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1 | INTRODUCTION

Observing networks are critical components of the infras-
tructure established to monitor and predict the evolution
of the Earth system. A large number of observations
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Abstract

Networks of observations ideally provide adequate sampling of parameters to be
monitored for climate and weather forecasting applications. This is a challenge
for any network, but is particularly difficult in the harsh environment of the
Antarctic continent. We evaluate a network design method providing objective
information on station siting for optimal sampling of a variable, here taken to be
surface air temperature. The method uses the concept of ensemble sensitivity to
predict locations reducing the most total ensemble variance, that is, uncertainty,
across the continent. The method is applied to a network of frequently-reporting
stations, and validation is performed using results from assimilating station
observations. A cost-efficient “offline” data assimilation framework is used to
allow testing over a large sample of experiments, including a large number
of randomly chosen networks that serve as a null hypothesis. Network design
predictions agree well with observed error reductions from assimilation. The
important role of stations on the East Antarctic Plateau in monitoring surface air
temperature is evident in network design and data assimilation results, followed
by stations in West Antarctica and the Ross Ice Shelf region. Antarctic coastal
and Peninsula stations are found to provide the smallest information content
integrated over the continent. Validation results are also robust to covariance
localization, an essential factor for ensemble methods. Optimal networks out-
perform randomly chosen-networks in all cases, by up to nearly 50%, depending
on the size of the network and the covariance localization distance.
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are taken to support a wide variety of activities, from
the long-term monitoring of key climate variables to
the production of accurate weather forecasts. Decisions
on which observation platforms to deploy and where to
deploy them depend on the specific objectives pursued,
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ranging in scope from investigating important scientific
questions about the climate system (e.g., Weatherhead
etal.,2018) to practical issues such as ensuring safe aircraft
operations at airfields. Typically, these decisions are made
subjectively, or dictated by practical considerations (e.g.,
cost) and/or operational needs (e.g., observing visibility
at airfields). Despite the significant resources devoted to
the global observing system, gaps in direct observations
remain, not only in the oceans (e.g., Fujii et al., 2019), but
also in the atmosphere, particularly over the polar regions
(Jung et al., 2016). The rising costs of operating extensive
networks of observations also pose a significant chal-
lenge in maintaining an infrastructure that best supports
the growing need for environmental observations. We
posit that an objective network-design approach can pro-
vide useful information for the optimal and cost-efficient
deployment of assets. Here we test the skill of a net-
work design algorithm in predicting the impact of actual
observations using observing-system experiments.

Optimal network design is a methodology developed
to identify objectively those observations whose inclusion
results in the largest change in a measurable objective,
defined by a metric. In the atmospheric sciences, the
method originated in the adaptive observation strategy
(e.g., Snyder, 1996; Morss et al., 2001), aimed at reducing
numerical weather forecast errors. Adjoint (e.g., Lang-
land and Baker, 2004) and ensemble (e.g., Bishop et al.,
2001) implementations were developed to identify the
locations of input observations providing the largest
improvement in weather forecasts. These methods have
been tested in the context of targeted observations in the
Fronts and Atlantic Storm Track Experiment (FASTEX:
e.g., Bergot, 1999; Szunyogh et al., 1999), the North Pacific
Experiment (NORPEX-98: e.g., Langland et al, 1999),
the Winter Storm Reconnaissance (WSR) program (e.g.,
Hamill et al., 2013), and the Observing System Research
and Predictability Experiment (THORPEX) program (see
Majumdar, 2016, for a review). Similar approaches have
been proposed for the design of fixed networks of obser-
vations (e.g., Khare and Anderson, 2006), which is the
context we consider here.

One particularly challenging environment for weather
observations is the remote Antarctic continent, the set-
ting of a spectrum of demanding scientific investiga-
tions and the logistical operations needed to support
them (Powers et al., 2012). Routine weather observations
in Antarctica were first taken at staffed stations during
the 1957-1958 International Geophysical Year (Odishaw,
1959), subsequently augmented with automated weather
stations (AWS) able to withstand harsh weather condi-
tions (Lazzara et al., 2012). Despite the increase in the
number of stations, gaps in the network remain, particu-
larly in the interior of the continent (e.g., Chapman and

Walsh, 2007; Lazzara et al., 2012; Bumbaco et al., 2014),
leading to incomplete characterization of extreme condi-
tions, long-term trends (e.g., Wei et al., 2019; Clem et al.,
2020), and variability at the mesoscale (e.g., Gonzalez et al.,
2021). These studies underline the need for a more effec-
tive network. From the perspective of weather forecast-
ing, the value of additional observations has already been
demonstrated using data from special field campaigns (see,
e.g., Rabier et al., 2013; Bromwich et al., 2020), further
motivating efforts toward the optimization of Antarctica’s
observing networks.

An ensemble observational network design method
has been proposed and applied to the monitoring of sur-
face air temperature by Hakim et al. (2020, H20 here-
after). The method uses the concept of ensemble sensi-
tivity (Ancell and Hakim, 2007; Torn and Hakim, 2008)
to determine optimal sensor placement, by using ensem-
bles composed of samples from model simulations (here
surface air temperature) and finding the location where
an observation reduces the variance (i.e., uncertainty) in
a chosen metric the most. Earlier implementations of this
approach have been applied to a climate observing net-
work for the Pacific Northwest by Mauger et al. (2013),
and in an example application in Bumbaco et al. (2014) for
the monitoring of regionally-averaged surface temperature
in Antarctica. H20 have applied the technique to identify
locations that maximize temperature information, either
from the hypothetical perspective of a continent with-
out observations (a “blank slate”) or to complement an
existing network of surface stations. Their study has iden-
tified the Megadunes region of the Antarctic Plateau as the
most important for monitoring temperature and reducing
model forecast errors in the blank-slate network scenario,
while Queen Maud Land, Ellsworth Land, and the Adélie
Coast are regions not well observed by an existing net-
work of stations frequently reporting valid observations.
However, these network design results are predictions,
in that actual observations are not used in determining
the optimal monitoring locations. Therefore, validation of
the results is required to test the predictions. This is per-
formed here by comparing predicted reductions in metric
variance associated with a number of locations, corre-
sponding to a network of existing stations, with reductions
in ensemble-mean analysis errors from the assimilation of
actual observations from the same network.

The remainder of this article is organized as follows.
Section 2 summarizes the network design method, the
data assimilation experiments used in the validation, and
the observational data. In Section 3, we present results of
the network design applied to the locations of an existing
network and describe comparisons with error reduction
statistics diagnosed in our data assimilation experiments.
Conclusions are provided in Section 4.
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2 | METHODS AND DATA

2.1 | Network design method

The network design (ND) method described in H20 is
based on a generalization of the ensemble sensitivity
approach (see Ancell and Hakim, 2007; Torn and Hakim,
2008), involving the sensitivity of a multivariate metric
J of dimension n to a state vector x of dimension m.
The sensitivity of the metric is estimated using ensem-
ble samples for J and x taken from a numerical model
(see Section 2.3). The covariance of the metric J about
the mean, £? = {6J5JT}, where {} denotes an expectation
operator that has input from the finite ensemble samples
and superscript T represents the transpose operation, can
be approximated as

T
2 [ﬂ] {6x6xT) [ﬂ], (1)
0xX ox
where 0J/0x is the sensitivity of the metric J to the state
vector x. The change in the metric covariance, expressed

as 6X7, for a single measurement i can be expressed as

552 = —E~'53(Hsx)! [63(Hox)"] )

where 6J is the deviation in metric J about the mean
and Héx is the deviation from the mean of the state
vector x projected in observation space through the for-
ward operator H. We see that Equation 2 expresses the
squared covariance between the state at the potential
observation location i and the metric J, weighted by
scalar E = var(HéX;) + r;, where r; is the element of the
observation-error covariance matrix R corresponding to
measurement i. For the multivariate J used here, tem-
perature values sampled on a grid across the Antarctic
continent (defined in Section 2.3), we seek the largest
negative value of the trace of the 6X* n x n matrix, as this
scalar value would represent the largest cumulative reduc-
tion in the variance of J. This identifies the location of the
observation giving the greatest impact (in terms of mini-
mizing the variance of J) for monitoring continent-wide
temperatures. We note that other choices can be made for
summarizing J in terms of a scalar, and that this effec-
tively reduces the calculation back to the traditional scalar
form (e.g., Majumdar, 2016).

Once the most impactful observation is identified, the
ensemble Kalman filter update step is used to revise 6x
and 47 to reflect the impact of the selected measurement.
Equation 2 is then evaluated with the updated matrices to
find the next most impactful measurement, reflecting its
particular location, conditional on the previous selected
location. This process is repeated until all the desired
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observation locations have been considered. To account
for sample error, a Monte Carlo (MC) approach is applied
in which the above-described process is repeated 10,000
times, with different random draws of the model temper-
atures that form the J and x ensembles. H20 provide a
more detailed derivation of Equation 2 and description of
the algorithm. We note that this algorithm only requires
knowledge of observation errors, not observed values, and
thus can be used in advance to predict the impact of hypo-
thetical observations.

In Equation 2, the central component of the numerics
of the network design method is 5J(H6x)iT, the covari-
ance between metric J and single observation (Héx);. Since
we estimate this covariance with an ensemble sample,
covariance localization must be considered, as it is essen-
tial to all implementations of ensemble techniques. Spatial
localization is based on the assumption that covariability
between variables decreases over physical distance, so that
noise dominates the signal at large distances. This noise
can be mitigated by applying a smooth localizing func-
tion to the estimated covariances to reduce long-distance
covariance estimates (see Houtekamer and Zhang, 2016).
In this study, localization is applied directly to Equation 2
as follows:

552 = —~E'wigeo [5J(H5x)iT [5J(H5x)iT]T] )

where wy,. represents the localization weights determined
from the distances between elements in the metric vector
J and state variables in x, and o denotes the element-wise
product. We use the Gaspari-Cohn fifth-order piecewise
localization function (Gaspari and Cohn, 1999) to define
Wiee. This implementation differs from H20, where the
Gaspari—Cohn function is applied to the covariance itself
(i.e., wlocoéJ(Héx)iT), leading to a (w,c)*> dependence in
the predicted change in variance 52? (see Equation 2).
Localization is ad hoc, as it is not part of the Kalman filter
theory, so this is essentially an empirical choice, made
here in favor of Equation 3, which provides better results
(see Section 3.1.2).

Our goal is to test the predictions of the ND method
with actual observations. Specifically, the ND method is
applied here to the subset of locations corresponding to
the existing stations that reported temperature on at least
90% of the days during the period of interest, as identified
by Bumbaco et al. (2014). This application of the method
differs from H20, where all possible locations in a theo-
retical observation network covering the entire continent
are considered. We will refer to the 18 selected stations as
“CD90”, for 90% “complete data”. The CD90 stations are
listed in Table 1 and their locations shown in Figure 1.

The ND method is first applied to the CD90 loca-
tions individually to evaluate their impact as “stand-alone”
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TABLE 1 Listand coordinates of the CD90 stations during the 2008-2012 study period, including staffed and automatic weather
stations (AWS)
Station name Latitude Longitude Elevation (m) Type
Amundsen-Scott 90°S 0°E 2,800 Staffed
Bellingshausen 62.2°S 58.9°W 49 Staffed
Cape Ross* 76.7°S 163.0°E 150 AWS
Casey 66.3°S 110.5°E 50 Staffed
Davis 68.6°S 78.0°E 13 Staffed
Dome A 80.4° S 77.4° E 4,084 AWS
Elizabeth 82.6°S 137.1°W 519 AWS
Ferrell 77.8° S 170.8° E 45 AWS
Halley 75.6°S 26.7°W 30 Staffed
Harry 83.0°S 121.4°W 945 AWS
Marble Point 77.4°S 163.8°E 108 AWS
Marilyn 79.9°S 165.5°E 63 AWS
Mawson 67.6°S 62.9°E 16 Staffed
Mirnyj 66.6°S 93.0°E 30 Staffed
Neumayer 70.7°S 8.3°W 40 Staffed
Rothera 67.6°S 68.1°W 15 Staffed
Syowa 69.0°S 39.6°E 21 Staffed
Vostok 78.5°S 106.9°E 3,420 Staffed

* Also known as Arelis.

stations for monitoring continental temperature over
Antarctica. For this test, Equation 2 (or Equation 3 when
localization is applied) is evaluated at each CD90 location,
and stations are ranked by the resulting reductions in the
metric variance. A second series of results is generated by
applying the ND method to the entire CD90 network. Sim-
ilarly to H20, the most impactful station is then identified
conditional on the information (i.e., reduction in variance)
from the previous observation. This process is repeated
until all CD90 stations have been considered, resulting in
a rank ordering of importance in the chosen network.

2.2 | Data assimilation experiments

The assessment of ND results is performed by compar-
ing the predicted reductions in metric variance with the
actual reductions of ensemble-mean errors in analyses of
surface air temperature that involve the assimilation of
Antarctic temperature observations using the ensemble
square-root Kalman filter (EnSRF) approach of Whitaker
and Hamill (2002). In essence, it is the agreement of the
Kalman update equations for the ensemble mean (update
from observations) and ensemble variance (the basis of ND

predictions). While they should agree in theory, in prac-
tice many factors complicate potential agreement, such as
observation error, sample error, and covariance localiza-
tion. As a result, numerical verification is needed.

Here, data assimilation (DA) is performed with an
“offline” application of the Kalman filter (see Evensen,
2003), a method used for paleoclimate reconstructions
(e.g., Hakim et al., 2016), ocean DA (e.g., Oke et al., 2002)
and, more closely related to our work, the generation of
land-surface analyses (e.g., Devers et al., 2020). This is a
cost-efficient alternative to full observation-system experi-
ments (OSE) with an operational data assimilation system.
In an offline DA application, the prior ensemble is com-
posed of states taken at random times from a single model
simulation or from an ensemble of model simulations,
and the same prior ensemble is used at all analysis times.
This prior ensemble samples the model climatology and
is “uninformed” with respect to temperature across the
Antarctic continent at any particular time, thus forming
a reference that is equivalent to the prior ensemble used
in the ND algorithm. The assimilation is performed in
anomaly space (i.e., deviations from the temporal mean
are used as prior states and also for observations) to mini-
mize the impact of possible biases in the prior. As in H20,
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we use an ensemble size of 250 members, and uncertain-
ties in resulting analyses are estimated through 100 MC
realizations, each using a different set of randomly-drawn
states populating the prior ensemble. Analyses are gen-
erated daily at 0000 UTC over the period of October 1,
2008-October 31, 2012, representing a total of 149,200
analyses (i.e., daily over 49 months and 100 MC realiza-
tions), which is not feasible with an online DA system.
The chosen period is one during which the configuration
of the operational Antarctic Mesoscale Prediction System
(AMPS: Powers et al., 2003), used as the source of prior
data in ND calculations and in our offline DA experiments
(see Section 2.3), was stable (e.g., grid sizes remained
unchanged). This is an important condition to consider
for our experiments, as modifications to the system could
lead to changes in the spatial covariances characterizing
the modelled temperature field.

For comparison with ND results where stations are
considered individually, a series of DA experiments is
carried out, in which observations from a single sta-
tion are assimilated, producing 18 sets of analyses, one
for each of the CD90 stations. Resulting analysis errors
are compared against the network design estimates (see
Section 3.1). Another set of data assimilation experiments

Terrain height (m)

is then performed by sequentially assimilating the obser-
vations from all of the CD90 stations, and results are
compared with the conditional ranking of stations from
the second series of ND calculations (see Section 3.2). The
evaluation of ND predictions is performed by comparing
reductions of mean squared errors of the target analysis
quantity (e.g., surface air temperature) in the offline anal-
yses with the reductions in metric variance obtained from
the ND algorithm. A good correspondence between error
reductions from the assimilation of actual Antarctic obser-
vations and ND results validates the predicted optimal
placement of observations.

Errors in our surface air-temperature analyses are eval-
uated with respect to an external gridded reanalysis prod-
uct, which allows for measuring errors throughout the
continent on a daily time-scale. We compare predictions
of changes in error variance using the mean squared error
(MSE), calculated as

N
— 1 2
MSE = = 3 (Tom = Trw)’, €)

i=1

where Tom represents the ensemble-mean temperature
anomalies from our DA experiments (either based on the
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analysis or the prior field) and Tryr represents the temper-
ature anomalies from the reanalysis used as the reference.
Anomalies are obtained by removing the mean over the
period of interest at every grid point. N is the number of
data points along the time dimension. MSE values are
calculated at every analysis grid point over the continent.
Reductions in errors are determined by taking the differ-
ence between the MSE in the posterior field (i.e., the anal-
yses) and the uninformed prior AMSE = MSEPosterior _
MSEP"" summing over the n grid points defining the
multivariate metric used in our ND calculations and then
normalizing by the sum of the errors of the prior:
>, AMSE;

Spa= ———. (5)
Z;’;lMSEanor

Spa is then compared with the reduction in the metric
variance obtained from the ND calculations normalized
by the total initial variance:

Tr (6%%)

Snp = W, (6)

where X7 is the initial covariance matrix in ND
calculations.

We emphasize that Spy and Syp are not necessarily
expected to behave in similar ways as station data are
processed. Most importantly, a property of ensemble data
assimilation is that it invariably leads to a reduction in
ensemble variance as observations are assimilated (see,
e.g., Houtekamer and Zhang, 2016), whereas a decrease
in errors in the ensemble mean is not guaranteed for all
analysis grid points as a result of observation assimila-
tion. A good correspondence between the variance-based
Snp metric and Sp, summarizing ensemble-mean errors
indicates a consistent choice for the observation-error
variance as well as an accurate representation of prior
covariances. The latter would be particularly valuable, as
ensemble-mean errors are evaluated with respect to an
independent reference reanalysis, itself based on a dif-
ferent numerical model and a much larger number of
assimilated observations.

2.3 | Data

Output from the Weather Research and Forecasting
(WRF) model (Skamarock et al., 2019) that was running
in the AMPS (Powers et al., 2003; 2012) is used as input in
the ND calculations, as described in H20. State x and met-
ric J are derived from the 0000 UTC analyses of surface air
temperature over the continent from the WRF 15-km grid
at every fifth and 20th grid point, respectively. Reductions
in metric variance (Section 2.1) are therefore evaluated

over 155 grid points across the continent (see Figure 1).
The 15-km gridded data are preferred over another, lower
resolution WRF grid running in AMPS (namely, 45-km
spacing), due to the improved accuracy in the 15-km sim-
ulations (see, e.g., Bromwich et al., 2013; Bozkurt et al.,
2020) and because this 15-km grid still covers the entire
continent. Gridded WRF surface air-temperature analyses
are also the source data for the prior ensembles used in
offline data assimilation. As in the ND calculations, the
prior is composed of gridded surface air-temperature data
at every fifth grid point on the WRF grid. Observations
are assimilated at 0000 UTC daily during the October 1,
2008-October 31, 2012 period.

Quality-controlled Antarctic observations from the
archives of the National Centers for Environmental Infor-
mation (NCEI) Integrated Surface Database (Smith et al.,
2011)! are assimilated in our experiments. Those obser-
vations taken at 0000 UTC are used, and deviations from
the temporal mean over the entire period of interest are
assimilated. Observation-error variance is taken uniformly
across stations and set to 4K? as in the ND calculations.
This represents an increase by roughly a factor of two from
the value typically used in data assimilation systems (see,
e.g., Ha and Snyder, 2014), reflecting the added challenges
in obtaining accurate temperature observations in Antarc-
tica’s harsh environment (see, e.g., Lazzara et al., 2012, and
references therein).

Reanalysis surface air temperatures are taken from
the European Centre for Medium-Range Weather Fore-
casts (ECMWF) Reanalysis 5th Generation (ERA5) dataset
(Hersbach et al., 2020), available on a 31-km grid. Data
from the Modern-Era Retrospective analysis for Research
and Applications, Version 2 (MERRA-2: Gelaro et al.,
2017) and Japanese 55-year Reanalysis (JRA-55: Kobayashi
et al., 2015) are also considered, as available reanaly-
ses are characterized by significant uncertainties in their
representation of surface conditions over Antarctica. For
example, reanalysis biases in surface air temperature have
been identified over the Antarctic Plateau, particularly a
warm bias in the winter season (e.g., Bracegirdle and Mar-
shall, 2012; Fréville et al., 2014; Jones and Lister, 2015).
While these errors are present to an extent in ERAS5 (Gos-
sart et al., 2019), studies show that ERAS5 tends to perform
best (e.g., Gonzalez et al., 2021; Zhu et al., 2021). We there-
fore use ERAS5 as the primary source for comparison with
our offline analyses, while results based on MERRA2 and
JRAS55, shown in Supplementary Appendix S1, are used
to assess the sensitivity of our results to the reference
dataset. Reanalysis temperatures are interpolated to the
offline analysis grid using nearest-neighbor interpolation.

thttps://www.ncdc.noaa.gov/isd/data-access
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3 | RESULTS

The network design method is tested from two per-
spectives. We first examine the CD90 stations individ-
ually to compare the predicted and actual impact of
each station on the continent-wide temperature analy-
sis. We follow this assessment with the more complex
analysis of CD90 stations as rank-ordered contributors to
a conditionally-sampled observing network. That is, we
evaluate the information provided by stations conditional
on the others in rank order, so that more impactful stations
have priority. This more demanding test reveals the ability
of the network-design predictions to provide quantitative
guidance on the relative importance of observations for
monitoring continent-wide Antarctic temperatures.

3.1 | Single station observations

In this section, we present and validate results from the
calculations of the change in metric variance (Equation 2)
on the 18 CD90 locations taken individually, without tak-
ing into account the other 17 stations. That is, the extent to
which single station observations inform on temperatures
over the continent is quantified objectively, and stations
are ranked accordingly. This ranking is determined to a
significant extent by the spatial correlations characteriz-
ing the temperature field around each station (H20). The
spatial extent of that footprint determines the effectiveness
of each station in providing information on temperatures
over surrounding regions of the continent. The accurate
estimation of spatial covariances is therefore germane to
ND, prompting us also to consider the role of covariance
localization.

3.1.1 |
stations

Network design applied to CD90

Figure 2 shows the CD90 stations ranked by their predicted
reductions in metric variance. Without covariance local-
ization (Figure 2a), Vostok is chosen as the most impactful
location nearly 100% of the time in the 10,000 MC real-
izations, while Syowa, Rothera, and Bellingshausen are
consistently ranked with the least information on conti-
nental temperatures. The median total reduction in metric
variance ranges from about 52% (5,800 K?) of the total prior
variance for Vostok to below 20% of the variance (less
than 2,000 K?) for the two lowest-ranking stations, Rothera
and Bellingshausen (Figure 2b). Amundsen-Scott, Dome
A, and Ferrell rank as the next most impactful locations,
with Amundsen-Scott ranking second most often, and
Dome A chosen in some MC realizations. Ferrell also
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ranks second, but in less than 10% of the MC realiza-
tions. It most often ranks as the fourth most influential
station. These three stations, with variance reductions
in the 45% range (5,000-5,300K?), are followed by Cape
Ross and Marilyn, ranking equally likely as the fifth and
sixth locations. Marble Point and Elizabeth are ranked
with greater confidence as the seventh and eight loca-
tions, respectively, all with variance reductions remaining
above 35% (4,000 K2). Apart from the three lowest-ranking
stations, greater uncertainty characterizes the order of sta-
tions among the lower rankings. The coastal stations of
Mawson, Neumayer, Halley, Mirnyj, Casey, and Davis are
generally ranked between ninth and 15th, with varying
orderings possible within the uncertainty, with a number
of stations showing a range of frequencies for any given
rank (spread along the rank axis). For example, five loca-
tions are selected in 10% or more of the MC realizations as
the 11th or 12th stations. Similarly, Halley is chosen with
similar frequencies between the 10th and 14th spot. All of
these locations have variance reductions between 25% and
35% (3,000-4,000 K?). A notable shift toward smaller vari-
ance reductions is observed for the three lowest-ranking
stations, particularly for the two stations located on the
Antarctic Peninsula, Rothera and Bellingshausen.

The ND experiments in H20 show that different
regions are highlighted when the influence of observa-
tions is localized in space to mitigate the effects of spurious
spatial covariances from the limited number of samples
used in our ensemble estimates. To measure the sensitiv-
ity to covariance localization, we calculate Equation 3 with
different cut-off localization length-scales. Two experi-
ments are reported here, the first performed with a cut-off
length-scale of 3,000km (Figures 2c,d), a value corre-
sponding to the average correlation e-folding length-scale
found in observations by Bumbaco et al. (2014), and a
second using a more restrictive 1,000-km length-scale
(Figure 2e,f).

With a cut-off distance of 3,000 km, Vostok ranks deci-
sively as the most impactful location once again, while
Marilyn ranks fourth with high confidence, a higher rank
than without localization. Elizabeth also ranks higher,
between the fifth and eighth position. The opposite effect is
observed for Cape Ross, Mirnyj, Neumayer, and Mawson,
now ranked lower in the list. The sharp contrast in vari-
ance reduction between continental and coastal locations
is again present, while Peninsula stations again exhibit the
least amount of variance explained.

For the 1,000-km length-scale, the reductions in met-
ric variance are more than an order of magnitude smaller
than without localization, as the spatial extent of stations’
influence is constrained to much smaller scales. Eliza-
beth compares closely with Vostok as the most impactful
station. Constraining observation impact to shorter scales
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also elevates the importance of the Marie Byrd Land and
Siple Coast regions, which are characterized by larger tem-
perature variability and shorter correlation length-scales
(see Figure 3 in H20). A sharp contrast between continen-
tal and coastal stations is again evident.

The dependence of station rankings on localization dis-
tance suggests the possible influence of how long-range

covariances, which are particularly sensitive to sampling
error, are estimated. The localization distance influences
how much long-range covariance is captured in the rank-
ing process. Figure 3 shows the footprint characterizing
the variance reductions from each station predicted with-
out covariance localization. Other than the more extensive
areas with the largest variance reductions that characterize
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the top stations, we note that most stations produce siz-
able reductions across long distances over the continent.
Exceptions are Rothera and Bellingshausen, the impacts
of which are mainly limited to the Antarctic Peninsula,
explaining why they rank the lowest among the CD90

stations. That the observations from most stations appear
to provide information on temperatures across the conti-
nent is unrealistic. Examples are Ferrell, Cape Ross, and
Marble Point, which are associated with variance reduc-
tions in excess of 20% over Mac. Robertson Land, west
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of the Amery Ice Shelf on the opposite side of the con-
tinent. Use of the Gaspari—-Cohn localization function
with a realistic cut-off distance of 3,000 km (see Figure
S1 in Appendix S1), however, effectively eliminates these
remote and spurious numerical influences.

We also note similarities between footprints from var-
ious stations. The closely spaced stations Marilyn, Ferrell,
Cape Ross, and Marble Point all project predominantly on
areas of the Ross Ice Shelf and Victoria Land (see Figures 3
and S1). The similar footprints lead to similar changes in
metric variance, and hence rankings, for these stations, as
evidenced by the relatively flat portions of the curves cor-
responding to these stations in Figures 2b,d. A significant
overlap in the spatial patterns from Dome A and Vostok is
also observed, specifically over the East Antarctic Ice Sheet
and extending to Mac. Robertson Land. These similarities
will be referenced in Section 3.2 to explain some character-
istics in the conditional ranking of stations. Elizabeth and
Harry also share similar spatial footprints, although Eliz-
abeth projects more strongly on the high-variance areas of
the Siple Coast and Ross Ice Shelf. In contrast, coastal sta-
tions are shown to have mostly complementary influences
over the outer areas of the continent.

Although stations are considered here as hypothetical
stand-alone measurement sites and not as a network of
locations complementing each other (see Section 3.2 for
these results), the results are broadly consistent with those
presented in H20. In particular, the primary importance
of locations on the East Antarctic Plateau in monitor-
ing temperatures at the continental scale is highlighted,
complemented by locations in West Antarctica.

3.1.2 | Comparison with single-station
offline DA

Here we assess ND predictions of observation impact
through comparisons with error reductions from the
assimilation of observations. We evaluate CD90 stations
individually through 18 sets of analyses, each produced by
assimilating observations from a single station. Results are
compared in Figure 4 by plotting the summary diagnostics
Spa versus Syp (see Equations 5 and 6).

A strong correlation (r = 0.98) is obtained between
predicted (Snyp) and diagnosed (Spa) observation impacts
when covariance localization is not applied (Figure 4a).
The ranking of stations between ND and DA is generally
consistent, particularly when groups of stations are consid-
ered. For example, a group located on the East Antarctic
Plateau ranks as the set of most impactful stations, fol-
lowed by those stations located on or near the Ross Ice
Shelf. Coastal and West Antarctica stations are generally
in the middle of the ranking, while Peninsula stations,
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not surprisingly, provide the least amount of informa-
tion on temperatures across the continent. This group
ranking is found in both ND and DA results. The rank-
ing of individual stations within groups from DA experi-
ments does not match the ND results as closely, but some
significant similarities are observed. Among the Plateau
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stations, Vostok ranks as the first and Dome A as the
third stations in both DA and ND, but the delineation
between Vostok and Amundsen-Scott is not as clear in
the DA results compared with the ND results. Another
common feature between DA and ND is Elizabeth rank-
ing higher than Harry in West Antarctica. Also, Mawson
ranks highest and Syowa lowest among the coastal sta-
tions. For the two Peninsula stations, Rothera ranks over
Bellingshausen in ND, but their difference is not as distin-
guishable when DA results are considered. Other relative
rankings within coastal and Ross Ice Shelf stations cannot
be clearly defined, given uncertainties estimated from the
MC realizations in DA and ND experiments.

Next we turn to the effect of covariance localization on
the results (Figures 4b,c). With localization at 3,000 km,
a strong correlation (r = 0.97) between DA diagnostics
and ND predictions is observed once again, with the same
group ranking as with the configuration without covari-
ance localization: continental stations are at the top of
the list, followed by Ross Ice Shelf and West Antarc-
tica stations, and then by coastal and Peninsula stations.
On the Plateau, Vostok ranks as the top location in DA
and ND once again, followed by Amundsen-Scott and
Dome A, having similar impact. On the Ross Ice Shelf
and West Antarctica, Marilyn ranks the highest in the
group of stations by a small margin in both DA and ND.
Other locations in the region are statistically indistin-
guishable in ND results, while only small differences in
MSE reductions between Elizabeth, Ferrell, Marble Point,
Harry, and Cape Ross are obtained in DA experiments.
For coastal stations, Halley stands out in DA results as
the station providing the largest reduction in error, while
Neumayer and Syowa share the smallest reductions, as
in ND results. On the Peninsula, Bellingshausen has the
smallest impact in both the DA and ND results. With a
shorter localization length-scale (1,000 km: Figure 4c), cor-
relation is reduced to r = 0.95 and the ranking among
locations within geographical regions is not as clear, par-
ticularly between Plateau, West Antarctica, and Ross Ice
Shelf stations. Vostok remains the most impactful in the
ND and DA results, while Elizabeth in West Antarctica
and Marilyn on the Ross Ice Shelf are featured more
prominently in the ND results, in contrast to the other
interior stations of Amundsen-Scott and Dome A in the
DA results. Again, coastal and Peninsula stations occupy
the bottom of the ranking, with coastal Neumayer and
Bellingshausen and Rothera on the Peninsula appearing
as the three lowest-ranked stations in both the ND and DA
results.

A notable feature in the comparisons is the general
tendency for larger MSE reductions in the DA experi-
ments compared with the ND predictions of total variance,
especially when covariance localization is applied. These
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discrepancies have at least two two contributing factors.
One possibility is that the reanalysis product used for ver-
ification has different error characteristics. For example,
a different representation of seasonal variability in the
reference reanalysis will be reflected in the verification
rather than the prediction. A second possibility is the exact
implementation of covariance localization. As discussed
in Section 2, localizing the 8J(H56x)" covariance induces
a dependence in calculated changes in variance of 6X* ~
leoc' We found that this formulation is responsible for
degraded comparisons against the reductions in variance
obtained from updating ensemble perturbations in the
ensemble square-root filter in our DA experiments. The
squaring of wj,. leads to reduced predictions of changes
in variance, which do not compare as well with those
obtained from the Kalman update in DA. The compari-
son is improved when the implementation described by
Equation 3 is used (see Figure S2 in Appendix S1). We
note that this difference in localization influence between
ensemble members and the covariance they approximate
is generic to most implementations of ensemble filters. It
is aggravated here by the squared covariance in 6X* (see
Equation 2).

3.2 | Stations as a network (conditional
ranking)

A more challenging test consists of assessing the ND con-
ditional selection of stations to build out a network in
priority order. As described in H20, the selection of stations
beyond the first can be performed once the impact of the
previous station(s) has been taken into account. Here we
show results applied to the subset of CD90 stations. This
will be followed by an assessment of these results using
data assimilation experiments.

3.2.1 |
network

Network design applied to CD90

The conditional ND ranking of the CD90 stations is shown
in Figure 5 and also summarized in Table 2, as quantified
by the percentage of samples in the 10,000 MC realiza-
tions where the stations are chosen in each rank. In the
absence of covariance localization (Figure 5a), Vostok
is chosen as the most impactful station nearly 100% of
the time, consistent with the approach described in the
previous section. Here the impact of Vostok is taken into
account by updating the metric and state before choos-
ing the second station. The second station chosen most
frequently is Elizabeth in West Antarctica (over 60% of
the time), as well as Cape Ross in Victoria Land, and
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Similar to Figure 2, but for the conditional selection of stations. The percentage of samples for which stations are chosen in

each rank is shown in the top frames for (a) no covariance localization, (b) covariance localization using a cut-off distance of 3,000 km, and
(c) with a cut-off distance of 1,000 km. Lines in (d) show the median of the distributions of the change in the metric variance from the 10,000
Monte Carlo realizations, while shading illustrates the 5th-95th percentiles. Note the logarithmic scale on the y-axis in (d). The x-axis in all

frames here represents station rank, not specific stations as in Figure 2 [Colour figure can be viewed at wileyonlinelibrary.com]

Ferrell (Ross Ice Shelf) and Amundsen-Scott, but at much
lower rates. Repeating the process for subsequent stations,
Amundsen-Scott is chosen most often as the third most
impactful station, although with Halley also sometimes
selected third in a small fraction of the realizations. Dome
A now ranks among the lower tier of stations in terms of
influence, in contrast to when stations are considered as
stand-alone independent observations, due to significant
covariability with Vostok (i.e., factoring Vostok removes
a large amount of the variance explained by Dome A, as
highlighted in Section 3.1). Also, Ferrell and Marble Point
are now ranked most often as the two least-influential sta-
tions, a consequence of the strong covariability with the
nearby Cape Ross station that now occupies the upper half
of the rankings. Marilyn, Davis, and Bellingshausen also
rank in the bottom tier. Coastal stations occupy ranks in
the middle tier. The stations with some counts in ranks off
the diagonal highlight the importance of uncertainties in
network design and the value of adopting a probabilistic
perspective.

The distributions of metric reduction correspond-
ing to each rank, relative to the prior metric, are shown
in Figure 5d. Vostok, as the first station, explains more
than 50% of the total variance, with the second and third
stations explaining another 7% and 4%, respectively.

Therefore, the first three stations explain more than 60%
of the total error variance, with the remaining stations
only contributing incremental variance reductions. As
described in H20, the sharp decrease in variance from the
first few stations reflects an unrealistic removal of ensem-
ble spread by spurious long-distance correlations. The
impact of using covariance localization on CD90 station
ranking is thus assessed next.

Figures 5b,c show the station rankings obtained with
covariance localization cut-off distances of 3,000 and
1,000 km, respectively. With 3,000 km, Vostok and Eliza-
beth stand out once again as the number one and number
two stations, respectively, with increased confidence in
Elizabeth’s ranking (chosen nearly 100% of the time in
the MC realizations). The median change in metric vari-
ance from Vostok is reduced from 52% to 20%. Changes
are larger with localization for the second to the 13th
stations (Figure 5d), a result of the reduced impact of
the top station. Amundsen-Scott, Halley, and Mawson
again predominantly rank as the third, fourth, and fifth
stations, respectively. Also, similar to results obtained
without localization, coastal Davis, Bellingshausen on the
Peninsula, and Marble Point near Ross Island occupy the
bottom positions. Highlighted positions off the diagonal
in Figure 5b indicate stations for which localization has
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TABLE 2
to least impactful, obtained from the ND method for runs (a)

Conditional ranking of CD90 stations, from most

without covariance localization and (b) with localization applied
with 3,000- and 1,000-km cut-off distances

No Localization Localization
Rank localization (3,000 km) (1,000 km)
1 Vostok Vostok Vostok
2 Elizabeth Elizabeth Elizabeth
3 Amundsen-Scott Amundsen-Scott Marilyn
4 Halley Halley Amundsen-Scott
5 Mawson Mawson Dome A
6 Mirnyj Cape Ross Mirnyj
7 Rothera Casey Cape Ross
8 Cape Ross Rothera Syowa
9 Syowa Syowa Casey
10 Harry Mirnyj Mawson
11 Neumayer Neumayer Halley
12 Casey Harry Harry
13 Dome A Dome A Davis
14 Marilyn Ferrell Rothera
15 Davis Davis Neumayer
16 Bellingshausen  Bellingshausen  Bellingshausen
17 Ferrell Marilyn Ferrell
18 Marble Point Marble Point Marble Point

Note: The rankings also correspond to the order in which station data are
assimilated in the “optimal” offline DA experiments.

a significant influence on the ranking. This is the case for
Cape Ross, Casey, and Ferrell, which are ranked higher
with localization, while Mawson, Harry, and Marilyn rank
lower.

With a 1,000-km localization length-scale, the rank
order of stations is greatly modified, as shown by stations
with large counts appearing in off-diagonal positions in
Figure 5c. Changes in metric variance are reduced fur-
ther, particularly for the top stations (see Figure 5d). This
leads to similar changes in variance for the top five sta-
tions, indicating a loss in ability to discriminate confi-
dently among the top-tier stations. This is also illustrated
by the smaller frequencies with which stations are cho-
sen in the top ranks (Figure 5c). Vostok and Elizabeth
are interchangeably chosen as the number one and two
stations, while Marilyn is now ranked third most fre-
quently, followed closely by Amundsen-Scott and Dome
A as the fourth and fifth stations, respectively. Some delin-
eation remains between the top stations and the coastal
and Peninsula stations, which again rank in the bottom
tier.

Royal Meteorological Society

As discussed in H20, and again demonstrated here,
covariance localization has a significant influence on
network design results. The results indicate that an
overestimation of the impact of the first station occurs in
the absence of covariance localization, while short local-
ization length-scales lead to a weakened ability to dis-
criminate among the most impactful stations within the
CD90 network. A localization cut-off distance of 3,000 km,
consistent with the climatological correlation length-scale
found by Bumbaco et al. (2014), appears to provide a
good compromise between mitigating noisy long-distance
covariances from sampling errors and maintaining real
teleconnections across the continent.

The spatial patterns defining station impact are shown
for a 3,000-km covariance localization radius in Figure 6.
Vostok reduces variance over a substantial portion of East
Antarctica, explaining the largest total metric variance
reduction, as discussed above. Vostok is complemented by
Elizabeth and Amundsen-Scott, contributing respectively
to reductions over West Antarctica and over the Antarc-
tic Plateau around the South Pole and extending toward
the Ronne Ice Shelf. The fourth (Halley) and fifth (Maw-
son) stations project on portions of Queen Maud Land and
Mac. Robertson Land, respectively. Cape Ross as the sixth
station projects on a more localized area of Victoria Land
and, specifically, Cape Adare, while Casey (ranked sev-
enth) provides information on the outer areas of Wilkes
Land. The eighth (Rothera) and ninth (Syowa) stations
cover portions of the Peninsula and Queen Maud Land,
respectively. Weak, more localized, variance reduction is
observed with the remaining stations.

3.2.2 | Validation with DA of CD90 network
observations

Asin Section 3.1.2, offline assimilation of real observations
is used to verify ND results. In contrast to the previous
section on ND predictions, DA experiments are performed
by assimilating all of the CD90 stations sequentially using
the EnSRF of Whitaker and Hamill (2002). An ensemble
size of 250 is again used, and a total of 100 MC realizations
are performed, each with a different random draw of the
250 ensemble members. Here the intermediate analyses
at every analysis time (i.e., reflecting updates to the state
as data from each station is assimilated sequentially) are
saved and compared with reanalysis data (i.e., ERAS5). As
in the previous section, the ensemble-mean MSE is used
as the basis for validating ND predictions.

In a first set of experiments, the sequence of assim-
ilated stations follows the ranking determined by the
ND algorithm; that is, stations ranked using the high-
est selection frequencies over all ND MC realizations (see
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Table 2). The incremental reductions in analysis MSE
for each station are averaged over all 0000 UTC analyses,
and results are compared with the predicted ND changes
in metric variance (Figure 7). From this we find high

—— .

1

10

Variance

reduction (%)

100

Spatial distribution of median prior variance (upper left frame) and conditional contributions to relative changes in
variance (in % with respect to the prior) predicted with the ND method for each station (shown by the dot) following the conditional ranking
shown in Table 2, using a covariance localization radius of 3,000 km. Note the use of a logarithmic scale in the color bar for variance

correlations (r > 0.95) between median DA reductions in
MSE and ND predictions for each CD90 station, whether
covariance localization is used or not. For the experiment
without covariance localization (Figure 7a), reductions in
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analysis errors correspond well to ND predictions for the
highest-ranking stations, with a tendency to underesti-
mate the impact of the last six stations. When localization
is applied with a cut-off radius of 3,000 km (Figure 7b),
good correspondence between DA and ND measures of
station impact is again obtained, and the match is par-
ticularly improved for the lowest-ranking stations. How-
ever, MSE reductions in DA results are now somewhat
larger than predicted for the top stations. This effect is
also present with 1,000 km localization (Figure 7c), but a
good station-to-station correspondence remains between
DA and ND estimates.

We note also that the error bars in Figure 7, repre-
senting the 5th and 95th percentiles of the distributions,
show that measures of station impact can cover a wide
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range of values. This spread is generally not as pronounced
when localization is applied, indicating that the influence
of station observations over long distances contributes
to uncertainty in continent-wide temperature estimates.
Also, tighter distributions tend to characterize error reduc-
tions derived from DA, possibly resulting from the averag-
ing of errors in the time domain.

Next, we assess ND guidance from an integrated net-
work perspective by examining whether the sequential
assimilation of station data using an optimal network
outperforms a randomly-chosen network. We do this by
comparing results obtained from optimal (see Table 2)
and random station ordering for networks of a given size.
The same Monte Carlo approach is employed, with 100
realizations of prior ensembles, with the addition of differ-
ent realizations of station orders for the random network
experiments.

The reduction in analysis MSE, summarized with the
Spa metric, is shown in Figure 8. A monotonic reduction
of errors is apparent, converging to a common endpoint
after all 18 stations have been assimilated. The narrow
uncertainty distributions for the optimal station order (too
small to be clearly visible on the figure) are compared
with the much wider distributions for randomly-chosen
stations, denoting the negligible contribution of uncer-
tainties in prior states to the posterior ensemble spread.
Without covariance localization (Figure 8a), nearly 60%
of errors are eliminated with the first optimal station,
reaching 70% by the fourth station, and error reduc-
tions are within the uncertainty after the 11th station.
Error reductions from optimal stations are significantly
larger than those from randomly-selected stations. Dif-
ferences become small after the fifth station, and then
slowly converge to 78% error reduction as more stations are
included. With a 3,000-km covariance localization cut-off
distance (Figure 8b), a similar level of error reduction
as in the case without localization is ultimately reached
once all stations have been assimilated (75% of prior
errors compared with 78%), but with a slower convergence
rate. Randomly-ordered stations yield significantly smaller
error reductions, reaching the 60% level only by inclusion
of the eighth station, as compared with the fourth station
in the optimal case. Similar behavior is found for 1,000-km
localization (Figure 8c), but with this artificially short
influence radius the total error reduction only reaches 35%.

In order to test the sensitivity of the error analysis
to the verification dataset, we repeated the calculations
using the MERRA2 and JRAS5S5 reanalyses. The results,
reported in Appendix S1, confirm the conclusions drawn
using ERAS. The good correspondence between the ND
variance reductions and the MSE reductions from DA
is also found for both MERRA2 and JRAS55 used as the
verification dataset (Figure S3). Similar correlations in
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station-to-station comparisons between DA MSE and ND
variance reductions are also obtained, as are the greater
MSE reductions from the assimilation of stations ordered
according to ND predictions, as opposed to random selec-
tions (Figure S4). The validation results with covariance
localization are also found to be robust to the choice of
reference reanalysis.

Once all CD90 stations have been assimilated using
a realistic 3,000-km covariance localization (Figure 9a),
the regions with the most and least error reductions
correspond well with the ND predictions (Figure 9b). Dif-
ferences between DA and ND results (Figure 9c) confirm
that MSE reductions are a few percentage points larger
than ND predictions over most of the continent, with the
exception of an area around Vostok and near Cape Adare.
Despite these differences, MSEs are reduced most over the
higher terrain of the East Plateau, the Megadunes area,
and central and West Antarctica and the Ross Ice Shelf
region, in good agreement with ND predictions. MSEs are
reduced least over Palmer Land and Ellsworth Land, the
coastal areas of Victoria Land and Adélie Land, and in
a region extending from the coast toward the interior of

FIGURE 8 Cumulative change in analysis MSE with
respect to ERA5 (summarized with the Sps metric, Equation 5),
as station data are assimilated: (a) without covariance
localization, (b) with 3,000-km localization, (c) with 1,000-km
localization. Solid lines and shading represent the median and
the 5th and 95th percentiles of the 100 Monte Carlo realizations
[Colour figure can be viewed at wileyonlinelibrary.com]

Queen Maud Land. These correspond to the largest areas
missing observations within the CD90 network. We note
that the aforementioned regions correspond to locations
that complement the existing CD90 network optimally,
as found by H20 (see their Figure 8a-c). We also note the
good agreement with the patterns in variance explained
for weekly and monthly time-scales presented in Figure 6
of Bumbaco et al. (2014).

4 | SUMMARY AND CONCLUSIONS
An objective method for the optimal siting of stations for
monitoring surface air temperature in Antarctica has been
proposed and demonstrated by Hakim et al. (2020) (H20).
Preferred regions were clearly identified for siting obser-
vations, either in designing a theoretical network from
scratch or for augmenting existing networks for improved
monitoring of continental surface temperatures. The
deployment and maintenance of observational assets in
the context of the harsh, difficult-to-access environment
of Antarctica motivates validation of this approach for
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errors from a climatological prior analysis, where the
errors are determined relative to an independent verifica-
tion reference. Offline data assimilation experiments pro-
vide a cost-efficient alternative to full observation-system
experiments (OSE), with the former necessary to evaluate
the 149,200 experiments (daily analyses over 49 months
and 100 MC realizations) considered here for individ-
ual station and full-network configurations. We consider
observations from stations with high levels of data avail-
ability (i.e., >90% reportage in our “CD90” network) and
reductions in ensemble-mean MSEs. Validation of the
ND method is performed by comparing these error diag-
nostics with the predictions of variance reductions from
the same set of stations. The MSE statistics are sampled
across the entire continent and compiled over the 149,200

The comparisons show that the ND predictions agree
with the station-to-station reductions in MSE, indicat-
ing that the ND method is able to discriminate between
error reduction for different stations, either as individ-
ual observing locations or more realistically as part of a
network. The greater importance of stations located on
the East Antarctic Plateau is clearly identified in both the
ND and DA results. This location is followed by stations
in West Antarctica and the Ross Ice Shelf region, while
coastal and Peninsula CD90 stations have the least exten-
sive impact. This is consistent with “blank slate” results in
H20, who found that the Megadunes area in East Antarc-
tica and the Siple Coast region in West Antarctica are
key observation locations. Also, the results from our DA
experiments demonstrate that equivalent levels of error
reduction can be achieved with fewer stations when obser-
vations from the ND top-ranked stations are assimilated,
providing further evidence of the usefulness of the ND
method toward optimizing temperature monitoring in
Antarctica. In addition, our study has shown that ND val-
idation results are robust to the application of covariance
localization. The agreement between the DA estimates of
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FIGURE 9 Total relative reduction in (a) MSE from the

assimilation of CD90 observations, (b) variance from the ND
method after all 18 stations (dots) have been included in respective
calculations, and (c) the difference between DA error reductions
and ND predictions. Results obtained using a 3,000-km covariance
localization cut-off radius [Colour figure can be viewed at
wileyonlinelibrary.com]

practical applications. Here we perform such a check by
assimilating observations from existing surface stations
using an offline ensemble Kalman filter and then com-
paring results with predictions from the optimal siting
approach.

This validation has been performed by quantifying
the contributions of real station observations to reducing

error reductions and ND predictions is found for a range
of localization length-scales.

In addition to the successful validation of the ND
predictions, our tests here highlight important factors in
the application of the method. The use of ND in test-
ing CD90 stations considered as single sites informing
on temperatures across the continent clearly reveals the
presence of long-distance covariances estimated from sam-
ples of WRF-modelled temperatures. As discussed in H20,
covariance localization is an important component of this
method, and one that requires careful consideration. Our
results confirm the importance of mitigating the effects of
uncertain long-distance covariances, while preventing the
suppression of measurement information and the inability
to discriminate between stations when spatial covariance
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localization is overly restricted. Our results also show
strong similarities in the spatial influence between certain
stations, suggesting redundant contributions of sites to the
observation/monitoring of regional temperature. In turn,
this suggests the value of adopting a network perspective in
which observation sites are evaluated conditionally upon
the presence and input of others, where such redundancy
is intrinsically taken into account.

Adopting a network perspective with a realistic
3,000-km localization radius, we find that Vostok in East
Antarctica, Amundsen-Scott at the South Pole, and Eliz-
abeth in West Antarctica combine to reduce total errors
by more than 25%. Halley in the Atlantic Ocean sector
and Mawson in the Indian Ocean sector figure promi-
nently among coastal stations with contributions in the
5% range, while Cape Ross in Victoria Land accounts for
an additional few percentage points of error reduction.
While many other stations have been deployed beyond
those of the CD90 set considered here, our tests serve
to demonstrate the quantitative information that can be
gained using the objective ND method in the Antarctic set-
ting. It has been shown that areas with the least amount of
information provided by a network can be identified with
confidence, and thus possibly targeted for the deployment
of additional assets.

Successful validation of the ND method provides added
motivation for exploiting information in decisions to
establish an effective observing network in support of sci-
ence and logistics in Antarctica. We emphasize, however,
that the information provided by the ND method pro-
vides only one contributing element in an observational
decision-making process, which can involve varying aims,
such as answering specific science questions or ensuring
safe aircraft operations. We believe the method presented
offers the necessary flexibility for addressing different
monitoring goals, whether the focus is on monitoring a cli-
mate variable, capturing weather conditions, or reducing
numerical model forecast errors. Whatever the end pur-
pose, optimal design can be a useful tool toward efficient
allocation of the resources applied to it.
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