaspartoftheconstraints,followedafterthe“subject
to”phrase.Notethattheremaybemultiplequeriesequally
neartotheinputrangequerythatsatisfytheconstraints.The
problemoffindingallfairrangequeriesnearesttothegiven
queryisaninterestingdirectionforfuturework,discussed
insectionVII.Forexample,knowingthatQuery1doesnot
satisfythedemographicparityforunweightedfairness,the
usercanreformulatethequeryinformofQuery3todiscover
asimilarquery(withatleast80%similarity)thathasatmost
adisparityof1.

QUERY3:selectidfromDwhere4≤A0≤7
subjectto|Cb−Cr|≤1andSIM≥80%

Formulating Query3asfairrangequeryproblem,the
optimalsolution,bychangingtherangepredicateto3.1≤
A0≤7,addst0totheoutputset,satisfyingboththefairness
andsimilarityconstraintsspecifiedbytheuser.
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Afterprovidingthetermsanddiscussingtheproblem
formulation, wenowturnattentiontodesigningefficient
algorithmsforourproblem.Inparticular,werealizethata
largeportionofthequeriesinpracticehaveasinglerange
predicate.Therefore,in§III,wefocusonthiscase,designing
atailoredsolutionforit.Thenin§IV,wewilldevisean
algorithmforthequerieswithmultiplerangepredicates. We
showempiricalresultsin§V.

III.SINGLE-PREDICATERANGEQUERIES

Next,weconsiderquerieswithasinglerangecondition.We
firstprovidedefinitionsandtheoremsthatformthebasisfor
ouralgorithms,in§III-A.ThenwedesignSPQA,ouralgo-
rithmfortheunweightedcasein§III-B,discusspreprocessing
detailsin§III-C,andpresentweightedSPQAin§III-D.
A.Jumppointers

Queryansweringsystemsusuallyconductofflineprepro-
cessing(indexing)thatfacilitatesonlinequeryanswering.One
extremeapproachforfindingfairrangequeries,thatoptimises
forquerytime,istoprecomputeandstoretheanswerto
allpossiblerangequeriesduringpreprocessing.Suchan
approach,usingproperdatastructures,enablesconstant-time
queryanswering.This,however,requiresanextensivespace
ofO(n2)tostoretheanswertoallpossiblesingle-predicate
rangequeries,whichmightnotbereasonable,specificallyfor
databaseswithmillionsofobjects.Theotherextremeisto
optimizeforthespaceandtodelaythecomputationtoonline
queryansweringtime.This,however,mightrequireenumerat-
ingO(n2)possibleranges,whichmakesqueryansweringin-
efficient–O(n2).Ourproposalisbetweenthesetwoextremes,
bybuildingalinear-sizeindex(Jumppointers)thatenables
thesublinearqueryansweringtimeofO(logn+disparity),
wheredisparityistheunfairnessoftheinputquery.
TheideabehindtheSinglePredicateQueryAnswering
(SPQA)algorithmistoquicklylookupfairranges,eachof
whichhaveasimilarityofε.Theorem1provesthatforany
unfairunweightedquery,thenearestfairqueryhasadisparity
valueofexactlyε.Amongthefairrangeswhichhavea
disparityofε,theoneswhichhaveapotentialtobenearest
byJaccardsimilaritytotheinputrangeareexploredbySPQA
tofindthemostsimilarfairrange.
Definition1.(Jumppointers):ConsideradatabaseDand
theattributeAforthesingle-predicaterangequerymodel.A
right(resp.left)bluejumppointerfromlocationoipointsto
thenearest/closestlocationbr(resp.bl)suchthatthenumber
ofbluesintherange[oi+1,br](resp.[bl,oi−1])isequal
tothenumberofredsplusone.Redjumppointersarealso
definedinthesamemanner.

ForthesampledatabaseofTableI,Figure3adepictsthe
rightandleftjumppointersforattributeA0.Theindexis
constructedontopofthesortedlistofobjectidsaccording
totheirvaluesonA0.Therefore,sincet1[0] =0.7isthe
minimumofA0,t1isthefirstobjectinthelist.Forexample,
considertheobjectt12,wheret12[0]=7;therange[8,10.9]
(8≤A0≤10.9)consistsofthesmallestrangestartingfrom8
thathasoneadditionalredthanthebluesintherange.Hence,

itsrightredjumppointerpointstot3(t3[0]=10.9).Notethat
notallobjectshavejumppointers;forexamplethereisnoright
redjumppointerfromt10asnolocationaheadoft10hasone
additionalredthatthanthenumberofbluesinthesamerange.
Eventhoughthereexistsfourjumppointers({leftorright}
and{blueorred})foreveryobjectinthelist,twoofthose
pointersaretrivial.Forexample,therange[8,8](8≤A0≤8)
consistsoft2andisthesmallestrangeaftert12thatconsistsof
oneadditionalblue.Asthistrivialinformationcanbequickly
determinedinO(1)time,thispointerneednotmaintainedand
canbelookedupatquerytime.Leftjumppointerfollowsa
similarpattern;forexamplethenodet8maintainsaleftblue
pointertot6astherange[6.2,10.9](6.2≤A0≤10.9)consist
ofoneadditionalbluethanreds.
Werefertotravellingalongthejumppointerfromlocation

oiasfollowingajumppointer.Followingabluejumppointer
ktimesfromlocationoigivesustheclosestlocationojfrom
oisuchthattherangefromoitoojhaskbluesmorethan
therangethatwouldendatoi.Thealgorithmtofindjump
pointersisdescribedin§III-C.
Lemma1.Followingtheredcoloredjumppointerktimes
fromoilandsatalocationwheretherangeendingatitis
haskmoreredsthanthesamerangeendingatoi.

Proof.Weprovidetheproofbyinduction:
Basecase:Bythedefinitionofjumppointer,aredcolored
jumppointerpointstothenearestlocationwhichhasone
additionalred.Thisgivesusthebasecasefork=1.

Inductionstep:Assumethatthelemmaholdsfork−1red
jumppointers.Letthek−1thjumppointerpointatlocation
olandk

thjumppointerpointatlocationom.Supposethere
existsaom whichisclosertooithanom whilealsosatisfying
thekadditionalredscriteria.Ifom liestotheleftofolthen
wealreadyhaveacontradictionasthek−1thjumppointer
wouldlietotheleftofom .Ontheotherhandifom liesto
therightofol,thentheredjumppointershouldpointtoom
astherangeoltoom consistsofoneadditionalredthanblue.
Asbothcasesarenotpossible,om isthesameasom.

Jumppointerswillbeusedfortwooperations(expansion
andshrink)insingle-predicaterangequeries.Anexpansion
operationexpandsarangetoincludemoreobjects.Excluding
objectsbyshrinkingtherangeisdoneusingshrinkoperations.
Definition2.(Cumulativesum):ConsideranattributeAfor
thesingle-predicaterangequerymodel.Thecumulativesum
ciatalocationoiisthedifferencebetweenthenumberof
redsandbluesfromtheleftmostlocationalongAtooi.

Asanillustrationfromthesampledataset,considercomput-
ingthecumulativesumfort0.Thereisoneblueandthreereds
untilt0fromtheleftmostpositiont1.Hence,thecumulative
sumfort0is−2(1−3=−2).
Giventhetwolocationsoiandoj([oi,oj]),cumulativesums
canbeusedtoobtainthedisparitybetweenthestartandend
locationinO(1)time.

disparity=c[i]−c[j−1] (2)
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Foxexample,considertheexamplequeryII-A,withrange
4≤ A0 ≤ 7.Theobjectslyingintheinputrangeare
{t4,t10,t6,t12}. With3bluesandared,thequeryhasa
disparityof2whichcanbecomputedusingcumulativesum
byc[12]−c[0]=2.Notethatanytwolocationswiththesame
cumulativesumrepresentarangewithperfectparity.

B.Queryansweringforunweightedfairness

Arangepredicateismadeupoftwopoints,startandend.If
oneweretofixoneofthetwoendpointsoftherangequery,to
maketherangequeryfair,theotherendpointcanbemovedto
shrinktherangeortoexpandit.Anexpansionwouldrequire
anadditionof|disparity−ε|deficientcoloredobjectstomake
itfair(provedlaterintheorem1).Forexample,considerthe
inputrangequerytobe[4.4,7](4.4≤A0≤7)withε=0.
Figure4ashowsthequeryrange[4.4,7](4.4≤ A0≤7)
markedwithanenclosingbox.Astherearetwomorebluesin
therangequery,werequiretwoadditionalredstoexpandthe
queryrangetomakeitfair.Expandingtherangebyfollowing
tworedjumppointersgivesusafairrange.Figure4ashowsa
fairrangewhenthestartoftherange,t4,isfixedandtheother
endpointisallowedtoexpandtoincorporatetwoadditional
reds,thusobtainingtherange[4.4,13](4.4≤ A0 ≤13),
markedbythedottedline.Ingeneral,onecanfollowthe
deficientpointer|disparity−ε|times.
Ourgoalistofindthemostsimilarrangethatresolvesthe

disparityof|disparity−ε|.Suchadisparitycanbecoveredby
movingeitherendpoints,thatis|disparity−ε|shouldequal
tothesumofthechangesontherightandleft.Forinstance,
figure4bshowstheendoftheinputqueryexpandedbyone
redpointerandstartexpanded(resp.shrunk)byonered(resp.
blue)pointer.Similarly,figures4c,4dandfigure4eshowsthe
inputqueryexpanding/shrinkingtocoverthedisparityof2.
Wedesignawindow-sweepingalgorithmtofindsucharange.
Algorithm1,SPQA,describesourapproach,forfindingthe
mostsimilarfairrangetotheinputquery.Algorithm3,JP
describesthealgorithmusedformovingalongajumppointer.
Initially,thestartend-pointoftherangeisfixedandSPQA

expandsendend-pointuntilafairqueryisfound,asshown
inFigure4a.Thewindowisshowninthefigurewiththe
dottedlinesindicatingstartandendofthefairrange.The
namingconventionusedfortheboundariesis,Sforstartof
inputrangeandEforendofinputrange;LforleftandRfor
right.Hence,SL(resp.SR)standsforstartofinputrange
expanded(resp.shrunk)totheleft(resp.right). Whenthe
windowisswepttotheleft,thestartendpointcanperforma
shrinkoranexpansionasshowninFigure4b.Theremaining
stepsoftheexplorationbySPQAcanbeseeninFigures4c,
4dand4e.Amongeachofthese,theoutputofthefairrange
whichismostsimilartotheinputqueryisprovidedasoutput
totheuser.

Theorem1.GivenadatabaseD,thedisparitythresholdε,
andtheinputqueryQ(Aj:[start,end]),theoptimalrange
hasadisparityvalueofexactlyε.

Proof.Letdbethedisparityofthegivenrangequery.Let
thedisparityofoptimalrangebedopt.Knowingthatboth

theleftandrightendpointsoftheinputrangecouldhave
moved,lettherangeforoptimalrangebe[lopt,ropt].Letus
considertwonewranges,[lopt,start−1],[end+1,ropt]and
lettheircorrespondingdisparitiesbedloptanddropt.Thetotal
disparitydoptcanbewrittenasthesumofdisparityofthree
differentranges,dloptforrange[lopt,start−1],droptfor
range[end+1,ropt]anddforrange[start,end].

d−dopt=dlopt−dropt

Supposedopt=ε.Letusnowconstructarange[lopt,ropt]
suchthatthedisparityisexactlyε.Toconstructtherangewe
willmodifyloptandropt.Ifloptliesontheleftofstart,then
therewasanexpansionoperationthathasbeenperformed.
Insteadofexpandingittocoveradisparityofdlopt,one
canonlyexpandittoasmallerextendsuchthattheover
alldisparityisexactlyε.Astheexpansionwassmallerthe
Jaccardsimilaritymeasurewouldbelarger.Applyingasimilar
approachincaseloptwasontherightofstartwouldalso
resultinalargerJaccardsimilaritymeasureasintersection
betweenthetwosetswouldbelarger.Asimilarapproachcan
beappliedtotheroptendpoint.Thenewlyconstructedrange
[lopt,ropt]ismoresimilarandhasdisparityofexactly.

Lemma2.(Correctness)GivenadatabaseD,thedisparity
thresholdε,andtheinputqueryQ(Aj:[start,end]),SPQA
Algorithm1findstheoptimalsolution(themostsimilarfair
rangetoq).

Proof.Toprovethistheoremweusethepropertythatthefair
optimalrangehasadisparityofexactlyε,whichisprovedin
theorem1.
SPQAusesawindowedapproachtoexploreallranges
aroundtheinputrangewhichhaveadisparityvalueofε.
Letthedisparitycoveredbymovingthelefttheleftendpoint
disparity([left,start−1])bedlandthedisparitycoveredby
therightendpoint,drbeequaltodisparity([end+1,right]).
Thesumofdl,dranddisε.

dl+dr=ε−d

SPQAexplores4×disparitynumberofwindows,whereevery
pairofdl,drsatisfiestheaboveequation.Thustheoptimal
resultmustlieinoneofthesepairs.
Timecomplexity:ThetotalamountoftimetakenbySPQA
toanswertheunweightedfairnessquerieswithonerange
predicateisO(log(n)+disparity(input)),whichcanbeseen
intheorembelow.
Theorem2.GivenadatabaseDwithntuplesandaninput
rangewithdisparitydthetotaltimetakenbySPQAalgorithm
isO(log(n)+d).

Proof.Searchingthejumppointerdatastructuretoreachthe
endpointstakesO(log(n))time.Oncetheendpointsare
foundinthedatastructure,SPQAalgorithmusesawindow
basedapproachtoexplorethefairrangeswhosedisparityis
exactlyequalto.ThereareatotalofO(4d)suchranges,
eachofwhichtakesO(1)timetocomputeJaccardsimilarity.
Thus,thetotalamountoftimetakenisO(log(n)+d).
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ofthesampledatabaseofTable1.

(b)RightandleftjumppointersforattributeA0ofthesampledatabaseofTable1withweights

Disparity = 2

Fair range

Input Query

Fig.3:JumppointersforsampledatabaseofTable1

Fair range starting at StackSR

Fair range starting at StackSL

Input Query

(a)Settingupthewindowbyexpandingtheendpointofthesinglepredicateinputquery

Fair range starting at StackSL

Input Query

(b) Movingthewindowtotheleftfromtheinitialposition

(c) Windowreachesthepositionwheretheend

Fair range starting at
StackSR

Fair range starting at StackSL

Input Query

oftheinputlies

Fair range starting at StackSL , StackSR

Input Query

(d)Therightendpointofthewindowshrunkwithintheinputquery

(e)Explorationforallwindowsiscompleted

Fig.4:Stepwisemovementofthewindowoverthecoursearunofthesinglepredicatealgorithm

Generalpositioningassumption:Thealgorithmandthe
definitionsinthecurrentsectionhavebeendesignedwiththe
generalpositioningassumption.Generalpositioningmakesthe
assumptionthatnotwopointsareco-locatedforthegiven
attribute.Inpractice,withsmallmodifications,ouralgorithms
canhandlethecasewhenmultiplepointsarepresentata
singlelocation.Combiningtheco-locatedpointsintoasingle
pointwiththeaggregateweightwouldhelpusincreating
anewdatasetwithnoco-location. Whenthejumppointer
encountersthenewpointwithavariableweight,itneedsto
updatethedatastructurewiththevariableweightvalue.Note
thoughthatthesimilarityfunctionneedstotakethenumberof
pointsco-locatedintoaccountwhilecomputingthesimilarity.

Thisalgorithmholdsunlesstherearetoomanyofthesame
demographicdatapointatthesamelocationsoastomovea
rangefromunfairbecauseoflackofagrouptounfairbecause
ofexcessofthatgroup.Notethatthiscaseishighlyunlikelyin
practise.Insuchextremecases,wheretheunfairnesssuddenly

switchesfromonegroupbeingdisadvantagedtotheother,we
choosetwoproblems,oneinwhichtheaggregatepointdoes
notbelongthuslimitingonesideofthesearchspaceorthe
secondinwhichweexplorefurtherbylookingfortheinverse
jumppointerspastthatpoint.

C.Prepossessing

ForeveryattributeinD,ajumppointersindexiscreated
duringthepreprocessing.Forthis,theobjectsineverylistare
sortedbasedonthecorrespondingattribute(Figure3a)sothat
lookupscanbeperformedquicklyandthenrightandleft
pointersfromeachlocationofthedatabaseiscalculated.

Findingjumppointer:JumppointersplayakeyroleinSP
queries.Arightredjumppointerpointstotheclosestlocation
totherightofthecurrentlocationsuchthatthenumberof
redsintherangeexceedthenumberofbluesby1.Atany
givenlocationoi,therange[oi+1,oi+1]isatrivialrange
thatsatisfiesthiscriteria.Hence,oneofthe2coloredjump
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Algorithm1SPQAAlgorithm

Input:DatabaseD,InputqueryQ(Aj:[start,end]),accept-
abledisparityε
Output:Mostsimilarfairrangequeryfair

1:ts← binarysearch(D,Aj,start)
2:te← binarysearch(D,Aj,end)
3:disparity← c[j,ts]−c[j,te]
4:dColor← disparity>0 deficient:true-red,false-blue
5:ifdisparity≤εthen Inputrangeisalreadyfair
6: return[start,end]

7:LEP← ts LEPstandsforLeftEndPoint
8:whiledisparity>εdo
9: PushJP(D,Aj,LEP,”left”,deficient)toLEP,update
disparityfor[tLEP,te]

10:fair←{};sim← 0
11:WindowSweep(tLEP,te,“shrink”) Shiftwindowby
shrinkingte

12:WindowSweep(tLEP,te,“expand”)
13:WindowSweep(ts,te,“shrink”) Shiftwin.byshrinkingte
14:WindowSweep(ts,te,“expand”)
15:returnfair

Algorithm2WindowSweepalgorithm

Input:DatabaseD,Attribute:Aj,startend-point:ts,endend-
point:te,operation,inputqueryQ(Aj:[start,end]),referenceto
fair,sim
Output:Updatefairbasedonmostfairrangefound

1:disparity← c[j,te]−c[j,ts−1]
2:dColor← disparity>0
3:ifts<startthents← Pop(LEP)
4:elsets← JP(D,Aj,ts,”right”,!dColor) Shrinkts
5:whiledisparity>εdo Adjusttepointer
6: disparity← c[j,te]−c[j,ts−1]
7: dColor← disparity>0
8: ifoperation==”expand”then
9: te← JP(DAj,te,”right”,dColor) Expand

10: elsete← JP(DAj,te,”left”,!dColor) Shrink

11:ifJaccard([ts,te],Q)>simthen
12: sim← Jaccard([ts,te],Q);fair← [ts,te]

13:WindowSweep(ts,te,operation)

pointerswillpointtooi+1.Thegoalofthealgorithmisto
computetheother(non-trivial)rightjumppointer.

Inordertoobtainthenon-trivialrightjumppointer,weneed
tofindthelocationthatdiffersby1(intheoppositesignthan
atlocationoi+1).Forexample,inFigure3a,thecumulative
sumatlocationt12is0andasthecoloratlocationt2isblue,
thecumulativesumis1.Thenon-trivialrightjumppointer
pointstheclosestlocationwithcumulativesumof−1.

ThealgorithmtofindthejumppointersisgiveninAlgo-
rithm4.Thealgorithmtofindthejumppointersmaintains
abalancedbinarysearchtree(BST)forthecumulativesums,
whichareusedaskeysfortheBST.Theindiceswhichwillbe
resolvedwhenthespecificcumulativesumisseenarestoredas
valueswithintheBST.Forexample,whenresolvingthenon-
trivialredrightjumppointerfort12,closestlocationwitha
cumulativesumof−1needstobefound.Hence,−1isused
asakeywithintheBSTwiththeindext12asavalue.

Thetotaltimetakeninthe pre-processingstepis
O(nlog(n)),asprovedintheorembelow.

Algorithm3JPalgorithmforleftjumppointer

Input:DatabaseD,Attribute:Aj,Databaseobjectoi,
colorc,directiondir
Output:Databaseobjectojpointedbyjumppointer

1:ifdir==”left”then
2: ifAj[oi−1]isofcolorcthen
3: returnoi−1
4: else
5: returnLJP[oi] LJPstandsforLeftJump
Pointerarray

6:else
7: ifAj[oi+1]isofcolorcthen
8: returnoi+1
9: else
10: returnRJP[oi] RJPstandsforLeftJump
Pointerarray

Algorithm4(Preprocessing)Buildingleftjumppointers

Input:DatabaseD,attributeAj
Output:jumppointers

1:SortDalongattributeAj
2:BST←{}
3:cumulative←0
4:fori←0tondo
5: cumulative← cumulative+color(oi)
6: c[j,i]←cumulative Cumulativesumiscontained
inc

7: ifcumulativepresentinBSTthen
8: forobj∈valuesofBST[cumulative]do
9: LJP[j,obj]←i Leftjumppointer

10: InsertiintoBST[cumulative−2∗color(oi)]

Theorem3.GivenadatabaseDwithntuplesandanattribute
Aipre-processingsteptakesO(nlog(n))time.

Proof.Thesortingstepofpre-processingtakesO(nlog(n))
timeforthegivenattributeAi.Establishingtherightandleft
jumppointersmakesuseofabalancedbinarysearchtree
(BST).Atotalofnindexesneedtobeinserted/deletedinto
theBST,whichconsumesO(nlog(n))time.Hence,thetotal
timetakenforbuildingthejumppointerstructureforgiven
attributeAiisinO(nlog(n)).

Note that, while the initial pre-processing takes
O(nlog(n)) time, query processing is sub-linear:
O(log(n)+d),wheredisthedisparityofinputquery.
Noteonspacecomplexity:Duringthepre-processingphase,
SPQAalgorithmcreatesalinearspacedatastructuretoaid
inqueryprocessing.Thequeryprocessingstoresatotalof
disparityjumppointerstofindthethemostsimilarfairrange
whichissmallcomparedtothelinearspacedatastructure.
ThusthetotalspacecomplexityisO(n).

D.Generalizationtoweightedfairness

Sofar,ourattentionhasbeenontheunweightedfairness
model.Inthissection,we movetoourgeneral modelof
fairness:weightedfairness.Asexplainedin§II,thefairness
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constraintforthismodelisintheformof|WrCr−WbCb|≤ε,
whereWrandWbaretheweightsfortheredandbluecounts,
respectively.Thatis,thedifferencebetweentheweightedsum
ofthenumberofobjectsfromthetwodemographicgroups
shouldnotbeboundedbythethresholdε.Notethatany
rationalvaluesforweightscanbeexpressedasintegerweights
byscalingtheseweights.Forexample,weightsWr=1.1and
Wb=1.2areequivalenttoWr=11andWb=12.
Thefairrangequeryprobleminthegeneralizedcasewould

refertofindingthemostsimilarfairrangetotheinputfair
rangesuchthatthedisparityiswithinavalueofε.Notethat
findingcaseswherethedisparityislessthanmax(Wr,Wb)/2
wouldinferfindingrangeswithalevelofprecisionlessthan
asingleunitofdisparity(lessthanasingleweightedcolored
object).Forthesakeofsimplicityandpracticality,weomit
suchcasesandassumethatthevalueofε≥max(Wr,Wb)/2.
Thealgorithmthatdealswiththeweightedcaseusessimilar

conceptslikejumppointerandcumulativesum.Inthegeneral
case,ablue(resp.red)rightjumppointerfromlocationoi
pointstotheclosestlocationrightofoi,jisuchthattherange
[oi+1,ji]containsmorebluesthanreds(resp.redsthanblues)
byweight.Asimilardefinitionforleftjumppointerscanbe
defined.Jumppointersforthesampledatasetpresentedin
TableIispresentedinFigure3busingweightsof3forblue
and2forred.
Fortheweightedcase,thecumulativesumatalocationoi

indicatestheweighteddifferenceofbluesandreds.

Theorem4.(Correctness)GivenadatabaseD,thedispar-
itythresholdε,weightsWrandWb,andaqueryQ(A :
[start,left]),algorithm1findsthethemostsimilarfairrange
toQ.

Timecomplexity:ThetotaltimetakenbySPQAalgorithmis
sameastheunweightedcase,O(log(n)+d),wheredisthe
disparityintheinputrange.Thedetailsofthetimecomplexity
fortheunweightedcasewhichismentionedintheorem2also
appliestotheweightedcase.
Noteonspacecomplexity:Duringthepre-processingphase,
SPQAalgorithmcreatesalinearspacedatastructuretoaid
inqueryprocessing.Thequeryprocessingstoresatotalof
disparityjumppointerstofindthethemostsimilarfairrange
whichissmallcomparedtothelinearspacedatastructure.
ThusthetotalspacecomplexityisO(n).
Preprocessingforthe weightedfairness modelInthe
weightedcase,abluepointerpointstoalocationthathas
morebluesthanreds.Weusethesamenotationasthatofthe
unweightedcaseanddenotethecumulativesumatlocationoi
fortheindexofattributeAjasc[j,i].Ifthelocationnextto
oihadabluethenthepointerwouldbetrivialasitispointing
totheimmediatenextlocation.Letusconsiderthecasewhere
theimmediatenextlocationhadaredinstead.Insucha
caseweneedtofindthenearestlocationwhosecumulative
sumislargerthatthec[j,i].Intheoppositecasewherethe
neighbourwasablueonewouldliketofindtheclosest
locationwhosecumulativesumissmallerthatthec[j,i].Based
onthisapproach,twodatastructurescanbemaintained.One

forthelocationswhosepointerscanberesolvedifwefounda
cumulativesumwithasmallervaluethaninthedatastructure.
Andtheotherdatastructurewhosepointerscanberesolved
ifwefoundacumulativesumwithalargervalue. Weusea
balancedbinarysearchtreeforthetwodatastructures.The
pseudo-codetofindthejumppointersfortheweightedsingle
predicaterangequeryisinalgorithm5.Thealgorithmisan
extensionoftheunweightedjumppointers.Thealgorithmuses
asortoverthedatabaseasathefirststepbeforeaddingand
removingnitemsfromabalancedBSTinordertofindthe
jumppointers,ittakesO(nlogn)time.

Generalpositioningassumption:Thealgorithmandthe
definitionsinthecurrentsectionhavebeendesignedwiththe
generalpositioningassumption.Generalpositioningmakesthe
assumptionthatnotwopointsareco-locatedforthegiven
attribute.Inpractice,withsmallmodifications,ouralgorithms
canhandlethecasewhenmultiplepointsarepresentata
singlelocation.Combiningtheco-locatedpointsintoasingle
pointwiththeaggregateweightwouldhelpusincreating
anewdatasetwithnoco-location. Whenthejumppointer
encountersthenewpointwithavariableweight,itneedsto
updatethedatastructurewiththevariableweightvalue.Note
thoughthatthesimilarityfunctionneedstotakethenumberof
pointsco-locatedintoaccountwhilecomputingthesimilarity.

Thisalgorithmholdsuntilandunlesswehavetoomany
ofthesamedemographicdatapointatthesamelocation
soastomovearangefromunfairbecauseoflackofreds
tounfairbecauseofexcessofreds.Notethatthiscaseis
highlyunlikelyinpractise.Insuchextremecases,wherethe
unfairnesssuddenlyswitchesfromonetheadvantagedgroup
tothedisadvantagedone,wechoosetwoproblems,onein
whichtheaggregatepointdoesnotbelongthuslimitingone
sideofthesearchspaceorthesecondinwhichwetryfurther
exploration.

IV. MULTI-PREDICATERANGEQUERIES

Next,westudythequeriesthatcontainmultiplerangepred-
icates.Unfortunately,movingfromsingle-predicate(SP)range
queriestomulti-predicate(MP)rangequeriescomplicatesthe
problemsignificantlyandtheideaofjumppointersdoesnot
carryover.ThereasonisthatinMPqueries,therearedifferent
directions(alongdifferentangles)whichasinglejumpcan
occur,whileinSPthereisonlyonedirection(alongx-axis)
tomakeajump.Moreover,whileaSPqueryisidentifiedby
itstwoend-points,aMPquerywithdrangepredicatesforms
ahyper-cubewith2dsides.Hence,insteadofthetwoend
pointsofanSPrange,onemayneedtomoveallsidesof
thehyper-cubetoobtaintheclosestfairrange,evenwhenthe
disparityisslightlyabovetheallowedfairnessthreshold,ε.

AnobservationthathelpsuswiththeMPcasesisthatthe
usermaynotbeinterestedinfairrangesthatarefaraway
fromtheinputquery.Hence,thefairrangequeryshouldbe
highlysimilartotheinputrange,otherwiseitisnotvaluable
fortheuser. Weusethisobservationtodesignabest-first
search(BFS)fairrangequeryalgorithmfortheMPquery.
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Algorithm5(Preprocessing)Leftjumppointersforweighted
case
Input:DatabaseD,attributeAj
Output:jumppointers

1:SortDalongattributeAj
2:largerBST←{};smallerBST←{}
3:cumulative←0
4:fori←0tondo
5: ifcolor(oi)==’blue’then Bluealwayshasa
positivescore

6: smallerBST[cumulative]←i
7: else
8: largerBST[cumulative]←i

9: cumulative← cumulative+weight(color(oi))
10: iterator←FindcumulativeinlargerBST
11: whileiterator=∅do UntilendoflargerBST
12: LJP[j,iterator]←i Leftjumppointer
13: Incrementiterator
14: iterator←smallerBST.begin() Startof
smallerBST

15: whilecumulative>iteratordo
16: LJP[j,iterator]←i
17: Incrementiterator

A.BestFirstSearchalgorithm

Atahighlevel,theBFSalgorithmcanbeviewedasa
“smart”traversaloveragraphwhereeveryrangeismodeled
asanodeandthereisanedgebetweentwonodesifthe
outputsoftheircorrespondingqueriesvaryonlyinonetuple.
Thatis,anodeQ2isaneighborofQ1iftheoutputof
queryQ1differsfromtheoutputofqueryQ2byexactly
1element. Mathematically,setsout(D,Q1)andout(D,Q1)
haveasymmetricdifferenceofsize1.
Theunfairinputrangeprovidedbytheuserservesasa

startingpointinthegraphtraversal.Thiscanbeviewedas
startingfromthenodewithJaccardsimilarityof1(Jaccard
distanceof0),discoveringitsneighbors,decidingwhichnode
tovisitnext,andpruningtheblanketofnodesinthegraph
thattheircorrespondingrangeshavesimilaritylessthanthe
currentbestfairrangediscovered.
Startingfromthenodeoftheinputquery,thealgorithm

firstneedstodiscoveritsneighboringnodesinthegraph.For
this,werelyontheexistenceofanoracleneighbors(Q)that
discoverstheneighborsofaqueryQ.Itturnsout,duetothe
frequencyofcallingthisoracle,itcansignificantlyimpactthe
performanceoftheBFSalgorithm.Weshallprovideacareful
developmentofthisoraclein§IV-B.
Atanypointoftraversal,thealgorithmselectsthenodethat

hasthemaximumJaccardsimilaritywiththeinputqueryfor
beingvisitednext.TheJaccardsimilaritycanberepresented
astheratiooftheintersectionoftwosetstotheirunion,and
theneighboringrangetoagivenrangecandifferonlybya
singleelement.Accordinglytheneighboringrangesarethe
rangeswiththesmallestJaccardsimilarity.
Uponvisitinganode,thealgorithmchecksifitsatisfiesthe

fairnessrequirements.Ifso,thealgorithmstopsandreturns

Algorithm6Best-FirstSearchalgorithmforMP:BFSMP

Input:DatabaseD,attributelistA,inputqueryQ
Output:mostsimilarfairrange

1:Heap← Q
2:while|Heap|=0do
3: top← Heap.pop()
4: iffair(top)thenreturntop
5: forneighbor∈neighbors(top)do
6: Heap.push(neighbor)

7:return∅

thisrangeasthemostsimilarfairrangewithqueryinput.
Otherwise,itcallstheneighbororacletodiscovertheunseen
neighborsofthisnodetobeconsideredfortraversal.The
pseudocodeoftheBFSalgorithmisprovidedinAlgorithm6.
Itusesamax-heapforefficienttraversalofthegraph.Using
theheapdatastructure,addingthenewnodestothelistof
discoverednodesandidentifyingthemostsimilarnodetothe
inputrangeisdoneinlogarithmictimetothesizeofheap.

Lemma3.(Correctness)Algorithm6findsthemostsimilar
fairrangetotheinputrange.

Proof.TheJaccardsimilarityofthesetbeingexploredisI/U,
andthesetsbeingaddedcanhaveareducedJaccardsimilarity
of(I−1)/UorI/(U+1).Thesearethesmallestpossible
decreasesinJaccardsimilaritypossiblebyremovingoradding
points.
Startingfromtheinputrange,letusnowconsiderthe
neighborhoodpathfromtheinputrangetothemostsimilarfair
range.Asateverystageofthealgorithmalltheneighborhood
rangeswhichaccounttothesmallestpossibledecreasesin
Jaccardsimilarityhavebeenaddedtotheheap,thefairoutput
rangethatthealgorithmproducesisthemostsimilarone.

B.Neighboringrangecomputation

HavingexplainedtheBFSalgorithm,wenowturnour
attentiontodevelopingtheneighborsOracle.Computingthe
neighboringrangesisanimportantstepoftheBFSalgorithm.
Thechallengehereistomakesureallneighborsofarange
havebeendiscoveredinanefficientmanner.
Tobetterexplaintheoracle,letusconsiderasampledataset
asshowninFigure5.Considerasamplerangebeasshownin
Figure6.Supposewewanttoexpandtherangeoutwardsin
ordertoaddanewpoint.Onesimpleapproachofexpansion
thatcanbethoughtofistomoveasidewhilemaintaining
eithertheheightorthewidthconstant.Figure 7shows
theexpandedrectanglewhilemovingthelowerboundwhile
maintainingthewidthconstant.Asimilarapproachcanbe
performedontheleftboundasseeninFigure8.Notethat
thesearenottheonlypossibleexpansions.Theseexpanded
rangeswilllaterbeusedtolimitoursearchforfindingthe
otherneighboringrangesalongthediagonaldirection.For
2D,thereare4suchexpansions.Asageneralization,onecan
obtain2dsuchexpansionsinddimensions.Suchpointscan
befoundoutinO(logdn+k)usingarangetree[44].
Onecanthinkofaddinganadditionalpointbymovinga
cornerpointalongthediagonaldirection.Onesuchdiagonal
expansioncanbeseeninFigure9.Thebottomleftcornercan
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Fig.5:Samplesetof
points

Fig.6:Sampleinput
range

Fig.7: Expanding
therectangledown-
wards

Fig.8: Expanding
the rectangle to-
wardsleft

Fig.9:Neighboring
rangesindiagonal

Fig. 10: Skyline
computationovera
rangequery

beexpandedtoaddonemorepointalongthediagonal.Asone
mayobserve,suchexpansionsarelimitedbytheexpansion
ofthesideswhichborderthecorner.Theexpandedboundary
showninFigures7showstheextenttowhichonemayexpand
thebottomboundarydownwardsuntiltheyfindapoint.Ifa
pointlaidinthediagonalbeyondsuchaboundary,itwould
notaccounttoaneighborhoodrangeassuchanexpansion
wouldcontaintwopointsinsteadofone.
Figure10showstheexpandedverticalandhorizontalranges

thataddasinglepointinsolidgreenlines.Theexpanded
boundariesformthelimitsoftheregioncontainingthediago-
nalexpansionendpoints.Theproblemoffindingallpossible
diagonalexpansionpointscanbeformulatedasfindinga
skylinewithintherangeshownbythedottedgreenlines:
Givenacornerpointpo fordiagonalexpansion

1inad-
dimensionalspace,considertheboundingboxspecifiedbythe
sideexpansion(e.g.thedashedrectangleinthebottom-leftof
Figure10).Apointp1insidetheboundingboxdominates
anotherpointp2intheboundingboxif∀0<i ≤ d:
|p1[i]−po[i]|<|p2[i]−po[i]|.Theskylineofthepointsinthe
boundingboxisthesetofpointsnotdominatedbyanyother
point.Everyskylinepointisavaliddiagonalexpansion.As
aresult,inordertofindallneighborsofagivenrange,itis
enoughtofind(a)allneighborsbysideexpansion/shrinking
and(b)alldiagonalexpansionpointsintheskylines.AMP
querywithdrangepredicatescontains2dcorners.Eachcorner
canbeexpandedawayfromthecenterofthe MPquery
inordertofindqueriesthatdifferbyasinglepoint,i.e.a
neighbouringrange.Therecanbemanyneighbouringranges
foreachcorner.Arangeskylinequerycanbeconstructed
foreachcornerusingtheintersectionoftheboundariesof
thesideexpansionasoneoftheendpointsoftherange
queryandthecornerpoint’scoordinatesitselfastheother
endpoint.Onenaiveapproachistoobtainthepointsthat
liewithintherangeusingaR-treeandthenapplyaskyline
algorithmonthepointsobtained.Thisisnotefficient.Weuse
studiesthatefficientlycomputetheskylineonrangequeries.
Inparticular,weusethetheRange-Skyline-Queryalgorithm
byJanardanet.al.[45]forskylinediscovery.Thisalgorithm
hasacomplexityofO((k+1)logdn),wherekissizeof
skyline.Notethatkshouldgenerallybeasmallnumber.In
particular,asthenumberofdimensionsincrease,andasthe
sizeoftherangegrows,theexpectednumberofpointsthat
occurwithinthecornerrangeswilldecrease.Thatisbecause
witheachdimensionthenumberofrangesitmustoccurwithin
increasesbyone;anditwilldecreasewiththesizeofthe

1Shrinkingarangeisdonesimilarly.

range,asmorepointsthatarepotentiallythenearestpoint
willequatetoadecreaseinthesizeofthecorner.

C.Informedbestfirstsearch

TheBFSalgorithmdiscussedsofarsearchesforthefair
rangebyexploringthenode withthe maximumJaccard
similarityfirst.Branchingoutfromanodetoexplorefora
fairrangerequiresdiscoveringitneighbors,addingthemto
theheap,andrepeatingthesameprocessforitsneighborsin
arecursivemanner–whichistime-consuming.Ontheother
hand,giventheamountofdisparityatanode,itmaybeclear
thatitsneighboruptoacertainnumberofhopscannotfillthe
disparitygap.Thatsimplyisbecauseeveryneighboringnode
hasadifferenceofexactlyoneelementwiththecurrentnode
and,hence,inthebestcasecandropthedisparitybyoneunit.
Inotherwords,ifthecurrentdisparityisequaltoδandthe
fairnessthresholdisε<δ,atleastδ−εhopsareneededto
fillthedisparitygap.
Everyhopinthepathfromthecurrentnodereducesthe
similarityfromtheinitialquerytoacertaindegree.Asa
result,combiningtheminimumnumberofhopstoachieve
fairnesswiththesimilaritydecayperhop,wecancomputean
upper-boundthresholdonthemaximumsimilarityforafair
range(referredasU-threshold)thatonecanhopetoachieve
bybranchingoutfromthecurrentnode.
Theaboveobservationenablestodesignamoreefficient
algorithm,InformedBestFristSearchalgorithmfor Multi-
Predicate(IBFSMP),withanearlystopcriteria,thatdelays
exploringthebranchesthattheirU-thresholdisnotthemax-
imum.Inotherwords,insteadofselectingthemostsimilar
nodetobeexplorednext,IBFSselectsthenodewithmaximum
U-thresholdtobeexplorednext.IBFSMPisinspiredfrom
theA*algorithm[46]whichutilizesthelower-boundonthe
remainingdistancetothedestinationtoperformanefficient
search.However,IBFSMPdiffersfromtheA*indetailsand
thewaytheboundsarecalculated. Westillneedtocompute
theU-thresholdofanode,whichisdoneinTheorem5.

Theorem5.TheU-thresholdofanodeQis:

JU(Q)=






max
Cr≤

δ−ε
Wr

I−
max(δ− −Wr·Cr,0)

Wb
U+Cr

Wr> Wb;δ>ε

max
C
b
≤ δ−ε

Wb

I−Cb

U+
max(δ− −Wb·Cb

,0)

Wr

Wb> Wr;δ>ε

max
Cr≤

δ−ε
Wr

I−Cr

U+
max(−δ− −Wr·Cr,0)

Wb

Wr> Wb;δ<−ε

max
C
b
≤ δ−ε

Wb

I−
max(−δ− −Wb·Cb,0)

Wr
U+C

b
Wb> Wr;δ<−ε

(3)
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whereδ=Wb·Cb−Wr·Cr.

Proof.LetthenodeQhaveanintersectionofIandunionof
Uwiththeinputrange.Letthedisparityoftheunfairrange
Qbeδ=Wb·Cb−Wr·Cr.AstherangeQisunfair,|δ|>ε.
LetusconsiderthecasethattherangeQisunfairbecause
ofthepresenceoftoomanybluesinQcomparedtothereds.

δ=Wb·Cb−Wr·Cr>ε

Aswearetryingtofindtheupperbound,wewouldlike
tomaximizetheJaccardsimilaritysuchthatsucharangecan
potentiallyexist.Inordertoobtainafairrange,eitherblues
canberemoved,redscanbeaddedorbothcanbedone.Let
B bethebluesthatareremovedandR betheredsthatare
addedtoQtomakeitafairrange.

−ε≤Wb(Cb−Cb)−Wr(Cr+Cr) ≤ε

−ε≤δ−Wb·Cb−Wr·Cr ≤ε

Movingaroundtheterms,weget

δ−ε≤Wb·Cb+Wr·Cr≤δ+ε (4)

InordertomaximizetheJaccardsimilarity,variousvalues
ofB andR needtobecheckedwhichsatisfytheequation4.
NotethatforagivenvalueofB(resp.R),usingthesmallest
R(resp.B)thatsatisfiestheequation4wouldprovidealarger
Jaccardsimilarity.Thus,givenB thesmallestvalueofred
satisfyingtheequationwouldbe,

Cr=
δ−ε

Wr

TheU-thresholdthuscanbeexpressedasamaximization
intermsofR,

max
0≤Cr≤

δ−ε
Wr

I− max(δ− −Wr·Cr,0)/Wb
U+Cr

(5)

Similarly,givenR theU-thresholdthuscanbeexpressed
asamaximizationintermsofB as,

max
0≤Cb≤

δ−ε
Wb

I−Cb
U+ max(δ− −Wb·Cb,0)/Wr

(6)

TheamountoftimetakentocomputetheU-thresholdusing
theequation5isδ−εWr .Theamountoftimetakentocompute

theU-thresholdusingtheequation6is δ−ε
Wb
.IncaseWris

largerthanWbthecomplexityforexploringallthevalues
forredsusingequation5isbetter.Equation6canbeused
toexploreallthevaluesforblueswhenWbislargerthan
Wr.Asimilarapproachcanbeappliedwhentherangeis
unfairbecauseofexcessiveredstoobtainthefinaltwocases
inequation3.

Replacingtheselectioncriteriafortraversingthegraphwith
U-threshold,theonlycomponentofAlgorithm6thatneedsto

changeisthemax-heapandtherestremainsunchanged,i.e.,
insteadofstructuringtheheapaccordingtosimilarity,IBFS
buildstheheapaccordingtoU-threshold(Equation3).
NotethattheIBFSalgorithmisagnostictotheheuristicand
similaritymeasuresatisfyingtwoimportantproperties.(1)The
similaritymeasurebeingusedmustbeasetbasedsimilarity
measurebasedonthepointsintheoutputrange.(2)Ascan
beseenfromU-threshold,theheuristicmustprovideaupper-
boundthresholdonthemaximumsimilarityforafairrange.
Noteonspacecomplexity:BFSMPalgorithmexploresneigh-
bouringrangestoreachthefairrangequerythatisnearestto
theinputquery.Alongtheprocessalargenumberofrangesare
exploredandstoredinmemoryinaheap.Thespaceconsumed
bythealgorithmdependsonthenumberofneighboringranges
explored.ThusthespacecomplexityforBFSMPalgorithmis
O(numberofexploredranges).

D.UsingMPalgorithmsforSP

Beforeconcludingthissection,wewouldliketonotethat
MPalgorithmsalso workforSP. However, SPQAhasa
provablybettertimecomplexitythanBFS,inallinstances.
ThisisbecauseSPQAtakesadvantageofpre-computedjump
pointerswhichisonlyavailablewhenthepossiblechanges
intheboundsoftherangearerestrictedtoonedegreeof
freedom.Asexplainedin§III-B,SPQAhasaworst-casetime
complexityofO(log(n)+disparity).Onecaneasilyestablish
abestcasecomplexityforBFSalgorithmsthatisatleastas
slowasthis.First,inordertoreachit’sdestination,BFScan
adjustitsrangewitheachstepbyaddingorremovingapoint.
Inthebestcase,itvisitsonlypointswhichmonotonically
decreasethedisparity,andstopsafterdisparitymoresteps.
Additionally,BFSconstructsaonedimensionalrangetree
(whichisequivalenttoabalancedbinarysearchtree)as
pre-processingtofindtheclosestpoint.Thisrequiresan
initialsetuptimeofnlog(n).Therefore,thebestcasetime-
complexityofBFSsisΩ(nlog(n)+disparity).Thisdemon-
stratesthatthetime-complexityofSPQAiscomprehensively
better,andaccordingly,wefavoritforSPqueries.

V.EXPERIMENTS
A.Experimentalsetup

Datasets: Weusedbothrealandsyntheticdatasetsforour
experiments.FortherealworlddatasetsweuseTexasTribune
andUrbanGBdatasets.Alongwiththerealworlddatasets,a
syntheticdatasetUniformwasgeneratedfortheexperiments.
Belowweprovideabriefdescriptionofthesedatasets.
Datasetname Items d Sens.attribute Weights
TexasTribune[47]149,481 21 gender,race gen.(1:1)race(4:5)
COMPASS[48] 60,842 12 race 2:1
UrbanGB[49] 1,600,00033 #vehiclesinaccident2:1
(Synthetic)Uniform10,000 4 Synthetic 1:1

•(Realdataset)TexasTribune2:TexasTribunedatasetconsists
of149,481recordswiththesalary/compensationinforma-
tionforTexasstateemployees.Thedatasethas21attributes
withgenderandracebeingthemainsensitiveattributesand
salary/compensationbeingnumeric.

2https://salaries.texastribune.org/
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•(Realdataset)COMPASS[48]:COMPASSdataset(un-
processed)consistsof60,842datapointscollectedwith
12attributeswithraceassensitiveattributeandonereal
numberedattribute(rawscore).Thedatasethasaround21K
Caucasian(blue)and39Knon-Caucasian(red)warranting
aratioof2:1.

•(Realdataset)UrbanGB3:UrbanGBdatasetconsistsof1.6
millionrecordsofaccidentsoveraperiod2000and2016.
Thedatasethas33attributes,includinglatitude,longitude,
accidentseverity,numberofvehiclesinvolvedintheacci-
dent,dateandtimeofaccident.Fortheexperiments,10,000
recordsfromtheUrbanGBdatasethavebeenused.As
UrbanGBdatasetdoesnothaveasensitiveattributeinherent
toit,weusethenumberofvehiclesthatwereinvolved
intheaccidenttocreateasensitiveattribute.Thereare
3,088recordswhereasinglevehiclewasinvolvedinan
accidentand6,912recordswheremorethanonevehicle
wasinvolved.Hence,weuseaweightof2forthe3,088
recordsand1forthe6,912records.

•(Syntheticdataset)Uniform:Thedatasetconsistsof10,000
pointssampleduniformlyfromacubewhichhasaside
oflength1,000andauniformlysampledbinarysensitive
attribute.Thedatasethas4,967bluesand5,033reds.

TheTexasTribuneandCOMPASSdatasetsconsistofone
numericalattribute,afewothercategoricalattributesand
sensitiveattribute.Hence,thetwodatasetshavebeenusedwith
SPQA.AsUniformandUrbanGBdatasetsconsistofmultiple
numericattributesitisusedforMPQAqueries.
OurexperimentswereconductedonaIntel(R)Core(TM)i7-

6850KCPU @3.60GHzwith64GBofmainmemoryusing
Linuxoperatingsystem(Ubuntu18.04.5LTS).
Algorithmsimplemented:AlongwithSPQA,weightedSPQA
andIBFSMPalgorithms,toevaluate multi-predicaterange

3kaggle.com/daveianhickey/2000-16-traffic-flow-england-scotland-wales/
data

queries,weimplementedalocalsearchbaselinealgorithm.

•Baseline:Thebaselineapproachforthe multi-predicate
rangequeriesisbasedonlimitingthesearchspacetoobtain
aboundingboxwithinwhichtosearchforfairqueries.
Themaximumnumberofelementsthatcanbeaddedto
theinputrangewithoutviolatingtheJaccardsimilarity
criteriaisfirstcomputed.Theboundariesoftheexpanded
boxarefoundbyfindingthesmallestexpansionalongeach
ofthedirections/dimensionswithoutviolatingthesimilarity
criteria.Thisexpansionlimitsthesearchspacewhilestill
providingavalidboxtosearchforthemostsimilarfair
range. Thisexpandedrangeisthensearchedinabrute-
forcemannertoobtaintheclosestfairrange.

•Coveragebasedalgorithm[35],[36]: Wehaveusedthe
codefrom[35],[36]tocompareagainstourmethodsfor
multi-predicaterangequeries.Thedifferenttechniquesin
thepapers[35],[36]modifytheinputrangetoproducea
rangewhichcoversatleastagiventhresholdnumberfrom
eachdemographicgroup.

AllthealgorithmsinthepaperareimplementedusingC++.
Theimplementedcodecanbefoundatthegithublocation4.
Experimentalparameters:Thevalueforεplaysanimportant
roleinsimulatingarealscenario.Satisfyingperfectparitymay
notalwaysbepossibleinpracticeandmayrequiresignificant
changesintheinitialsetting.Inparticular,inourproblem
setting,therangesthatarenotsimilarenoughtotheuserinput
maynotbevaluable.Inourexperiments,weallowadisparity
of5%betweendemographicgroups.Thecorrespondingvalue
ofεisthencomputedas:

ε=
0.05(|B Wb|+|RWr|)|out(Q)|

2(B+R)
whereBandRarethetotalnumberofbluesandredsin
theuniverserespectively.Wb(resp.Wr)refertotheweightof
eachblue(resp.red).Theentity(|B Wb|+|RWr|)/(B+R)

4https://github.com/surajshetiya/fairness-range-queries-icde-2022
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givesustheexpectedmagnitudeoftheweighteachpoint
carries.ThescaledweightforthegivenqueryQ withan
alloweddisparityof5%thusturnsouttobe0.05(|B Wb|+
|R Wr|)|out(Q)|/(B+R).
Choosinganappropriatevalueofε:Oursystemenablesre-
sponsibledataselectionthroughexploration.Whilethechoice
ofεvariesbasedontheapplication,anexplorationbased
approachhelpstheapplicationownertochooseanappropriate
valueofε.Thatis,aftertheuserspecifiesarangequeryanda
valueofε,wereturnthemostsimilarquery,satisfyingit.The
userthenhasthechoicetoacceptourrecommendation,orto
adjustthevalueofεand/ortherangeandcontinueexploring
untilasatisfactoryrangeisidentified.

B.ProofofConcept-TEXASTRIBUNE
Foraproofofconcept,weusetheTexasTribunedataset.

Thedatasetconsistsof149,481recordsofcompensationfor
Texasstateemployees. Weusegenderasthesensitive
attribute.Astherepresentationofmalesandfemalesinthe
datasetissimilar(64,153menand85,328female),theweights
formaleandfemaleinthequeryareconsideredtobethesame.
Thedistributionofmaleandfemaleemployeesintheoverall
datasetcanbeseeninFigure11.FollowingExample1onthis
dataset,weassumethebusinessofficeisinterestedinfinding
theemployeeswhoearnasalaryofmorethan$65,000.There
areatotalof14,803menand12,182womenearningmorethan
$65,000,withadifferenceof2,621(around10%).Considering
theethicalconsiderations,thebusiness managementoffice
wouldliketofindaquerywhoseoutputissimilartotheinitial
queryandwithinwhichthereareatmost1000(around5%)
malesmorethanfemales.
UsingSPQA,afairquerywhichismostsimilartothe

inputinputqueryisdetermined.Theoutputofthefairquery
(60562≤salary≤152000)consistsof32,064employees
with16,532maleand15,532female.TheJaccardsimilarity
ofthefairquerywiththeinputqueryisaround75%(76.23%).
Figure11showsthedistributionofmaleandfemaleemployees
ininputqueryandthemostsimilarfairquery.
ExtendedPoC:Afunction F(x)whichfor whichdata-
pointswiththesamexvaluesbutfromdifferentdemographic
groupshavedifferentresultswillunderperformonagiven
demographicgroupifthatdemographicgroupisunfairly
representedindesigningthefunction.IntheTexasTribune
dataset,thereisafunctionthatmeetsthisrequirementwhere
F(x)predictsthesalaryandtheparametersxaretheirlevel(or
lackoflevel)ofemploymentandthepartofthestateforwhich
oftheyareemployed.Wetrainedanauto-sklearnregressoron
thistask,usingtwodatasets:theresultoftheoriginalqueryin
Example1,andtheresultofthemodifiedfairquery.Wethen
analyzedthedatasetusingR2scoresovermaleandfemale
datapoints. Weobservedthatwiththeinitialdatasetthere
wasafractionaldifferenceof0.088,whilewiththeunbiased
data,thatfractionaldifferencewasreducedto0.022,where
alowerfractionaldifferencerepresentsaregressorpredicting
thesalaryformenandwomenmoreconsistently.
SystemsIntegrationPoC:AsanintegrationwithaDBMS
system,wecreateathinwebbasedinterfacebasedonpostgres.

ForthisPoC,weusetheTexasTribunedataset.Thepostgres
databaseiscreatedwithindexonthenumericattribute-salary.
ForthePoC,wecomparetheO(n2)naivealgorithmwiththe
jumppointeralgorithm.
Forthenaivealgorithm,thetimeiscomputedforprocessing
thequery.Forthejumppointeralgorithm,thereisapre-
processingphasewherewecalculatethecumulativesumand
jumppointersandpopulateaseparatetablewiththesedetails.
Wemeasurethetimetakenfornaivequery,pre-processingto
createjumppointersandSPQAqueryprocessing. Average
timetakenbythepre-processingalgorithmtakenbySPQA
0.043second. Werunaround500randomlysampledqueries
andmeasuredthetimetakenbyeachofthesequeries.While
averagetimetakenbySPQAalgorithmis0.0054seconds,
averagetimetakenbynaivealgorithmis6.938seconds.This
showstheefficienlyofSPQAwhenintegratedwithDBMS.
C.PerformanceofSPQAandweightedSPQA

TheperformanceofSPQAdependsonthedisparityofthe
inputquery.Fortheseseriesofexperiments,wemeasurethe
amountoftimetakenbytheSPQAalgorithmwhenprovided
withaninputquery.Theexperimentwereaveragedoverfive
runsofSPQAalgorithmformorereliabletimemeasurements.
Fortheseexperiments,theTexasTribunedataset wasused.
AsTexasTribunehas149,481recordswithalmostthesame
numberofmaleasfemaleweusegenderasthesensitive
attributefortheunweightedcase.Fortheweightedcase,
weuseraceasthesensitiveattributewhileusingwhite
(majority)andnon-white(minority)asthedemographic
groups.Thereareatotalof67,142whiterecordsand82,339
non-whiterecords.Astheratioofwhitetonon-white
isverynearto4:5(0.815),weuseweightsof4and5for
theweightedSPQA.FortheSPqueries,weusesalaryasthe
attributeforrangepredicates.Alargepartoftherecordsofthe
database(95.6%)haveasalarylessthan100,000.Hence,to
settherangequeryboundary,wepickallpointsinmultiples
of5,000between5,000and100,000asstartandendpoints.
Foreveryquery,timetakenbySPQAalgorithmismeasured
alongwiththeinputquery’sdisparity.Forboththeweighted
andunweightedcase,theεvaluewassetto500forthisset
ofexperiments.
FortheCOMPASSdataset,theriskscorevariedbetween

−4.79−51.0.Startingoftheinputrange wasgenerated
between−4.79and51.0withmultiplesof3.0.Endingofthe
inputrangevariedfromthestartinginmultiplesof3.0.The
COMPASSdatasethasaround21KCaucasian(blue)and39K
non-Caucasian(red)warrantingaratioof2:1.
Figures12and13showthescatterplotforamountof
timeforSPQAagainsttheinputquery’sdisparityvaluefor
theTexasTribunedatasetandfigure14showsthescatter
plotfortheweightedSPQAqueriesrunontheCOMPASS
dataset.Asabaseline,weranIBFSforsinglerangepredicate
(weightedandunweighted).Onaverage,IBFSranabout3
ordersofmagnitudeslowerthanthejumppointeralgorithm.
Theplotsshowalinearscalingoftimewiththeinputquery’s
disparity.Thisempiricallyvalidatestherunningtimeofboth
theunweightedandweightedSPQAalgorithms.
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D.PerformanceevaluationofMPalgorithms

Forthe multi-predicaterangequeryevaluation, weuse
UrbanGBandUniformdatasets.Fortheexperiments,10,000
recordsfromtheUrbanGBdatasethavebeenused.Therea
totalof3,088bluesand6,912reds.Hence,weuseaweightof
2forthebluerecordsand1fortheredrecords.Latitudeand
longitudeattributesfromthedatabasewereusedtoformthe
rangequeries.Thelatitudevaluesinthe10Krecordsvaried
from−0.507015to0.297345andthelongitudevaluesvaried
from51.306584to51.660974.Uniformdatasetconsistsof
10Krecordsuniformlysampledfromwithinasquareoflength
1,000.Thesensitiveattributeis madeofanalmostequal
numberofbluesandredsandhenceweuseaweightof1for
boththesecolors.Forallsetsofexperiments,adisparityof5%
betweendemographicgroupsisallowedwhichisindicatedby
thevalueofεused.Thebaselinealgorithmrestrictsthesearch
toaboundingboxandperformsathoroughsearchofallthe
rangesinthisrectangle.Inthissectionwecomparetherun
timesofIBFSMPandbaselinealgorithms.
1)Effectofinputquerysizeontheruntime:Querysize
isanimportant measureasitimpactstheperformanceof
ouralgorithms.Itimpactsthenumberofpointsthatare
beingaddedorremovedtofindafairrange. Whilethere
aremanyotherfactorswhichmayimpacttheperformanceof
thequery,wechoosemanyqueriesineachbucketandrepeat
ourexperimentswitheachoftheseandaggregateourresults
toreducetheimpactofotherfactors. Forourexperiments,
querysizesvaryfrom200to1400thatarebucketizedwith
intervalsof200.Thatis,ifforexampleaqueryresultcontains
558points,itfallinthequerysizebucketof400-600.Each
buckethas20rangequeriessampledfortheexperimentusing
rejectionsampling.Theinputqueriesarechosenfromdifferent
bucketsusingrejectionsamplingbasedonthepointswhich
satisfythequery.Ineachbucket, weexecute30queries
eachandaggregatetheresultsforcomparison.Theaverage
run-timeismeasuredforboththealgorithmsunderdifferent
bucketsizes.Forthequeriesineachbucket,themeantime
takenduringtherunoftheIBFSMPalgorithmforUrbanGB
andUniformdatasetsisshowninFigure16andFigure17,
respectively.Incaseofthebaselinealgorithmwhichrestricts
thesearchspace,experimentalresultsforthebucket200-400
showameanof697.4secondsand557.1secondsforthe
UrbanGBandUniformdatasetsrespectively.Thecasesforthe
largerbucketsizesdidnotcompleteevenafter3hoursand
thusarenottabulated.Theaggregatedvaluesofmeanshow
thatIBFSMPoutperformsthebaselinealgorithmbyorders
ofmagnitude.Foreachindividualquery,theIBFSMPoutper-
formsthebaselinealgorithm.But,duetospaceconstraints,
thedetailsofeachqueryexecutedisnotincluded.
IBFSMPshowssimilartrendwhenruninhigherdimen-

sions.Theexperimentswith3rangepredicatesshowthatthe
timetakengrowswithinputrangesizeasseeninfigure15.
Onedifferenceweobservedwasthatthelargerpartofthe
computationwasspentincomputingskylinesthaninlower
dimensions.Onecanobservetheincreaseinruntimesbetween
thetwoanddimensionchartsevenforsmallinputsizes.

2)Effectofinputquerysizeonthenumberofranges
explored:Forthenextsetofexperiments,weevaluatethe
effectofinputquerysizeontherangesexplored.Asthe
algorithmhasadependenceonmanyfactors,wechooseinput
queryarbitrarilytoanalysetheimpactofinputquerysize,
Jaccardsimilarityfromtheinputrangeonrunningtime.
ThenumberofrangesexploredbytheIBFSMPalgorithmis
measuredasaparameteralongwiththetimetaken. Weuse
thesamesetofquerieswithdifferentsizes,bucketizedwith
intervalsof200,asinourpreviousexperiment.
ThenumberofrangesexploredbyIBFSMPforUrbanGB
andUniformdatasetsareshowninFigure18andFigure19
respectively.Ascanbeseeninthefigures,thenumberof
rangesexploredgrowssignificantlywithincreaseinquery
size.Astheamountoftimetakenisproportionaltothenumber
ofranges,themeantimetakengrowswiththenumberof
rangesexploredascanbeseenintheboththefigures.
WedidnotincludetheperformanceofBFSMPinthetable
asIBFSMPsignificantlyoutperformeditinallcases.For
example,whileIBFSMPonaveragerequiredonly1.1seconds
forthe200-400bucketinUniformdataset,BFSMPonaverage
took11.1seconds.Thatisbecause,onaverage,itexplored
145Kranges(SD=394K)whilethisnumberwas15Kfor
IBFSMP.Similarly,forUrbanGBdataset,BFSMPonaverage
took15.3secondswhileIBFSMPtook3.6secondsforthis
experiment.ThereasonwasthatBFSMPonaverageexplored
199Kranges,whilethisnumberwas51KforIBFSMP.Inall
cases,IBFSMPoutperformedBFSMPforeveryquery.

E.Comparisonwithcoveragebasedalgorithms
Coveragebasedalgorithms[36],[35]outputarangequery
bymodifyingthegivenquerysuchthatatleastagivennumber
ofitemsfromeachsensitivegrouparepresent.Notethat
coveragebasedCRBasemakesuseofathresholdvaluefor
eachdemographicgroup.Ontheotherhanddemographic
paritymeasureisbasedonthenotionofweighteddifference
betweenthedemographicgroups.Asarangeexpandsby
additionoftheminoritygroup,itemsfromthemajoritygroup
arealsoaddedwhichmayincreasethedisparity.Tofindranges
whichsatisfydemographicparitymeasure,wemakeuseof
numerousvaluesofthresholdtofinddifferentrangesthat
satisfydemographicparityfairnessmeasure.Amongthesefair
ranges,werecordtheoneswhichhavethemostsimilarity.
Wehaveruntheseexperimentswiththe uniformandUr-
banGBdatasets. WemeasurethefairrangesfromCRBase
algorithmandrecordtheonewhichhasthemostsimilarity.
CRBasealgorithmwasrunwith4,8,16and32bins.CRBase
algorithmproducesafairrange33.9%ofthetime with
theUniformdataset. We measuretheerrorbycomputing
1−CRSim/Optimal,whereCRSimisthesimilarityofthe
CRBasealgorithmwhereastheOptimalisthesimilarity
oftheoptimalrange.FortherangeswhereCRBasealgorithm
doesnotsatisfythefairnessorsimilaritycriteriawemark
CRSimas0.Anaverageerrormeasureof0meansthat
optimalrangeisalwaysobtained,whileanerrorof1means
thattherangeproducedneversatisfiesthecriteria.Theerror
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producedbyCRBaseis0.682onaverage.FortheUrbanGB
dataset,weusedaweightedfairnessmeasure.CRBasewas
abletoproduceafairrangeforonly3outof120sample
ranges.Theexperimentshowsthatthetwooptimizationprob-
lemsandhence,thesolutionsaredifferentinnature.
F.Summaryofexperimentalresults

Atahighlevel,theexperimentsverifytheefficiencyand
efficacyofour methods.Firstly,weempiricallyshowthe
efficiencyoftheunweightedandweightedSPQAalgorithm.
Secondly,forawidespectrumofrangequeries,weshowthat
BFSalgorithmsoutperformthebaselinealgorithmbyordersof
magnitude.Moreover,IBFSMPoutperformedBFSMPsinceit
exploredfarlessnumberofrangesbeforeitfoundtheoptimal
solution.Finally,wealsoshowtheeffectofinputrangesize
onIBFSMP,thelargerthesetsizethemorethetimetakenby
IBFSMPtofindthemostsimilarfairrange.

VI.RELATED WORK

Queryanswering:Efficiencyiscriticalrequirementinquery
answering.Alargeamountofresearchhasfocusedondifferent
aspectsofqueryansweringoverthepastfewdecades.One
ofthepopularmethodsthathasbeenexploredisthequery
answeringusingviews[50],[51],[52],[53],wherethegoal
istoefficientlyansweraqueryusingasetofpreviously
materializedviewsonthedatabase.Srivastavaet.al.[52]
answerSQLquerieswithgroupingandaggregationinthe
presenceofmultisettablesbydetectingwhentheinformation
existinginaviewissufficienttoansweraquery.Chaudhuriet.
al.[53]solvetheproblemofoptimizingqueriesinthepresence
ofmaterializedviews.Approximatelyansweringquerieshas
alsobeenstudiedextensivelyinmanyworks[54],[55],[56],
[57],[58]. Whiletherehavebeenmanyworksinthearea
ofqueryanswering,noneoftheseworkscanbemodifiedto
incorporatefairnessintothem.
Fairness:Reducingracialdisparitieshasrecentlybeenakey
research[3],[59],[60],[61],[62],[63],[11],[25].Feldman
et.al.[59]proposemethodstomakemakedataunbiasedby
modifyingthefields/attributes.Hajianet.al.[60]proposea
datatransformationthatcanconsidercombinationofattributes
toperformdatatransformation.While[59],[60]performdata
modification,wedonotmodifyanydatapointtoremovebias
fromdatainsteadweprovidethenearestfairdatapointsto
workwith. While[61],[62]proposemethodsthatlearnto
producefairmachinelearningmodelsfromthegivendatathey
donoteliminatebiasfromthedataitself.
Queryreformulation:Salimiet.al.[64]createdasystemfor
detectingstatisticaldependencieswhichimpacttheresultof
theoriginalquery.Intheirwork,theyreformulatequeriesby
modifyingtheattributesqueriedtoaccountforthesestatistical
anomalies.Inotherworks[34],[35],[36],asystemhasbeen
proposedwhichminimallyrelaxesaquerytoprovidecoverage
forsensitivegroups.Theobjectiveof[35],[36]istomodify
theoriginalquerysatisfyingdemographiccoverageconstraints
(minimumnumberofitemsfromaeachgroup).Coverage
constraintsatisfactioninvolvesonlyrelaxingtheconstraints,
whichmaynothelpinreducingdisparity.Notethat,tryingto

satisfycoveragecanfurtherincreasethedisparitybetweenthe
groups.Similartotheseworks[34],[35],[36],ouralgorithms
alsomodifytheoriginalquery.However,unlikeexistingwork,
ourobjectiveistofindqueries(i)similartotheinitialquery
that(ii)satisfyadisparity(unfairness)thresholdoncounts
fromdifferentdemographicgroups.

VII.DISCUSSIONANDFUTURE WORK

Fairnessmodel:Therearemanyfairnessmodelswhichone
canconsiderwhenthedatacontainsdemographicsensitive
attributes.Inthispaper,wehaveusedthefairnessmodelin
whichobjectsfromdifferentdemographicgroupshaveequal
chancesofbeingselectedintheoutputset.Thereareother
fairnessmodelslikethedemographicparitybasedonratio
whichweconsiderforfuturework.Suchafairnessmodelhas
theform,δ≥Cr/Cb≥δ

−1.

Operators:Inourcurrentwork,wehaveconsideredacon-
junctiveoperatortojoindifferentpredicates.Querymodels
likeSQLsupportoperatorslikeNOTandOR.Notethatthe
subsetofoperations(ORandAND)wouldallowtheoutput
queriestoallowforunionofranges.Weconsidertheaddition
ofthesedifferentoperatorstothequerymodelasanextension
ofthepaperforfuturework.
Allnearestfairranges:Thedeclarativequeryin2canhave
multiplerangequerieswhichareequallynearwhilesatisfying
fairnessconstraints.Aninterestingareaofresearchwouldbe
toenumerateallthesenearestfairranges.
Demographicgroupbasedextensions:Fairnessproblems
basedonbinarydemographicgroupshavebeenwellstud-
ied[65],[66],[67],[68]forvariousapplicationslikeclus-
tering,PCAandotheroptimizationproblems. Wenotethat
asignificantportionofexistingliteraturefairnessandits
definitionsconsiderbinarycases,asthereusuallyisan
advantaged/majorityv.s.disadvantaged/minoritygroup(e.g.
COMPASdataset(blackvsnon-black),adultandsalary
dataset(femalevsmale)).Whilebinarycaseforfairnessisan
importantcase,extensionstotheseproblemsarevaluablein
manyscenarios.Weconsiderextendingthefairrangequeries
tonon-binarydemographicgroupsanddemographicparity
constraintsonmultiplesensitiveattributesasfuturework.

VIII.FINALREMARKS

Inthispaper,weinitiatedresearchonintegratingfairness
intodatamanagementsystems.Asourfirstattempt,wefo-
cusedonselectionbiasinrangequeries,andproposedefficient
algorithms.Inparticular,weproposedasub-linearalgorithm
forsingle-predicaterangequeriesandtwoalgorithmsbased
modelingtheproblemasgraphtraversalformulti-predicate
rangequeries.Besidestheoreticalanalysis,comprehensiveex-
perimentsverifiedefficiencyandeffectivenessofourproposal.
Weconsidertheextensiveresearchrequiredforthefull
integrationoffairness,includingacomprehensivedatabase
andquery modelwithabroadcoverageofbias,fairness
notions,andabroadrangeofSQLoperatorsaswellas
designingmoreefficientalgorithms,forourfuturework.
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