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Abstract

We analyze the microlensing event OGLE-2019-BLG-0304, whose light curve exhibits two distinctive features: a
deviation in the peak region and a second bump appearing ∼61 days after the main peak. Although a binary-lens
model can explain the overall features, it leaves subtle but noticeable residuals in the peak region. We find that the
residuals can be explained by the presence of either a planetary companion located close to the primary of the
binary lens (3L1S model) or an additional close companion to the source (2L2S model). Although the 3L1S model
is favored over the 2L2S model, with Δχ2

∼ 8, securely resolving the degeneracy between the two models is
difficult with the currently available photometric data. According to the 3L1S interpretation, the lens is a planetary

system, in which a planet with a mass -
+ M0.51 0.23
0.51

J is in an S-type orbit around a binary composed of stars with

masses -
+ M0.27 0.12
0.27 and -

+ M0.10 0.04
0.10 . According to the 2L2S interpretation, however, the source is composed of

G- and K-type giant stars and the lens is composed of a low-mass M dwarf and a brown dwarf with masses

-
+ M0.12 0.05
0.12 and -

+ M0.045 .019
0.045 , respectively. The event illustrates the need for thorough model testing in the

interpretation of lensing events with complex features in light curves.

Unified Astronomy Thesaurus concepts: Gravitational microlensing exoplanet detection (2147)

Supporting material: data behind figure

1. Introduction

The search for planets belonging to binary and multiple
stellar systems is important because these planets are expected
to have gone through different formation and evolution
processes than those of single stars, and thus they can provide
a valuable test bed to better understand the formation and
evolution processes of planets in general. The search for these
planets is also important in estimating the global frequency of
planets because a majority of stars form binary or multiple
systems, and thus the planetary frequency of multiple systems
can have a significant effect on the global planet frequency.

Planets in binary and multiple systems have been detected
using various methods, including radial velocity (Correia et al.
2005), transit (Doyle et al. 2011), pulsar-timing (Thorsett et al.

1993), eclipsing-binary (Lee et al. 2009), and microlensing

(Gould et al. 2014) methods. Among these methods, micro-

lensing is useful for detecting some specific populations of

planets, especially cold planets orbiting low-mass binary stars.

The microlensing sensitivity to planets in low-mass binaries is

due to the lensing property, in which detection does not depend

on the luminosity of host stars. Another important advantage of

the microlensing method is that it enables one to detect planets

in both S- and P-type orbits, for which a planet of the former

type orbits one of the the widely separated binary stars, and a

planet of the latter type orbits both closely spaced binary stars.

The microlensing sensitivity to both S- and P-type planets is

due to the lensing characteristics, in which a binary companion,

regardless of binary separation, induces a caustic in the central
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magnification region, near which a planet also induces a
caustic, and thus the signatures of both the planet and stellar
companion appear in the same peak region of high-magnifica-
tion lensing light curves (Han 2008; Lee et al. 2008). Here
caustics indicate the positions on the microlensing source plane
at which the lensing magnification of a point source would
become infinite. For this reason, high-magnification lensing
events provide a major channel (central perturbation channel)
for detecting planets in binaries.14

Although high-magnification lensing events provide a
channel to detect both S- and P-type planets, one is often
confronted with cases in which the orbital type of the planet, S
or P, cannot be uniquely determined. This happens because
both the close- and wide-separation stellar companions can
induce similar caustics in the central magnification region,
producing companion signals of a similar shape. This so-called
“close–wide degeneracy” (Griest & Safizadeh 1998;
Dominik 1999) causes ambiguity not only in determining the
binary separation but also in determining the star–planet
separation. The close–wide degeneracy happened in three
(OGLE-2006-BLG-284, OGLE-2016-BLG-0613L, and
OGLE-2018-BLG-1700L) out of the total six known micro-
lensing planetary systems in binaries, thus it is a deep-seated
problem in determining the orbital type of planetary systems in
binaries.

The close–wide degeneracy in determining the planet and
binary separations can be lifted in some special lens-system
configurations. The first such case is that the projected
separation between the planet and host is similar to the angular
Einstein radius θE of the lens system. In this case, the planet
induces a resonant caustic, for which the planet-host separation
is uniquely determined. The second case is that the source
trajectory of a lensing event passes the region around a widely
separated second stellar lens component well after (or well
before) the main approach to the first lens component. In this
case, the source approach to the second lens component
produces an extra bump in addition to the main peak produced
by the source approach close to the first lens component (Di
Stefano & Scalzo 1999). Then, the existence of the second
bump indicates that the planet is in an S-type orbit.

In this work, we present the analysis of the lensing event
OGLE-2019-BLG-0304. The light curve of the event exhibits
two distinctive features: a deviation in the peak region and a
bump appearing long after the main peak. A 2L1S model
approximately describes the overall feature of the light curve,
but it leaves subtle residuals in the peak region. If the central
residual is caused by the perturbation of a planetary
companion, then the lens is a special case in which a planet
belongs to a binary and its orbital type is identified by the
second bump. In order to check this possibility, we conduct
thorough model testing under various interpretations of the lens
system and present the results.

For the presentation of the work, we organize the paper as
follows. In Section 2, we describe the observations of the
lensing event and the data obtained from the observations. We
also mention the characteristics of the lensing event. In

Section 3, we describe various lensing models that are tested
to interpret the observed lensing light curve. The procedure of
estimating the angular Einstein radius and relative lens-source
proper motion is stated in Section 4. In Section 5, we describe
the procedure of estimating the physical lens parameters using
the measured observables of the lensing event. We discuss the
reality of the signal in Section 6, and conclude in Section 7.

2. Observation and Data

The source of the event OGLE-2019-BLG-0304 is located
toward the Galactic bulge field at the equatorial coordinates (R.
A., decl.)J2000= (17:36:06.41, −26:08:45.56). The corresp-
onding Galactic coordinates are (l, b)= (1°.252, 3°.266). The
brightness of the source had remained constant before the 2018
season with a baseline magnitude of Ibase= 17.99. The lensing-
induced brightening of the source flux started during the time
between the end of the 2018 season and the beginning of the
2019 season. The lensing light curve peaked on 2019 March 1
(HJD′≡HJD−2,450,000∼ 8543.5) with a magnification of
Apeak∼ 60, and then gradually declined to the baseline. The
source flux increased and peaked again on 2020 May 1
( ¢ ~HJD 8605), producing a second bump with a low
magnification of Abump∼ 1.2.
The lensing event was first found by the Early Warning

System of the Optical Gravitational Microlensing Experiment
(OGLE, Udalski et al. 1994) survey on 2019 March 16. The
OGLE survey utilized the 1.3 m telescope located at the Las
Campanas Observatory in Chile and the telescope is equipped
with a camera yielding a 1.4 deg2 field of view. The event was
rediscovered by the Korea Microlensing Telescope Network
(KMTNet, Kim et al. 2016) survey in its post-season analysis
(Kim et al. 2018), and it was dubbed KMT-2019-BLG-2583.
The KMTNet survey employed three identical 1.6 m telescopes
located at the Siding Spring Observatory (KMTA) in Australia,
the Cerro Tololo Inter-American Observatory (KMTC) in
South America, and the South African Astronomical Observa-
tory (KMTS) in Africa. The camera mounted on each KMTNet
telescope yields a 4 deg2 field of view.
For both surveys, observations were conducted mainly in the

I band and a fraction of images were taken in the V band for the
source color measurement. We describe the detailed procedure
of the source color measurement in Section 4. The OGLE
survey of the 2019 season started on ¢ =HJD 8547, 4 days
before the peak, but the peak was not covered because the
source of the event lies in a low-cadence field (BLG667),
which is very infrequently observed at the beginning of the
season due to short observing nights. Fortunately, the peak was
covered by the KMTNet survey, which commenced in the 2019
season on ¢ =HJD 8534, 8518, 8534 for the KMTA, KMTC,
and KMTS telescopes, respectively.
Neither the OGLE nor the KMT survey issued an alert of the

event prior to peak, and hence no follow-up observations were
possible, although this was a high-magnification event, for
which the sensitivity to planets is high. For example, follow-up
observations of OGLE-2012-BLG-0026 (Han et al. 2013)
revealed a two-planet system, despite the fact that it peaked at a
similar calendar date to OGLE-2019-BLG-0304, so that
observations were restricted by similarly short nights. The
delay of the OGLE alert was caused by the sparse observations
of this field, as mentioned above. KMT did not issue an alert at
all because its AlertFinder (Kim et al. 2018) system began
operation in 2019 on March 27, and it only searches for rising

14
There are six discovery reports of microlensing planets in binary systems,

including OGLE-2006-BLG-284 (Bennett et al. 2020), OGLE-2008-BLG-
092L (Poleski et al. 2014), OGLE-2013-BLG-0341 (Gould et al. 2014),
OGLE-2007-BLG-349L (Bennett et al. 2016), OGLE-2016-BLG-0613L (Han
et al. 2017), and OGLE-2018-BLG-1700L (Han et al. 2020). Among them,
four systems were detected through the central perturbation channel except for
OGLE-2008-BLG-092L.
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events. Hence, as mentioned above, the event was found in the
post-season analysis.

Reduction and photometry of the data were done using the
pipelines of the individual survey groups developed based on
the difference imaging method (Tomaney & Crotts 1996; Alard
& Lupton 1998): the Udalski (2003) code using the DIA
technique of Woźniak (2000) for the OGLE survey and the
Albrow et al. (2009) code for the KMTNet survey. An
additional reduction was conducted for a subset of the KMTC
data using the pyDIA code (Albrow 2017) to estimate the color
of the source star. Error bars of the data estimated by the
photometry pipelines were readjusted following the routine
described in Yee et al. (2012).

Figure 1 shows the light curve of OGLE-2019-BLG-0304
with the combined data obtained from the OGLE and KMTNet
surveys. The inset in the upper panel shows a zoom-in view of
the peak region. Compared to the symmetric light curve of a
single-lens, single-source (1L1S) event, the light curve of the
event exhibits two distinctive features. First, the light curve is
asymmetric due to the existence of the second bump, which is
centered at ¢ ~HJD 8605. Second, the region around the main
peak, centered at ¢ ~HJD 8543.5, appears to exhibit deviations
caused by finite-source effects, which occur when the lens
passes over the surface of the source star. The curve drawn over
the data points is the 1L1S model obtained by fitting the
observed data excluding the region of the second bump with
the consideration of finite-source effects. The model parameters
are (t0, u0, tE, ρ)∼ (8543.68, 0.04× 10−3, 15.3 days,

4.1× 10−2
), where the individual parameters indicate the peak

time (in ¢HJD ), lens-source separation at that time (normalized
to θE), event timescale, and source radius (also normalized to
θE). Although the finite-source 1L1S model better describes the
peak region than the point-source model does, it still leaves
substantial residuals, indicating that a more sophisticated model
is needed to explain not only the second bump but also the
main peak.

3. Interpretation of Anomalies

3.1. Three-body Interpretations

Considering the existence of the second bump, we first test
two three-body (lens plus source) interpretations, in which one
is that the source is a binary (1L2S model) and the other is that
the lens is a binary (2L1S model). Besides the 1L1S parameters
of (t0, u0, tE, ρ), modeling the light curve under these
interpretations requires one to include additional parameters.
For the 1L2S model, these additional parameters are (t0,2, u0,2,
qF, ρ2), which represent the time of the second bump,
separation between the lens and the second source at t0,2, the
flux ratio between the two source stars (S1 and S2), and the
normalized source radius of the second source, respectively
(Hwang et al. 2013). For the 2L1S model, the additional
parameters are (s, q, α), which represent the separation (scaled
to θE) and mass ratio between the two lens components (M1 and
M2) and the angle of the source trajectory as measured from the
M1–M2 axis (source trajectory angle), respectively.

Figure 1. Light curve of the microlensing event OGLE-2019-BLG-0304. The inset shows a zoomed-in view of the central magnification region. The curve drawn on
the data points is a model obtained under a single lens and single source (1L1S) interpretation with the consideration of finite-source effects. The lower panel shows
the residuals from the 1L1S model.

(The data used to create this figure are available.)

3
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3.1.1. Binary-source (1L2S) Model

We start with the modeling under the 1L2S interpretation. In
this modeling, the initial parameters of (t0, u0, tE, ρ) are set as
those obtained from the 1L1S modeling, and the initial
parameters of (t0,2, u0,2, qF, ρ2) are set considering the time
and height of the second bump in the light curve. From this
modeling, we find a solution that can explain the second bump.
The lensing parameters of the 1L2S model along with the χ2

value of the fit are presented in Table 1. We note that ρ2 is not
presented because the second bump does not exhibit deviations
caused by finite-source effects.

From inspecting the residuals of the model, presented in the
bottom panels of Figures 2 (around the main peak) and 3
(around the second bump), it is found that the model still leaves
substantial residuals, especially around the main peak. This
indicates that the 1L2S model is not a correct interpretation of
the observed light curve.

3.1.2. Binary-lens (2L1S) Model

The 2L1S modeling is carried out in two steps. In the first
step, the binary parameters s and q are searched for using a grid
approach and the remaining parameters are searched for using a
downhill approach based on the Markov Chain Monte Carlo
algorithm. In the second step, the local solutions found from
the first step are refined by allowing all parameters, including s
and q, to vary. This two-step process is needed to investigate
the existence of possible degenerate solutions.

From the 2L1S modeling, we find a unique model that can
explain the overall features of the light curve by significantly
reducing the residuals in both regions of the main peak and the
second bump of the light curve. In Figures 2 and 3, we present
the model curve and residuals of the 2L1S solution in the
regions around the main peak and second bump, respectively.
The best-fit lensing parameters of the solution are listed
Table 1, in which we mark the binary parameters with a
subscript “2,” i.e., (s2, q2), to distinguish them from the
parameters related to a possible tertiary lens component to be
discussed in the following subsection. In Figure 4, we present
the lens-system configuration of the 2L1S solution, showing
the source trajectory with respect to the locations of the lens
components and the resulting caustics. According to the model,

the event is produced by a binary lens, in which the companion
M2 is separated in projection from the primary M1 by s∼ 3.8,
and its mass ratio to the primary is q=M2/M1∼ 0.39. The
anomaly around the main peak of the light curve is produced
by the source star crossing over the small caustic located close
to the primary of the lens and the second bump is explained by
the approach of the source near the region around the second
caustic located close to the companion. We note that despite the
source star crossing over the caustic during the main peak, the
usual sharp caustic crossing features do not appear in the light
curve due to severe finite-source effects. It is found that the
caustic crossing interpretation greatly reduces the residuals
from the 1L1S model in the peak region of the light curve.
This, together with the second bump, strongly indicates that the
lens is accompanied by a binary companion.
We note that the 2L1S solution would have been subject to

the close–wide degeneracy, if it were not for the data around
the second bump. To check this, we conduct an additional
modeling by excluding the data lying in the region

< ¢ <8570 HJD 8635. Figure 5 shows the Δχ2 map in the
s2–q2 parameter plane obtained from this modeling. The map
shows two distinct locals, in which one with s2> 1.0
corresponds to the wide solution presented in Table 1, and
the other with s2< 1.0 is the degenerate close solution.
Therefore, the event is a special case, in which the close–
wide degeneracy is clearly resolved by the existence of a
second bump.
Although the 2L1S model appears to depict the overall

feature of the light curve, we find that it leaves subtle but
noticeable residuals in the peak region. This can be seen in the
third residual panel (labeled as “2L1S”) of Figure 2, which
shows that the data points in this region deviate from the model
by 0.05 mag. The three dotted vertical lines (marked by
t1= 8542.20, t2= 8542.85, and t3= 8543.85) indicate the three
epochs of relatively large deviations. In order to check whether
the deviations are caused by systematics in the data, we
conduct multiple re-reductions of the data using different
template images for difference imaging photometry. We find
that the residuals persist regardless of the reduction, suggesting
that the signal is real.
We further check the possibility that the residuals from the

2L1S model around the main peak are caused by the omission

Table 1

Lensing Parameters of 1L2S, 2L1S, 2L2S, and 3L1S Models

Parameter 1L2S 2L1S 2L2S 3L1S

χ2 7359.5 5654.6 5614.3 5606.3

t0 ( ¢HJD ) 8543.677 ± 0.00266 8543.610 ± 0.004 8543.474 ± 0.030 8543.599 ± 0.005

u0 (10−3
) −0.24 ± 0.94 0.86 ± 0.27 0.07 ± 1.77 0.54 ± 0.36

t0,2 ( ¢HJD ) 8604.245 ± 0.148 L 8543.719 ± 0.037 L

u0,2 (10−3
) 0.831 ± 0.026 L 1.80 ± 0.99 L

tE (days) 14.57 ± 0.10 17.47 ± 0.08 17.48 ± 0.09 17.76 ± 0.11

s2 L 3.784 ± 0.015 3.785 ± 0.016 3.733 ± 0.019

q2 L 0.391 ± 0.010 0.378 ± 0.012 0.363 ± 0.012

α (rad) L 2.954 ± 0.002 2.958 ± 0.003 2.960 ± 0.003

s3 L L 0.885 ± 0.005

q3 (10−3
) L L 1.82 ± 0.26

ψ (rad) L L 2.403 ± 0.109

ρ1 (10−2
) 4.37 ± 0.06 1.97 ± 0.03 1.83 ± 0.07 1.85 ± 0.04

ρ2 (10−2
) L L 2.02 ± 0.09 L

qF 0.30 ± 0.02 L 1.277 ± 0.524 L

Note. HJD′ ≡ HJD–2,450,000.
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of higher-order effects in modeling. For this check, we conduct
an additional modeling considering the microlens parallax
(Gould 1992) and lens orbital (Dominik 1998) effects. The
microlens-parallax effects are caused by the positional change
of an observer due to the orbital motion of Earth around the
Sun, and the lens orbital effects are caused by the change of the
lens position due to the orbital motion of a binary lens. The
modeling considering the microlens-parallax effect requires
one to include two additional parameters of πE,N and πE,E,
which denote the north and east components of the microlens
parallax vector πE= (πrel/θE)(μ/μ), respectively. Here

( )p = -- -D Daurel L
1

S
1 is the relative lens-source parallax, μ

denotes the relative lens-source proper motion vector, and (DL,
DS) are the distances to the lens and source, respectively.
Considering the lens orbital effect also requires one to add two
parameters of ds/dt and dα/dt, which represent the change
rates of s and α, respectively. From this modeling, we find that
the residuals from the model near the main peak of the light
curve still persist, indicating that the cause of the residuals is
not the higher-order effects.

3.2. Four-body Interpretations

To explain the residuals from the 2L1S model, we test two
additional four-body interpretations, in which one is that both
the lens and source are binaries (2L2S model) and the other is
that the lens is a triple system (3L1S model).

3.2.1. Binary-source + Binary-lens (2L2S) Model

We conduct a 2L2S modeling considering the possibility that
the discontinuous anomaly features at around t1, t2, and t3 are
caused by a companion to the source. The introduction of an
additional source to a 2L1S model requires one to add extra
parameters in modeling, including t0,2, u0,2, and ρ2. Here ρ2
denotes the normalized source radius of the companion (S2) to
the primary source star (S1). In the modeling, we use the initial
parameters related to S1 as the ones obtained from the 2L1S
modeling because the 2L1S model describes the overall feature
of the observed data. The initial parameters related to S2 (t0,2,
u0,2, ρ2, and qF) are chosen considering the times and
magnitudes of the deviations from the 2L1S model.
We plot the model curve of the 2L2S solution and residuals

from the model in Figures 2 and 3. The lensing parameters of
the model are presented in Table 1 and the corresponding lens-
system configuration is shown in Figure 6. The configuration is
very similar to that of the 2L1S solution, except that there is an
additional trajectory for S2. According to the 2L2S solution, S2,
which is brighter than S1 by ∼28% in the I-band flux, trails S1
with a projected separation of

{[( ) ] ( ) }D = - + - =u t t t u u 0.0140,2 0,1 E
2

0,2 0,1
2 , and

crosses the caustic. We mark the positions of S1 and S2
corresponding to the times of t1, t2, and t3 as orange and brown
circles, respectively.
It is found that the model fit substantially improves with

respect to the 2L1S model by introducing an additional source

Figure 2. Four (1L2S, 2L1S, 2L2S, and 3L1S) models and their residuals in the peak region of the light curve. The gray curve drawn in the 2L1S residual panel is the
difference between the 3L1S and 2L1S models. The dotted vertical lines labeled by t1, t2, and t3 indicate the three epochs of relatively large deviations from the 2L1S
model.

5
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component. First, the anomaly feature at around t3, which
exhibits the largest deviation from the 2L1S model, is
explained by the caustic crossing of S2. Second, the anomaly
feature at around t2 is explained by the passage of S2 through
the positive deviation region extending from the left-side cusp
of the caustic lying on the M1–M2 axis. However, the model fit
around the anomaly at t1 remains almost unchained. In
combination, the 2L2S model results in a better fit than the
2L1S model by c c cD = - = 40.32

2L1S
2

2L2S
2 . We reserve

making conclusions about this model until we check an
additional model to be discussed below.

3.2.2. Triple-lens (3L1S) Model

We check a 3L1S interpretation because the deviations from
the 2L1S model appear in the peak region, at which an
additional anomaly would occur if the lens has a tertiary
component M3. The 3L1S modeling is carried out under the
assumption that the magnification pattern of a triple-lens
system can be approximated by the superposition of the
patterns produced by two (M1–M2 and M1–M3) binary pairs
(Bozza 1999; Han et al. 2001). Under this approximation, we
search for the parameters related to M3 by fixing the lensing
parameters related to M2 as those of the 2L1S model. The
parameters related to M3 are (s3, q3, ψ), which represent the
projected separation and mass ratio between M1 and M3, and
the position angle of M3 as measured from the M1–M2 axis,
respectively (Han et al. 2013).

Under the superposition approximation, we first conduct
thorough grid searches for (s3, q3, ψ). Figure 7 shows the Δχ2

map on the s3–q3 plane obtained from the grid search. It shows
a unique and distinct local at (s3, q3)∼ (0.89, 1.8× 10−3

). We
refine the solution by allowing all parameters to vary. In
Table 1, we list the best-fit lensing parameters of the 3L1S
model. The estimated mass ratio between M1 and M2 of
q2=M2/M1∼ 0.36 is similar to the ratio estimated from the
2L1S modeling. On the other hand, the mass ratio between M1

and M3, q3=M3/M1= (1.82± 0.26)× 10−3, is very low,
indicating that the tertiary lens component is a planetary mass
object according to the 3L1S interpretation of the event. The
projected separation between M1 and M3, s3∼ 0.89, is
substantially smaller than the separation between M1 and M2,
s2∼ 3.7. This indicates that the planet is in an S-type orbit, in
which the planet is orbiting the heavier member of a widely
separated binary. From the additional modeling considering
higher-order effects, it is found that determining the higher-
order lensing parameters is difficult mainly due to the short
timescale, tE∼ 18 days, of the event.
Figure 8 shows the lens-system configuration of the 3L1S

model. The main panel shows the enlarged view of the central
magnification region and the inset shows a wide view including
the positions of the individual lens components. The planet is
located on the M1 side with a positional angle of ψ∼ 138° as
measured from the M1–M2 axis centered at M1 in a counter-
clockwise direction. From the comparison of the 2L1S caustic
shown in Figure 4, it is found that the tertiary lens component
M3 induces an additional caustic in the central region. The
additional caustic appears to be a resonant caustic induced by a
planetary companion located at a projected separation that is

Figure 3. Four (1L2S, 2L1S, 2L2S, and 3L1S) tested models and their residuals in the region around the second bump of the light curve.
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Figure 4. Configuration of the lens system for the 2L1S model. The inset shows the whole view including the locations of the lens components, blue dots marked by
M1 andM2. The red closed figures represent the caustics, and the line with an arrow represents the source trajectory. The orange circle on the source trajectory is drawn
to represent the source size relative to the caustic size. Lengths are scaled to the angular Einstein radius corresponding to the total mass of the lens.

Figure 5. Δχ2 map in the s2–q2 plane obtained from the 2L1S modeling of the lensing light curve conducted by excluding the data around the second bump. The
colors of the points represent those with �1nσ (red), �2nσ (yellow), �3nσ (green), �4nσ (cyan), �5nσ (blue), and �6nσ (purple), where n = 5.
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Figure 6. Configuration of the lens system for the 2L2S model. Notations are same as those in Figure 4 except that there is an additional trajectory for the second
source. The trajectories of the primary (S1) and companion source (S2) are marked by black and gray lines, respectively. The three pairs of orange and brown circles on
the S1 and S2 trajectories represent the positions of S1 and S2 at t1, t2, and t3, respectively.

Figure 7. Δχ2 map in the s3–q3 plane obtained from the 3L1S modeling by fixing the lensing parameters related to M2 as the parameters obtained from the 2L1S
modeling. The color coding is same as in Figure 6 except that n = 2.
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very nearly equal15 to the Einstein radius. The resulting central

caustic appears to be the superposition of a caustic induced by a
binary companion and another caustic induced by a planet
companion, although some deviations from the superposition
exist because of the twisting and intersection of the caustics
caused by the interference between the two (Gaudi et al. 1998;
Rhie 2002; Daněk & Heyrovský 2015, 2019).

We note that the separation of the planet from the host, s3, is

uniquely determined without any ambiguity. In general, the

central caustics induced by a pair of planetary companions with

separations s and s−1 appear to be similar to each other due to

the invariance of the binary-lens equation with the inversion of

s and s−1. However, this invariance breaks down as the planet

separation is similar to θE, i.e., s∼ 1.0, and the lens system

forms a single large resonant caustic (Bozza 1999; An 2005;

Chung et al. 2005). For OGLE-2019-BLG-0304, the planet

induces such a resonant caustic, and thus determining s3 does

not suffer from the close–wide degeneracy.
It is found that the 3L1S model explains all major anomaly

features. To better show the region of fit improvement around

the main peak, we present the cumulative function of

c c cD = -
3L1S
2

2L1S
2

3L1S
2 in Figure 9. For the comparison of

the model fit with that of the 2L2S model, we also present the

distribution of c c cD = -
2L2S
2

2L1S
2

2L2S
2 . The fit improvement

with respect to the 2L1S model can also be seen by comparing

the residuals of the models presented in Figure 2. Although the

fit improves throughout the rising part of the light curve during

 ¢8537 HJD 8544, a major improvement occurs at the
three epochs of t1, t2, and t3. To be noted is that the 3L1S model
explains the anomaly at t1 which could not be explained by the
2L2S model. As a result, the fit of the 3L1S model is better than
that of the 2L2S model by Δχ2

= 8.0. The fit improvement
over the 2L1S model is Δχ2

= 48.3. We mark the source
positions at the three epochs of the major fit improvement, i.e.,
t1, t2, and t3, as orange circles in Figure 8. From this, it is found
that the epoch t1 corresponds to the time at which the source
passes the cusp of the planet-induced caustic and the other two
epochs correspond to the times at which the source passes over
the folds of the planet-induced caustic.
It is found that the second bump in the lensing light curve is

important for the clear detection of the planetary signal. We
find this fact by comparing the fits of the two sets of 2L1S–
3L1S solutions, in which one set of solutions is obtained from
modeling with the use of all data, and the other set of solutions
is obtained by conducting modeling with the exclusion of the
data around the region of the second bump. The cumulative
Δχ2 distribution obtained with the exclusion of the bump data
is presented as a dashed curve (with a label “w/o bump” in the
legend) in Figure 9. The χ2 difference between the 3L1S and
2L1S models without the bump data is Δχ2

= 29.4, which is
substantially smaller than Δχ2

= 48.3 when the bump data are
included.
For the origin of the anomalies from the 2L1S model, the

explanation with the existence of a low-mass tertiary lens
component (3L1S model) is more plausible than the explana-
tion with the existence of a very close companion to the source
(2L2S model) for several reasons. First, the fit of the 3L1S
model is better than the fit of the 2L2S model. Although
Δχ2

= 8.0 is not very big, the 3L1S model explains all three

Figure 8. Lens-system configuration of the 3L1S model. The three yellow circles represent the source positions at t1, t2, and t3, at which the deviations from the 2L1S
model are relatively big. Other notations are the same as those of Figure 4.

15
The morphology of the planetary caustic is primarily determined by the ratio

of its separation from the host relative to the host Einstein radius
( )q q= + q1E,host E 2

1 2 rather than that of the total system. That
is, ( )= + =s s q1 1.0333,host 3 2

1 2 .
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major anomaly features (at t1, t2, and t3), while the 2L2S model
cannot describe one (t1) of these features. Second, the signal of
a planet according to the 3L1S model shows up in the expected
region of an event, for which the chance to detect such a signal
is high, that is, around the peak of a high-magnification event.
Third, indirect evidence comes from the fact that the projected
separation between S1 and S2 according to the 2L2S model is
too close for the binary system to be physically stable. The
dereddened colors and magnitudes of the source stars are
( ) ( )- =  V I I, 0.888 0.053, 15.383 0.026S0, 1

and
( ) ( )- =  V I I, 1.007 0.049, 15.141 0.023S0, 2

for S1 and
S2, respectively. In Figure 10, we mark the positions of S1 and
S2 in the color–magnitude diagram (CMD). These indicate that
the source stars are G- and K-type giants with radii of

~R R6S1 and ~R R8S2 , respectively. On the other hand,
the physical projected separation between the source stars is
aS,⊥=ΔuDSθE∼ 4.3 Re, which is significantly smaller than

+ ~R R R14S S1 2
. Here Δu= 0.014 is the S1–S2 separation

in units of θE, and θE is estimated based on the lensing
parameters of the 2L2S solution. In principle, the source stars
could avoid merging if S2 were projected in front of or behind
S1. However, unless this difference were considerable, the
ellipsoidal distortions generated by the mutual tides of the two
stars would induce ellipsoidal variations in the baseline light
curve, which are not seen. Fourth, in order for two source stars
to have evolved to the same brightness on the giant branch,

they would have to have nearly identical mass, which is also

less likely.
However, the suggested reasons for the preference of the

3L1S model over the 2L2S model are either weak or indirect,

and thus do not collectively provide sufficient evidence to

strongly favor the 3L1S model. For the reason based on the χ2

difference, a Δχ2
= 8.0 is not big enough for strong statistical

support. This is particularly the case considering that small

photometric variations can arise from the use of multiple data

sets processed using different pipelines. Considering that

microlensing search algorithms are set up to systematically

exclude light curves with periodically varying baselines, the

evidence of no detectable periodic baseline variation is not

strong either to strongly support the 3L1S model. In order to

strongly support the argument based on the low prior

probability of observing a nearly equal-luminosity pairing of

giant branch stars, one needs to know the relative probability of

nearly equal-luminosity binary giant stars versus planets in

binary systems detectable to microlensing. Without the

information on the frequency of cool planets in binaries, this

argument does not strongly support the 3L1S interpretation of

the event. We, therefore, consider the 2L2S model as a viable

solution.

Figure 9. Cumulative distributions of c c cD = -
3L1S
2

2L1S
2

3L1S
2 and c c cD = -

2L2S
2

2L1S
2

2L2S
2 . The light curve in the upper panel is presented to show the region of fit

improvement. The cD
3L1S
2 curve drawn in a dashed line is obtained from modeling with the exclusion of the data around the second bump. The curve drawn over data

points in the upper panel is the 3L1S model.
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4. Angular Einstein Radius

The physical lens parameters can be constrained by
measuring observables related to the parameters. The first of
such observables is the event timescale, which is related to the
lens parameters of the mass M and distance DL by

⎜ ⎟⎛
⎝

⎞
⎠

( )

( )

q
m

q k p

p

= =

= -

t M

D D

; ;

au
1 1

. 1

E
E

E rel
1 2

rel
L S

The timescale is related to the three physical parameters M, μ

and DL, and thus the constraint on the lens parameters is weak.

The lens parameters can be more tightly constrained with the

measurement of the angular Einstein radius because θE is

related to two parameters of M and DL. In this section, we

determine the angular Einstein radius for the use of constrain-

ing the physical lens parameters. In Section 5, we discuss the

procedure of determining M and DL in detail. We note that the

lens parameters can be uniquely determined by additionally

measuring the microlens parallax by

( )
q
kp p q p

= =
+

M D;
au

. 2
E

E
L

E E S

However, πE cannot be measured for OGLE-2019-BLG-0304.
The angular Einstein radius is measured from the combina-

tion of the angular source radius θ* and the normalized source

radius ρ by

( )q
q
r

= . 3E *

The value of ρ is measured by analyzing the part of the lensing

light curve affected by finite-source effects, and it is presented

in Table 1. The value of θ* is estimated from the color and

brightness of the source star. For the θ* measurement, we use

the standard method of Yoo et al. (2004). According to this

method, we first calibrate the color and magnitude of the source

using those of the red giant clump (RGC) centroid as a

reference, and then estimate θ* using the relation between the

color and θ*.
Figure 10 shows the locations of the source and RGC

centroid in the CMD of stars lying in the vicinity of the source.
The source position estimated based on the 3L1S solution is
marked by a red dot and the positions of the individual binary
source stars estimated based on the 2L2S solution are marked
by black and gray dots. The CMD is constructed based on the
pyDIA photometry of the KMTC data set. The measured
instrumental colors and magnitudes of the source according to
the 3L1S solution and RGC centroid are (V− I,
I)= (3.681± 0.009, 17.950± 0.001) and (V− I,
I)RGC= (3.785, 17.964), respectively. From the offsets in color
Δ(V− I) and magnitude ΔI between the source and RGC
centroid together with the known extinction and reddening
corrected values of the RGC centroid, (V− I, I)RGC,0= (1.060,
14.564), toward the field from Bensby et al. (2013) and Nataf

Figure 10. Locations of the source and the centroid of the red giant clump (RGC) in the instrumental color–magnitude diagram (CMD) of stars lying in the vicinity of
the source. The CMD is constructed from the pyDIA photometry of the KMTC data. The red dot is the source position estimated based on the 3L1S solution, while the
black and gray dots are the positions of the binary source stars (S1 and S2) estimated based on the 2L2S solution.
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et al. (2013), the dereddened color and magnitude of the source
are determined as

( ) ( ) ( )

( ) ( )

- = - + D -
=  

V I I V I I V I I, , ,

0.956 0.009, 14.550 0.001 . 4

0 RGC,0

According to the 3L1S solution, the source is an RGC star with

an early-K spectral type. As mentioned in the previous section,

the stellar types of S1 and S2 according to the 2L2S solution are

G- and K-type giants, respectively.
The angular source radius is deduced from the measured

source color and magnitude. For this, we first convert the
measured V− I color into a V−K color using the color–color
relation of Bessell & Brett (1988). We then estimate θ* from
V−K using the θ*–(V− K ) relation of Kervella et al. (2004).
The estimated source radius from this procedure is

( )q m= 5.26 0.37 as, 5
*

for the 3L1S solution. The angular Einstein radius estimated

using the relation in Equation (3) is

( )q = 0.285 0.020 mas. 6E

This together with the event timescale yields the relative lens-

source proper motion of

( )m
q

= =  -

t
5.86 0.41 mas yr . 7

E

E

1

The Einstein radius and proper motion based on the 2L2S
solution result in different values from those estimated based
on the 3L1S solution. This is because the flux from the source
is divided into two roughly equal-luminosity stars and thus the
source radii of the individual source stars are smaller than that
of a single source for the 3L1S solution. The estimated angular
radius of S1, the Einstein radius, and the proper motion are
q = 3.24 0.28S, 1*

, q q r= = 0.177 0.016SE , 11*
mas, and

μ= 3.69± 0.32 mas yr−1, respectively. We note that the values
of θE and μ are smaller than those estimated from the 3L1S
solution due to the smaller source radius.

5. Physical Lens Parameters

Although it is tough to uniquely determine M and DL due to
the difficulty of measuring πE, the lens parameters can still be
constrained with the measured observables of tE and θE. For
this, we conduct a Bayesian analysis of the event based on the
priors of the lens mass function and Galactic model of the
physical and dynamic distributions.

In the Bayesian analysis, we conduct a Monte Carlo
simulation to produce a large number of artificial lensing
events. The mass function used in the simulation is adopted
from Zhang et al. (2020) for stellar and brown-dwarf lenses and
Gould (2000) for remnant lenses, including white dwarfs,
neutron stars, and black holes. The lens objects are physically
distributed based on the modified Han & Gould (2003) model,
in which the distribution of disk matter is modified from the
original version using the model of Bennett et al. (2014). The
motion of the lens is assigned using the dynamical model of
Han & Gould (1995). The proper motion of the source,
μS(R. A.,decl.)= (−6.737± 1.721, −9.277± 1.284)mas yr−1,
is known from the measurement by Gaia (Gaia Collaboration
et al. 2018), and thus we consider the measured source proper
motion in the computation of the relative lens-source motion.
With these priors, we produce 4× 107 artificial events and then

construct probability distributions of M and DL for events with
tE and θE values lying within the ranges of the measured
observables. Then, the median values of the probability
distributions are presented as representative values of the
physical lens parameters and the uncertainties are estimated as
the 1σ range of the probability distributions, that is, 16% for the
lower limit and 84% for the upper limit. Considering that the
3L1S and 2L2S solutions result in similar fits to the observed
data, we conduct two sets of analysis based on the two
solutions.
The shaded curves in Figure 11 show the posterior

distributions of the M1 (upper panel) and DL (lower panel)
based on the 3L1S solution. The estimated masses of the
individual lens components are

( )





=

=

=

-
+

-
+

-
+

M M

M M

M M

0.27 ,

0.10 ,

0.51 , 8

1 0.12
0.27

2 0.04
0.10

3 0.23
0.51

J

indicating that the lens is a planetary system in which a giant

plant belongs to a binary composed of a mid-M dwarf and a

late-M dwarf. The estimated distance to the lens is

( )= -
+D 6.98 kpc. 9L 0.90
0.91

The projected physical separations of the stellar (M2) and

planetary (M3) companions from the primary (M1) are

( )

q

q

= =

= =
^ -

+

^ -
+

a s D

a s D

5.19 au,

1.23 au, 10

,2 2 L E 4.52
5.87

,3 3 L E 1.07
1.39

respectively. Considering that a⊥,3 is substantially smaller than

a⊥,2, the planet is very likely to be in an S-type orbit around the

heavier star of the binary. In Table 2, we summarize the

estimated physical parameters of M1, M2, M3, DL, a⊥,2, and

a⊥,3. We find that the Gaia measurement of the vector source

proper motion, μS(l, b)= (− 11.4, + 0.7)mas yr−1, when

combined with the scalar lens-source relative proper motion

from Equation (7), strongly constrains the lens to lie in the

bulge. Here μS(l, b) denotes the source proper motion vector in

the Galactic coordinates, and it is related to μS(R. A.,decl.) by

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

( )
m
m

h h
h h

m
m= -

cos sin
cos cos

, 11
l

b

S,

S,

S,R.A.

S,decl.

where η∼ 57°.6 is the tilt angle of the Galactic plane with

respect to the celestial equator. This is because the Galactic

model contains relatively few disk lenses with

μL(l)− 5.8 mas yr−1. Specifically, we find that when the

Gaia measurement is ignored, the probability of a disk lens is

28%. However, after including the Gaia measurement, the

probability of a disk lens is only ∼1%.
The Bayesian posterior distributions obtained with the 2L2S

solution are also presented in Figure 11 (red unshaded curves).
The estimated masses of the lens components and the distance
to the lens system are

( )





=

=
-
+

-
+

M M

M M

0.12 ,

0.045 , 12

1 0.05
0.12

2 .019
0.045

and

( )= -
+D 6.97 kpc, 13L 0.86
0.70
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respectively. Then, the lens is a binary composed of an M

dwarf and a brown dwarf located in the bulge. The lens mass

from the 2L2S solution, M2L2S=M1+M2, is smaller than the

value estimated from the 3L1S solution, M3L1S, because the

Bayesian input value of the Einstein radius, θE,2L2S∼ 0.18 mas,

is smaller than the value of the 3L1S solution, θE,3L1S∼ 0.29

mas. Considering that the lens distances for the two solutions

are similar to each other, it is found that the lens masses

estimated from the two solutions are approximately in the

relation ( )q q~M M2L2S E,2L2S E,3L1S
2

3L1S. The physical lens

parameters of the 2L2S solution are also summarized in

Table 2.

6. Discussion

If the 3L1S model is correct, OGLE-2019-BLG-0304LAbB
has the second lowest formal significance, Δχ2

= 48.3, of any

reported microlensing planet, with the lowest being Δχ2
= 47

for OGLE-2018-BLG-0677 (Herrera-Martín et al. 2020) and
the previous second lowest being Δχ2

= 170 for KMT-2018-

BLG-1025 (Han et al. 2021). Moreover, OGLE-2019-BLG-

0304LAbB is a more complex (3L1S) system, whereas the

other low formal-significance systems were 2L1S. This

distinction is important because, of the seven previously
claimed binary+planet microlensing systems, two were subse-

quently shown to be spurious, namely MACHO-97-BLG-41

(Bennett et al. 1999; Albrow et al. 2000; Jung et al. 2013) and

OGLE-2013-BLG-0723 (Udalski et al. 2015; Han et al. 2016).

In both cases, the original models did not incorporate orbital
motion. The additional features in the light curve, which were

inconsistent with static 2L1S models (and so were attributed to

a third body), were found to be explained by the motion of a

caustic (due to the underlying binary motion) within the
context of orbital-motion models. This was the major

motivation for our check in Section 3.1 of 2L1S orbital-motion

models, which could not explain the additional “planetary”

anomalies. However, it is also important to understand at a

deeper level why orbital motion is strongly constrained to the
point that it cannot explain these anomalies.
Table 3 shows the results of the fits that exclude data from

the second bump. For the 2L1S model, the parameters (s2,

α2)= (3.900± 0.040, 169°.88± 0°.44) essentially predict the

location of the second bump, without any direct light curve

information about the bump, which peaks 61 days later. In the

full-data (static) model, this bump location fixes these
parameters with much greater precision: (s2,

Figure 11. Bayesian posteriors of the primary lens mass M1 (upper panel) and the distance to the lens DL (lower panel). In each panel, the shaded black curve is the
distribution based on the 3L1S solution, while the unshaded red curve is the distribution based on the 2L2S solution.

Table 2

Physical Lens Parameters

Parameter 3L1S 2L2S

M1 (Me) -
+0.27 0.12
0.27

-
+0.12 0.05
0.12

M2 (Me) -
+0.10 0.04
0.10

-
+0.045 .019
0.045

M3 (MJ) -
+0.51 0.23
0.51

L

DL (kpc) -
+6.98 0.90
0.91

-
+6.97 0.86
0.70

a⊥,2 (au) -
+5.19 4.52
5.87

-
+3.52 3.09
3.87

a⊥,3 (au) -
+1.23 1.07
1.39

L
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α2)= (3.784± 0.015, 169°.25± 0°.11). We will comment on
the 3σ discrepancy in s2 below, but for the moment, the main
point is that the overall agreement between this bump-free
“prediction” and the actual location of the bump 61 days later,
implies that the orbital motion on the 1 day timescales of the
main peak (where the planetary anomaly appears) is extremely
well constrained.

As shown by the Figure 2 residuals, the only really
pronounced deviations from the 2L1S model come from the
three KMTC points on each of HJD′= 8542.xx and 8543.xx.
These contributeΔχ2

= 7 andΔχ2
= 18 to the totalΔχ2

= 48.
Moreover, they could contribute indirectly to the Δχ2

= 10
from the early light curve (because the KMTS data, with
similar coverage during this period, do not show any significant
Δχ2

). We therefore focus particular attention on these two
nights.

We note that the crescent moon passed within 6°.1 of the
event at HJD′= 8542.37, and during the three observations on
8542.xx, the moon was separated by 8°.4–8°.8, which gave rise
to background counts of about 1900 per pixel (compared to
∼500 for dark time and ∼25,000 when the full moon is in the
bulge). However, on the next night, which yielded a much
larger “planetary signal,” the Moon was 19°.1–19°.6 from the
event, and the background was only about 800. Hence, it is
unlikely that these relatively normal (especially on the second
night) observing conditions could be responsible for the
planetary anomaly. To double check, we investigate the effect
of the moon by additionally (1) conducting visual inspection of
images, (2) probing the dependence of the photometry on the
moon phase and distance, and (3) comparing our photometric
results with those of other comparison stars. From this, we find
nothing irregular about them.

Finally, the Δχ2
= 19 improvement when the bump is

included (see Figure 9) lends added weight to the reality of the
signal. This improvement arises from the greater consistency
between the “predicted” and actual forms of the late-time bump
when the planet is included in the model. That is, regardless of
the origin of the deviations in the KMTC light curve (i.e.,
whether a planet or some random systematics), the 2L1S and
3L1S fits will try to adjust their parameters to accommodate
these deviations. If the “planet” is just the result of
accommodating random systematics in the 3L1S fit, then the
3L1S prediction should, on average, be no better or worse than
the 2L1S prediction. Using the parameters presented in
Tables 1 and 3, we find that the differences in the parameters

between the two sets of models obtained with the full data and
the partial data without the second bump are Δ(s2, q2,
α)= (0.116, 0.044, 0°.63)± (0.040, 0.015, 0°.44) for the
2L1S model and Δ(s2, q2, α)= (0.104, 0.032,
0°.29)± (0.063, 0.022, 0°.50) for the 3L1S model. In all cases,
there is improved agreement. And, by adding the planet, the χ2

drops from 19.1 to 5.3 for three degrees of freedom. We
therefore conclude that the residual from the 2L1S model
cannot be ascribed to the lens orbital motion, although its 3L1S
or 2L2S origin cannot be firmly distinguished.

7. Conclusion

We analyzed the microlensing event OGLE-2019-BLG-
0304. The light curve of the event showed two distinctive
features, in which the main peak appeared to exhibit deviations
caused by finite-source effects, and a second bump appearing
∼61 days after the main peak. The fit with a finite-source
single-lens model excluding the second bump left substantial
residuals in the peak region, indicating that a more sophisti-
cated model was needed to explain not only the second bump
but also the deviations in the peak region. A 2L1S model could
explain the overall features of the light curve by significantly
reducing the residuals in both regions of the main peak and the
second bump, but the model still left subtle but noticeable
residuals in the peak region. We found that the residuals could
be explained by the presence of either a planetary companion
located close to the primary of the lens or an additional close
companion to the source. Although the 3L1S model is favored
over the 2L2S model, firm resolution of the degeneracy
between the two models was difficult with the photometric
data. Therefore, the event well illustrated the need for thorough
model testing in the interpretation of lensing events with
complex features.
We estimated the physical lens parameters expected from the

two degenerate solutions by conducting Bayesian analysis.
According to the 3L1S interpretation, the lens is a planetary

system in which a planet with a mass -
+ M0.51 0.23
0.51

J is in an
S-type orbit around a binary composed of stars with masses

-
+ M0.27 0.12
0.27 and -

+ M0.10 0.04
0.10 . According to the 2L2S

interpretation, the source is composed of G- and K-type giant
stars, and the lens is composed of a low-mass M dwarf and a

brown dwarf with masses -
+ M0.12 0.05
0.12 and -

+ M0.045 .019
0.045 ,

respectively.
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Table 3

2L1S and 3L1S Models without the Second Bump

Parameter 2L1S 3L1S

χ2 4728.8 4699.5

t0 ( ¢HJD ) 8543.617 ± 0.005 8543.606 ± 0.006

u0 (10−3
) 1.84 ± 0.46 0.98 ± 0.55

tE (days) 17.43 ± 0.15 17.62 ± 0.19

s2 3.900 ± 0.040 3.837 ± 0.063
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α (rad) 2.965 ± 0.008 2.965 ± 0.009

s3 L 0.879 ± 0.008

q3 (10−3
) L 1.67 ± 0.26

ψ (rad) L 2.514 ± 0.109

ρ (10−2
) 1.97 ± 0.04 1.88 ± 0.05

Note. HJD′ ≡ HJD–2,450,000.
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