Annals of PDE (2022) 8:15
https://doi.org/10.1007/s40818-022-00134-5

MANUSCRIPT

®

Check for
updates

On the Cauchy Problem for the Hall and Electron
Magnetohydrodynamic Equations Without Resistivity I:
lllposedness Near Degenerate Stationary Solutions

In-Jee Jeong'® - Sung-Jin Oh23

Received: 7 July 2021 / Accepted: 24 June 2022
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract

In this article, we prove various illposedness results for the Cauchy problem for the
incompressible Hall- and electron-magnetohydrodynamic (MHD) equations without
resistivity. These PDEs are fluid descriptions of plasmas, where the effect of collisions
is neglected (no resistivity), while the motion of the electrons relative to the ions (Hall
current term) is taken into account. The Hall current term endows the magnetic field
equation with a quasilinear dispersive character, which is key to our mechanism for
illposedness. Perhaps the most striking conclusion of this article is that the Cauchy
problems for the Hall-MHD (either viscous or inviscid) and the electron-MHD equa-
tions, under one translational symmetry, are ill-posed near the trivial solution in any
sufficiently high regularity Sobolev space H*® and even in any Gevrey spaces. This
result holds despite obvious wellposedness of the linearized equations near the triv-
ial solution, as well as conservation of the nonlinear energy, by which the L? norm
(energy) of the solution stays constant in time. The core illposedness (or instability)
mechanism is degeneration of certain high frequency wave packet solutions to the
linearization around a class of linearly degenerate stationary solutions of these equa-
tions, which are essentially dispersive equations with degenerate principal symbols.
The method developed in this work is sharp and robust, in that we also prove nonlinear
H?*-illposedness (for s arbitrarily high) in the presence of fractional dissipation of any
order less than 1, matching the previously known wellposedness results. The results
in this article are complemented by a companion work, where we provide geometric
conditions on the initial magnetic field that ensure wellposedness(!) of the Cauchy
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problems for the incompressible Hall and electron-MHD equations. In particular, in
stark contrast to the results here, it is shown in the companion work that the nonlinear
Cauchy problems are well-posed near any nonzero constant magnetic field.
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1 Introduction

In magnetohydrodynamics (MHD), a plasma is described as a single electrically con-
ducting fluid interacting with a magnetic field. In the incompressible case, the equation
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of motion takes the form

oju+u-Vu+ Vp—vAu =] x B,
0B+ V xE=0, (MHD)
Vu=V.-B=0,

where u(7) : R? — R3 is the bulk plasma velocity field, p(¢) : R3 - Risthe plasma
pressure, v > 0 is the plasma viscosity, B(z), E(¢) : R3 — R3 are the magnetic
and electric fields, and J is the current density. The celebrated ideal (resp. resistive)
MHD equation is obtained by additionally assuming no viscosity v = 0, Ampére’s
law J = V x B and ideal Ohm’s law E+u x B = 0 (resp. Ohm’s law E4+u xB = nJ,
where n > 0 is the resistivity); the latter two effective laws close the system in terms
of (u, B).

Actual plasmas, however, are made up of at least two distinct species, namely,
negatively-charged, lighter electrons and positively-charged, heavier ions. When the
motion of the electrons is significantly faster compared to the bulk plasma, which is
the case in many settings of astrophysical importance, Ohm’s law attains a correction
proportional to J x B, called the Hall current term; see [1, 35, 44, 47] for formal
derivations. The resulting system, first introduced by M. J. Lighthill [44], is referred
to as the Hall-MHD equation.

The subject of this paper and its companion [38] is the incompressible Hall-MHD
equation without resistivity, i.e., (MHD) with Ampere’s law, but with Ohm’s law
supplanted by (normalized) generalized ideal Ohm’s law

E+uxB=]xB.
In terms of (u, B), the system takes the form

ou+u-Vu+ Vp —vAu = (V x B) x B,
B—-Vx@mxB)+Vx({(VxB)xB)=0, (Hall-MHD)
V-u=V-B=0.

In the special case v = 0, the resulting system is called the ideal Hall-MHD equation.

The Hall current term V x ((V x B) x B) is both quasilinear! and of the highest
order; a priori, it may incur derivative losses. For this reason, previous mathematically
rigorous investigations of the Hall-MHD equation were mostly carried out either in the
presence of resistivity [10, 12—16, 18-21], which gives rise to a strong dissipative term
nAB compensating for this loss, or in axisymmetry [11, 39], in which the second order
terms vanish. In the absence of resistivity and symmetries, even the basic question of
(local) wellposedness of the Cauchy problem for (Hall-MHD) had been open. The
answer to this question, as we show in this paper and its companion [38], turns out
to be strikingly rich and markedly different compared to both the resistive Hall-MHD
and the ideal MHD equations.

1 By which we mean that the Hall current term is nonlinear, but is linear in the highest order (i.e., second
order) derivatives of B.
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In the present paper we confirm that the derivative loss in the Hall current term
cannot be avoided in general by establishing a number of illposedness results. In
the central result (Theorem A), we identify a strong instability mechanism for the
linearized (Hall-MHD) around a stationary magnetic field with a degeneracy (i.e.,
vanishing) along a hypersurface, by which the energy of the initial perturbation is
transferred to extremely small scales at a rate proportional to the frequency of the
initial perturbation. Various linear and nonlinear illposedness results are proved as a
consequence of this instability mechanism; see Sects. 1.2—1.4 below for their state-
ments. In particular, we show that the Cauchy problem for (Hall-MHD) is ill-posed
near the trivial solution (u, B) = (0, 0) in any high regularity Sobolev space on any
domain of the form M = TK x R3 % with1 <k <3 (Corollary D and Theorem E);
this result is on the contrary to the cases of the resistive Hall-MHD equation [15] and
the ideal MHD equation [50]. The Cauchy problem remains illposed even in Gevrey
spaces (Theorem F), which is in stark difference to, for instance, the reverse heat
equation d; f = —A f or the ill-posed problems underlying some classical hydro-
dynamical instabilities; see Sect. 1.8. Our method also extends to the fractionally
dissipative case, thereby establishing local illposedness in H*® with arbitrarily high s
as long as the order of the dissipative term in the B-equation is strictly less than 1 (The-
orem G). This result is sharp, exactly matching the wellposedness results previously
obtained by Chae—Wan—Wu [16] in the case the order is at least 1.

In the companion work [38], we complement the illposedness results in this paper
by providing geometric conditions on the initial magnetic field that ensure wellposed-
ness(!) of the Cauchy problems for (Hall-MHD). For instance, in contrast to the
aforementioned illposedness result near the trivial solution, we prove that the Cauchy
problem for (Hall-MHD) is well-posed near any nontrivial constant magnetic field.
We note that the latter setting is the more physically relevant one, going back to the
original work of M. J. Lighthill [44]. For a short (and partial) summary of the results
proved in [38], see Sect. 1.6 below.

The essential features of (Hall-MHD) relevant in the issue of local ill- or well-
posedness are more clearly seen in the simpler system

#B+Vx(VxB)xB)=0, (E-MHD)
V-B=0,
which is called the electron-MHD equation (or the Hall equation) [47,Sect. 10.7]. It
corresponds to the case when the bulk plasma is essentially at rest compared to the
motion of the electrons. All the results in this paper and [38] apply to both (Hal-
1-MHD) and (E-MHD)?. In fact, all the proofs will proceed by first handling the case
of (E-MHD), and then extending the argument to (Hall-MHD).

In both this paper and its companion [38], our basic insight is that the Hall cur-
rent term endows the magnetic field equation with a quasilinear dispersive (i.e.,
Schrodinger-like) character. The main ideas behind both the ill- and wellposedness
results are most natural with such a viewpoint. In particular, the instability mecha-

2 This is with the exception of Theorem E, which works in a somewhat more restrictive setting for the
(Hall-MHD) case.
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nism revealed in this paper is qualitatively distinct from the more classical examples
of hydrodynamic instabilities (Kelvin—Helmholtz, Rayleigh-Taylor, boundary layer
etc.), but it seems to be a prevalent phenomenon for degenerate dispersive equations.
We refer to Sects. 1.7 and 1.8 below for further discussion.

1.1 Basic Properties of (Hall-MHD) and (E-MHD)

To set the stage for the precise formulation of our main results, we begin with a
discussion of some basic properties of (Hall-MHD) and (E-MHD).

Energy Identities

A fundamental property of (Hall-MHD) and (E-MHD), of both mathematical and
physical importance, is the energy identity.

Proposition 1.1 For a solution (u, B) to (Hall-MHD) on M = T* x R3=% with suffi-
ciently regularity and spatial decay, we have

d /1
— (—/ (u> + B (1) dxdydz> = —v/ |Vu|?(¢) dxdydz.
dt \2 Ju M

Similarly, for a solution B to (E-MHD) on M = T* x R3~* with sufficiently regularity
and spatial decay, we have

d 1/|B|2(t)ddd =0
a\2/, xdydz | =0.

The expressions inside the parentheses on the LHS are the energies for (Hall-MHD)
and (E-MHD), respectively.

We only sketch the proof for (E-MHD) and leave to the reader the (slightly more
involved but similar) case of (Hall-MHD). Multiplying (E-MHD) by B and integrating
on M, we have

1d
——/ IB|? dxdydz = —/ B (V x ((VxB) xB)dxdydz.
2dt Juy M
The Hall term multiplied by B disappears since the operator V x is symmetric:
/ B (V x ((VxB)xB)dxdydz :/ (VxB)-((VxB)xB)dxdydz =0,
M M

which completes the proof.

However, the situation is different when one tries to control higher Sobolev norms.
For concreteness, consider the task of controlling |3 V) B(7)|| 12 for a solution B to
(E-MHD), where 8V) refers to an N-th order spatial derivative. Performing a similar
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computation as above, we have from the Hall term a contribution of the form

1d
-—f 10MB|? dxdydz = —/ (Vx3dMB) - ((VxB) x 3™B)dxdydz + - - -
2dt Jy M

(1.1)

where the other terms only involve up to N derivatives of B. It is not clear at all how
to bound the integral on the right-hand side using N derivatives of B only, and indeed,
the results of this paper show that this loss of one derivative is unavoidable in certain
cases.

Continuous and Discrete Symmetries

Next, we describe some continuous and discrete symmetries of (Hall-MHD) and
(E-MHD), which will be used in this paper.

e (Translational symmetry) For any (7o, xo, yo, 20) € R x M, (Hall-MHD) and
(E-MHD) are invariant under the translation (u, B) — (u, B)(# — 9, x — x0, y —
Y0,z — z0) and B — B(¢t — 19, x — x0, y — Yo, Z — 20), respectively.

e (Rotational symmetry) For any rotation matrix O, (Hall-MHD) and (E-MHD)
are invariant under the rotation (u, B) — (0 Tu, O "B)(O(x,y,2)") and B >
OTB(O(x, v, Z)T), respectively.

o (Reflection symmetry) (Hall-MHD) and (E-MHD) are invariant under the reflec-
tion about any hyperplane. For instance, the reflection about {y = 0} for
(Hall-MHD) is:

ux(-xa_yvz) _Bx(-xa_yﬂ Z)
(u7 B) = R(u7 B)('xa Yy, Z) == —lly(.x, -y, Z) ) By(xv_y1 Z) )
uZ(L—y,Z) —Bz(x»—)NZ)
and for (E-MHD) is:
_BX(x’ _yy Z)
B+— RB(x,y,z) =| BY(x,—y,2)
—B(x, -y, 2)

e (Time reversal symmetry) In the ideal case v = 0, (Hall-MHD) is invariant under
the time reversal (u, B) +— (—u, —B)(—t, x, y, z), and similarly (E-MHD) is
invariant under B — —B(—1, x, y, 2).

e (Scaling symmetries for (E-MHD)) Forany o € R, (E-MHD)on M = RR3 is invari-
ant under B — A2"“B(L%, A~ (x, y, z)). There is no exact scaling symmetry
for (Hall-MHD).

Remark 1.2 'We mention in passing the following additional symmetry, which will not
be used in this paper, but is used in [38]:

e Galilean symmetry for (Hall-MHD), (u, B) — (u — U, B)(, (x, v,2) + 10).
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Stationary Solutions

As is typical in (magneto)hydrodynamics, (Hall-MHD) and (E-MHD) possess rich
families of stationary solutions. A special class of highly symmetric stationary solu-
tions, namely planar stationary magnetic fields with an additional symmetry, will play
a central role in this paper (see Sect. 1.7). These solutions are characterized by the
following properties:

e (Stationary magnetlc field) The solution i is of the form B = B for (E-MHD), and
(u,B) = (0, B) for (Hall-MHD), where Bisa - 1ndependent vector field on R3
such that V-B =0 (divergence-free) and (V x B) x Bisa pure gradient.

e (Planarity) B is independent of the z-coordinate and B¢ =0.

e (Additional symmetry) B = B* Oy + BY dy, viewed as a vector field on Ri o i

invariant under a one-parameter family of isometries of Rx, y

The first property implies that (0, i’;) and B solve (Hall-MHD) and (E-MHD), respec-
tively>. In the third property, note that there are only two distinct possibilities up to
symmetries: Either B is independent of one of the coordinates (say x) or it is axi-
symmetric in ]Rx y-

A complete classification of such stationary solutions is possible:

Proposition 1.3 A smooth planar stationary magnetic field with an additional symme-
tryis, up to symmetries, one of the following forms: ( f, g are smoothandcg, c1,d € R)

B=f(0)d. (c1y+co)de +ddy, gix?+y)(xdy — ydy).
We postpone the proof until Sect. 2.2.
Linearization around stationary solutions

Returning to a general stationary solution to (Hall-MHD) of the form (0, ﬁ), let us
consider perturbations of the form (u, B) = (u#, B + b). The linearized equation
satisfied by (u, b) (i.e., the linearization of (Hall-MHD) around B) is:

du —vAu =P((V xB) x b+ (V x b) x B)
Wb+ VxUxB)+Vx(Vxb)xB)+Vx(VxB)xb) =0, (12)
V-u=V-b=0,

where P is the Leray projection operator onto divergence-free vector fields.
In the case of (E-MHD), the linearization around a stationary solution of the form
B takes the form

(1.3)

b+ V x(Vxb)xB)+V x(VxB)xb)=0,
V.-b=0.

3 Indeed, for the B-equation in both (Hall-MHD) and (E-MHD), one uses the fact that gradient is curl-free.
For the u-equation in (Hall-MHD), the contribution of B can be put into the pressure.
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For the linearized equations, the L> norm of the perturbation is still under control.
Indeed, we have the following linearized energy identities:

Proposition 1.4 For a sufficiently regular and decaying solution (u, b) to (1.2), we
have

d 1 2 2 2

— <-/ MEGERL (t)dxdydz) +v/ |Vu|*(1) dxdydz

dr A2 Ju M (1.4)

=/ ((b-V)Bj)u/ — ((u-V)Bj)b/ dxdydz+/ ((b-V)(V x B) )b/ dxdydz.
M M

Similarly, for a sufficiently regular and decaying solution b to (1.3), we have

d /1 . .
— —/ |b|?(1) dxdydz | = / ((b- V)(V x B) )b’ dxdydz. 1.5)
dr \2 M M

We omit the proof, which is a simple exercise in vector calculus.

1.2 Linear lliposedness Results in Sobolev Spaces

The energy identities in Proposition 1.4 suggest that for any “reasonable” solutions to
the linearized equations (1.2) and (1.3) around a sufficiently regular ]§, the L2 norm
(energy) would enjoy good local-in-time bounds. Nevertheless, our results demonstrate
that around certain stationary solutions, the linearized equation is ill-posed(!) in any
higher Sobolev spaces.

Our first main result concerns the linearization of (Hall-MHD) and (E-MHD)
around a linearly degenerate (to be defined below) planar stationary magnetic field
with an additional symmetry. It asserts the existence of a sequence of initial data sets
with frequencies A € 20, such that the H* norms of the corresponding solutions for
any s > 0 grow at rates that are sharp in view of the loss of one derivative observed
in (1.1).

In what follows, by an L2-solution on an interval I, we mean:

e (linearized (Hall-MHD) with v > 0) a pair of vector fields (u, b) such that u €
Cy(I; LY N LX(I; HY and b € C,(I; L?) that satisfies (1.2) in the sense of
distributions;

e (linearized (Hall-MHD) with v = 0) a pair of vector fields (u, b) € Cy(I; L?)
that satisfies (1.2) with v = 0 in the sense of distributions; or

e (linearized (E-MHD)) a vector field b € C,,(I; L?) that satisfies (1.3) in the sense
of distributions.

Here, Cy(I; L?) is a subspace of L>(I; L?) consisting of functions weakly continu-
ous in time with values in L2. Moreover, in the case M = T°, we assume* in addition

4 The interpretation of this assumption is that the constant part in («, b) should not be considered a pertur-
bation, but rather should be put in the background.
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that
/ u(z):/ b(t)=0 forallrel, (1.6)
M M

where we ignore the condition for u in the case of (E-MHD). Note that, with the
regularity assumptions above, the mean of any solution in the sense of distributions is
preserved; thus it suffices to ensure (1.6) for the initial data.

Theorem A (Sharp norm growth) Consider a stationary planar magnetic field B on
M of one of the following forms”:

(a) (linearly degenerate, translationally-symmetric) On M = (T, R), x (T, R), x T,
B= f(y)0x where f is uniformly smooth (i.e., f and its derivatives are bounded)
and f(yo) =0, df(yo) # 0 for some yo € (T, R),;

(b) (linearly degenerate, axi-symmetric) On M = Rf’y x T,, B = f(r)og =

f(/x2+y?)(xdy, — ydy) where B is uniformly smooth®, and f(rg) = O,
d f(ro) # 0 for some ro > 0;

where by the notation (T, R), we mean that both T, and R, are allowed. Then the
following statements hold.

(1) Consider the linearized (Hall-MHD) with v > 0 around the stationary solution B
on a time interval 1 > 0. For each ) € N sufficiently large depending on B, there
exists an initial data set of the form

e (Case (a): translationally-symmetric background)
up =0, by =Re(e' ™ Mb(x, y)

where G(y) € C*°((T,R),) and b(x, y) € S(T, R), x (T, R)y) with com-
pact support in 'y and either compact support in x or real-analyticity in x;
or

e (Case (b): axi-symmetric background)

uo =0, by = Re(e' MW D)p(r)
where G(r) € C*((0, 00)) and b(r) € C*((0, 00)) with compact support in
r,
such that any corresponding z-independent L*-solution (u,b) exhibits norm
growth of the form

1B oo g2y HI Va2 2,

o co®)-(s+5—Lonr
”b(t)”W”’(M) =c <sv P, B, ”(MOVbO)”LZ > ”bOHWS'/’(M)e 27 s

5 We use T, for convenience, but it is not crucial for topological or algebraic reasons; note that both the
stationary solution and the perturbations (i.e., solution to the linearized equation) are independent of z. See
Sect. 1.8 for a further discussion on the issue of z-independence.

6 In terms of f, itis equivalent to the condition that the odd extension of rf to R is uniformly smooth.
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”(uab)”LOO(I;LZ)J"HVM”LZ(I;LZ)

fort € I satisfyingQ <t < §( Moo, 2

) andforany p € [1, 00],
s eRsuchthats+% — % > 0.

(2) Consider the linearized (Hall-MHD) with v = 0 around the stationary solution B
on a time interval I > 0. For each ) € N sufficiently large depending on B, there
exists an initial data set of the form

e (Case (a): translationally-symmetric background)
ug =0, by =Re( ™ OMp(x, y)

where G(y) and b(x, y) are as in part (1); or
e (Case (b): axi-symmetric background)

uo =0, by =Re(!MHCD)p(r)

where G(r) and b(r) are as in part (1),

such that any corresponding z-independent L*-solution (u, b) on I exhibits norm
growth of the form

o 1D o012,

B)-(s+1 -1y
6O ws-ray = € (B, W) ||b0||stp(M)ec°( )-(s+5—5)At

P

1)l oo .12,

fort € I satisfying 0 <t < §( TGao.bo)l 2

) and for any p € [1,00], s € R
such that s + % — % > 0.

(3) Consider the linearized (E-MHD) around the stationary solution B on a time
interval I > 0. For each ). € N sufficiently large depending on B, there exists an
initial data set of the form

e (Case (a): translationally-symmetric background)
bo = Re(ei()»x+)»G()’))b

where G(y) and b(x, y) are as in part (1); or
e (Case (b): axi-symmetric background)

by = Re(e' M) p(r)

where G(r) and b(r) are as in part (1),

such that any corresponding z-independent L*-solution b on 1 exhibits norm
growth of the form

TP B ol
16 lws.ppy = ¢ (s, p. B, W;“) 1Bo llwe.papye®® €2 77)

@ Springer



On the Cauchy Problem for the Hall... Page110f106 15

1B 00 .12,

fort € I satisfying 0 <t < 8(‘ ool > ) and for any p € [1,00], s € R such

that s + 3 — 3 = 0.

Remark 1.5 Theorem A is carefully formulated so that it does not rely on any well-
posedness theory for the linearized (Hall-MHD) and (E-MHD) equations, whose
validity seems to be a delicate question precisely due to the illposedness issues con-
sidered here.

For a reasonable notion of a solution for the linearized (Hall-MHD) and (E-MHD)
equations, it is expected that the z-independence property follows from uniqueness,
and that the ratios

e, D)l poer2 + IVull 22 1Bl poor2
Il (o, bo) I 2 T kol

are uniformly bounded by a constant that only depends B in view of the energy
identities in Proposition 1.4.

By appealing to a standard argument based on the Aubin—Lions lemma, one can
show at least the existence of such an L? solution, for any L? initial data; see
Appendix A for details. In particular, the class of solutions to which Theorem A
applies is not vacuous.

Remark 1.6 Due to the boundedness of energy, the norm growth in Theorem A nec-
essarily involves a rapid transfer of energy from larger to smaller scales. Such a
phenomenon is reflected in the s-dependence of the growth rate e“** of the H*
norm (indeed, for s > 59 > 0, the s-dependent growth rate is a quick consequence of
L? boundedness, H* growth and interpolation). It is also the key mechanism behind
Theorem F below, which asserts illposedness of the linearized equations in all Gevrey
spaces.

This phenomenon is clearly impossible for constant coefficient linear PDEs, where
there are no energy transfers between different Fourier modes. Moreover, it is qualita-
tively different compared to well-known examples of illposedness in hydrodynamics
such as the Kelvin—Helmbholtz instability, Rayleigh-Taylor instability and boundary
layer instability, in all of which the growth rate of the H® norm is independent of s and
wellposedness is recovered in a strong enough Gevrey space (at least in the linearized
case). We refer to Sect. 1.8 for further discussion.

Remark 1.7 When s, p and B are fixed, the norm growth inequality asserted in Theo-
rem A is optimal in that the both sides are comparable (uniformly in 1) for a suitably
constructed wave packet approximate solution with the same initial data (see Sect. 3
for the construction). This optimality is crucial for our proof of the illposedness results
in the fractionally dissipative case (Theorem G). Moreover, with p = 2 and with a
suitable definition of the norms H?, the constant ¢ may be chosen to be independent
on s; this observation is used in our proof of illposedness in Gevrey spaces (Theo-
rem F). While we expect this property to generalize to all other values of p, we do not
investigate this issue further in this paper.
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Our next result is a conditional refinement of Theorem A. We assume that (1.2)
and (1.3) are well-posed in L?, and show the existence of initial data sets with arbi-
trarily high regularity and decay, such that the corresponding solutions (unique by
assumption) immediately exits any Sobolev space above L2. More precisely, by L>-
wellposedness of the linearized equation on an interval /, we mean the existence of a
bounded linear solution map from L? into the energy class & (1), where

(Cw(I; LH N LE(I; HY)) x Cy(I5 L) for linearized (Hall-MHD), v > 0;
E(I) =1 Cyu(I; L?) x Cy(I; L?) for linearized (Hall-MHD), v = 0;
Cu(I; L?) for linearized (E-MHD).

Since we know the existence of at least one L solution, the following result maybe
rephrased as follows: either the linearized system does not have a unique L? solution
for some L? data, or there is nonexistence in any higher regularity Sobolev spaces.

Theorem B (Instantaneous instability in H* with s > 0) Let B and M be as in
Theorem A, and suppose that (1.2) with v > 0 around (0, B) (resp. (1.3) around B) is
Lz-well-posed on [0, 1].

(1) (C®°, polynomially decaying data) There exists an initial data set (ug, by) €
{0} x S (resp. bg € S) and 0 < § < 1 such that the Lz-solution (u, b)(t) (resp
b(t)) fails to be in any local Sobolev space L* x HISO/C (resp. H )for anys' >0
and (0 <t <.

(2) (Arbitrarily regular data with compact support) For any s > 0, there exists an
initial data set (ug, bg) € {0} x H wmp (resp. by € comp) and 0 < § < 1 such
that the Lz-solutzon (u b)(t) (resp. b(t)) fails to be in any local Sobolev space

L? x Hfoc (resp. lac)foranys >0and0 <t < 4.

loc

1.3 Nonlinear lllposedness Results in Sobolev Spaces

Given the preceding illposedness results for the linearized equations, it is natural to ask
whether the corresponding statements are still valid for the nonlinear Cauchy problem.
We show that the nonlinear Cauchy problems for (Hall-MHD) and (E-MHD) are ill-
posed in the sense of Hadamard [32] with (u, B) € LXH?*xL®H?andB € L®H? in
the Hall- and electron-MHD cases, respectively. Moreover, we establish nonexistence
for certain initial data close to the trivial solution, which may be regarded as the
strongest notion of illposedness.

To describe the results we need some notation and conventions. In what follows,
we denote a function-space ball of radius € with respect to a norm || - || x centered at
x by

Be(x; X) ={yex+ X :|ly—x|x <e},
and its restriction to compactly supported functions by
Be(x; Xcomp) = {y € Be(x; X) 1 y — x has compact support in M}.
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For any interval I and s9 < 1, the notion of an LY°(; H*0(M)) solution b to (E-MHD)
is formulated in the sense of distributions. For (Hall-MHD), we need to also specify the
pressure gradient; we say that (u, B) € L{°([0, §7; HO~L(M)) x L([0, 81; HO(M))
is a (weak) solution to (Hall-MHD) if the equation is satisfied with

V;p = RiRV,(—ufu’ + BFBY), 1.7)

where R; = (—A)_% d; is the Riesz transform.

The first nonlinear illposedness result shows that the solution map near the degen-
erate stationary solutions in high enough Sobolev spaces, even if it exists, must be
unbounded.

Theorem C (Unboundedness of the solution map) Let M = (T,R), x (T,R), x
T, and the stationary magnetic field B is given either by f(y)dx or f(r)dg as in
Theorem A. Assume that for some €, 8, r, s, so > 0, the solution map for (Hall-MHD)
(resp. (E-MHD)) exists as a map

Be((0,B); HL,pypy X H3pp) = L0, 81; HO™Y) x LE(10, 81; H)

comp

(resp. B (B: ) = L2([0, 8]; Hs")) .

K
H comp

Then this solution map is unbounded for so > 3, and is not a-Holder continuous
O <a <1)forsy) > max{2,3(1 —a)}.

Remark 1.8 Letus comment on the statement regarding the absence of Holder continu-
ity of the solution map. This notion of illposedness is analogous to that in a theorem of
G. Métivier [46,Theorem 3.2], which applies to any first order n x n nonlinear PDE of
the form 8,u = F(z, x, u, d,u) inR?, where F is real-analytic and nonhyperbolic, i.e.,
9, F (0, x0, uo, vo) has a nonreal eigenvalue for some (xq, ug, vg) € R x R x R"*4,
See also a work of F. John ( [40]) which discusses relevance of Holder continuity for
evolutionary systems of physical origin.

The case @ = 1 corresponds to the notion of Lipschitz continuity of the solution
map, which has been considered by many authors. We note that in a work of Guo and
Tice [31] (see also [27]), a somewhat general argument was presented, which enables
one to pass from a strong ill-posedness result for a linearized system to the failure of
Lipschitz continuity for the corresponding nonlinear system. See [31] for details.

Observe that the background stationary magnetic field B in Theorem C may be
arbitrarily close to 0 in quite strong topologies, or more specifically, in Hgomp (R?)
using axi-symmetric ones and H? ,, » (T, x Ry) using translationally-symmetric ones
for any s > 0. Hence, the preceding result immediately implies that nonlinear Cauchy
problems for (Hall-MHD) and (E-MHD) are ill-posed near the trivial solution in the

same sense.

Corollary D (Unboundedness of the solution map near 0) The results of Theorem C
holds with B = 0.
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Moreover, we show that there exist initial data, which are compactly supported
arbitrarily close to the trivial solution in a high regularity Sobolev space, for which no
solution can be found in the same Sobolev space. We emphasize that uniqueness does
not have to be assumed.

Theorem E (Nonexistence near 0) Let s > 3 + % and M = (T,R), x Ry x T, in
the case of (Hall-MHD) and M = (T, R), x (T, R), x T, for (E-MHD). Given any
€ > 0, there exist initial data (ugy, Bg) € Hgo_mlp x HY for (Hall-MHD) satisfying
luo|l gs—1 + Bollas < € (resp. By € Hgomp for (E-MHD) satisfying ||Bollgs < €)
such that for any § > 0, there is no corresponding L7°([0, 81; H*~! x H®) solution
to (Hall-MHD) (resp. L°([0, §1; H®) solution to (E-MHD)).

Remark 1.9 The nonlinear ill-posedness result stated in this section can be established
for the scale of C*%-spaces (with a straightforward modification of the arguments);
for (Hall-MHD) and (E-MHD), one respectively needs the assumption that (u, B) €
CH1(M) x Ch*(M) and B € CK*(M) with k + o > 2. Note that this level of
regularity corresponds exactly to the threshold for classical solutions — solutions for
which every term in the system can be identified with a continuous function.

1.4 lllposedness Results in Gevrey Spaces

As discussed in Remark 1.6, the s-dependence of the growth rate of the H* norm in
Theorem A hints at illposedness of (Hall-MHD) and (E-MHD) in all Gevrey spaces;
this behavior is in stark contrast to the ill-posed constant coefficients PDEs, as well
as many traditional examples of ill-posed problems in hydrodynamics. Our goal is to
rigorously illustrate this property; to avoid technical nuisances, we contend ourselves
with a linear illposedness result on the domain’ M = T3. Before we describe the
statements, let us briefly review the notion of Gevrey regularity classes and some
basic properties. We will follow the illuminating work of Levermore—Oliver [43].

A function b € C®(T?) belongs to the Gevrey class o for some o > 0 if there
exist constants p > 0, A < oo such that for any « € N3,

| o
sup [8%b(x)| < A (“—) (1.8)

xeT3 p|0t|

with 9% = 97'9y295° and |a| = &1 + @2 + a3. We denote G° (T*) to be the space of
Gevrey class o functions. It is closed under multiplication and differentiation for all
o > 0, and under composition as well for o > 1.1t is clear that for 0 < o1 < 03 < 00,
we have G (T3) c G (T3) ¢ C*(T?) and that the containments are proper. It is
well-known that G'(T?) coincides with the space of real analytic functions.

As in [43], it will be convenient to characterize Gevrey classes in terms of the
Sobolev norms. Then using Sobolev embedding, it is not difficult to show that b €

7 For consideration of other domains, see Remark 6.5
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G°(T3) if and only if there are constants 0 < p, A < oo such that

al \°
[0%bll 2 < A (W) (1.9)

where a! = oqlaplas!. Furthermore, with the operator |V| := /—A, we define a
family of normed spaces

D" LT = (b e LXT) : eV bl 12 < oo).

Then [43,Theorem 4] states that for any o > 0,

¢ (™) = D™V L2(T3y).

>0
Here t > 0 corresponds precisely to the radius of Gevrey regularity, namely

€L

1/o\ Tel
3%b
L limsup (&) . (1.10)

T |ot|] =00 o!

In the case of analytic functions (o = 1), t is simply the radius of analyticity.
We are ready to state our linear illposedness results in Gevrey spaces for (Hal-
I-MHD) and (E-MHD).

Theorem F (Gevrey space illposedness) Consider the stationary magnetic field B =
£ ()0, on T3 where f(y) is a smooth function on Ty with f(y0) = 0and f'(yo) # 0
for some yy. Then the linearized (Hall-MHD) and (E-MHD) systems at (0, ﬁ) and
B respectively are illposed in any G°(T>) with o > 0 when f € G°(T). To be
more precise, assuming L*-wellposedness, for o > 1 (resp. 0 < o < 1) there
exist initial data in G° (T®) whose corresponding unique solution escapes C o (T3)

(resp. U0/>0G"/(']I‘3) ) instantaneously for t > 0.

In the statement of the above theorem, one can simply take f(y) = sin(y), which
belongs to Ny~0G? trivially and thus the associated linearized (Hall-MHD) and
(E-MHD) systems are illposed in every Gevrey class G°.

Remark 1.10 (Nonlinear illposedness in Gevrey spaces) Using the same methods
involved in extending the linear result to the nonlinear one in the Sobolev case, one can
easily obtain illposedness statements in Gevrey regularity. Let us just state the results
which can be obtained, restricting ourselves to the T3-case. When o > 1, there exists
By € G such that there is no local-in-time C® solution to (E-MHD) with initial data
By. On the other hand, when 0 < o < 1, we can prove the following norm-inflation
type statement: for any € > 0, there exists adata Bg € G such that any corresponding
solution to (E-MHD) in L®° ([0, 8]; G?), if exists, satisfies T(B(7(¢))) < € for some
0 < t(e) with () — 0 as € — 0. Here, 1(B(7(¢))) denotes the radius of Gevrey-o
regularity for B(z(¢)). Observe that this statement contradicts the usual well-posedness
statement in Gevrey spaces; see [43].
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1.5 lllposedness Results in the Fractionally Dissipative Case

l)l

1
L'()(S‘l’j*p

The power of X in the growth rates e " in Theorem A is sharp in view of the
loss of one derivative seen in (1.1). These rates are also consistent with the previously
proved wellposedness due to Chae—Wan-Wu [16]® for the fractionally dissipative
system

B+ V x ((VxB)xB)=—n(—A)*B, (L11)

V-B=0, '
withn > Oand o > 1/2;see also [15]. In view of the instability observed in this paper,
one can expect this system to be illposed in the range 0 < o < 1/2 and similarly for
the Hall-MHD system with a fractional dissipation in the magnetic field:

du+u-Vu+Vp— (VxB) xB=—v(—A)*u,
3B —VxuxB)+Vx(VxB)xB)=—n(—A)"B, (1.12)
V.u=V -B=0,

where 0 < o, 8 < % In the critical case where a« = % it is not difficult to show that
the system (1.11) is globally well-posed in H* with s large enough for small (relative
to ) H* initial data®; a similar argument .

Indeed, we confirm that the fractionally dissipative systems (1.11) and (1.12) are
strongly ill-posed in Sobolev spaces in the expected range 0 < o < %, in the sense that
the solution map cannot be bounded near the trivial solution (similarly as in Theorem
O).

To avoid excessive technicalities, we contend ourselves with the case M = T3.
However, with the ideas already in this paper, it is straightforward to extend what
follows to the case M = (T, R), x (T, R), x T,.

Theorem G (Illposedness for fractionally dissipative systems) Let M = T3, and con-
sider the fractionally dissipative system (1.12) with 0 < «, < % n>0andv >0
(resp. (1.11) with 0 < o < % and n > 0). Assume that for some €,6,r > 0 and

8 In [16] the domain is ]R3, but the result easily extends to any of M = (T, R)x x (T, R)y x (T, R);.
1
9 The proof of this statement boils down to the inequality (with [V| = (—A)2 and s large)

) 1 1 )
[(IVIV x ((V x B) x B), [VI'B)| < CI[[VI*T 2B ,2[[|VI2 (VB|VI'B)|| >
1
< CIBIs VI 2B,

which gives

| &

1l
IIVI'BIZ 5 + (n = CIIBI )1V 2 B3, < 0.

N =
o

t

Therefore, there exists a universal constant mq > 0 such that if ||Bg|lgs < nmg then the solution still
satisfies ||B(¢) || gs < nmg forallt > 0.
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S0 < s < min{ﬁ, ﬁ, 3}so (resp. so < s < min{i, 3}s0), the solution operator for
(1.12) (resp. (1.11)) exists as a map

Be((0,0); H x H*) — L>([0, 81; H™') x L>([0, §1; H*)
(resp. Be(0; HY) — L°([0, 81; H™)).

Then this solution map is unbounded for so > 3.

Remark 1.11 (Critical dissipation) By a suitable adaptation of our proof of Theorem G
to the critical case o = % of (1.11), the following statement may be proved (see
Remark 7.2):

Assume that for some s > 3, the solution operator for (1.11) exists as a map
8: H° — L*([0,6); H®), where § = §(Bo) € (0, oo] is the maximal lifespan of Bo;
that is, for any € > 0, there is no LY ([0, 8 + €); H®)-solution to (1.11) with initial
data By. Then, there exists an absolute constant Ay > 0 such that for any A > Ay,
there exists a sequence of initial data B(()A) such that

||B(<))‘)||H.; <nAforany A > 1

and at least one of the following holds:
° S(Bék)) — 0as A — +oo,
e for any ¢ > 0, there exists a constant ¢, > 0 and a sequence ™ e (0, S(B(()A)))
satisfying 1) — 0as A — 400 and [[8[BS 1¢:M) | s > cenA=es+1,
While this statement does not rule out the possibility of H*®-wellposedness for s large,
it nevertheless shows that the modulus of continuity of # — ||8[Bo](#)||gs att = 0

cannot be not uniform for By € {Bg € H® : |Bg|lgs < nA}, which is in contrast to
the case o > 1/2.

Compared to the statement of Theorem C, there are additional restrictions on the
range of s relative to sp, which become more strict as o approaches % Similarly with
Theorem C, this nonlinear illposedness is based on a linear one which we do not state.
For the linearized electron-MHD equation with fractional dissipation (i.e., (1.3) with
—n(—A)%Db on the right hand side), norm growth statements similar to those given in
Theorem A can be proved but they are valid only for O(A~! In 1) timescale.

1.6 Brief Summary of the Results in [38]

We give a short, partial summary of the results in [38], which are various linear
and nonlinear wellposedness statements for (Hall-MHD) and (E-MHD). They are
complementary to the illposedness results proved in the present paper.

Linear Case
The main linear result in [38] is a local geometric condition on the stationary magnetic

field that (together with some regularity and uniformity conditions) that ensures above-
energy wellposedness for the linearized equations.

@ Springer



15  Page 18 of 106 I. Jeong, S. Oh

Theorem 1.12 ([38]) LetBbea stationary magnetic fieldon M = (T, R), x (T, R), x
(T, R),, and consider the deformation tensor associated to B:

®) ik — %(V!’ﬁ" + VEBY),

Assume that B is uniformly smooth, |l°3|’1 |(ﬁ)n| is essentially bounded and the fol-
lowing no-orthogonal-deformation condition hold everywhere on M:

Bl =0 (e, Brikvup =0ifB oy = BAwy = 0). (1.13)

Then the Cauchy problems for the linearized (Hall-MHD) and (E-MHD) equations
around the stationary solutions (0, B) and B, respectively, are well-posed for H*
(i.e., all derivatives are square integrable) data.

This result, when combined with Theorems A and B, provides a fairly comprehen-
sive description of well- and illposedness of the linearized equations around magnetic
fields of the form f(y)dy or f(r)dg.

Indeed, let us first consider B = f()0y, where f is uniformly smooth. When f
has a zero of order 1, the linear illposedness results (Theorems A and B) apply. On
the other hand, in general we have

a 0 30,f0
®r=1Lta,r 0 0
0 0 0

The no-orthogonal-deformation condition (1.13) obviously fails at a zero of order 1

of f since Bt =R3 and ®x # 0 there. On the other hand, at points where f # 0,
we have BL = span{dy, d;}. Thus, the wellposedness result (Theorem 1.12) applies
whenever f does not vanish anywhere and | f =4 f'| is essentially bounded.

Similar statements hold for B = f(@)dg = f(r)(xdy — ydy), for which

_ o Loy

T = 1 /Jj‘rziyz 2f /xyr* 0
PP A A

0 0 0

At a zero of order 1 of f, (1.13) clearly fails. However, when f # 0 and (x,y) #
(0,0,

Bl = span {fax + XBV, 81} s
r ro-

s it can be checked that ® 7 lg. = 0. In conclusion, Theorems A and B apply when
f has a zero of order 1, whereas Theorem 1.12 applies whenever f does not vanish
anywhere and | f|~!| f’| is essentially bounded.
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Remark 1.13 Note that the no-orthogonal-deformation condition (1.13) fails for B=
cydy + doy with ¢ # 0, which is the remaining class of planar stationary magnetic
fields with an additional symmetry according to Proposition 1.3. An analysis at the
level of bicharacteristics (to be explained below) suggests illposedness of the linearized
equations around such a B see Remark 1.16.

Nonlinear Case

The main nonlinear result in [38] is a set of global geometric conditions on the ini-
tial magnetic field that imply wellposedness of the nonlinear Cauchy problems for
(Hall-MHD) and (E-MHD). The precise statement of the conditions and the results
requires more preparation, which would take us too far from the subject of this paper.
Here we will be content with giving a rough statement of a corollary of the nonlinear
results in [38], which illustrates a remarkably different behavior of (Hall-MHD) and
(E-MHD) near nonzero constant magnetic fields, as opposed to the zero magnetic field
(cf. Corollary D and Theorem E).

Theorem 1.14 (A special case of the nonlinear wellposedness result in [38]) Let B be
any nonzero constant vector field on M = Ry, x (T,R), x (T, R),, whose integral
curves are noncompact. The Cauchy problem for (Hall-MHD) (resp. (E-MHD)) is
locally well-posed on the unit time interval for initial data (wg, Bo) such that (ug, Bo —
B) is sufficiently regular, decaying and small (resp. Bo such that Bo — B is sufficiently
regular, decaying and small).

The key conceptual difference between B = 0 and the constant magnetic field con-
sidered in Theorem 1.14 is that in the latter case one can establish a local smoothing
estimate for the linearized equation, which is a robust (dispersive) smoothing mech-
anism that overcomes the loss of one derivative seen in (1.1). For further details and
more general results, in particular for possibly large perturbations of the constant
magnetic field, we refer to [38].

Remark 1.15 We emphasize that the present article and [38] are logically independent
of each other; neither is a prerequisite for the other. However, since [38] carries out
a more general analysis of (Hall-MHD) and (E-MHD), a concurrent reading of [38]
may be useful for placing the results and the specialized analysis of the present article
in a broader context.

1.7 Main Ideas

Here, we explain the main ideas of the proofs of our results. We note in advance
that Theorem A, which gives the sharp rate of growth for solutions of the linearized
systems, is the basic building block in the proof of all the others.

Dispersive Character of the Hall Current Term

The dispersive character of the Hall current term is most directly seen by linearizing
(E-MHD) around a constant magnetic field B = Bd,, where B # 0. The resulting

@ Springer



15  Page 20 of 106 I. Jeong, S. Oh

waveform is called the whistler wave, which is well-known in the the plasma physics
literature (see, for instance, [47, Sect. 10.7.1]).

Using the vector calculus identities in Sect. 1.9, the linearized system (1.3) reduces
to

9b+BdVxb=0 V-b=0. (1.14)
To diagonalize this system, we take the Fourier transform, which gives
ith(t, &) —B&& x b(1.6) =0, &-b(1,§) =0.

Note that B£,& x is an anti-symmetric matrix, and (BEXE x)zl; = —E2€§|§|25 (cf.
(1.22)) when & - b = 0. Thus B&£ x restricted to {b € R3 : & - b = 0} is diagonalizble
with eigenvalues +iB&, |£]. It follows that (1.14) splits into two constant coefficient
dispersive PDEs 0;b1 £ iwg (i V)b = 0 with the dispersion relations *wy, where

w = B&JE].

Key to the analysis of (1.14) is the group velocity Vg wy;, which describes the
physical space trajectory of a wave packet solution!?, at least for a short time. For
a further discussion of this case, see [38], in which wellposedness near such a B is
established.

Diagonalization of the Principal Symbol and the Bicharacteristics

To look for a mechanism for illposedness, we need an analogous way to analyze more
general linearized systems. For an arbitrary stationary magnetic field B, the linearized
system (1.3) takes the form

o:b + (103 - V)V x b = first or lower order in b.

For each & € R?\ {0}, the matrix-valued principal symbol Pi = —B- £)& x may
be diagonalized on the subspace {u € R? : & - u = 0} in the same fashion as above.
The eigenvalues +ipj (x, §) = +iB(x) - §|§| are analogous to the dispersion relations
+iwg(§). The analogue of the group velocity Vewy is the Hamiltonian vector field
(Vepg, —Vipg)on T*M = M x Rg; the associated ODE

—

X = Vepp(X, B),
E=—Vipg(X, B),

10 1n this heuristic discussion, by a wave packet solution, we mean a solution that is well-localized in
both the physical and frequency spaces around certain points at each time ¢, which we call X () and Z(¢),
respectively. By the physical (resp. frequency or phase) space trajectory, we mean the trajectory of X (resp.
Eor (X, B)).
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is called the Hamiltonian ODE, and its solution (X, E)(?) is called a bicharacteristic.
A bicharacteristic describes the phase space trajectory of a wave packet solution, at
least for a short time.

Stationary Magnetic Fields with Symmetries; Complete Integrability of the Hamilto-
nian ODE

With the above ideas, the natural first goal is to find a stationary magnetic field B
with associated bicharacteristics exhibiting a rapid growth of |E(¢)|. To simplify the
problem, it is desirable to restrict to B whose associated Hamiltonian ODE is easily
solved. Therefore, we are motivated to look for stationary magnetic fields with rwo
independent continuous symmetries, which makes the three-dimensional Hamiltonian
ODE completely integrable.

Such considerations lead to the idea of using planar'!. The restrictions make possi-
ble a complete classification of all such stationary magnetic fields; see Proposition 1.3.
Itis remarkable that the resulting family is still rich enough to allow for many stationary
B with an instability mechanism.

Instability Mechanism at the Level of Bicharacteristics

We are ready to describe the key instability mechanism at the level of bicharacteristics
in the model case B = ydx near y = 0. Essentially the same mechanism is present
for B = f(y)0yx or f(r)dg near any linear degeneracy of f (i.e., f(yo) = O but
1'(o) #0).

We begin by observing that, in addition to the Hamiltonian pg(X, E) =
y(X)E,|E|, the quantities E, and E, are conserved along the bicharacteristics by
the x- and z-invariance of B, respectively. Thus y(X)|E| is conserved, which suggests
that bicharacteristics starting from {y = 1} and traveling to {y = 0} would exhibit a
blow-up of | E|.

Motivated by such considerations, we take the bicharacteristic (X, E)(¢) with the
initial data X (0) = (0, 1,0) and E(0) = (A, —A, 0) for A > 0, so that X (0) points
towards {y = 0}; see Figure 1. Then the ODEs for E, and y = y(X) become

. — . E,E, g,
(Bl =—AJA2+ES, y=y——— =AY
1ol 2

AS +

[
(1]

y =

]

2
y
which may be explicitly integrated to

cosh(6p)

E, = —Asinh(A +6p), y= — 0
) silh(f +60). Y = G T 6oy

where 6y = sinh™! 1 = log(1 + +/2). In particular, y(r) ~ ¢~* and |E(r)| ~ re* as
desired.

T We note that the assumption B:=0 may seem excessive in this regard, as it is not related to symmetry.
However, this restriction ensures a finer cancellation that is important for the construction of an approximate
solution to the PDE; see Construction of ... below. stationary magnetic fields with an additional symmetry
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Fig.1 Plot of the bicharacteristic y
(X, E)(¢) (blue solid curve) on
the background magnetic field
B = yd, (red dashed lines)

Remark 1.16 (Instability at the level of bicharacteristics for B =cydx +ddy,c #0)
In the case of cyd, +dd, with ¢ # 0, the ODE for Ey is again E, = —c&,|E|, where
E, and E; are conserved. So for (8,, 8y, E;)(0) = (A, —1,0), |E,| grows as in the
case of B = vdy ! However, the physical space behavior of the bicharacteristic is quite
different when d # 0, as it escapes to y — oo at a speed that increases with A. We
leave open the interesting question of whether this mechanism can be made rigorous
at the level of PDEs.

Construction of Degenerating Wave Packets; (2 + %)-Dimensional Reduction and
Renormalization

The next step is to construct an actual, or at least approximate, solution to the lin-
earized (E-MHD) around B that follows the behavior of such a bicharacteristic; this is
the basic idea of geometric optics (or semiclassical analysis). However, the standard
construction stops short at the so-called semiclassical time scale |t| < A~1, which is
just not enough for the growth rate e“*’ to take effect. To elongate the construction,
we need favorable properties of not only the principal terms, but also the subprincipal
(first order) terms of (E-MHD).

It is in this analysis, which is carried out in Sect. 3 below, that we use the deepest
structural properties of the Hall current term. First, we exploit planarity of B to make
the (2 + %)-dimensional reduction, which leads to a remarkable simplification of
the first order terms'2; see (3.11) and (3.15). Moreover, we make a suitable change-
of-variables and conjugation, which renormalize the second and first order terms,
respectively, to more favorable forms; see (3.13) and (3.17). As aresult, forany A > 0,
which corresponds to the initial frequency, we construct a wave packet approximate
solution l;()\) for |f] < 1 (as opposed to || <« A~!) that is degenerating in the sense
that all of its H* norm (resp. its L” norm) diminish or grow (possibly up to a small
error) depending on the sign of s (resp. whether p < 2 or p > 2) at the rate consistent
with the L? boundedness and the growth rate of |E(¢)|; see Proposition 3.1.

12 A precise description of this simplification requires an adequate reformulation of the linearized (E-MHD)
as a system of dispersive equations; we refer the interested reader to [38]. Here, we contend ourselves with
just pointing out that it is analogous to the vanishing of the vortex-stretching term for the (2+ %)—dimensional
Euler equation.
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Generalized Energy Identity and Testing by Degenerating Wave Packets

One way to conclude the proof of the norm growth (Theorem A) for the linearized
(E-MHD) would be to show that an actual solution b(;) with the same initial data
byy(0) = l;(x) (0) is well-approximated by the degenenerating wave packet l;(;\) con-
structed above, by explicitly estimating the error in the same Sobolev space that we
want to see growth. While this approach is possible, it involves cumbersome tech-
nicalities, such as careful commutations and additional degenerate elliptic estimates;
moreover, it is unclear how to handle in this way an arbitrary L>-solution without
additionally assuming uniqueness (cf. Remark 1.5).

Instead, we introduce what we call the method of testing by degenerating wave
packets, which curtails technicalities and is very robust (the latter property is most
clearly demonstrated by the applications to (Hall-MHD) and to nonlinear settings
below). Inspired by the work of Ifrim—Tataru [34], we seek to capture the leading
order behavior of the actual solution by by the (energy) inner product (b), b)
with the wave packet approximate solution l;(x). By the bilinear generalization of the
energy identity, we can control

dt

d - -
— (b, b(x))’ S NboyO) 216y (0 |l2 for0 <t S 1.

Thus, for a sufficiently small 7 > 0 (independent of 1), (IS(A), boy)(t) = % 161y (0) ||i2
for 0 <7 < T. By Holder’s inequality and the simple L”-degeneration property of
by,

1 2 ~ _C(l_l)M
Ellb(x)(o)lle < NboyONLrlboy Oy S NboyllLellbayO)ll2e 7 27,

which implies the desired growth of all L? norms with p > 2. By a similar argument
using duality and the sharper form of the degeneration property, we also obtain the
growth of all W*” norms with s + % — % > 0, as claimed in Theorem A.

Incorporation of the Fluid Component

Now we describe the ideas behind the proof of the norm growth (Theorem A) for the
linearized (Hall-MHD). The starting point is the bilinear generalization of the energy
identity for the linearized (Hall-MHD). Then, through the method of testing by degen-
erating wave packets, the problem is reduced to that of finding suitable approximate
solutions (i), b()), where A corresponds to the initial frequency. To solve the latter
problem, we exploit the remarkable structure of the ideal (Hall-MHD) (i.e., v = 0) that
the combination Z := B+ V xu is simply transported by u (cf. Remark 3.8). Working
with the “good variables” (Z, B), it follows that u is smoother by one order compared
to B, if it is initially so. Motivated by this consideration, we consider a pair (i), 5( 1)
corresponding to taking the Z-perturbation to be zero and the B-perturbation to be a
degenerating wave packet for the linearized (E-MHD). Naturally, (i), 5(,\)) is then a
suitable approximate solution to the linearized (Hall-MHD) such that i ;) is smoother
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by one order (i.e., smaller by a factor of A~!) compared to l;(,\). Amusingly, the same
choice works even for v > 0, since the improved smoothness of i ;) allows us to treat
the dissipative term v Au perturbatively in the method of testing by degenerating wave
packets.

Superposition of Instabilities in Frequency Space: Proof Of Theorem B

After the construction of norm-growing solutions (cf. Theorem A), one may simply
superpose (via linearity) a sequence of such solutions with increasing initial frequen-
cies to obtain a solution that is smooth initially, but instantaneously exits any Sobolev
space above L. This is the basic idea of the proof of Theorem B. We note that in order
to carry it out, however, uniqueness of L2-solutions needs to be assumed.

Contradiction Argument for Nonlinear lllposedness: Proof of Theorem C

We now turn to the first nonlinear illposedness result, Theorem C. Assuming that the
solution map exists (i.e., existence and uniqueness) near a stationary solution Basinthe
statement of Theorem C, we need to prove its unboundedness and absence of Holder
continuity depending on the range of s¢. In both cases, the idea is to treat the nonlinear
terms as a perturbation in the context of testing by degenerating wave packets, using
the hypothesis together with the energy identity. For instance, the contribution of a
typical nonlinear term VOV in % (l;(k), b) (where b =B — i’v) obeys

(b, VOVBY (D] S 1bay Ol 2lb@ 216 13 S by O 2 1O [ 2151l oo

where we used interpolation in the first inequality, and the energy identity (cf. Propo-
sition 1.1) for the second inequality. This contribution is acceptable thanks to the
contradiction assumption ||b][ oo gso < 00 if 59 > 3. Under the assumption of Holder
continuity, one obtains a better estimate for the nonlinear terms, which allows for a
lower range of sp.

Superposition of Instabilities in Physical Space: Proof of Theorem E

As in the proof of Theorem B, one idea for improving the nonlinear illposedness
result is to superpose perturbations of different initial frequencies. Unfortunately, this
strategy becomes daunting in the nonlinear case, as the low frequency part may strongly
influence the high frequency part. Instead, inspired by an idea in Bourgain-Li [4, 5],
we exploit the nonlinear structure of (Hall-MHD) and (E-MHD) to superpose disjoint
sources of instability in physical space. (This idea has been very useful in the study
of fluid equations in critical Spaces [4, 5, 23].) As a result, we prove nonexistence of
the solution in high regularity Sobolev spaces.

_ More precisely, the idea is to start with a compactly supported stationary solution
B= f (y) 0y (or similarly f (r)0g) with a linear degeneracy, and consider the following
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superposition:

o o
B=> Bi:=) aBl;'x, L'y —w)
k=kqo k=kg

where a; > 01is decaying sufficiently fast in k so that ||]°3 lgs — 0askg — oo, and the
sequence of center (0, yx) and the scales Ly > 0 are chosen so that ]°3k’s have disjoint
supports; as a result, Bisa planar stationary magnetic field. Then we perturb each
By with a very high frequency A, so that the instability induced by the perturbation
dominates the decay of the coefficients aj.

The key ingredient of the proof is localization of the usual and generalized energy
identities (i.e., L2-inner product of the solution with each degenerating wave packet).
The latter task is straightforward since the degenerating wave packets already have
good physical space localization properties. The former task is at the heart of the matter;
itis in this aspect that (E-MHD) seems to behave much better than (Hall-MHD) (which
may be guessed from the presence of the pressure in (Hall-MHD)), and therefore our
proof can cover M = T3 only in the case of (E-MHD). We refer to Sects. 5.3 and 5.4
for more details.

Proof of Gevrey lllposedness: Proof of Theorem F

In the proof of Theorem A, the initial perturbation is chosen to be supported away
from the degenerate point for B, which allows for the freedom of choosing a C*°
phase G (y) at our convenience (see (3.22) below). However, such choices are clearly
not allowed once the perturbation is required to be in at least the analytic class G .
The main step in proving Theorem F therefore consists of adapting the construction
of degenerating wave packets for Gevrey class initial perturbations with the phase y

instead of G (y).

lllposedness for the Fractionally Dissipative Systems: Proof of Theorem G

The strategy of the proof is identical to that for Theorem C; we first prove norm inflation
of the linearized system and use a contradiction argument to handle the nonlinearity.
Since continuous-in-time loss of one full derivative is explicit in the growth rates given
in Theorem A, we are able to treat the dissipation terms perturbatively. An additional
complication arises due to the fact that now the background magnetic field B is time-
dependent. Replacing B(1) by By, one obtains another error term, which is handled
by exploiting its smallness in time.

1.8 Discussions

Further discussion of related papers and subjects is in order.
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Work of Chae-Weng [11] in axisymmetry

In their intriguing paper [11], D. Chae and S. Weng showed that (Hall-MHD) is well-
posed'? within axisymmetry, and moreover that it admits finite time blow-up solutions
with regular initial data. These properties are evident for (E-MHD), which reduces
exactly to inviscid Burger’s equation under axisymmetry and B" = B? = 0 (see
Sect. 1.9 for our conventions in cylindrical coordinates):

aB? +9.B")? =0.

Our results show severe illposedness for arbitrarily small perturbation away from
axisymmetry, if the initial magnetic field either has a linear degeneracy or vanishes in
an open annulus. Whether there is a regime in which both local wellposedness (outside
symmetry) and the finite time blow-up of Chae—Weng hold remains an interesting open
problem.

Comparison with the Ideal MHD and Alfvén Waves

As is well-known, the linearized ideal MHD around a constant magnetic field B= Bo,
(B # 0) exhibits a wave propagation phenomenon; the waveform is called the Alfvén
wave [47, Sect. 10.5]. Unlike whistler waves, whose group speed is proportional to
the frequency (dispersive), the group speed of Alfvén waves is independent of the
frequency (hyperbolic). Moreover, while whistler waves can propagate in directions
transversal to the magnetic field (which in fact plays a key role in our instability
mechanism; see Figure 1), Alfvén waves travel only along the magnetic field lines.

Comparison with Instabilities in Hydrodynamics

The instability mechanism presented in this work is drastically different and much
stronger compared to more traditional hydrodynamical instabilities, such as the
Kelvin—Helmholtz, Rayleigh—Taylor, and boundary layer instabilities. They can be
respectively described by the Birkhoff—Rott, (compressible or incompressible) Euler
with variable density, and Prandtl equations.

In the case of the Kelvin—Helmholtz instability (see [45,Chap. 9]), the linearization
around a steady solution explicitly takes the form 9,6 = |V|b where b is the pertur-
bation. This shows the growth rate of ¢*’ for initial data with frequency ~A. Next,
the growth rate of e g classically known for the linearized systems describing
Rayleigh—Taylor (both for compressible and incompressible models; see for instance
[22, 31] and the references therein). While far less trivial, the same growth rate in fre-
quency was established for the linearized Prandtl equations near certain shear flows
[25].

From such growth rates, it follows immediately that these linear equations are ill-
posed in H® with all s > 0, while the Hall-MHD and electron-MHD equations enjoy

I3 This observation is implicit in [11], and was later made explicit in [39] in the ideal case. To be more
precise, one furthermore requires u’ = B = B? = 0.
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stability in L2. On the other hand, these growth rates are not so catastrophic in the
sense that as long as the initial data have Fourier spectrum decaying exponentially
fast, such a decay property should propagate at least for some time interval. Indeed,
local wellposedness in the analytic regularity class for these models (both for linear
and nonlinear cases) have been established; see, for instance, [3, 8, 26, 48, 49, 51].
The propagation of analytic regularity can be reformulated in terms of the growth
of the sequence of Sobolev norms H® (s > 0), and as far as frequency localized
perturbations are concerned, the above growth rates show that all the H® norms grow
at arate uniform in s. In stark contrast to this observation, Theorem A explicitly shows
the growth rate of e“**' for the H* norm of a perturbation whose frequency is initially
localized near A, which is not compatible with local wellposedness in the analytic
class. The difference in the growth mechanism in our systems can be summarized
as follows: rather than simple amplitude growth of Fourier modes, instability is due
to transfer of energy to higher Fourier modes with speed proportional to the initial
frequency. We also note that unlike our situation, where an L? bound allows one to
treat the nonlinear terms perturbatively, the passage from a linear H® illposedness
result to a nonlinear one in the above problems is highly nontrivial (but see the works
[9, 22, 25, 30, 31]).

On a different note, we point out that geometric optics techniques, which form the
basis of our approach in this paper, have been employed to study localized instabilities
of ideal fluids; see the review article [24] and the references therein.

On the lllposedness Result of Brushlinskii-Morozov [7] in the Compresible Case

We note an insightful early investigation of Brushlinskii-Morozov [7] that demon-
strated illposedness (or in their terminology, ‘“nonevolutionarity”) of the ideal
Hall-MHD in the compressible case. The instability is also due to the degeneracy
of the Hall current term; however, it is based on compressibility and is closer to the
traditional instabilities discussed earlier (for instance, it is proved by finding highly
oscillating plane wave solutions whose amplitudes grow).

Instabilities in Degenerate Dispersive Equations

While our instability mechanism is qualitatively different from the traditional instabil-
ities discussed above, it is prevalent in degenerate dispersive equations, which arise
from a diverse range of physical and mathematical sources (see the papers cited below
and references therein).

An instructive example that is closest to (Hall-MHD) is the two-dimensional vari-
able coefficient ultrahyperbolic Schrodinger equation:

Wb +if(y)ddyb =0, (t,x,y) € RxR% (1.15)

Away from the hyperplanes on which f vanishes, this equation is explicitly solvable
by essentially the same procedure as in Sect. 3 below: take the Fourier transform in x;
make the change of variables (¢, y) — (7, n) so that 9; = &,9;, 9, = f(¥)9y; then
observe that the resulting equation is the simple transport equation with the operator
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0 — 0. From such an explicit solution, it may be checked that (1.15) exhibits a
qualitatively similar illposedness as that in Theorem A near a linearly degenerate
point yg of f,i.e., f(yo) = 0 with f'(yg) # 0. Moreover, we note that the ideas
in this paper allow for a straightforward generalization of such an illposedness to
nonlinear perturbations of (1.15).

Another illuminating exercise is to re-examine the classical example of an ill-posed
degenerate dispersive equation due to Craig—~Goodman [17]. Its behavior seems a bit
different from that of (Hall-MHD) at first sight, but it may ultimately be understood
by the methodology in this paper. The equation is

du+xdu=0, (t,x) eRxR. (1.16)

By explicitly solving the equation, Craig-Goodman showed that (1.16) is well-posed
in the direction ¢ > 0, and ill-posed in the opposite direction. The unidirectionality,
which is different from our case, may already be observed at the level of the (formal)
energy identity for (1.16), which is

1 2 3 2 1 2
SOz £ 1812 . 12) = 51007 (1.17)

The deeper reason for the unidirectionality is the the behavior of bicharacteristics,
all of which propagate towards (resp. away from) the degeneracy in the direction of
ill-(resp. well-)posedness; see [17,Sect. 2].

To exhibit illposedness in this example with the methodology of this paper, one
begins by constructing degenerating wave packets for =7 < 0 based on the bichar-
acteristics propagating towards the degeneracy (cf. Sect. 3). Next, the key ingredient
needed to upgrade the behavior of degenerating wave packets to that of actual solu-
tions is a generalized energy identity (cf. Sect. 4). The energy identity (1.17) for u
is unsuitable for this purpose due to the presence of the term involving d,u. Never-
theless, the problematic term may be removed by considering a suitable conjugation
v = Tu up to acceptable lower order terms (e.g., a Fourier multiplier Tu = m(€)u
with m (&) smooth and m(§) = sgn§|§|% for |£] > 1 would do). Such an approach
has the advantage of being far more robust compared to the explicit solution method
in [17].

For further discussion and results in this direction, we refer to our follow-up work
[36], in which we extend the methods developed in this paper to establish illposedness
of the Cauchy problem in standard function spaces, such as Sobolev spaces with
arbitrary high regularities, for a wide class of one-dimensional nonlinear degenerate
dispersive equations (in particular, degenerate KdV-type equations, for which (1.16)
serves as a model). See also the prior works [2, 17] in the direction of illposedness for
degenerate dispersive equations. Concerning the existence and uniqueness of solutions
with degeneracies“, we also note the interesting recent works [28, 29, 33].

14 The illposedness results in [36] also apply to the equations considered in [28, 29, 33], which seem
contradictory at first sight. Rather, these results are complementary. To wit, while [36] shows that even the
existence of the solution map fails with respect to standard function spaces (e.g., high regularity Sobolev
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Removing z-Independence

Since our domain M is always taken to be periodic in z and we work exclusively with
z-independent solutions (with the exception of Theorem E), the reader might wonder
whether this is essential. However, this is not the case. First of all, let us point out that
in Theorem A, the requirement that the L>-solution to the linearized equations be z-
independent may be easily lifted. (This is rather trivial, as the extra terms appearing in
the linearization for a z-dependent solution come with d., so that they disappear after
integrating by parts against a degenerating wave packet which is z-independent.) In a
similar vein, the linearized equations themselves can be considered in R3, and using
the method developed in this paper, it is not difficult to prove the same rate of growth
for initial data which has either compact support or decaying fast in the z-direction.

However, the preceding discussion is not entirely satisfactory, as the background
magnetic field B is still kept z-independent. More interestingly, by considering the lin-
earized systems against a z-dependent background magnetic field solving (Hall-MHD)
or (E-MHD), which may be compactly supported in R?, it is possible to prove non-
linear illposedness results for compactly supported data in R3. For more details, see
our follow-up work [37], in which this strategy is carried out.

1.9 Notation, Conventions and Some Useful Vector Calculus Identities

Here, we collect some notation, conventions and vector calculus identities that will be
used freely in the remainder of the paper.

Notation and Conventions

By A < B, we mean that there exists some positive constant C > 0 such that
|A| < CB. The dependency of the implicit constant C is specified by subscripts,
eg. A<p B.ByA~B,wemean A < Band A 2 B.

We denote by R the real line, Z the set of integers, T = R/2xZ the torus with
length 27, Ng = {0, 1, 2, ...} the set of nonnegative integers and N = {1, 2, ...} the
set of positive integers.

We write M for the 3-dimensional domain of the form T* x R3—¥ 0O <k<3
equipped with the rectangular coordinates (x, y, z), and M? = M%y y for the two-
dimensional projection of M along the z-axis. We use the notation (u, v) s and (u, v)
for the standard L?-inner product for vector fields on M and M?, respectively; i.e.,

(u,V)M=/ u-vdxdydz, (u,v) =/ u - vdxdy.
M M2

Given a vector u on M2, we define its perpendicular u by

L_ (W
u - = u X .
Footnote 14 continued

spaces), [28, 33] prove existence and uniqueness in certain function spaces adapted to the degeneracies of
the solution.
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and accordingly, we introduce the perpendicular gradient operator

s
vi— ( a,f)' (L18)

We use the usual notation W*-? for the LP-based Sobolev space of regularity s;
when p = 2, we write H* = W*2. The mixed Lebesgue norm L L is defined as

leellzpza = MG, )zl

The norm L? H¥ is defined similarly.

Given any space X of functions on M, we denote by X ommp (M) the subspace of
compactly supported elements of X, and by X;,.(M) the space of functions u such
that xu € Xjoc(M) for any smooth compactly supported function x on M.

Vector Calculus Identities

We recall some useful vector calculus identities:

Ux (VxW)=VU-W)—-WU-V), (1.19)
VxUxV)=(V-VYU+ UV V)= U-V)V-V(V-U), (1.20)
(VxU)xV=(V-V)U-V,;VU, (1.21)
V x (VxU)=—AU+ V(V-U). (1.22)

Vector Calculus in Cylindrical Coordinates

The cylindrical coordinates (r, 6, z) are defined by

r=x2+y2 6 =tan"! Y
x

In this paper, we use the coordinate derivative basis (9, 9y, 9;) to decompose vectors
into components, i.e., given a vector U on M, we define its components U”, U?, U?
by

U=U"9,+U% +U%9,.
Another widespread choice is its normalization (e,, eg, e;) = (9, 13, d;), which
differs from our choice by factors of r. The advantage of our choice is that the change
of coordinates formulas are simpler; the disadvantage is that the inner product takes
the inconvenient form

U-V=UV + 20V + U?V2. (1.23)
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The gradient, curl and divergence in the cylindrical coordinates are

Va = (3,;a)0, + (r "28pa)dp+(9.a)d., (1.24)

V x (U9, + U289 + U%0,) = (r '99U% — ra. U0, + (r—'0.U" — r~19,U%)0y
+r 710, (r?U%) — 99U, (1.25)
V- (U3, + U8 +U%0,) = r'9,(rU") + 85 U% + 9. U . (1.26)

Assuming that a is independent of z, the perpendicular gradient takes the form
Via = —"'9a)d, + (r~'0,a)d. (1.27)

1.10 Organization of the Paper

The rest of the paper is organized as follows.

e In Sect. 2, we carry out some basic algebraic manipulation and derive the
energy identities for the linearized (Hall-MHD) and (E-MHD) under the (2 + %)-
dimensional reduction, which is a particularly simple reformulation of these
equations assuming z-independence.

e Sect. 3 is the heart of this paper, where we construct degenerating wave packet
approximate solutions to the linearized (E-MHD) and (Hall-MHD), under the
2+ %)-dimensional reduction and around a planar stationary magnetic field with
an additional symmetry.

e In Sect. 4, the energy identities in Sect. 2 and the degenerating wave packets
constructed in Sect. 3 are combined to prove the linear Sobolev illposedness results,
Theorems A and B.

e In Sect. 5, we establish the nonlinear illposedness results, Theorems C and E.

e In Sect. 6, we establish the (linear) Gevrey illposedness result, Theorem F.

e Finally, in Sect. 7, we establish the illposedness result for the fractionally dissipa-
tive systems, Theorem G.

The paper is supplemented with Appendix A, where we sketch the proof of existence
of an L2-solution for the linearized systems.

2The (2 + %)-Dimensional Reduction and Linearized Energy
Identities

The purpose of this section is to record the basic algebraic manipulations and energy
identities for our proof of the illposedness results.

2.1 The (2 + %)-Dimensional Reduction of (Hall-MHD) and (E-MHD)

Here we derive a simpler reformulation of (Hall-MHD) and (E-MHD) under one trans-
lational symmetry (or, more concretely, independence on the z-coordinate), which
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involves the z-component of the solution and of its curl. Following the usual termi-
nology in fluid mechanics, we refer to this procedure as the (2 + %)—dimensional
reduction. The derivation in this subsection is formal; for justification in cases that
arise in applications, we refer to Propositions 2.1 and 2.3.

The 2 + %)-Dimensional Reduction of (Hall-MHD)

We take the system (Hall-MHD) and simplify it under the assumption of z-
independence. Dealing with the equation for B first, we have

B-—B - VYu+u-V)B+B-V)(VxB)—(VxB)-V)B=0.
Taking the z-component, we obtain
B —B-V)u*+ (u-V)B*+ (B-V)(V xB)*=0.

with the observation that

((V xB)-V)B* = 09,B°0,B* — 9,B*0,B* = 0.
On the other hand, returning to the form

B—-VxuxB)+Vx({(VxB)xB)=0
then using (1.22), (1.21) and z-independence, we obtain

9 (VxB)¥+A ((u x B)*— (B - V)BZ) =0. 2.1
Turning to the equation for u, taking the z-component gives

ou® + (u- Viu® —vAu® = (B- V)B?,

where we note that the pressure term vanishes by z-independence. Taking the z-
component of the curl gives

% (Vxu+ (- V)(Vxu—vANV xu)l = @B V)V xB)~-.
Note that the divergence-free condition reads
0,B* +9,BY =0, oyu* +9,u” =0.

We introduce the notation @ = (V x u)? for the z-component of the vorticity. Then
we arrive at the following closed system of four scalar quantities depending on two
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variables (x, y):
ou* + (u-Viu* — (B-V)B? —vAu* =0,
dw— (- Vo — B -V)(VxB*—vAw =0, 29
B — B -V)u*+ (u-V)B*+ B-V)(V xB)* =0, 2.2)
% (V xB)*+ A ((uxB)*— (B-V)B*) =0,
where the system is to be supplemented with the div-curl relations
d,u’ +9,u’ =0,
oY (2.3)
ow’ —dut =w,
as well as
9,B* +9,B” =0,
{ ) ! (2.4)

9, B’ — 3,B* = (V x B)".

The 2 + %)-Dimensional Reduction of (E-MHD)

The case of (E-MHD) is easily obtained from the preceding computation by formally
setting u® and @ equal to zero. The (2 + %)-dimensional reduction of (E-MHD) is the

closed system of two scalar quantities
B, (V xB),

depending only on two variables (x, y), of the following form:

3B+ (B-V)(V x B)* =0,
3(V x B)* — A(B- V)B? = 0.

As before, the system is to be supplemented with the div-curl relation

39, B* + 9,B =0,
9, B’ — 3,B* = (V x B).

where the mean B only arises in the case M? = T?.

2.2 Stationary Planar Magnetic Fields with an Additional Symmetry

(2.5)

(2.6)

In this short subsection, we provide a quick proof of Proposition 1.3 using the preceding

computation.
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Proof of Proposition 1.3 In what follows, we write B instead of B for simplicity. By
planarity, B* = 0, and by stationarity, 9;B = 0. Thus, it follows from (2.5) that

B-V(VxB$=0 inM. 2.7)

As remarked above, there are two possibilities for an additional symmetry: Either (1)
B is independent of one of the coordinates, which may be taken to be x without loss
of generality, or (2) B*9, + B”d, is axi-symmetric in Ri y» Where the axis may be
taken to be the origin (0, 0) without loss of generality.

In case (1), (2.7) and the divergence-free condition amount to:

B 3;B* =0, 9,BY(y) =0,

whose general solution has the form B = f(y)dx or B = (c1y + ¢0)dx + ddy, as
desired.
In case (2), we write B in the cylindrical coordinates (r, 6, z) as

B =B’ (r)d, + B?(r)dy.
Then (2.7) and the divergence-free condition become
B'9,r'9,(r’B?)) =0, 9,(rB") =0.

The second equation (divergence-free) and the requirement of smoothness of B at the
origin force B = 0; thus we are left with a general solution of the form B = f(r)dp.
O

2.3 Perturbed and Linearized Equations Under the (2 + %)-Dimensional
Reduction

Here we derive the full and linearized equations satisfied by the perturbation (u, B) =
(0, ﬁ) + (u, b) of the stationary solutions (0, ﬁ) considered in Theorem A, under the
2+ %)-dimensional reduction. We first present formal derivations, and then describe
the precise sense in which the reduced equations hold for L2-solutions in Proposi-
tion 2.1.

In our derivation, as in the definition of an L2-solution for the linearized equations,
we assume the mean-zero condition (1.6) for the perturbations when M?* = 'JT)%’ y
which ensure that Biot—Savart-type identities hold; see (2.8) and (2.12) below.

Translationally-Symmetric Background, (Hall-MHD)
Consider a translationally-symmetric background magnetic field of the form B =
f(y)0x. Recall that u = u, B = B + b; the vector fields u# and b are divergence-free.

Introducing now

(Vx b =—A¢, (Vxu=ow
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we formally have the Biot—Savart-type identity
b =—Vty,  u¥=-Vi—A)Tlw. (2.8)
Since
(V xB)" = —f'(y),
we have
¥ =AYV XB + (), w=e.

Therefore, from (2.2), we may derive the following perturbation equation satisfied by
the quadruple (u*, w, b*, ¥):

ot — f(y)ob* —vAU* = —u - Vu®,

do— "MV + fF(AY —vAw = —u - Vo + VT - VAY,

Ob* — fF(NO’ + f' (oY — [0 AY = —u - VB — V- Vu® (2.9)
—Viy - VAyY,

0y — fNA(=A) "+ f()b* = —u -V + VY- Vb

Removing all the quadratic terms in u and b, we arrive at the linearized system:

o ut — f(y)ab* —vAu* =0,

o — (MY + f(NIAY —vAw =0,

O™ — f()oxu® + [ (MY — f(¥)0xAY =0,
WY — F(M(—A) o+ f()8,:b° = 0.

(2.10)

We note that the LHS of the equation for d;w in (2.9) and (2.10) may be rewritten in
the divergence form

dw— V- (f'VEY) + 0. (FAY) — vAw. (2.11)
Translationally-Symmetric Background, (E-MHD)

The counterpart of the perturbation equation for the electron-MHD case is simply
obtained by setting w = u* = 0. Thus, the Bio—Savart-type identity is

p*Y = —Vty, (2.12)

the perturbation equation is of the form

(2.13)

Wb* + (MY — F(NIAY = -V - VAY,
WY + f()b® = Vi - Vb,
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and linearized equation is

Wb* — f(MoAY + f'(»)dxy =0,

(2.14)
Y + f(y)dxb* =0.

Axisymmetric Background, (Hall-MHD)

Let us take the systems (2.2) and (2.5) and write down the linearized equations around
B = f(r)9p. We shall use the standard cylindrical coordinates system (r, 6, z) with
coordinate vectors (9, d, d;), and denote the components of a vector U in the fol-
lowing form:

U=U", +U%, + U%,.

Assuming z-independence component functions in cylindrical coordinates, the for-
mulas (1.25) and (1.26) simplify to:

V x (U9, + 0?0y + U%3,) = r10yU%0, — r 10, U%3g + r ' (3, (r2U%) — 99 U")a..,
V- (U3, + U8 +U%0,) =r~18,(+U") + 99 U°. (2.15)

Moreover, for a scalar function a independent of z, a combination of (1.26) and (1.24)
imply

1 1
Aa = -3,(rd,a) + —d3a. (2.16)
r r

Equipped with the above preliminaries, we are ready to derive the perturbation and
linearized equations. We write (u, B) = (u, B 4 ) and introduce

(V x b)* = =AY, (V xu) =w.
Since
(V x B =r719,02 1),
we obtain that
¥ =8 B —rT 1907 f), o=w
Then, using
o= Loy, b =—Loy.
r r
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which follows from the formulas » = —V-y and (1.27), we obtain the following
perturbation equation:

du* — f(r)dgh* —vAuU* = —u - Vu®,
0 — (f”(r) + %ff(r)) WV + F(NIAY —vAw = —u- Vo + Vg - VAY,
8b* — f(r)dgu® + (f//(r) + %j-/(r)) vy — F(r)dgAYy = —u - Vb* — Vi - Vit

—viy . VAy,
Y — F()0(—A) " w + f(r)deb’ = —u -V + V- VB

(2.17)
Removing all the quadratic terms in # and b, we arrive at the linearized system:
ut — f(r)dgb* —vAu* =0,

dw — (f”(r) + gf’(r)> WV + (gAY —vAw =0,
3 (2.18)
9 b° — f(r)dgu* + <f”(r) + ;f/(r)> O — f(r)dg Ay =0,

Wy — f(r)dg(—A) '+ f(r)dgh® = 0.

Moreover, by the formulas u = —V+(—A)~!w and (1.27),
Pl -1 6 1 -1
U =-0(—A)" w, u =—-90(—A)" .
r r
As before, the LHS of the equation for 0, can be rewritten in the divergence form
ala)—v'<(rf/+2f)vll/f> 9 fAY) — vA®. (2.19)

Note the similarity of the form with linearized systems around a translationally-
symmetric planar stationary solution.

Axisymmetric Background, (E-MHD)

The (2 + %)—dimensional perturbation equation in the case of (E-MHD) are simply
obtained by formally setting # = 0 in (2.17):

3
9b* — f(r)op Ay + (f"(r) + ;f/(r)> I = -V - VAY,

OV + f(r)dgh® = VEy - Vb

(2.20)
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The corresponding linearized equation is

3
b* — f(r)dg Ay + (f”(r) + ;f/(r)> dy =0,

WV + f(r)dgb* = 0.

2.21)

Justification for L2-Solutions

The linearized equations derived in this subsection hold for L2-solutions to (1.2) and
(1.3) in the following sense.

Proposition 2.1 Let (u, b) be a z-independent L2-solution to (1.2) around (0, 103),
where either (a) B= f ()0 or(b) B = f(r)og as in Theorem A. Then (u*, w, b*, ),
defined from (u, b) as above, is well-defined up to addition of a space-independent
distribution" for W, and the Biot-Savart-type identity (2.8) holds. Moreover, (2.10)
or (2.18), respectively in cases (a) or (b), holds when tested against vector-valued
functions of the form

(Gu, V- (=A) 1957 ¢, Voby)

where ¢y, ¢, G, py € C(I x M).

Analogously, for a z-independent L*-solution b to (1.3) around the same B, (%, vr)
is well-defined up to addition of a space-independent distribution for ¥, and the Biot—
Savart-type identity (2.12) holds. Moreover, (2.14) or (2.21), respectively in cases (a)
or (b), holds when tested against vector-valued functions of the form

(Pp, Voy)

where ¢p, ¢y € CZ(1 x M).

Note that the ambiguity of ¥ is harmless, in view of the fact that 9,1 is tested against
V¢y and all other occurrences of v in (2.8), (2.10) and (2.18) in the case of (1.2)
(resp. (2.12), (2.14) and (2.21) in the case of (1.3)) come with a spatial derivative; in
every instance the space-independent distribution is annihilated.

The proof is straightforward, so we only sketch the main points. We focus on the
case of (1.2), as (1.3) is entirely analogous. In the derivation, the only place where
one has to be careful is when inverting —A on (V x b)? and w = (V x u)*?, for which
we rely on the following result:

Lemma2.2 In M? = (T,R), x (T, R)y, consider the Poisson equation
—Aw = 9, g" + aygyv

where g, g¥ € L. Then there exists a solution w € Llloc N H' such that Vwl 2 <
lg* Y|l 12, which is unique up to addition of a constant.

15 That is, a distribution on I x M whose spatial gradient vanishes.
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The key point in the proof of this lemma is the quantitative estimate [|[Vw|;2 <
lg*¥ |2, whichis a consequence of L2-boundedness of Riesz transforms on (T, R) x
(T, R),; this estimate allows one to solve the equation by approximating g*, g” with
smooth functions. We omit the obvious details.

By Lemma 2.2, ¢ and (—A)~'w are well-defined as a distribution on I x M2 up to
addition of a space-independent distribution. Regardless of the ambiguity, the Biot—
Savart-type identities in (2.8) are justified, where the mean-zero condition is needed
when M? = Tﬁ,y. The rest of the derivation can be followed without change, and the
property that (u, b) solves (1.2) in the sense of distributions translates to (2.10) and
(2.18) (in the respective cases) with the test functions as above.

2.4 Energy Identities Under the (2 + %)-Dimensional Reduction

Here, we first formally derive energy-type identities for inhomogeneous solutions to
the linearized equations computed in Sect. 2.3, which play a central role in our paper.
These identities are then justified in two important cases that arise in this paper, namely

for a pair of L2-solutions with an additional H 3 regularity for b, or for a pair of an
L2-solution and a suitable test function (Proposition 2.3).

Translationally-Symmetric Case, (Hall-MHD)

We first consider the case B = f(y)9, for (Hall-MHD). Motivated by the form of
(2.10), we introduce the error terms

WV, w, b*, Y] = du® — f(y)db* — vAUF,

SV, @, b, Y] = 0o+ [(NRAY — [y —vALS,
8p[ut, . b* Y] = ib° — fF(NLAY + (W — f()dxu’,
Sylut, 0, b5 Y] = 0,9 + f(0b° — fF(1)d(—A) .

(2.22)

Consider two quadruples of scalar functions
@, @, 6" ). W 0.6 ).

and the two associated pairs of planar vector fields (z*7, b*¥) and (u*?, b¥Y) given
by

@, ) = =V (=a) T, —v i),
W, B) = (=Y (=A) T, ~ V),

Introducing the shorthands

8.8 85.85) = (8. 8. 8y, 8y, &, b°, 1,

u ’vw

@ Springer



15  Page 40 of 106 I. Jeong, S. Oh

and

(8,80, 85, 8y) = (8, 8L, 81, 8y)[u*, w, b, Y1,

Y u %o

the desired (bilinear) energy identity is given by

4 ((5 b) + (i u>) +20(Vii, Va)
ar \\7 ’ ’

= —(f"0:. b%) — (B%, f"0x) — (f'V. u™) — (@, f'VY) (2.23)
+ (V8. V) + (VG VESy) + (85, b7) + (B, 8p)
_ (VL(—A)_ng}), ux,y) _ <L~tx,y’ VJ'(—A)_IS((;)) + (6'9)), MZ) + (I/Ntz, 6[91)).

This identity is essentially (1.4), but allowing for errors on the RHS of the linearized
equations. It is the precise form of the errors given in (2.22) that is important here.
To prove (2.23), we use (2.22) (and (2.11) for 9;®, 9;w) to compute

d - d
3B b) i)+ 20{Vi, Vu)

= (0, VY, VEy) 4+ (Vg 8, Vi) + (8,67, b7) + (b7, 8,b%)
+ (@ VE(=A) o, VE(=A) o) + (VE=A) e, 8, VE(—A) T o) + 2v(@, o)
+ (0:0°, ut) + (@, O ut) + 2v(a’, ut)

= (—fob* + fo. (D) '®, —AY) + (=AT, = fb* + [(—A) )
F(fOAY + fOuii® — [0, b%) + (b7, foAY + fowu® — f79:9)
(VAT (<0 AN + V- (VD) VA )
(VTS VAT (<A + V- (VD)
+ (fab®, Uty + (i@°, fo,b%)
+ (V585 V) + (VG VESy) + (85, 6%) + (6%, 8s)
F (VAT VA T o) + (VE=a) e, vE(=a) 1Y)
+ (85 ) + (@, 8.

Many high order terms cancel, essentially from the same energy structure as in Proposi-

tion 1.4. In this process, the formal identity (V1) (—=A)~H*(VH)(—A) ™! = (—A) ™!
is used. After a suitable distribution of derivatives, we arrive at

d - d _ -
E(b, b) + Efu, u) + 2~v(Vu, Vu)

= (—f"0: ¥, b%) + (b*, — f o)
— (VY V(=A) T w) — (V(=A) @, V)

+ (VE85, VEY) 4+ (Vg VE8y) + (85, b%) + (b7, 8p)
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H (V=) TIY V(A T ) + (VEA) T e, V(=) T8
+ (8w + (i, 8).
Then switching V and V- in the third and fourth terms on the RHS (which incurs a

sign change), and using u*> = —V+(—A)~!w (as well as the counterpart for ii*-),
we obtain (2.23).

Translationally-Symmetric Case, (E-MHD)

Next, we consider the case B = f(y)dy for (E-MHD). In view of (2.14), we introduce
the error terms

€p[0%, Y1 = 80" + [ (MY — F(AY,

(2.24)
€y[b5, Y] = Y + f(y)db°.

Consider two pairs of scalar functions
&) (7).

and the associated planar vector fields b = =V and b = —VLy. As before,
we introduce the shorthands

(€5, €5) = (en, €D, U], (en, €y) = (€p, €9)[b°, Y1,

Then

d - - ~
3 0t = —(f" 09, b%) — (b, f0xy)

+(Vhey, VEy) + (VH), Viey) (2.25)
+ (€, b%) + (b, €).

This identity is obtained from (2.23) by formally setting %, @, u*, w equal to zero.

Axisymmetric Case, (Hall-MHD)

Now we consider the case B = f(r)0dg for (Hall-MHD). In view of (2.18), we intro-
duce

8wt w, b%, Y] = du* — fogh* — vAu?,

WUt 0, b%, ¥l = o+ f(r)d Ay — (f"(r) — Ef’(r))aew —vAw,
r (2.26)

3
Splu’, 0, b°, Y] = 8" — f(r)dpAY + (f"(r) + ;f/(r))aew — f(r)dgu®,
Sylu®, w,b%, Y] =y + f(r)deh* — f(N)de(—A) ' w.
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Consider two quadruples of scalar functions
(ﬁz7&)’ EZ’ IZ‘)’ (uz7a)’ bz! w)?

and define the associated pairs of planar vector fields (i, b), (u, b), respectively, and
the error terms (8(”) 8(”) 85.85), (85,8, 8, 8y) as before. The energy identity
in this case is

((15, by + (i, u>) +20(Vi, Vi)
—((rf" 43 e, b7 — (O°, (rf" + 35 r e )

rf + 20V, u"?) — @, rf' +2£)Vy)
VJ_6 VLWH_(VLW’VLSW (2.27)

—
(
(85, b%) + (b, 8)
—
(

d
dt

+ o+

VE=A) o5, u ) — (@ VE(=A)T18,)
5(”) MZ>+<L~¢Z,8,(4U)>'

+

The derivation is similar to (2.23); we leave the details to the reader.

Axisymmetric Case, (E-MHD)

Finally, we consider the case B= f(r)dg for (E-MHD). From (2.21), we introduce
the error terms

3
€r[b°, Y1 = 9;b° — fF(NdAY + (f(r) + ;f/(r))f)elﬁ,
ey, Y] =0y + f(r)dpb*.

(2.28)

Consider two pairs of scalar functions

b5 9, (b9,

and define the associated planar vector fields beY, Yy, respectively, and the error
terms (€ i € 1/7)’ (€p, €y ), respectively, as before. The energy identity in this case is

—(b,b) = —((rf" +3f)r W, b%) — (b%, (rf" + 3 )r der)
+ (Ve VEY) + (VED, Viey) (2.29)
+ (€, b%) + (b%, €5),

2| a

which is obtained by formally setting &%, @, u*, w equal to zero in (2.27).
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Justification of the Energy Identities

The above energy identities can be rigorously justified under the following conditions:

Proposition 2.3 The energy identities (2.23) and (2.27) hold in the following two
cases:

o (i, w, b?, &) and (u*, w, b*, yr) are derived from L2-solutions (ii, l;) and (u, b) as
in Proposition 2.1, respectively, under the additional conditions (u, b) € C;(I; L%
and b, b € L2(I; H?); or

o (ut, w, bz 1//) is derived from an L?-solution (u, b) as in Proposition 2.1, and
(@, &, b°, ) obeys'®

@, V(=)o) e C,(I; L), (b5, V¥) e C(I; LY N LI HY),
and the error terms obey
8, V(=A)T18Y, 85, Ve € L (I L),
and when v > 0, also
Vit,» e LI(I; L?).

Analogously, the energy identities (2.25) and (2.29) hold in the following two cases:

° (I;Z, 1/}) and (b*, ) are derived from L2-solutions b and b as in Proposi-

tion 2.1, respectively, under the additional conditions b € C;(I; L2) and l;, b e
L,Z(I; H%); or

o (b%, ) is derived from an L2-solution b as in Proposition 2.1, and (EZ, 1,}) obeys

B, V) € G LY N LT HY)
and the error terms obey
€5 Ve € Ll L.

The idea is to first mollify (u°, @, be, &) and (u°, w, b*, V) in space; then the deriva-
tion of the energy identities go through, with additional errors generated from the
mollification. Next, one checks that the above conditions allow one to take the mollifi-
cation parameter to zero in the energy identities, while the mollification errors vanish.
For instance, in the case of (Hall-MHD), under the condition that (iZ, b), (u, b) € £(I)
one can show, using standard commutator estimates for mollifiers, that all mollifica-
tions errors go to zero except 47 i é7 " and &y, 8y, which lose one derivative in the
commutator with the Hall term. Roughly speaking, distributing this loss equally to b
and b results in the first case, and shifting it to b results in the second case. We omit
the straightforward details.

16 Here, by the assertion V(—A)*l&) € X, we mean @ is of the form —Aw where Vw € X.
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3 Construction of Degenerating Wave Packets

The goal of this section is to carry out the construction of a degenerating wave packet
approximate solutions for the linearized (E-MHD) and (Hall-MHD) equations around
stationary solutions as in Theorem A.

3.1 Statement of the Main Propositions

The aim of this subsection is to state precisely the main properties of the construction
in this section.

We begin with some preparations. In what follows, we write 9, ! for a right inverse
of d, that is formally defined as follows:

3, 'g = JEe(ydx' + [ x'g(x'ydx’  when (T, R), =T,,

. [T g(x) dx’ when (T, R), = R,.
When (T, R), = Ty, 0, 1g is well-defined only when f gdx = 0. In this case, note
that [3-'gdx = 0. When (T, R), = R,, ;g stays in S(R,) if g € S(R,) and
[gdx =0.

Assuming that 37! is well-defined for e/**

g, we introduce the notation

g(fl;)\,) — l')\‘efi)\x a;l (ei)\,xg)’ g(fz;)u) — i)"efl')\.x 3;1 (ei)uxg(fl;)\.))’ etc.

The factor i is inserted to compensate for the effect of 3! on e**
below, where the advantage of this normalization is most evident.
For any x¢ € (T, R),, we introduce the x-translation operator

g; see Lemma 4.1

Tye(x,y,2) =gx —x0,y,2).

We first state the main result in the case of (E-MHD).

Proposition 3.1 (Construction of degenerating wave packets for (E-MHD)) Let B and
M be as in Theorem A. Then the following statements hold.

(a) (translationally-symmetric case) Consider case (a) in Theorem A, i.e., B =
f(»)d, and M*> = (T,R), x (T, R)y. Assume, without loss of generality, that
f(©0) =0and f'(0) > 0, and fix y; > 0 such that

1 1
') > Ef/(O), 0<fO) <5 foryelO yil

Then to any & € Ny and a complex-valued Schwartz function go(x, y) € S(M?)
such that

supp go S (T, R)x x (3y1, 1), /ei“go(x, y)dx =0 forally € (0, y3.,1)
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we may associated a pair (l;f)\), &(A))[go] satisfying the following properties:

e (linearity) the map go — (I;f)\), &(A))[go] is (real) linear,
e (initial data) at t = 0, we have

~ 1 .
b5y (0) = 2.f "9, 'Re (fe'“”‘;@”go) +f7o; 'Re

1

2
% (enmc) (;fliﬂ;zgo — fy 1= 23,80 — (1 + f2)8x80>>

(3.2)

and
IZ(A.) (O) — )\._lRe (ei)»(x+G(y))g0) , (33)
where G(y) is a smooth function on y € (0, y1) determined by f, and

183 )l + V96 O)llz2 > ellgollz2 = CA~ igoll

e (x-invariance) for any xo € (T, R),,

(b, b)) le™ M 0Ty g0] = Toy (B, ¥yl gol;
e (regularity estimates) for any m € No and t > 0,

—2q ko —1 Loq—1 m—k—Lpz < (=1;%)
o max,_ G200 (100507 ) by Ol S g " lgm,s

-2 koq—1 Ly —1 m—k—~0x7.7 < .
0k X, [(A779)" (A7 9x)" (A7 fdy) VY Oll2 Slgoll g+

o (degeneration) there exists 0 < cy < Cy such that the following holds:

- Forl §p§ooandseR0beying%—s§ % we have

~ Cris—L+bn — L5
byl rysr s 25 T2 (g0, 88T N ez, (34)

where l;a)y (1) = —Vllﬁ(;\);

— There exists a decomposition 5()\) (1) = I;E’)‘\‘)"” )+ l;f;”)”” (t) such that for

any 1 SpfooandseRbeobeyings—%—i—%50, we have

“mai TGRS V) 15
1BES O pysr S 257200, g6 M lyissan. (3.5)

andforanylfpfooandseRsuchthat—%<s—%+%§0,we
have

s —1 crs—L4Dn —1;2
1B Ol s Ss 27T T M (g0, g6 llwas (3.6)
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and analogous estimates hold for (A~ 8x)ml;(k) for any m € Ny;
e (error bounds) fort > 0, fw[l;fx)’ 1/7@)]([) = 0and

~ ~ —1;x
leslbs,, Tl @iz S Nlgs™ s,
In the above statements, we omitted the dependence of the implicit constants on
f-

(b) (axi-symmetric case: B = f(r)dg and M? = R)%’y ). Assume, without loss of
generality, that f'(rg) > 0, and fix r; > 0 such that

1 1
f'or) > Ef/(ro), 0< flr) <z forrelro.rl

Then for any A € Ny and a complex-valued smooth radial function go(r) such
that

supp go S (3(ro + r1). 1), (3.7)

we may associated a pair (56), lﬁ(k))[go] satisfying the following properties:

e (linearity) the map gy — (56), 1/7(x))[g0] is linear;
e (initial data) at t = 0, we have

56\) (O) — _f—]Re (ei)\(e"l‘G(r))gO)

2
_ f*l);lRe (ieix(9+G) (%—fl ir];zgo —fy1- f28rgo>)

and
I,Z'()\) (0) — )\._lRe <ei)»(0+G(r))gO) ,
where G (r) is a smooth function on r € (rg, r1) determined by f, and

1655 O) 12 + 1V ¥y Ol 2 = cligoll 2 = CAlIgoll 1.

where ¢, C > 0 are absolute constants;
e (regularity estimates) for any m € Nog and t > 0,

max [|(A 729 (A7 100) 1 £ TR (D2 S lgoll e
0<t<m

max [[(A 290" . 7"00) ! £ Vo) D2 S lgoll e
0<l<m
o (degeneration) there exists 0 < cy < Cy such that the following holds:
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— Forl < p <ocoands € R obeying —sg%,wehave

1
p
= Cris—L4 by

1Byl pwer S5 277 DM gollprusan,

where l;&) = r_1891/~f(,\) and I;?)\) = —r_larl/;(k),'
main small

— There exists a decomposition l;()\) (1) = l;(k) )+ I;(A) (t) such that for
any 1 < p <ooands € R be obeying s — % + % < 0, we have

pmai cris—14 by
1665 Ol rwsr Ss A'e T DM gl 1-sss2p,

andforanylgpfooandseRsuchthat—% <s—%+

have

<0, we

D=

~ 1,1
small 1 ep—L4 Dy )
||b(v)r3a (f)”ngf"’ Ss A e 6=yt llgollw2.r;

and analogous estimates hold for ! Bg)zl;(A) for any £ € Ny;
e (error bounds) fort > 0, ellf[l;?x)’ &(A)](t) =0and

lenlbGyys POz < llgoll s

In the above statements, we omitted the dependence of the implicit constants on
f, ro and ry.

Note that, in case (a), the mean-zero property in (3.1) ensures that g(()_l;k) e S(M?)
with the same support property as go.

Remark 3.2 Key to our instability mechanism is the degeneration property. As it will
be clear in our construction, the wave packet (l;f)\), 1}@)) is initially supported in
(%yl, ¥1), but travels towards the hypersurface {y = 0} (where we focus on case (a)
for concreteness), on which B is linearly degenerate. In this process, its y-support
degenerates at a rate determined by A while the L% norm remains invariant; by Holder’s
inequality, we already obtain the L”-degeneration inequality

= —cp(E-Iyn —1;
1bosllzey S e 7™M g0, &5l (3.8)

We remark that the simpler inequality (3.8) may be used in place of (3.5)—(3.6) in the
ensuing proofs to establish some norm growth inequalities, but these are not sharp in
the case s > 0.
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To ensure such a behavior, which is not time symmetric, the choice of Efx) 0) is
crucial. Changing its sign reverses time!” for (2.14), and the corresponding wave
packet expands its y-support while keeping the L2 norm invariant.

Remark 3.3 A careful inspection of the proof reveals that the optimal constants c¢ s and
C are actually given by f’(0) — & and f'(0) (in the axi-symmetric case, f'(ro) — &
and f'(rg)), respectively, where § N\ 0 as we move the support of g¢ closer to the
degeneracy.

Remarkably, the construction in the case of (Hall-MHD) turns out to be a minor
extension of Proposition 3.1 for a suitable choice of f‘fx) and o).

Proposition 3.4 (Construction of degenerating wave packets for (Hall-MHD)) Let B,
M, A and gy be as in Proposition 3.1. In case (a) and when (T, R), = R, assume
also that

/xe”‘xgo(x, y)dx =0 forall y € (0, y;). (3.9)
In each case, in addition to (l;ik)’ &(x)), take

il Lgo] = —¥lgol, @ulgol = —bf, lg0l- (3.10)

Then the following properties hold:

e (smoothing for fluid components) fort > 0, we have

~ 1~ — —1;x —2;A
15, (Ol 2 + 1V (=A) a2 S 27 o 86 g8l
~ ~ —1;A
IViid, 2 + ey Ol < (g0, 85l

o (error estimates) for t > 0, we have

5,(;)[116), @) 1;6\), Yoyl +vAY =0,

— ~ ~ 4 7 ~ — —1;a —2;A
IV (=2) T @Y1, . oy By Tl + AR Ol 2 < A7 g g8 )l ge.

~ ~ ~ 7 —1;A —2;\
185185, @y By Ty 1Oz S N1(go- 86 g8 )l

~ ~ Tz 7 —2;)\
VS 1), 0y By Tl Ol 2 S s -

In case (b), g(()fm) and g((;z;)”) are replaced by go. In the above statements, we omitted

the dependence of the implicit constants on f, yi (in case (a)), andr1 —ro (in case (b)).

Note that, in case (a) and when (T, R), = T, the mean-zero condition in (3.1) ensures
that g(()fz;)‘) € S(M?) with the same support property as go. When (T, R), = R, the
additional condition (3.9) implies the same properties of g(()fz;)‘).

17 Note that the time reversal symmetry for (E-MHD) does not immediately induce the analogous symmetry
for the linearized equation (1.3), since the background solution B reverses sign. However, for a planar
stationary magnetic field, we may apply an additional reflection about {z = 0}, and obtain a time reversal
symmetry for (1.3); this is what we observe here.
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3.2 Derivation of a Single Second-Order-in-Time Equation and Renormalization

In this subsection, we carry out the following algebraic manipulations needed for our
proof of Proposition 3.1:

e derivation of a single equation for v+, which is second order in #;

e introduction of a suitable change of variables (y, ¥) — (1, ¢) for B = fF(y)oy
(resp. (r, ¥) — (n, @) for B = f(r)dp), which removes the degeneracy in the
principal term and kills all subprincipal (i.e., third order) terms;

e introduction of a rescaled time t = Az, which puts the equation in a form where a
standard WKB-type ansatz is applicable (see Sect. 3.3 below).

The viability of the second manipulation, which is crucial for the proof Proposition 3.1,
is the main advantage of using the (2 + %)-dimensional reduction and working with

the stationary solutions of the form B= f(y)dy or f(r)dg.

Translationally-Symmetric Background

In order to construct an approximate solution for (2.14), we begin by noting that
obeys the following equation:

Py + F(N22AY — f) f a2y =0. (3.11)

Indeed, (3.11) follows by taking 9, of the second equation in (2.14), and using the first
equation to substitute d;b*. Conversely, we may reconstruct (v, b*) from a solution
Y to (3.11) by defining

b* = —(fa,) "oy, (3.12)

provided that (f 9,)~! is well-defined for oy,

Next, we make a change of variables for (3.11) to fix the degeneracy in the term
f 28383. Take the connected component of {y : f(y) > 0} (in either T or R) that
intersects any neighborhood of 0. On this component, take the maximum y; > 0 such
that f'(y) > f/(0)/2 and f(y) < % for y € [0, y1]; if no such maximum exists,
simply take y; large enough so that supp/z C (T, R), x [0, y1]. For y € [0, y1], we
make a change of variables n = n(y), where

n'(y) = n(y1) =0,

1
fom’
so that  — —oo as y — 0F. Then (3.11) becomes

2 242 204 -1 2 _ -1 20 =0
O + 0,0, + [Py — (f 7 0y )00y — (9 (f 9y )) 0¥ =0.

By construction, & is supported in (T, R); x [0, y;], on which such a change of
variables is valid.
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Finally, for a parameter 1 > 0 to be chosen later, we introduce

The parameter A will be the magnitude of the space-time frequency of our approximate

solution. The role of the conjugation ¢ = f -3 ¥ is to remove the third order term
—(f! a,,f)afanw. Indeed, ¢ in the (7, x, ) coordinate system solves:

o+ (oot + 27 20 o) e
1 1 _
— [zan(f‘am + Zf%&,f)ﬂ (A '90)%p =0. (3.13)
Note that ¢ is related to b by

1
9 (f} 807!
I’](f (p), by:_f%axgo’ bZZ_Llw (314)

f f2

b =

Axisymmetric Background

In the same fashion as before, from (2.21) we derive the following single second-
order-in-time equation for :

3
WY+ F(D2RAY — f(r) <f”(r) + ;f’(r)) By =0. (3.15)

Conversely, a solution (i, b*) to (2.21) can be reconstructed from a solution ¥ to
(3.15) by defining

b* = —(foe) "oy, (3.16)

provided that (f 99) ! is well-defined for oy,
Expanding the Laplacian in the cylindrical coordinates, (3.15) can be rewritten as

v+ LR+ oo+ Py — s (17420 =0,

Fix r; > rg so that f/ > %f/(ro) and f < % on [rg, r1], and furthermore supph C
{(0,r) : ro <r <r1}. Make a change of variables n = 1(r), where

iy — L _
n(r)—f(r), n(ry) =0.
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Note that n — —o0 as r — rJ. Moreover, d, f = f0,f and 0,7 = f. Thus, in the
(t, n, 0)-coordinate system, we have

02y + 0foty + F200w + (r~oyr — 170, ) 00, v
3
- (an (r'onr) + ;8,,f> 959 = 0.

Finally, for a parameter A € Ny to be fixed later, we introduce

r %
T = Af, (p=<?> I//

Then ¢ solves the following equation in the (z, 8, ) coordinate system:
070 + (A 109) 050 + A7 f2 (110 e
1 _ 1. _ 1 _ _ (3.17)
- [Ean(f 18, 1) + yii 2@y )F+3r 710, f — " 2f2] (0. 199)%p = 0.

Note that ¢ is related to b by

1 1 —1
r rf r f2

3.3 AWKB-Type Ansatz

Here we carry out the core construction of the degenerating wave packet approximate
solutions in the case of (E-MHD). In this subsection, we work exclusively in the
renormalized coordinates (7, x, 17); correspondingly, we use the shorthand f(n) =
f(y(n)). Moreover, we suppress the dependence of implicit constants on f.

A WKB-Type Ansatz for B = f(y)dy

We start with the case B = f(»d, and M? = (T, R), x (T, R)y. We work with
¢(t, x, n) and use a WKB-type ansatz

0= A—lei)\(x—&-d)(r,n))h(t’ X, ’7)’
with the initial condition 4 (0, x, n) = ho(x, n), where we assume that
ho € S(T,R)x x Ry), supphg € (T, R)y x (—00,0).
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To obtain the equations for ® and 4, we simply evaluate:

o) [83 + (A—13x)285 + Azfz(k‘lax)“] T HEHPEM (2 )
= (0, D)h + 2i0, P h + 9> Ph + 217192
+ (—A(aﬂcp)2 +i0; D+ 2i0, 0, + /\*lag) (=h +2i( a0k + (A 190)%h)
+ f2 (Ah — 4idch — 63" 92k + 4in 203K + r3aj}h) (3.19)

= A(=(3:®)* + (3, D)* + fHh
+ (200, @D, + 107D — i0;P — 2i0, P,y — 2i (3, P)*dy — 4if*d,)h
+27C)

and setting the first two terms on the far RHS (which are expected to be of orders A
and 1, respectively) to vanish, we obtain respectively the equations

(0 D)* — (0, D)* = f>, (3.20)
and
8, D, — 9, D, — (3, D)2d, — 2 F20,)h = 1a2c1> 2d)h (3.21)
(r T~ Up n_(n)x_fx) __z(‘[ _,’)- .

We seek a solution of (3.20) such that for n < 0, & from (3.21) is being transported
ton — —oo.

Hamilton-Jacobi Equation

We start by solving (3.20). Taking ® (7, n) = 7 4+ G(17), G needs to satisfy 1 — f2 =

(G’ (n))2 (recall that we have assumed from the beginning that f < 1/2 in n < 0).
We choose G so that G'(n) > 0 and G(n) — n — 0 as n — —o0; thus

n
G =n+ / (\/ 1— f2() — 1) dn’, (3.22)

—00

which fixes

n
<I>(r,n)=f+n+f

o0

<\/ 1—f2() — 1> dn’, (3.23)

and leads to

1 d
@ — /1= 120, — (1 + 00k = ‘E%h' (3.24)

@ Springer



On the Cauchy Problem for the Hall... Page530f106 15

Our choice of the sign of G’(n) is justified by the fact that the characteristics for the
LHS of (3.24) travel towards n — —oo forward in time, as we will explicitly compute
below.

Remark 3.5 The fact that we can explicitly solve the equation for the phase @ (i.e.,
the Hamilton—Jacobi equation) is a manifestation of complete integrability of the
bicharacteristic flow around B as in Theorem A.

Characteristics for the Transport Operator

Our next step is to analyze the transport operator

L=08 —/1—f20,— 1+ fHa,, (3.25)

towards the goal of estimating % via the transport equation (3.24).
To control the characteristics associate to £, we need information on the coefficients.
Note that

ny)~xc+colny

for some constant ¢ and ¢ = 9y, f(0) > 0, where we use ~ to denote that the ratio of
both sides converges to 1 as y — 0 (or equivalently, n — —o0). This implies that

f@n) = e (3.26)

and in particular we obtain 0 < f(n) < Ce“" for all < 0 for some constant
C > 0 independent of 5 (but depending on f). Similarly, 9, f = fd, f and 8% f=

F202f + £ (3, ) imply

[0, f1(n) < C”Z)yf”L;Of(n) < o,
102 F1(n) < (192 Fllge + 1@y )2 L) f () S e,

for n < 0. Continuing, it is straightforward to see that
10 F1) S f() S €07, ¥y < 0. (3.27)

With the above information, we are now ready to study the geometry of the char-
acteristics X (t), Y (t) associated to £, which are defined as

d /
E(X(rﬂ X0, 7)0), Y(r7 X0, 7)0)) = <_(1 + (f(Y))z)a —/ 1= (f(Y))2> ) (3 28)

(X (0, x0, n0), Y (0, x0, n0)) = (x0, 10),
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so that
%h(r, X(1),Y(1r)) = (Lh) (t, X(1), Y(1)). (3.29)

We will always assume that 9 < O (by hypothesis, the support of /¢ lies in this region),
which guarantees that f _18,, f > co/2 where ¢y = 3y f(0) > 0 from our choice of
the change of variables from y to 1. From (3.28), one sees that Y is independent of xq
and

T
no—1t < Y(r, no)Sno—E- (3.30)

In particular, observe that Y (z, ng) stays in (—o00, 0) if ng € (—o0, 0). Using that
f(n) < Ce with the equation for d; X we obtain that

X0 — 2t < X(7, X0, No) < X0 — T. (3.31)

Analysis of the Transport Equation
We now analyze (3.24) and obtain estimates for /. First, observe that (3.24) can be

simplified using the method of integrating factors. Indeed, introducing a real-valued
function « (7, x, ) defined by

o=t S0l (3:32)

2/1= 72
with the initial condition «(t = 0) = 0, we see that
L %h) =0. (3.33)

By (3.27) and the bound | f| < % for any m € Ny observe that

< %01 forn € (—o0, 0).

~

om _l fa’lf
n 2 /1 — f2
Moreover, again by (3.27) and the bound | f| < %, we have
m
[y, £] = Zc;"(n)an, ()] < €201 forn € (—00,0), (3.34)
£=0
while £ commutes with 9, and 9;.

In view of (3.30), the exponential factor ¢2°" turns into an exponential decay in 7
along each characteristics. Thus, by the above commutator relations, integration along
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characteristics and Gronwall’s inequality, we immediately obtain the following L*°
bound for a:

Cam—t—k
sup  sup ||8T8x8;" a(@ g, Sml.
0<k+l<m t>0

For e™*h, we wish to prove L? bounds for 1 < p < oco. For this purpose, we note tha
tthe divergence of £ with respect to the volume form dx A dn obeys

fonf
Ji-r|

which also decays exponentially along characteristics. Thus, for any 1 < p < oo, we
obtain

€20 forn € (—o00, 0), (3.35)

|divaxnan L] = ‘

max  sup ||9K3¢9™ K e h)(x <, 180" tn p.
0<k€k+i<mt>p l|07 0, 9, ( )( )”Lf,n Sm 11059y 0||Wx"f”1’

Therefore, we have arrived at the following result:

Lemma 3.6 Let h be the solution to (3.24) with smooth initial data ho supported on
n < 0. Then for any 1 < p < 0o, we have

k m—k—¢
max  su 888 hoOll,r <, Ilhollwmp.
0<k,C,k+E<m T>p I @z, Sm llholly,

Moreover,

sup [0y h (D)l e Sm llholl Lo ym-r-
>0 x,n x W

As another application of (3.35), we estimate the size of the n-support of i (7):

Lemma 3.7 Let h be the solution to (3.24) with smooth initial data hy supported
on (T,R)x x [no.m] S (T,R)x x (=00,0]. Then supph(z,-,-) S (T,R)y x
[Y(z,m), Y (z, no)]. Moreover,

|Y (T, m) — Y(z,n0)| = n1 — no.

Proof The statement concerning supp h(z, -, -) is easily proved using the method of
characteristics. To prove the remaining statement, it suffices to restrict our attention to
the case (T, R), = T,. Let x(z, x, n) be the solution to Ly = 0 with x (0, -, -) equal
to the characteristic function of [, n1] in 1. By the method of characteristics, we see
that x (7, x, ) is independent of x and is equal to the characteristic function of the
interval [Y (7, o), Y (7, n1)] in n. Hence, Y (7, n1) — Y (7, n9) = f x (t, n) dn, while
the latter is comparable to the value at T = 0 (i.e., n; — 1) thanks to (3.35) (which,
as remarked above, exponentially decay along characteristics). O
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Error in the @-Equation

Finally, we estimate the error in the p-equation. Let ey[ho; A](T, x, 1) be the LHS of
(3.13) evaluated with ¢ = A~ 12 +P@M)p Tn what follows, we will often abbreviate
ey, = eylho; A)(T, x, n). We compute

. 1 1
e, = _r‘e'“”“’)(ia,, (f "o, f) + Z(f’l D (=h+2i0.7 90k + A 1a)%h)
+ A"l A et ®) (afh + 07 (=h+2i(A "0k + (W) M)A
HIA(O D + 20, ®9,)(2i A0k + (WD) %)
=320, 0)2 (1007 h + fH(—62h +4ir T 3h + A7 20th)) .
(3.36)

For each fixed T > 0, we see that e, is bounded in Lﬁ’n by

leo@llz2, SR Akl +17k1 2, + 103kl + 1930502, + 195R1 L2 ) (@)

S Mol g4
(3.37)

Moreover, when we compute dye,, we only lose at most a constant multiple of A
(when 9, falls on the phase M+ ®)) Therefore, for any integer m > 0, we obtain

sup |71 0x)" e (Dl 2, S 27 lholl s (3.38)

>0
Modifications for B = f(r)8g

Finally, we sketch the necessary modifications needed in case B = f(r)ds, which are
all minor. The ansatz now takes the form

0= AL+ @My (o ",
with the initial condition 4 (0, n) = ho(n) satisfying
ho € C*(Ry), supphy C (—00,0).

Note that 8 plays the role of x, and A (z, n) is chosen to be independent of 6.

Since (3.13) and (3.17) differ only by terms of order 2 (in space) and lower, the
Hamilton—Jacobi and transport equations satisfied by ® and % are exactly the same as
in the previous case, where the term — (1 + f2)d, is dropped. Therefore, Lemma 3.6
holds with x replaced by 6.

In this case, we define ey[ho; A](7, x, ) to be the LHS of (3.17). Again, since
(3.13) and (3.17) differ only by terms of order 2~ and lower, it is straightforward to
establish the analogues of (3.37) and (3.38) hold with x replaced by 6 (and without
m on the RHS of (3.38), although this point will be irrelevant).
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3.4 Proof of Propositions 3.1 and 3.4

We are ready to complete the proofs of the results stated in Sect. 3.1.

Proof (Proof of Proposition 3.1) We first handle case (a), i.e., when B= f(y)o,. We
apply the WKB construction in Sect. 3.3 to

-1 I (—133) o
hy (x,n)—l.—kf 2(ymMgy T (x,y(m), ho(x,m) = f2(y(m)egox, y(n)),

and denote the resulting amplitudes (i.e., the solution to (3.21)) by =V and &, respec-
tively. By construction, we have the relations

s

IEHATHIGI 7y oy = g (ei)\x-i-i)\r-i-i)\G(n)h(—l)(T’ X, 77)>
1
eolho: 1] = dye,[hG": A1,

Given h, we define the approximate solution by

1
b, _f—zme< el OFAFRG () (py (= l>+ a Dy, x, n(y))), (3.39)

i
Vo) = f127 Re (el FHRTRGOON G n(y))) . (3.40)
From the definition, it follows that the identities
o = f2A"Re (e"“zfﬂ"“G("(y”)(,\arh T ix%))
— f320,Re (l-eiuthxHG(n(y)))(iam(1) " h<1>))
iA
—foy b(M

hold. Next, from the construction, the linearity and x-invariance properties (as stated
in Proposition 3.1) are clear. Evaluating the expression (3.40) at t = 0, we obtain that

I}(}L)(I —0)= f%A—lRe (eix(x+G)hO> — 1 'Re (eik(x+G)g0) .
Next, using the relation between 1}@) and 56\), we have
1
Byt =0) =5 f 720, Re ( M FD g + —(afh>o)

and the first term is simply
IRe [ Loire+6)
AT 8 Re 20
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whereas the second term is given by
— f7207 "Re (4D ey )
1 ; 1 fo,f
— _ 157 R iMa+G) e [1 = £29 1 2 9y — — LN h
fm2o; e<e 1= f20+ A+ f)ox 2m)o

1
1 i 1 29 _1 _1
= /oy Re (e'“”“(f”fzgwf EU= Paggo+ 7740+ oo

\—/

202 /1—F
i - 1oy f
11 ira+G) L 9y _ 2 -~ 2
=f0, Re(e (zimgo fy 1= f?d80 (1+f)3xgo))~

To prove the initial data lower bound, it suffices to estimate d,;,. Note that
d:hy = Re(e™ 00 gg) 427 Re(e* 90, g9)

and clearly the second term in L? is bounded by CA~!||go|l ;1. Regarding the first
term, we compute

. 2] , , i
(Re(elk(x+G(y))go)) — Z(em(HG(}))go + efzk(x+G(y))g0)2

= 1|g0|2 + le2iK(X+G(y))g(2) + le—ZiK(X+G(y))
4

-2
2 4 g0~

Thus, integrating this equation over M? and using integration by parts in x for the last
two terms, we obtain the desired initial data lower bound.

To verify the remaining assertions in Proposition 3.1, we need to transfer the upper
bounds proved in Sect. 3.3 to the present context. At =t =0and any 0 < k < m,
we have the relations

_ _1 —k =1 —
loyay “holl2, = I/~ 205 (0™ £~ 2gollz S (' Oy~ ligollay,
(3.41)

and
_ -1 _ _1 —k =L (—1;
[ T S AL MU D A F i 12
S SOy A g P N, (3.42)

Combined with Lemma 3.6, for any m € Ny and r > 0, we have

-2 Loy —1 koy—1 m—k—€ 0—17 < -1 m
o X 67200 07 00 T £ T Oz, Sprom A ol

(3.43)
—2a ey —1 koq—1 —k—Lfz (=1;4)

ocgmax 07200 0 a0k 0 9" B iz, oot 186 g

(3.44)
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The regularity estimates now follow in a stralghtforward manner; note that in order to
estimate 0y t/f(,\), we needed to use the fact that f < 2 on the support of (1/f(,\), (A))

We now prove the degeneration propertles As a preparation, we begin by noting
that each component b(k) = 0y w(k), o = —wa@) and b of b(x) of b(;L) may be
written in the form

_1 i (02 ) XY
B (o, ) = £ H0Re (e FHHRECUOD TGy ki (y)), (345)

where, for any p € [1, oo], m € Np and t > 0, each ofhm, h ) and h ) obeys

oG = (eox e, S (g0, 86 @ )y, (3.46)
Supph(x) (T’ ,) € (T, R), x (Y(7,0) — Ysupps Y(z,0)), (3.47)

where Y (z, o) is the n-characteristic for £ introduced in Sect. 3.3, and Yy, is inde-
pendent of 7, A (but dependent on f). Indeed, from (3.39), (3.40) and Lemma 3.6,

(3.46) with the W;’f ,T L-P_horm on the RHS follows. Recall that supp (go, g(()_l;}‘)) (inthe
variables x, 1) is contained in (T, R), x [n(%yl), n(y1)] C (T, R)y x [—% log2, 0],
where the the last inclusion follows from the hypothesis f'(y) > %co and the
choice n(yl) = 0. Thus, the Values of f is comparable on supp (go, g(()_m)) SO
—1;2)
that [|(go. g¢ Il
m and f); hence (3. 46) follows. For (3.47), we use Lemma 3.7 and preceding assertion
about the n-support of the initial data.

In what follows, we will only be using (3.45), (3.46) and (3.47), and hence the
components b(A) will be treated in the same manner; hence the superscripts x, y, z

m+l » = |I(go, g )||Wm+l » (with a constant depending only on
X,y

will often be suppressed. Moreover, the same proof applies to (x—lax)‘f[;m for any
le No.

Let fiy = f(y(Y(rt,0))). Note that, by (3.26), (3.45) and (3.47), for t > 0 we
have

fO)= fFY(,00) = fir  onsuppbay(, -, -), (3.48)

i.e., fir is the typical value of f on the support of E(A). We claim that

1_1
I Pyskbi e Mz, S @A AT T80 85 P Dllymer for 28 = aft (3.49)

1 1
~ — P72 ;A - -
| Pyskbit.x Mlgp S @27 A" £ 7180 85 P llymers for £ <25 < a gy,
(3.50)

= Z1(=1yk 3 —12 -
1Py eox gy, S 272070 £2 G0, 867 20 for 2 < f,', (3.51)
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where Py is the inhomogeneous Littlewood—Paley projection'® to y-frequencies
~ 2k,

First, we demonstrate how (3.4)—(3.6) follow fr0m~ the preceding estimates. To
prove (3.4), it suffices to bound Zkz—logz Fr 25k | Py.kbs. ”Li.’_y by the RHS of (3.4),
via the triangle inequality and the frequency localization property of Py.;. We split
the k-summation into the ranges above and use (3.49) with m > max{s, 0}, (3.50)
withm > max{—s, 0} and (3.51) in the respective ranges; as a result, we would obtain
(3.4) with f5, on the RHS in place of e~“/*'_ Finally, we use

1 1
e M < = Fy(Y(z,00) S e M withey = 560 = an £(0),
Cr=2cs =0d,£(0), (3.52)

which follows from (3.26) and —7 < Y(7,0) < —% from (3.30), to eliminate fj;.

main small

For the proof of (3.5)—(3.6), we decompose E(A) into l;(k) + 15()\) , Where

Fmain;x,y,z __ ~X,V,2 small;x,y,z ~X,V,2
ba = D Pt b = D Puby
k>—logy fir k<—1logy fi

Proceeding as before using (3.49) with m > max({s, 0}, (3.50) with m > max{—s, 0}
and (3.52), we obtain (3.5). From (3.51) and (3.52), (3.6) also follows.

To complete the proof of the degeneration properties, it remams to establish (3.49)—-
(3.51). For (3.49) in the case m = 1, we write Py, = 27 kg, Py %, Where Py risa
convolution operator in y with an integrable kernel (the 1ntegral is bounded by an
absolute constant), and estimate

1Pyskbiy (0 x e <27 Ndybey (. x. Ml

1_3 ~
S27 R FP TG gy (0, x, My,

3.

1_ 1_ ~
+ 27K 7 2Ry Gt x e, + 276177 ahoy (e

3

For the second inequality, we used (3.45), 0y = f‘la,7 and dy = fdn. Using (3.46),

(3.47) and (3.48) (recall also that G’ () = /1 — f%(n) and that f < 1/2in {n < 0}),
(3.49) in the case m = 1 follows. The cases m > 2 are treated similarly.

For (3.50), we use the identity ¢*C00) = i =13 =1(G' (n(y)) 7! f3,e* 1) 1o
rewrite (3.45) as
by (@, x, ) = Re (713716 () o, GO £3 ()it x, (1))
= oyRe (i7127H(G ()~ FHHEGION 13 ()i, x, n(3)) )

~ Re (l-—1)L—lei(A2r+Ax+AG(n(y)))ay ((G/(n(y)))—lf% (Wi, x, 'l()’)))) )

18 The precise definition is as follows. Denote by Fy[ f(y)]1(9) the Fourier transform in y, where J is the
dual variable. Consider a smooth partition of unity 1 = mq(§)+ Y m(y) on R, where mg = 1on[—1, 1]
and vanishes outside of [—2, 2] and m (y) = mso(j)/Zk) - mso(y/2k*1). Correspondingly, we define
{Py.ktkeny bY FylPyk f109) = m(DFyLF1(D).
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Taking Py of both sides and considering their L 4 y-norms, we obtain

1Py (12, Wl S 2507 | Py FIHHRGUOM £3 ()i ar, x n()
_ i(\2 ) _
+ AT Py (& FHRFRCOOD g (G (n ()
1 ~
F2OhOL X, G -
(3.53)

To prove (3.50) in the case m = 1, we use 9y = f‘la,7 and dy = fdn to estimate the
RHS by
1 1~ 1 1~
AT RGE 2 g+ AT RGE X,
ST BT R
+ AT TR X

and then apply (3.46), (3.47) and (3.48). Note that since 2k > ¢€rM the contribution of
the first term dominates those of the other two. The cases m > 2 follows by repeating

the above “differentiation by parts” procedure.
Finally, to prove (3.51), we resume from (3.53). Using Bernstein’s inequality in y

1
(i.e., that Py : L;’ — 2(1_5)kL; is bounded), changing the variable y to n and then
applying Holder’s inequality in n (making use of (3.47)), we estimate the RHS by

2—Lyk, — 3~ 1-Lyk, — 1~
20NN TR X gy + 20T F 2RO 2

1
+ 207k

_ 1.~
KNS 2 05RO 2 ) gy
1 ~ 1 ~
<20 R x e, 20T AT 2 RG X ),
A=y —1 210 7
+20 TP AT f2ayh G, x -
Lastly, we apply (3.46), (3.47) and (3.48), which proves (3.51).

To conclude the proof in case (a), it only remains to establish the error bounds. By
definition ew[bf)\), Yoyl =0, and

. B .
elBy, o)) = A2Re e lh Vs 2,
so that
~ / ! -1 -1
leolb Vi lOllz, = 1X7elhg s 21002, S kg s, S llgglas
as desired.
The proof in case (b) is a minor modification of that in case (a). Here, as go is

independent of 6, there is no need for an auxiliary function g((f];)‘). We apply the
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WKB construction in Sect. 3.3 to

ho(n) = £72(r(m))go(r(m).

and define

~ 1 .
bi, = f2iRe (76’(xZ’HGHG("(’)))h(At, n(r))) : (3.54)
1

Py = 170 Re (ORI Gt (1)) (3.55)

Then the properties stated in Proposition 3.1 are proved in the same manner as in
case (a). We omit the obvious details. O

Next, we turn to the proof of Proposition 3.4 for (Hall-MHD). As we will see, a
(technical) part of the proof is to ensure that V(—A)~! are well-defined in various
contexts. In the case B = f )9y, we always prepare the the RHS to be of the form
d.a, so that we may rely on L2-boundedness of the singular integral V(—A)~'9, on
M? = (T, R), x (T, R)y. In the case B= £(r)dg on M? = R?, we use a similar trick
with 9y in place of d,; indeed, by writing dya = 9x(ya) — dy(xa), we may handle
V(—=A)"13y.

Proof (Proof of Proposition 3.4)
We first handle the case (a), i.e., B = f(y)d;. As in the proof of Proposition 3.1,

we construct (™1 and h from g(()fl;)‘) and go, respectively, and define I;é\)’ 1/}(,\) by
(3.39), (3.40), respectively. Moreover, we define ﬂf/\) and @, from bf/\), Y as in
(3.10). Then the estimates for i, ,, Vii(;, and &, claimed in Proposition 3.4 follow
from (3.43) and (3.44). To handle VL(—A)_ch)(,\), we observe that, by x-invariance,

~ _ 15 _ _1
VE(=A)log) = —VE(=A)T1a,0; lbfx)z—VL(—A) Yo 72

(ei(kzt+kx+AG(n(>'))(h(—Z) + ia,h(_z))(kt X 77()’)))
iA o

where 7(~2) is constructed by the WKB analysis in Sect. 3.3 applied to

1

P = oy IR0 @ o),

for which we have, for any 0 < k < m,

—kq (=2 — _1 k=L (=2
s oy~ hg P lie, =272 F 208 (Fa" T F 2 e

) 3y (=20 ? (3.56)
Sm (fFOYyDT A7 lgy ~ Ml -

Using Lemma 3.6 in Sect. 3.3, we obtain the desired estimate for VL(—A)”(D(A).
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It remains to verify the error estimates stated in Proposition 3.4. Comparing (2.22)
and (2.24), observe that with our choice of I;t'a) and @;,),

59)[5@), D0, 158), oyl + VAT, = —Gw[l;fx), Vool
8» [0 @) 56), oyl + vAEfA) = —Gb[ga), Vool
55,‘))[5@), B0, by ol = 1Bl Yoyl + foxTa,
8y [ii%. By bl Vool = €y b5, Yoyl + for (—A) 1B,

(3.57)

The estimates for 8,(4”), 6,(]”) and V4§ f;) follow from the error estimates in Proposition 3.1
and the preceding bound for VJ-(—A)_II;&) = —VJ-(—A)_I(I)()\) (for the last term).
For VJ-(—A)_ISS’), we need to estimate V- (—A)~'¢€;,. Again by x-invariance, note
that

_ ~ ~ _ _1 —
V(=) eplby. oyl = A2VE(=A) T IRef 2, [hS V1A
=22V (=A) o Re f e, [hSD5 .
Then the desired estimate for the L2 norm of the last term follows from L2-
boundedness of V- (—A)~13,, (3.37) and (3.56).

The proof in case (b) (i.e., B= f(r)dp) is similar, so we only sketch the necessary

modifications. We define (56), 1/}(,\)) by (3.54) and (3.55) as in the proof of Propo-

sition 3.1, and (ﬁé\)’ @) as in (3.10). Again, the estimates for ’fo)’ Vﬁé\) and &)
claimed in Proposition 3.4 follow from the preceding proof. To handle V- (—A)~! @(.)»
we simply write

By = =By = 00 (G075 ).

and observe that since Ef)») () is always supported in {r < r1}, for any r > 0 we have

IVE(=2) )~ BG Dl = 271V (=A) 71 @y (xbFy ) — (0BG ) (D)2
S B (O 2,

as desired. Finally, the error estimates follow from (2.26), (2.28), the error estimates
in Proposition 3.1, the preceding bound for VL(—A)_lbfk), and

IV (=) el ool S ria” lleslbly ). Ponlll2

which is proved again using the trick of pulling out (i )19, from eb[lgfk), 1/}(,\)]. O

Remark 3.8 Key to the proof was the remarkable simplicity of the error terms under the
choice (3.10), for which the fluid variables ﬂfx) and @, are also one order smoother
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than energy. The origin of such a nice structure may be traced back to the existence
of a set of “good variables” for (Hall-MHD) with v = 0: Introducing the vector field

7 =B+ w,
(Hall-MHD) with v = 0 has the following reformulation in terms of (Z, B):

0Z+u-VZ—-7Z-Vu=0,
B+u-VB—B-Vu+V x ((VxB)xB)=0,
V-Z=V-B=0,

Vxu=Z-B, V-u=0.

(3.58)

For more details on this reformulation we refer to [38], where it plays a central role.
This reformulation have already appeared in the work of Chae and Wolf in [13] for the
purpose of obtaining partial regularity results for the 2 + % dimensional Hall-MHD
system.

In terms of these variables, our approximate solution for (Hall-MHD) with v = 0
corresponds to taking the Z-perturbation zero, and the B-perturbation identical to the
(E-MHD) case. The last div-curl identities for u explains why this choice results in
the crucial smoothing of i) by one order compared to Z;(A).

4 Proof of the Linear lliposedness Results in Sobolev Spaces

In this section, we prove Theorems A and B.

4.1 Proof of Theorems A and B for (E-MHD)

In order to apply Proposition 3.1, we begin by constructing a family of bump functions

po.» on (T, R), for which we have a uniform control of p(();j .

Lemma 4.1 For each » € N and n € N, there exist nonzero po € S((T, R)y) such
that each p(()’_)hj;)‘) for 1 < j < niswell-defined and belongs to S((T, R),), obeys
1o - 2§ Wy Smn Iposll 2 for every m € No, @.1)

and has one of the following properties:

—n;
[ ] po,)h,...,p(()’)hn )

o Flpoarls ..., f[p(()}";)”)] are supported in (—1, 1).

are supported in (—1, 1); or

We emphasize that the implicit constant is independent of A.

Proof In T\, the simple choice pg ; = 1 does the job.
In Ry, the second case is easily handled by making a A-independent choice po ;. =
po, Where pg # 0 and supp F[po] € (—1, 1). Indeed, since F[e'** pg] is supported
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away from 0, (4.1) follows from the formula

. A\
FlpS M@ = (m) FLpol(€).

Thus, the only remaining case is the first case in R,. We start with a nonnegative
function pg € C°(—1, 1) with f podx = 1. We would like to construct pg ; as

a small perturbation of pg; however, to make each pé}j M s supported in (—1, 1),

we need to ensure that kapo,,\ dx =0fork =0,...,n — 1. For this purpose, we
introduce auxiliary functions g, for k =0, ..., n — 1 that are defined as follows:
2k+1

gi(x) = == (3 o) (2).
Then go # po (by the support property), [ go = 1, suppgx < (—1, 1) and
kaqkzl, fqukzo foranyl <k <n, 0<j<k—1.

In other words, the matrix Aj = [ x/ gi dx is upper triangular with diagonal entries
all equal to 1; in particular, A is invertible with ||A’1 | < po 1. Now, forany A € N,
we define

n—1
pos = po(x) = Y ;Mg (x),
j=0
where aj(1) € R’s are chosen so that kapo,x =0fork=0,...,n—1.Sucha

choice exists by the invertibility of A, and we have the estimate

/ x/ e po(x) dx

sup ;M) Spy  sup

0<j=<n-1 0<j=<n-1

Finally, by repeated integration by parts, observe that the RHS is bounded by
Cy. pO)fN for any N > 0. From this property, the desired uniform-in-A estimate
(4.1) follows. O

We now complete the proof of Theorem A.

Proof of Theorem A We consider only the translationally-symmetric case, as the proof
in the axi-symmetric case requires only minor modifications. The proof is a straight-
forward application of Proposition 3.1. We divide the argument into three simple
steps.

(i) choice of initial data

We start with an initial amplitude with single frequency and normalized energy

80,,.(x, ¥) = po,.(x)q0(y),
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where pg is given by Lemma 4.1 and ¢ is a fixed smooth function supported in
(%yl, v1). Then we apply Proposition 3.1 to construct the initial data

by (0) = @y (0). — 33 Trx) 0. B, (0))

for (2.14), and normalize its L? norm by 1. The lower bound stated in Proposition 3.1
guarantees that (by taking A > 1 large if necessary) |/go,» || ;221 uniformly in 2 >> 1.
We denote by by = (3y¥c), —dx V() (A)) the corresponding degenerating wave

packet solution, and by be an L?-solution with the same initial data.

(ii) application of the generalized energy identity

Notice that since l;(;\) is smooth, Proposition 2.1 is applicable. Then using (2.25),
we obtain

(b, bay) (1) — (bay, biy)(0)
= (g, boy) (1) — 1

t
= /0 / —f//(ax Il/(k)ba) + Bxlﬁ(x)ba)) + VJ-GJ/ . VLlﬁ(x) + E};bf)\) dxdyds
and then applying the error bounds from Proposition 3.1 gives that

‘(5@), b)) (1) — (bgy. by O)| S byl oo r: 12y

(HE(X)”LOO(I;LZ) + ||Vl€¢||L°°(I;L2) + ”€[§||L°°(I;L2))

S b6y Lo (r:12)

where the multiplicative constants depend on f but not on A. Thus, choosing0 < 7 =

16100712, , .
T(gp, ) sufficiently small (independent of ),

. 1
b6y by)(®) > 5 forr €10, T1. 4.2)

(iii) growth of Sobolev norms
Let p’ € [1,00] and s € R such that s + # — l > 0. By our normalization of

5@) (0) and (3.5), we have the decomposition E(A) = bf’i‘)”” + 5?;”)“” , where

_ —Cf(s+i,—l)m

~ =~ 1 -1
B O yonr So 2707 ER ol <7

L"

which holds uniformly forz € [0, T].Let p be the Lebesgue dual of p (i.e., % =1-1).
By (4.2), duality, (3.5) and (3.6),

= < {bays boy) (0) < 1BGS™ I L w1 lpwyr + IIbfﬁ“’llngyIIb(x)lngy
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_ A1y,
¢ cr(s+-7—73) t”b(k)”L{C’Wg'V —|—C)»_l.

By requiring X to be sufficiently large, we may absorb the last term into the LHS. Due
to our construction and normalization, it is easy to see that [|b) (0) || wip = A% hence

we have proved the desired norm growth. O

We now prove Theorem B. Recall that for the purpose of stating this result, we have
assumed that the solution map is uniquely well-defined for L? initial data.

Proof of Theorem B Again, we only consider the translationally-symmetric case; in the
axi-symmetric case, 6 plays the role of x and the arguments are somewhat simpler
thanks to the periodicity in 8. Note that it is sufficient to consider an arbitrarily small
s’ > 0; in particular, we may assume that s’ < %

We construct initial data E(k) (0) for all A > A, where A9 € N is sufficiently large
with respect to B, as in the proof of Theorem A. Using the L2-solution map, the
solution by, with initial data b()(0) = b(y)(0) is well-defined on the time interval

[0, 1]. Each b(;)(0) is normalized to be 1 in L2. The idea is to take the series
b= Zaxb(x)
A

with an appropriate choices of {A} € 2N and «; > 0. Note that x-translation is
preserved by uniqueness. By linearity and boundedness, d,’s are propagated. Further-
more, again by linearity and boundedness, any x-frequency support properties are
preserved.

When b(;,) is chosen so that its x-frequency support lies in the region A + O(1)
(that is, the first statement of Theorem 1.12 and the second case of Lemma 4.1),
then we simply choose «;, to be any super-polynomially decaying sequence such that
e“*a;, — oo for any ¢ > 0, and arrange A’s so that

(b (1), by () = 0if A # A.

This choice of coefficients «; guarantees that the initial data is C°°-smooth. On
the other~hand, consider 0 < ¢ < 4§, where § > O is sufficiently small so that
(b (1), by (1)) > % (see the proof of Theorem A). By the orthogonality condition,

1 - - -
5o < {bay(®). bay (1)) = (b(1), ba) (1)) S IbOI e 6oy Ol - -

Since 0 < s’ < %, by (3.5), (3.6) and our normalization, we have ||5()~)||H—S/ <y
A~ e 0®B)SAt thugs |1b(2) s 2 a8 e0®sM where the implicit constant is inde-
pendent of A and ¢. Taking A — oo, we see that b(¢) ¢ H* for any 0 <t < 4, as
desired.

Next, we consider the second statement in Theorem 1.12, i.e., when we would
like supp by € (=1, 1) x (T, R), x T,. We construct po ; (x) by Lemma 4.1 with
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n > s + 1, and choose a; = A~*. For A’ > A, we simply have

Z (b boy) (1) S Z AT AT

A=A A>A
On the other hand, to treat A" < A, we require I;(;\) to obey

|| ():1 3x)7k5()») ||L°°([0,1];L2) f,k 1

for all 0 < k < n. To prove the above estimate, use the x-invariance to estimate the

LHS in terms of g§ "~ (x, ) = p{ """ (x)¢(y) and then use (4.1). Thus

D lewrbory, boy) () =Y (o (W9 by, 10 T by) (1)
M <A N <A
A\
< - )“/—S < )\‘—S
<Y (5) s

<A

where the last inequality holds since n > s + 1. Choosing A’s to be sufficiently
separated, we may ensure that the last implicit constant in each estimate is small.
Hence for 0 < ¢t < &, where § > 0 is sufficiently small so that (b, (t), I;(A) (1)) > %
(see the proof of Theorem A), we obtain

A7 S @), oy () S NbO o 16y Ol - -

As before, we have [|bg,) |l -y Sy 27 e OBM Thus [|b(r)]| 0 = A% 75 eC0BI A
where the implicit constant is independent of A, . Taking A — oo, we see that
b(t) ¢ H*' for any 0 <t < 6.

The fact that b(¢) is not contained even in the local Sobolev space Hl“o/ . follows

from the preceding duality arguments, as the approximate solution b is compactly
supported in y and either compactly supported or decaying sufficiently fast in x. This
finishes the proof. O

4.2 Proof of Theorems A and B for (Hall-MHD)

The proof is analogous with the case of electron-MHD. However, a slight twist from
the (E-MHD) case is to choose

uony = 0.

The idea is that it differs from the initial data in Proposition 3.4 only by O(A™1), so
it does not matter. When v > 0, we need to use the dissipation term to control some
errors; however, the same scheme works.
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Proof of Theorem A for (Hall-MHD) Again, we focus only on the translationally sym-
metric case.

(i) choice of initial data

We take the same function g as in the above proof, and apply Proposition 3.4 to
construct the degenerating wave packets l;()\), 1 () associated with go ;. We normalize
80.2 so that the L? norm of 15@) (0) becomes 1 (we still have || go.x || .21 uniformly in
A > 1). Now let (u(y), b)) be a solution with the initial data (0, I;(A) 0)).

(ii) application of the generalized energy identity

Notice that since the functions i), I;(;L) are smooth, Proposition 2.1 is applicable.
Then using (2.23), we obtain

t
(brys biy) (1) — (bny, by) (0) + (i, wy) (1) — (i, uoy)(0) + ZV/O (Viiy, Vug,y)ds
t
= (b()h), b()h))(t) — 1+ (ﬁ(k), M(A))(Z) + 2\)/(; (VIZ()‘), VM(A))dS

= /Ot / — " @by, + 0¥ biy) — (Vo - VE(=A) " wp)
+ Vi - VA o)
+ VS, V) + 865 + VE=A) T8 V(- A) o + 80uf, dxdyds
and then after a bit of rearranging,

1/2

(b b)) (®) — 1‘ S gy Oz lugy Ol g2 + vt 2NVl oo p2) ey 2. gy

by iy (15 ey + 19285 o + 185 1(r:22) )
gy ez (Iboo ooz + 1V (-2) 7' 6
FVAGG) e+ 188 + VAT (1))

0 gy sy (190 + VP00 i)

and applying the error bounds together with the smoothing estimates from Proposi-
tion 3.1, for A > 1,0 <t < 1 we obtain

‘U;(A)’ booy) (1) — 1‘ < (A +v)'2 407
(”b(K)”Lw(l:Lz) F llwoyllLoer;2) + ”u(k)”LZ([;Hl))

where the multiplicative constants depend on f but not on A. Thus, choosing 0 <
T < 1 sufficiently small (independent of A and depending on v only when v > 1),
we obtain for all sufficiently large A that

- 1
(b(k), b()\))(l) > 5 fort € [0, T]. “4.3)
(iii) growth of Sobolev norms
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With (4.3) in hand, the proof of the norm growth estimate proceeds exactly as in the
electron-MHD case, via duality and the degeneration estimates. We omit the details.
O

Proof of Theorem B for (Hall-MHD) We simply repeat the proof of Theorem B for the
electron-MHD case, using instead the lower bound (4.3): take data and solution of the
form

b= Za)‘b()‘)’ 1; = Zaﬂ;()\)
A A

with appropriately chosen «;, as in the above proof. O

5 Proof of the Nonlinear lllposedness Results in Sobolev Spaces

We are in a position to complete the proof of Theorem C. We emphasize in advance
that in the proof below, all the implicit constants are independent of A as well as the
adequate norm of the solution map (which will be finite by a contradiction assumption).

5.1 Proof of Theorem C for (E-MHD)

We consider only the case when B = f(y)dy; the proof in the axi-symmetric case
requires only minor modifications. The proof is by contradiction. That is, we further
assume from now on that for so > 3, the solution map is bounded, and for 5o >
max{2, 3(1 — )}, the solution map is e-Holder continuous.

(i) choice of initial data

We fix a complex-valued Schwartz function go(x, y) € S(M 2) with

supp go < (T, R)x x (31, y1).

We may take go to be compactly supported in x as well. Then, for A € N, we choose
the initial data explicitly as

By (0) = B4 €A™ "b3(0) (5.1

where € > 0, s > 0 and f are from the statement of the theorem, n > 0 is a parameter
that will be chosen to be depending on s, « below, and

by (0) = (—=dy¥(2)(0), dx P (0), Efx) 0)),

where the pair (lﬁ(x) 0, 56) (0)) is explicitly given in (3.3), (3.2). For each A, we
normalize [|b,) (0)[l,2 = 1. Since |5 (0)]l g Sy A* for any s > 0, the initial data

B (0) belongs to the ball B, (B; H,,), by replacing the coefficient € in (5.1) by
€/ A for some large constant A > 0 independent of A if necessary.
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(ii) application of the generalized energy identity

By the assumption of Theorem C, there exists § > 0 and a unique local solution
B(;,)(¢) in L°([0, 8], H*). The additional hypothesis guarantees that, for all A € N,
the sequence of solutions

boy(t) == B— B, (1)

is uniformly bounded in the space L{°([0, §], H*) (with so depending on «). More-
over, by the uniqueness assumption, b(;) is independent of z, and introducing ;)
such that by = (Viyg), bfx))’ we have that the pair (1), b)) solves the system
(cf. (2.13))

by — FOxAYGy + [0y = =V 0y - VAYE)
0oy + faxb(x) =vt Yo - Vb()\)

(5.2)

with initial data (1//@ 0), b(x) 0)).

Regarding the approximate solution (1}0\), 5(;\)), let us recall the error bounds

sup [le;(Dll2 S 1,
t€(0,6]

sup [[Vegsli2 S S
1€[0,5]

where all the implicit constants are independent of A. By the definition of the error
terms, we have

{ (A) fa A’ﬁ(x) + f O W(A) =€ (53)

3zl1f(/\) + faxb()\) = 6,/}

Using (5.2) and (5.3), we compute that

d
3 o @, boy®) = —(f" 0V, bly)) — (b, 7))

+ (Ve s, Vo) + (Vi VIV - Vb)) G4
+ (€5 b)) + (05, =V 0y - VAY).

First, we proceed in the case 5o > 3 to contradict boundedness of the solution map.
We bound the first and the third lines on the RHS, respectively, by

— ("0 W0y, b)) — (BFy, 7090 | S Iboyll2lbllzz S bey 2
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and

(€5, b)) + (05, =V 0y - VAYG) | S llegl2llboy I 2
+ 1oy I 2 IV AWy Il 2 1By | oo
S Doy ll2s

where we have used that sup, (g s ||l;(,\) .2 < 1, the error bound on [|€; 2, and the
uniform bound

1/3 2/3 2/3 1/3
IV AU 2 l1bgy Iz S 10 l)5 I1bGy 17 by 175 166y 11173

S byl boyllgs < 1boyllzz,
for sop > 3. Regarding the second line we have
(Ve s, Vo) + (V) Viva - VVBG ) + (V). VEVYG) - VBT )

and the first two terms are bounded by a constant multiple of |[b)|l;2, again with
so > 3. Lastly,

(VPG VEVYG) - VBN S IV6) VB e S IVbGIITa S by ll2 by s

by an application of the Sobolev inequality. Collecting the bounds and using the energy
identity for b(,), we conclude that

d .
‘E(b(k)(t)v b(x)(f))‘ S bay D2 S 1Dy ()l 2

where the implicit constants are independent on 1. Therefore, by taking sufficiently
small 0 < T < §, we can guarantee that

- 1 |
(b (1), by (1)) > Ellb(x)(o)lle = 56?» =h 0<r<T.

uniformly for all sufficiently large X.

Now we show how to arrive at the above inequality in the case 0 < o < 1 under
the a-Holder continuity assumption. While the choice of n > 0 did not play any role
in the above, now we shall take it to be sufficiently large. Using the assumption of
Holder continuity around the stationary solution ﬁ, we obtain the bound

C()\'—}’lol

6oyl S €
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Then, we can obtain better bounds on the quadratic terms [|Vb) ||i4 and ||b(,\)V2
byl ;2. Regarding the former, we bound

21— 3
Vb 124 S boy 125 1bgy l7v s 6 =1~ 3

5 62(1—0)a+29)\—20(n+s)—2(1—G)na g en s

for sop > max{%, 3(1 — o)} by taking n sufficiently large. A similar bound can be
obtained for ||b(k)V2b(;L) l;2, now with so > max{2, 3(1 — «)}.

(iii) growth of Sobolev norms

Proceeding as in the proof of Theorem A using duality and (3.5)—(3.6), we obtain

by Dl 0 Zso A0 (b (0) ] 2 = €A™ e T0M,

which is a contradiction since A may be arbitrarily large. This finishes the proof for
the electron-MHD case. O

5.2 Proof of Theorem C for (Hall-MHD)

We shall restrict ourselves to the case so > 3, necessary changes for the Holder case
of 5o > max{2, 3(1 — «)} being obvious. We also fix B= f(y)dy and some v > 0.

To begin with, take the initial data as in (5.1) together with trivial initial velocity;
that is, ug)(0) = 0. Then, by the assumption of existence and uniqueness, we obtain
a z-independent solution quadruple (u(;), wG,). by, ¥)) to the system (2.9). The
solution is uniformly bounded (in 1) in the space

Vi, 0y € L0, 81 HO™Y, Vi), b € L0, 81; H*)

with some constant § > 0. Appealing to Proposition 3.4 with initial data (3.2), (3.3),
and (3.10), we obtain the approximate solution (ﬁf)\), @()s bf)\), ¥) with the esti-
mates

iz Oz + 19 (=8) " By 02 S 27
IVag, 2 + loe @2 S 1,

and

18 (1) + vATGy Ol 2 S 271
VA=) 6Y +vAde) Ol S A7
180l S 1,

V8 )2 < 1.
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Now using (2.23), we obtain

(2 b O + Gy, ) ) + 20T, Vugr)
= (0P, b)) — (BFy, [ 0xbn) — (' Vi, uiy) = (g £V
+ (VIS5 Vo)) + (Vg VE8y) + (85, bF,) + (5, 8)
— (VAT ud) — i) V(=AY TI8D) + (8, udy ) + i), 80).

and then, the terms on the first line of the RHS are bounded simply by

(06, bhy) — By [ 0:WG0) — (Vi uy) — (g s £V 6))

S Wbyl 2 1bayll 2 + 1y 2 gy 2 + lday N2 1bey 2 S Ibgyllz2 + eyl 2
(5.5)

To bound the other terms, we recall the form of the error for a solution of the (nonlinear)
Hall-MHD equations (cf. (2.9) and (2.22)):

6,(4”) = VM(A),
8V = _”(x) Voo + V) - VA = V- (—oaug) + Ao VYo,
8p = ()») Vb — vt Iﬂ(x) . V”(A) _vt %ﬁ(x) . VAI#()\),

1
8y = —up) 'VW@) + Vi) - Vb,

For the approximate solution, we write §; = 31(;) + VAIZEA) and §; = 62’) +FVAQ;,).
Then,

(VE85, Vi) + (Vg V1Y)

Sboyllz + 1VEugy - Va2 + lugy - VYS9 ll2
HIVEV Yy - Vb 2 + IV Y - VY26 L2
S boyllz + llugy 2 (5.6)

where we have used
IVEVEay - VG 2 S Iballzllboy s S kel 2
as in the electron-MHD case. Next,
<6 b()\)) + (b()\)v dp) < ”6 ”LZ”b(A)”L2 + ”b()L)||L2||M(A)||L2||Vb(k)||L°°

+ 165, 2 1boyll 2 (Vi e + Ibaylgs) O
S boyllze + lugy 2
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Now rewriting

— (V)T ) — g V)TN

= —(VE(=2)"" (85 + vAdG). ul)) — v(VEae). ug))
{1 VH=)TIV - (o) + A Y YG)),

we obtain

—(VE=A) T8 u)) = i), V(=)

SIVEEA) T 65 +vAde) 2 lug 2 +vide 2 Vup iz (s8)
+ oyl 2 Ulwgy e lugyll 2 + 1AVl lboyll2)
S boyliz + llugylizz +vIVioy 2 I Vi ll 2.

Lastly,

(B0 ul) + (5. 8) | < 1187 + vAT) 2 lluey |2 + VI Vil 2 | Vil 2.
(5.9)

Collecting the bounds (5.5)—(5.9) and recalling that ||Viig)ll;2 < 1 (cf. Proposi-
tion 3.4), we obtain

d / ~ -
I ((b(x), biy) (@) + (i, u(A))O)) Sboyllz + llugyliz +vIiVuoyll L2,

and integrating in time and using the energy inequality

t
156y @122 + Nl (D12, + 20 / Va2 ds
0

S by )17 + ey 072 = 116y (017
gives
(B b)) = by, b)) O] S ¢ + 01212 57 b,y O] 2.
Since

by, ) (0) = by (O) [l 2 (1 + O,

we may take a small number 0 < 7" < § such that for all sufficiently large A,

- 1
by, bpy) (1) > Ellb(/\)(o)lle, t €0, T].
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The rest of the argument is the same as in the electron-MHD case. The proof is
complete. O

5.3 Proof of Theorem E for (E-MHD)

In this section, we give the proof of Theorem E for (E-MHD). Compared to (Hal-
1-MHD), a rather strong localization is possible in this case, and thus the proof works
also on M = T3. We proceed in several steps.

(i) choice of initial data and contradiction hypothesis

As described in Sect. 1.7, the key idea is to superpose many instabilities in physical
space. In order to fit everything in a compact interval, which allows us to consider the
case M = T3, and control the constants involved in the instability argument, we use
a simple rescaling argument.

LetM,s > 3+ % and € > 0 be given by the statement of Theorem E; in what
follows, we suppress the dependence of implicit constants on s. We simultaneously
give constructions involving the translational- and axi-symmetric stationary magnetic
fields; the former construction works for M = T, x (T,R), x T, and the latter
applies to all of M = (T, R), x (T, R), x T,. To this end, we take

o o
Rlr.axi) — Z ﬁ]({tr,axl) — Z 2—sk§(n,m)(2kx’ 2k(y —w)), = 2—%
k=ko k=ko
(5.10)

where

B (x,y) = f(y)dx

in the translationally symmetric case, and

B (x, y) = £ (\/x2 + y2)(xdy — ydy)

in the axi-symmetric case. Here, ko > 10 is some large positive integer (to be specified
later), f3"(y) € CS5,,, supported in |y| < 1/10 and f3"(y) = y for |y| < 1/20, and

comp

& e €29, issupportedinr < 1/5andsatisfies f§*'(r) = r—1/20for 1/40 < r <

comp ~ .,
1/10. We further assume that fi** is a constant for » small so that B“** defines a smooth

vector field on R? . Note that in both cases, Ioil(fr’“x 0

S (tr,axi)
Bk

is a stationary solution and the

supports of are disjoint, so B(-ax) defines a stationary solution to (E-MHD).

] o . o _1
The coefficient 2% guarantees that Bf{’ € Hgamp(M ) with B (|5 S 2 2% when

M = T, x (T,R), x T, and B& € HS, (M) with [|B |z < 273% when

comp

M = (T,R), x (T, R)y x T,. In all cases, BUr.axi) ¢ gs (M) and we may ensure

comp

that | B4 || ;s < Le by taking ko large enough.
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We now fix the initial data. In the translationally symmetric case, take some com-
pactly supported function gi € C° (M) that is independent of x and whose y-support
is contained in 1/40 < y < 1/20 so that the hypotheses of Proposition 3.1 is satisfied
for go = g, B = B = fI"(y)d, and y; = . Then define by := (V1) )
to be the associated degenerating wave packet solution provided by Proposition 3.1.
For

A = Nk

for some N > 1 sufficiently large to be specified later (depending only on s), we
define

~ k ~
by (t,x,y,2) = 23bg-+;,) (27 2%1, 2Kx, 25 (y — 1)),

7 k < kn2k, ~k. Ak .11
l[’]ir(t, X, Y, Z) =2_§I/f(2*k)hk)(2_s 2 ta 2 X, 2 (y - yk))v

By construction, e~ **b!" (x, y, z) is independent of both x and z, and by suitably
normalizing g{/, we may take ||5,t{’ ;2 = 1. Note that these definitions are consistent
with the relation (l;z,y ) = VLI/},? . Then, we define the initial data to be

o
B/ =B" + Z 2750 B (1 = 0). (5.12)
k=ko
Recalling that l;,’c’ is uniformly bounded in L2, we see that ||)Lk_55]’(’ t=0pgs <1
thanks to the factor 2%, we have B € H_,,,, and we may ensure that IBy [l s < €
by taking ko large. '

We proceed similarly in the axi-symmetric case. Take gg*' (r) € CZj,, with
supp (g(‘)‘Xi ) C (3/40, 1/10). With this choice, the hypotheses of Proposition 3.1 in
the axi-symmetric case is satisfied with B* = fO“"i (r)dp and go = gg"i. Applying
Proposition 3.1 with this data gives by = (V=i), I;?A)) and define

b (t,x, v, 2) = 2bgiy,, (27271 255 2K (v — i), (5.13)

We then define the initial data as

00
ngi — gaxi + Z Z_k)"]:SBZXi(t =0). (5.14)
k=kg

Again, B§*' € H},y, (M) and we may take IB&*|| s < € by taking ko adequately
large.

At this point, from (5.11) and (5.13), it is easy to check that b obeys the
following types of boundedness, error and degeneration estimates, respectively:

(tr,axi)
k

b ()]l 2 < 26K, (5.15)
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lleg Dl + Ve D2 S 29K, (5.16)
||13<’””“')(t)||L2H_21I < 2Ck exp (—2—%%:) , (5.17)

where ¢s, Cs > 0 are constants depending only on s (that may change from line to
line) and

€500 = €D, Yl €y (1) = ey [bi, Y]

are defined according to (2.24) and (2.28) respect to 103,({"’”“), (bF)raxi) and 1/7,5"’““).

Towards a contradiction, we assume that there exist § > 0 and a solution
BUraxD ¢ 1%°(]0, §]; H*) to (E-MHD) with initial data (5.12) and (5.14), and set
b(r) := BUraxi) )y — BUr.axi) respectively. Since we do not assume uniqueness of
the solution, b(¢) may depend on z as well, and it satisfies!?

3tb+(b.v)(v><f})—(v><1°3)-Vb+(l§~V)(V><b)—(VXb)'v% 18)
=V x ((V xb) xDb). '

(ii) localization of the energy identity

Before we continue, let us briefly give an outline of the argument. As discussed in
Sect. 1.7, we would like to localize the energy identity for b (as well as the generalized
energy identity between b and by in the next step) to the support of B{ " If the
corresponding localized statements were exactly true, the proof will be completed
immediately since near ﬁi’r’ax’), the H®-norm of the perturbation will grow at a rate
of Axt, which clearly dominate losses of 24% coming from various normalizations, by
taking A; = 2V* with N large. Not surprisingly, the main enemy is the loss of one
derivative coming from the commutator [, (103 - V)(V x b)] where x is a cutoff. A
derivative on b localized to the support of By could in principle cost Ag, but we gain a
little bit by a time integration, which gives a necessary control of the local energy in
the time scale ~ )\i/ (H]), which is still sufficient for unbounded growth in k.

Now we proceed to prove a localized version of the energy estimate for the pertur-
bation b. The proof is similar for both the translationally- and axi-symmetric cases,
and for simplicity we only consider the translationally symmetric case from now on.
Ideally we would like to show that the L?-norm of b localized to the support of By
admits an energy inequality by itself, but since there will be some contribution from
neighboring pieces, we use cutoff functions with fast decaying tails which can accom-
modate such interactions. To this end, we prepare a C* positive function y : R — R
with the following properties:

o x(y)=1forye[-1/4,1/41%,
o x| =Ix(y|forall y € R, and

19 Even in this case, (E-MHD) can be reformulated in terms of % and ¥, where —Ay Y = (V x b)?
with Ay y 1= dxx + dyy. But now the expression for d; ¢ involves non-local terms.

20 This property is not essential but for convenience of the estimates below.
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e x decays exponentially; i.e. x (y) < 27 for y > 1/2.

Then, in the case (T, R), = R, we simply define x;(y) := x2K(y = y1)). In the
case of Ty = R/(27Z), which we view as the interval [—z, 7] with the endpoints
identified, we proceed as follows: for k sufficiently large, take the 277 -periodic function

> xx(y +27n)

nez

and one may modify this function only on the interval [y; — 2717%, y; + 2717 %] 50
that it is identically 1 on [y — 272X, y; + 2727K], which we redefine as x;. Note
that in this process we can guarantee that | Xli < 21 x ()| on T, with a constant

independent of k. Regarding the decay, we shall only need |xx(y)| < 2~ 2= for
|y — x| < 1/10, which holds for all & sufficiently large, in the case of T, as well. For
the simplicity of the argument we shall proceed in the case of Ry. Multiplying both
sides of (5.18) by xx(y) and taking the L? inner product in M with xi ()b, we obtain

(X - V)(V x B), xib)| S IV Bl xcbll3 .

(Xk(V x B) - Vb, yxb) = 0
(after integrating by parts as (V x f}) -V = — f/(y)d, commutes with x;), and

O (B - V)V x b) = (V x b) - VB, xib) | = 4] Ot /5%, 0 b))
< 251l 21V Q) .2

1 1 1 1
k 2—5 ¥ 2k 2—5
Ss 280Dl lxeb s < 277101 s Il xkDIl

~

after observing cancellations using integration by parts. We then used the algebra
property of H*® with Sobolev embedding. (Actually it is clear that the previous inner
product should be of the form f X XxkbVb since unless a derivative falls on the cutoff
we obtain complete cancellations). Finally we treat the nonlinearity

(xV x ((V x b) x b), xib),
which has terms of the type (x,bVb, xxb) after integration by parts since unless the

curl falls on xz, we obtain a cancellation. The bound |X1£| < 2k|Xk| allows us to
estimate such terms by < 2K1Vh | < || Xkb||2Lz~ Collecting all the estimates,

d 1-1
o bl < 2% (nang + ||xkb||Lz) (5.19)
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where the implicit constant now depends on [|b|| 2 ys. Let us estimate, at the initial
time, the local energy

bt =017, =272+ Y 270 P e (t = 0)]17,.
ko<k' k' #k

Note that the contribution to the above sum for k' > k is negligible relative to 22 )»k_h
from the decay of 2_2]‘/)»,:,% in k’. On the other hand, for k¥’ < k, we use the decay of

xx: forany k' < k, the support of by is separated from yi by at least 272 with¢ > 0
independent of k. Hence,

k
|Xk| 5 27022 S/N’S 274Nsk < 272/{)\](—25

on the support of l;k/ with any k' > k > ko, and we obtain that ||x;b(r =
(OIFER 2_2]‘)»,:‘Y by choosing ko sufficiently large with respect to N, s. Using this
together with (5.19) yields that

s
kbl 2 <s (2—§,\,;‘ + 22kt) <o 27k 22k, (5.20)

(iii) localization of the generalized energy identity and conclusion of the proof

We shall now need a version of the generalized energy inequality which is localized
in space. As before, since the argument is similar for both the translationally- and axi-
symmetric cases, we only consider the translationally symmetric case for simplicity.

Recall from the construction in Sect. 3 that the support of the rescaled and translated
degeneratmg wave packet by is contained in [yy —2~ 2%, y,+2727¥], and in particular
Xkbk = Xi bk We now compute

d ~ -
3 kb br) = (=xk f10:b" + xu /DY — xu fOx (0 DY — 0yb™), bY)
+ (xxb*, fox Ax)wk_f Ox Wk'f'eb k)
(= xa f10:bY = X f0r(B:b" — 3:b7), DY)
+(Xkb faxxb a €~ )
+ (X 106" + xwdy (f (3.0 — 0xb%)) + Xk f 0, (3cbY — 3yb™), bx)
+

Xkb*, —xidy (f0.:b%) + Xk9y€y ) + (V< ((V x b) x D), bi).

Taking absolute values, the terms containing €. , and €y x are bounded by

S 1blce (llege gl + Ve 4 li2)
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Next, the terms involving a z-derivative vanish after moving the derivative to the other
side, from z-independence of bi. This leaves us with

I:= (e f (0)dx(@yb™ = 3b”) + 3 f/'D, BE) + (b®, fxAxy¥i — [ 85 k)
+ <_kaaxxbz» ax&k) + <_Xkby» _faxxl;]z()
+ (= xdy (f3:D), dyPrk) + (xub™, —3y (f8,b))

and
I1:= (xxV x ((V x b) x b), by).
After observing cancellations, we see that
11 = (26", xi0x57) + 2000y Pk, £:b7) + (e f "B b)) = (ued® £ 9x0e)
S bl 2Bl 2

where we have used the fact that by vanishes on the support of Xy Finally, using that
Xlégk = 0and yiby = szlgk, we bound

1111 S Vbl oo bl 2 1Bl 2 + 1V ) 124 1Bk 2

sk T
S 201161 s | xkll L2 1Bxll 2

We have therefore arrived at the following inequality:

d .
—{xxb, b
‘dt {(xxb, bi)

So 200+ 1l bl 2 (llege iz + 1€ ol + 1Bl 2)

<o 29K bl 12, (5.21)

where we have used (5.15) and (5.16); the final constant depends also on ||b]| o 5.
We are in a position to complete the proof. Combining (5.20) with (5.21) gives

t
(Xkb7 b)) — )‘k_s SK 2C,;k/0 (szlk—s + 221(5[/.&') dr’ S/S 2ka(2—k)Lk—5t + 22ksts+l)’

so that we are able to obtain
T 1 —kq—s
(xxb, b)) () > 52 A
on the time interval [0, ;7] with
=270k T (5.22)
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where A = 2V with N = N(s) > 1 and ko is sufficiently large. Taking k¢ larger if
necessary, it is easy to guarantee that 77 < § for all k > k.
Next, using interpolation in y, we have

—ky—=s < 1 7 =g &
270 S b @O 1 lxabGON 1 S e @O 1 b @O ™ b @) s -
L2H, * L2H,} L2H, *

By the degeneration property (5.17), (5.20) and (5.22), it follows that

52 1
b e = 27 Cka o exp(z—Cskw+l>

By the algebra property of H*, we may replace the LHS by ||b(z) || g+ by altering C;,
on the RHS. Now recall that ; = 2V¥; thus by taking N = N (s) sufficiently large,
we may ensure that

1B s =5 26

for some ¢; > 0 independent of k > k. This clearly contradicts boundedness of
D1l Lo s - o

5.4 Proof of Theorem E for (Hall-MHD)

Here we indicate the necessary modifications for the case of (Hall-MHD). In this
case, the energy identity for u does not obey as favorable localization properties as in
(E-MHD) due to the pressure (see (5.25)). Instead, we require M to be noncompact
(more specifically, (T, R), = Ry) and place the instabilities at dyadic loci y; ~ uk.

(i) choice of initial data and contradiction hypothesis

Again, two constructions using the translation- and axi-symmetric building blocks
can be described almost simultaneously. We borrow the definitions of BUr axi)
F3mHD and g7 from the previous proof. In the Hall-MHD case, the station-
ary magnetic field is taken to be

o0
BOrax)) = Z By = 3 27BN (e y — ), e =yt + 4k,
k=ko k=kg

where y; = 1 and > 1 depending only on N and s. Compared to (5.10), note
that there are no spatial rescalings, and the requirement that (T, R), = R, is used to
justify the choices of yy.

Next, we apply Proposition 3.4 for gy = g(" 4D and B = BUrax) (with y; = 36 in
the translationally symmetric case and (ro, r) = (20, 10) in the axi-symmetric Case),
from which we obtain b(}h) = (V w(k), ()L)) and i up) = (Vl( A)” lb(k), I/~/()L)).
For A, = 2k with N to be chosen later, we set

El(fr’w)(t, X, 9,2 = by Q7% x, vy — o), J/;Etr’w)(l, X902 = Yo Q7% x, y — wi).
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By construction, it may be checked that (b\""**", 1{"**"") obeys all estimates claimed

in Propositions 3.1 and 3.4 (formulated in terms of ﬁ,(ctr’aXi), (l;,zc)(”’“x") and 1/},5"’”0)

with implicit constants of size O (2¢%).
We take as the initial data

00
B(()tr,axt) _ ﬁ(zr,axi) + Z 2_k)»k_sl;](("’ax’)(t —0), u(()tr,axt) —0.
k=ko

Clearly, (ug, Bg) € HS! x H? and its H°~! x H* can be smaller than € > 0 by

comp comp?
taking ko sufficiently large.
Towards contradiction, assume there exists a solution (u, B) € L°([0, §]; H® -l
H?®) for some § > 0 with initial data (ug, Bg) with ug = 0 and By is defined as in
(5.12). Set b(t) = B(t) — B. The system of equations for u and b are:

oou+u-Vu+Vp—vAu=(VxB)xB (5.23)
and

atb+(b~V)(VxI§)—(Vxﬁ)-Vb—i—(ﬁ-V)(be)—(Vxb)-VIo}(524)
=V x(Vxb)xb+B-Vu—u-VB. )

(ii) localization of the energy identity

For simplicity, we proceed in the case of translationally symmetric case, and leave
the similar axi-symmetric case to the reader.

Let us first obtain a simple L2-estimate for p. Recall from (1.7) that p has been
only fixed up to a constant; we fix this ambiguity by defining p as

p= ZRZ-R,(ufuf) —ZR,-R,(B"B/’) - ¥~ (5.25)
ij i
Then we obtain?!
Iplz2 S NPl + BRI 2 S ullZer + 1Bz
using the embeddings |||u|2||Lz S aflpefallzze S ||u||%1”,1 and similarly for B.

We now introduce the cutoff functions. This time, we fix some smooth function
x(¥) = 0 supported on [—1, 1], x(y) = 1 on [—1/2, 1/2] and define

() = xQu & — o).

We have that xy is supported on [yx — /2, yx + ¥ /2], and GRS wk.

21 In fact, the same estimate justifies the choice of p as above for our solution.
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We multiply both sides of (5.23) by xx and take the L? inner product with x;u. We
handle the RHS as

B|?
(xx(V x B) x B, xxu) = (xxB - VB, x,u) — (XkVT, Xkw)

= (xc(B - V)b, xeu) + (IBI*Vx, xcu),

where we have used that B- VB = 0 and an integration by parts. Applying integration
by parts to the other terms, we obtain

1d
2 dt

S Il lxeulzz (IRl + IRl + 1B 2 + v Vall2 )

lxkulls> — (B - V)b, xeu)

(5.26)
S lxgllzee llxeall 2

ont € [0, 8] withaconstant depending on v > 0 and the norm of (u, B) in L{® (HS_1 X

H*). We now multiply both sides of (5.24) by xx and take the L2-inner product with

xkb. We proceed similarly as in the (E-MHD) case, except that we simply use the
quantity || x; ||z whenever a derivative falls on xx. Then we obtain this time

1d 2 23 2 ,
5 1Xeblle = G B - Vou, xub) S IVIBIlLoe kb7 + Iz VDIl 2 [ xb |l 2

+ Illzo 1BV 2l xebll 2 + VB ool xull 22 | x|l 2
< (Ixpllzs + b2 + lxullz2) Ixbll 2.
(5.27)

where the last implicit constant depends on ||B|| > zs. Then, putting (5.26) and (5.27)
together and applying integration by parts, we have

|=(xx(B - V)b, xxu) — (B - V), xicb)| S Nxelieoe BB 2 [ xcull 2

and hence
d
a(”Xku“iz + ”Xkb”iz) Sllxpllzee lxwl g2 + (Ixglze + xbllzz + lxeullz2) Ixebll 2.

Note that [[xb(t = 0)[|2 = 27%A;* = 27WsTDk We now choose 1 > lina
way that (depending only on N and s) [[x;llre < u% < 27Ns+DK Then using
Gronwall’s inequality, we obtain, for ¢ € [0, §],

w22 + b 172 S 274 % = I xb(t = 0)|12, (5.28)

with an implicit constant independent of k.
(iii) localization of the generalized energy identity and conclusion of the proof
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Using the same cutoff y; as in the previous step, it is straightforward to obtain a
localized version of the generalized energy inequality in this case: taking the L>-inner
product with the degenerating wave packet solution (bg, uy) from step (i), we may
prove

d -
O, i) | < 25K b (r = 0)]| 2.

d .
— (xb. b el
{(xxb, b) + ”

dr

The rest of the argument is parallel with the (E-MHD) case, using interpolation and the
degeneration property. In fact, the proof in this case is simpler since the energy bound
(5.28) is stronger and valid for a longer time. We omit the straightforward details. O

6 Proof of Gevrey Space lliposedness
6.1 Reduction to Construction of Degenerating Wave Packets

We shall treat the electron- and Hall-MHD cases simultaneously. The main step of
the proof is a version of Proposition 3.1 and Proposition 3.4 applicable for Gevrey
(in particular, analytic) class of data. Note that the statement of Proposition 6.1 is
essentially the same with Propositions 3.1 and 3.4 except for the form of the initial
data and the phase is now taken to be ¢/***Y). For simplicity, we restrict ourselves
to the x-independent case. This allows us to only consider degenerating wave packets
that are pure functions of y, modulo the phase ¢/**.

Proposition 6.1 Let B = f(y)0x as in Theorem F, and assume without loss of gen-
erality that f(0) = 0 and f'(0) > 0. Let go(y) € C®(T) be a complex-valued
function such that f~'gy € C®(T) as well. Assume further that go is supported in
[—=y1, y1l for some yi > 0. For any such go and % € No, we may associated a pair

(ba), Yoy)lgol satisfying the following properties:
o (linearity) the map go +— (56), 1/}(,\))[go] is linear;
—iAX 2
b

e (x-separation) for all t, e ) and e 1/?@) are functions of y only;

e (initial data) att = 0, we have

3 . 1 1
b,y (0) = —e Mty <ﬁgo + E(a},go -3 ', fg0)> , (6.1

Yy(0) = Al g, (6.2)
and

IRel5,, ()]ll 2 + IRe[V ) O]l 2 = cllgoll 2 — €2 ligoll 1

e (regularity estimates) for any m € Ng and t € [0, 1],

sup [[0.720) ! £, DG (D2 S llgoll g

0<k<m
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sup |2 29)F T Fa)™ EV ) D2 S llgoll gmers

0<k<m

o (LP-degeneration) forany 1 < p <2 andt € [0, 1], with some cy > 0,
~ ~ —er(L=1yn
155, Ol 200 + IV T Oll 2.0 S e P72 ol s
e (error bounds) fort € [0, 1], ew[Ba), &(A)](I) = 0and

leolBy. Tl S ligoll 2.

In the case of Hall-MHD, in addition to (Bé\)’ Yoy), we take

iy lg0l = —¥lgol,  @uylgol = —bf, g0l (6.3)

and then we have

e (smoothing for fluid components) for t € [0, 1], we have

a5,y D2 + IV (=2) ooy @l 2 S 27 goll g
IVaG, Ol 2 + oo Oll2 S lgoll s

e (error estimates) fort € [0, 1], we have

3,3”)[118), @), Eé\)’ oyl +vAY =0,
IV (=) G 1, s 0y, By Yool + vAD) D2 S 27 goll 2,
185125, . iy B Pl Ol z2 < llgoll 2
1V, it @09, 55 Y 10l S llgol -
Remark 6.2 Note that g itself cannot belong to all Gevrey classes (in particular, ana-

Iytic) since it has compact support. In the proof below, we shall take some Gevrey
class function go which is supported near y = 0 and truncate it to obtain g.

Remark 6.3 While stronger degeneration properties on par with (3.4)—(3.6) are
expected to hold, in order to reduce the amount of technicality, we chose to state
and prove only the simpler L?”-degeneration property that is sufficient for the proof of
Theorem F.

We now give the proof of Theorem F assuming the above statement.

Proof We first consider (2.14), the linearized electron-MHD equations at B= f(y)ox,
with data having a single frequency in x. We may take some function go(y) such that
goand f~!gg belong to G given o > 0, since we have assumed that f(y) € G and
G7 is closed under multiplication.
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Take some y; > 0 and let x be a smooth bump function in y with x = 1 on
|y| < y1/2 and vanishes for |y| > y;. We could have assumed that the support of g
contains the interval [—y; /2, y;/2]. Take go := gx and define

by (0) = By ¥y (0), =31 (0), b, (0))

with (56), &(A))[go] which is provided by Proposition 6.1. On the other hand, define
the initial data b;)(0) from

bfx)(o) — _en\(x+y>\/§g0’ Y (0) := e M) o

which clearly belongs to G°. We may take the real parts of E(A) (0), b(;,)(0) to ensure
that the data are real-valued, and further normalize the L?-norm of l;()») (0) by 1. We
then proceed as in the proof of Theorem A: denoting the unique solution of (2.14)
with initial data b;)(0) by b, (¢), we have

by, b)) (@) — (b b)) O)| S byl oo qo.1:22) S ENby Ol 2.
On the other hand,

(bGys b)) (0) 2 by (0)l 2

independently of A so that for sufficiently small § > 0, we obtain
(b b)) () Z 16y )2, 1 €10, 8] 6.4)

again with a constant independent of A.
We now claim that there exists ¢, € R such that for each positive integer n,

137 boy (D2 Z T D by ()] 2, (6.5)

We emphasize that the implicit constant is independent of n. When n = 1, the claim
follows by (6.4), the degeneration property and the Sobolev inequality as before. Next,
for any n > 1, we have

n-1 1
1aybeo 2 < lbooll, 5 1376y,

which can be seen easily by using the Fourier transform. Then (6.5) follows from the
case n = 1 and the bound sup, ¢ 51 [16G) (D)2 < e 1by(0)] 2 for some ¢, € R
independent of A.

To conclude the proof in the electron-MHD case, we consider initial data of the
form

b(0) =Y cxb()(0)

reN
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where we normalize each I;(A) (0)in L? and ¢, = e_)‘l/”. This ensures that the initial
data belongs to G (T?). Again by the assumption of uniqueness, we deduce that the
solution satisfies

n 2 2 (cx+2crt)n __ —2219 42(cstcpat)n
103G 2s) 2 D cheleT2rMm =y e O (66)
reN reN

At this point, we divide the argument into two cases: Case 1: 0 > 1 When o > 1, this
series simply does not converge for any ¢ > 0 for n large depending on ¢, o, which
concludes the proof.

Case 2: 0 < 0 < 1 Fix a small parameter 0 < € < % Since each summand on the
RHS of (6.6) is nonnegative, we may show that, for sufficiently large n depending on
cf,cxand t,

1 1
oV T—0 9 T—0 tp 1
18250 2 sy 2 e CrnTonToden o = 5T o T, 6.7)

by keeping only the summand with A = |[(oc ft)ﬁnﬁj.22 Observe the crucial
properties that ﬁ > land ¢, > 0, since 0 < o < 1. Recalling (1.10) and the
crude bound n! < €"1°¢"  we see that (6.7) implies that the G°' radius of convergence
of b(t) is zero (i.e., b(t) ¢ G"/) for every o’/ > 0. This finishes the proof for the
electon-MHD case.

We now indicate the necessary modifications for the Hall-MHD case. In addition to
the initial data b3 (0) defined above, we simply take u(3)(0) = 0. Let (u(y), b(1)) be the
solution with the initial data (0, b;)(0)) which exists by assumption. Then, applying
the generalized energy inequality from Proposition 2.3 with the degenerating wave
packet from Proposition 6.1 yields

(b, boy) (1) — (b, b(x))(O)‘
S @+ 4270 (Ibo i) + o lsasen + luo 2, )

applying the error bounds together with the smoothing estimates from Proposition 6.1.
Thus, choosing 0 < § < 1 sufficiently small, we obtain for all sufficiently large X that

by, b)) 2 by (0|l 2 fort € [0, 8].

The rest of the argument is the same with the electron-MHD case. O

6.2 Analysis of the Hamilton-Jacobi Equation

The heart of the matter in establishing Proposition 6.1 is to repeat the WKB-type
analysis for the phase function which is simply given initially by y. That is, we seek a

22 The choice of A is motivated by the Laplace method for deriving asymptotics of an exponential integral.
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solution of (3.20) with initial data ®(0, ) = y(n). Before we proceed, we recall the
renormalized form of (2.14): after change of variables

T=At, 7= %’ o= fi%w —: M

we arrive at
1 1
02¢ — 02 + 27 20 + [Eanu“anf) - Zf—z(anff] ¢=0.  (6.8)
The ansatz for ¢ will be

o(r,n) = A~ D (7 )

where hg = h(0,-) is simply given by f -3 go with go given in the statement of
Proposition 6.1. We recall the system of equations

(3 D)% — (3,®)* = £2, D0, n) = y(1) (6.9)

and

1
(3, D, — 8, Pd,)h = —E(afcb — 0, ®)h. (6.10)

Explicitly Solvable Model Case

It will be instructive to take a look at the simplest model case of f(y) = y, to get
an idea of the behavior of the solutions to (6.9) and (6.10). In this case, f(n) = e"
and hence ®(0, n) = e". Let us also set hg(n) = €" (for n < 0). Here and in the
following, we shall use the notation A ~ B to denote that the ratio A/B converges to
some positive constant in the limit n — —oo, and use A =~ B when the constant is 1.
Taking the ansatz ®(z, n) = ¢"H (t), we are led to solve

(HY?—H*>=1, HO) =1
and we have the solution (unique up to sign)
H(t) = sinh(t — cp), co = sinh~'(1).
With this @, (6.10) becomes simply
(8r — tanh(t — co)a,,) h=0,
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noticing the cancellation 8,2<I> — 85613 = 0. The solution is then explicitly given by

e = o (14 10g ST €0 ) _ g €N~ )

cosh(—cp) cosh(—cp)

One sees that in this case, all the characteristic curves are parallel in the (t, n)-plane
and moves to  — —oo with asymptotically unit speed, and that h(t, n)/e"™* — 1

along each characteristic curve in the region n < — 1og(%) ~ —1. Assuming

that the support of A is contained in {n < C} for some C > 0, one sees that all the
Sobolev norms of i (t) are uniformly bounded in terms of the corresponding norm of
the initial data in the limit T — +o0.

Initial Data

We now take some general smooth f with 9y, f(0) = c¢p > 0. We recall that

n(y) ~c+ % Iny
for some constant ¢ (which can be normalized to be 0), and hence
F () & coe.
We had the following asymptotic expressions for the derivatives:
100 £1(n) S £ () S €07, Y 0. (6.11)

We note that from ®(0,7) = y®), 9,P0,n) = f(n) =~ coe®". Therefore,
3, ®(0,n) = V2f(n) ~ 2cpe". Similarly, one may check that d,,®(0,7) =
V20, f (), 920(0, n) = 92D (0, n) = 3, f ().

Characteristics

Define the characteristic curves by

d 8,
_Y(tv 770) = -

, Y(r, . Y, = 1.
i afq)(r (t. m0)) (0, 1m0) =no

Then, differentiating the equation for ® in T and n, we respectively obtain

Lo, Y (r.n0)) = 0 (6.12)
dr
and
d 0, ® Y = f/ Y (6.13)
P Y (w00 = S (@ Y (@), :
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Therefore, we deduce that

d 3, @ ff'
E( 0.3 (t, Y(z, no))) (a,Q)Z(T Y(z,n0)) <O.

Since 9, P/0; P|;=0 =1/ V2 and 0y, ®/9,® < 1 from the equation, we obtain

1
no—t<Y(,n) <n ——=t (6.14)

V2

for all T > 0 and 5o large negative. In particular f(z, Y(z,n)) < e0—c7) and
similarly for f’, so that (6.13) implies @ (z, Y (7, n))=e". In the following we
shall always assume that 9 < 0 is taken to be sufficiently negative so that the above
estimates hold.

Second Derivatives of ®

We compute
d (8,9 2 [0, 0\? [0, D\?
— 1
e (a 5 @Y no))) ERSE ( ) <arq>) (. Y(z, no)). (6.15)

For each fixed ng <« —1, we introduce Q(t) = (9;: P/, P)(z, Y (7, 19)). Since the
RHS of (6.15) is nonnegative, for all T > 0 it follows that

Q(r) = (0) > 0.

Next, note that 0, ® is invariant and g,g is decreasing along characteristics; at t = 0
n

they are equal to /2 f (o) and +/2, respectively. Thus,

F2(Y (x,10))

2
Py 20

d <
S0 =

Solving this differential inequality, we see that

000

2
1= 0(0) [y LUREm ar

0(r) <

as long as the denominator is positive. Recall that Q0 (0) ~ \/LECO and f(ng) =~ coe0m

as ng — —oo. Moreover, Y (t, n9) < no — %t by (6.14). Thus,

N =

X @) X feor 4o
~ d
Q()/ e anldeby S A r=
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which ensures that the above denominator is > 1 for all sufficiently negative no.
In conclusion, we have proved that

O ¥, )l
= (1, Y(t,n)>~
9, ® g

for all n sufficiently negative. In turn, using (6.12) and (6.13), we respectively deduce
that

Iy ® 0, D 0y D RO 9, D0, ff

— ~ — ~1

00 9,0 0, D 0, D  9,P 0, D 09,P0, D

along the characteristics, for sufficiently negative 7.
Higher Derivatives

To begin with, differentiating (6.9) twice, we obtain a linear system of equations in
third order derivatives of ®:

(B0 ®)? + 8 POrrr @ — (9 P)* — 8y Py ® =0,
0 @0rc @ + 0 POy @ — 0, POy @ — 0, Py ® =0, (6.16)
3 @y @ + (3 @)% — (3 @)% — 3, Dy ® = ()2 + ff".
An estimate on a single third-order term along the characteristics lead to the corre-
sponding estimates for all the other third-order derivatives, using (6.16). To this end we

shall estimate 0, ®: differentiating (6.12) twice in T and using that d; ® is constant
along the characteristics,

d Orec® Bec®  2f7 Bpey® . d  f? 3, D ;. P
(z,Y(t,n0) = 0r |
dr 9, P 3@ 9, D3P 3, P 3@ 9, 3,0 ) 3,0 3D
9 ® 217 (0 ®)? | 3@ 0D (35D
3,0 9, DY \ 3, D0, 3D 0,0 9, DI,D
I @ f2 Brrr®  Bpr D20, DY, D + 8, DI, D)\ 9, D
3 3, P3P \ 3, (3, )28, 3@’

where the expressions on the RHS’s are evaluated at (t, Y (t, no)). Apart from the
expression d;;; ®/d; ® which we need to estimate, all the ratios appearing on the last
expression are of ~~1, except that f2/(d; @0, @) decays exponentially in 7. From this
we conclude that

Orec @
—— (7, Y (7, ~1
5. (7, Y(z,m0))

for all ng sufficiently negative. Using (6.16) we also deduce

3

7, Y (1 n ~1.
. ) > 110
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It is clear now that a similar estimates hold for higher derivatives of arbitrary order.
For instance, to obtain such estimates for the fourth order derivatives, it is sufficient to
prove 8? ® /0, @1, and for this purpose one simply needs to differentiate the above
expression for d;;; ®/0; P in 7 and observe that the RHS can be written in the form
where all the expressions are of order 1 except for the quantity 8? @ /0, @ itself which
is multiplied with a temporally decaying factor f2/(d; ®0, D).

Analysis of the Transport Equation

We consider

0, ®

L=20; —
ERE W)

A,

towards the goal of estimating % via the transport equation (6.10). Before we begin,
note that the divergence of £ with respect to dn is

9P  0,P— 070
T, T 8,0

(6.17)

Comparing this expression with the RHS of (6.10), we see that the L?-norm is
conserved: ||A(7)] ;2 = ||holl ;2. We shall now proceed to show that actually all W*?-
norms of % are uniformly bounded in 7 as well.

First, observe that (6.10) can be simplified using the method of integrating factors:
introducing a real-valued function «/(z, ) defined by

1920 — 32
Lo=——— T | 6.18
T2 b0 (©.18)

with the initial condition «(t = 0) = 0, we see that
L(e %h) =0. (6.19)

For any m € Ny we claim that

2 2
g (1020 =00
"\ 2 %o

holds for n <« —1. It follows directly from (3.27) and the estimates for derivatives of
® along the characteristics obtained in the above. To see this in the case m = 0, note
that

(T, Y (T, 100)) S €207

3,® 3, @ '
JL—&W¢-—-L—&U¢+-ff
3, @ 3, ® 3, D

RO —0d =
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so that

1070 —97®  19,®  f2 1 ff
2 0,d 2 0,D 9,D9,d 20,99,

which is ~e~2¢%07 when evaluated along a characteristic. It is now straightforward to
extend the above estimate to m > 1. Then by (6.17), for any £ > 1 we have decay of

the coefficients
8‘3 0,®
0, @

In the case £ = 1, it shows that the divergence of £ with respect to dn decays expo-
nentially in T along characteristics.
Using the above observations, we obtain the following L°°-bound for «:

(t, Y (7, n0)) Sp e 20,

sup sup ||8§8,r]” —*

0<k<m t>0

a(Dllrge Sml

from which it follows that
Lemma 6.4 Let h be the solution of (3.21) with smooth initial data hy supported on

n < 0. Then we have the estimates

max sup ||a Ko h(T) Lo,y Sm Ihollwmr,)

0<k<m

for any integer m > 0and 1 < p < o0.

Remark 6.5 One may consider the x-dependent case of the transport system as in
(3.21) with @ solving (6.9). From

%, (0, D)2 +2f2

L=3d, —
g0 9, ®

s (6.20)

and

d (8, ®)> + 212
9 Xt 20 o) 1= — 0PV E2T

9Y L) ~ 007)0’
i ) (z,Y(z,m0)) ~ e

we see that ng-gradient of the speed of the X-characteristics does not decay in t.
This inevitably gives rise to a linear in t growth for n-derivatives of /; indeed in the
expression for £[0, /], we have

9, ®)% + 2 f2
an(—(” ;g f)axh

@ Springer



On the Cauchy Problem for the Hall... Page950f106 15

on the right hand side, which does not decay in 7 along the characteristics whereas
all the other coefficients are exponentially decaying. Therefore we cannot hope for a
uniform-in-A error estimates for our WKB ansatz after returning to the ¢-variable.

In view of this, the explicit choice of the phase function in (3.23) is not just for
simplicity, but it is precisely the choice which allows uniform estimates for the 7-
derivatives of & in 7.

6.3 Degenerating Wave Packet Approximate Solutions

In this subsection, we complete the proof of Proposition 6.1. We note here that we shall
only consider the region y > 0, but a parallel argument can be given for y < 0 with
a similar change of coordinates. (Strictly speaking, the wave packets can be simply
defined to be zero for y < 0 and still the proof of Theorem F goes through.)

(i) case of (E-MHD)

The first step is to estimate the error in the ¢-equation. Given go, we apply the
WKB construction from the previous subsection with

ho(n) == £~ 2(y(m))go(y(1)

to obtain (®, k) and define

oy = fIATN GO G n(y)), B, = —(f30 7 @)
Then it is clear that
&(x)(l =0) = )Lflei)»(ery)gO
and
bl (1 =0) = =(f3:) ™ @rd)li=o = —f 7 (W) (A0, Dt = 0)go + dr go)e*
=—f! (ﬁfgo + %Bzgo) M)

1 1 .
= - <‘/§g0 + E(aygo - Efilayfg())> Mty

using

1 3 1
@0 = =2, (1 0)
which follows from evaluating (6.19) at t = 0. The claimed lower bound on the
initial data can be checked in a straightforward manner, and the upper bounds for
&( 1) Efk) follow from the corresponding bounds on / as in the proof of Proposition 3.1.
The LP-degeneration property follows since in the (t, )-coordinates, the support of
(IZ(A), 5&)) moves to n — —oo with speed at least l/ﬁ.
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The last step is to estimate the error. Denote by ey, = ey[ho; A](, n) the LHS of
(6.8) evaluated with ¢ = A~ 1e!*®@Mp(7, y). It is a straightforward computation to
see that for each T > 0,

les (@3 < 272 (Il + 19ZRl2 + N7h1L2) (2) S 272 lholl -
Then from eb[l;a), oyl = kze’“f_%ed), it follows that

leslbfys Yoz, < lholl gz < llgollaz-

(ii) case of (Hall-MHD) ~ B

First, defining 126) and @) from b?)»)’ Y. as in (6.3), the claimed estimates for
iy Vil(y), &), and V4 (=A)"@y,) follow directly from the regularity estimates
for bf)») and /), using L?-boundedness of the operator V+(=A)~19, and the fact
that 9 ! gives simply division by i . Moreover, the error estimates follow in a similar
way, using the relation (3.57) and that eb[lsfk), oyl = Azei’\xf_%e(;). o

7 Proof of lllposedness for Fractionally Dissipative Systems

The goal of this section is to give the proof of Theorem G. As discussed in the intro-
duction, we only consider the case M = T>. The proof is parallel to the proof of
Theorems A and C. We shall use the exact same degenerating wave packets con-
structed earlier; the only difference is that there are additional error terms arising from
the dissipative term and the time-dependence of the background magnetic field, which
is also induced by the dissipative term.

7.1 Background Magnetic Fields

Upon taking B = f(t, y)dy into (1.11), or (1, ﬁ) = (0, f(¢, y)dy) into (1.12), the
nonlinearity vanishes and we are left with

O f(t.y) =—n(=D)*f(t,y). (7.1)

From now on, we shall fix the initial data fj to be a function satisfying the following
assumptions:

e fpis C*°-smooth,
e fp meets all the requirements stated in Proposition 3.1 with y; = %; that is,

1 1 1
fo(0) =0, f0)>0, fy > §f6(0) and 0 < fo(y) < 3 for y € [0, E]’
e fopisoddaty =0, and
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o (=A)*fy=00n]0, 117

It is not difficult to see that by first taking g € C°°(T,) to be some odd function
which is supported outside of [—1, 1], we can arrange fy := (—A)~%g to satisfy all
the required properties above.

Using Fourier series, it is easy to see that there is a unique smooth solution f(¢) to
(7.1) with initial data f, which satisfies f (¢, 0) = O for all # > 0. We shall need the
following simple

Lemma 7.1 We have, for fo satisfying the assumptions above and for any § > 0,

172y @) = oD o 0,1 w00, 1)
I3 = oD oo spswe o, by Sod 1
(7.2)

Proof Since (7.1) preserves the odd symmetry, we have f(r,0) = O for all # > 0.
Similarly, o, f (¢, -) and 812 f(t,-) vanish at y = 0 for all # > 0. We then estimate

32f( ),
[yl

Lf @) = fo) = 1@ Hli=oOI _
Iyl

l .
=75 1879y £ Il Lo 0.51xT, ) -

From standard energy estimates, we have that
2
1979y fll Lo 0.81xTy) S fo.5 M-

Since (0; f)|;=0 = —n(—A)¥ fo vanishes on (—%, %) from the assumption on fj, we
have that

172y N ) = foOD N e 0,51% 0, 1y Sfoud -

The other estimates can be obtained similarly. O

In the remainder of this section, unless otherwise specified, we suppress the depen-
dence of implicit constants on f{.

7.2 Proof of Theorem G for (1.11)
We now prove Theorem G in the electron-MHD case, assuming 0 < o < % andn > 0.
Towards a contradiction, assume that there exist §, ¢ > 0 and s > sy > 3 such that

the solution operator is well-defined and bounded as a map

Be(0; HY) — L°([0, 81; H™).

23 Thisisa cheap way to avoid error terms of order O(¢) in the generalized energy estimate. Presumably,
a more appropriate way to proceed is to repeat the entire WKB analysis with time-dependent coefficient

F@.
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Note that we are also assuming s < 3sp and 5 < 5—2{ Under this assumption, we
consider the sequence of initial data parameterized by A:

B = fo()d: + by (0), (1.3)

where fj satisfies all the assumptions from above and b;)(0) will be specified below.
(As before, by rescaling the data we can assume without loss of generality thate = 1,
although strictly speaking, the value of 1 will now depend on € as well. The following
argument works for any large constant 7.) Then, for each A > 1, there is a solution
BM (1) e L®([0,5]; H*) to (1.11) with initial data By~. We have that, from the
assumption of boundedness of the solution operator,

sup sup [BX(@)go < A (7.4)
A 1€[0,8]
for some constant A > 0. In the following, the constants C, c, - - - may depend on A.

For simplicity of the notation, we shall drop the dependence of the solution in X from
now on.

We now specify b(;)(0). As in Theorem A, let l;( ») be the degenerating wave packet
provided by Proposition 3.1 with f = fj associated with a nonzero smooth compactly
supported profile gg. Taking the support of go to be sufficiently close to y = 0, we
may ensure that the constants C gy, ¢y, in (3.4)—(3.6) obey Cy, = cy, + €o, where
g0 = eo(a) will be specified below. In what follows, we suppress the dependence of
implicit constants on gg. We take

b3y (0) = 275b)(0).
We now define b, (1) := BM (1) — B(r) := B(1) — f(t, y)d,, where f(t) is the
solution of (7.1) with initial data f. We also set ﬁo = fo(y)0x. To lighten the notation,

in what follows we simply write b(7) = b ().
The equation for b is given by

b4V x (Vxb)xB)+V x (VxB)xb)=—n(=A)—V x (Vxb)xb),
V-b=0.
(7.5)

Taking the inner product of the first equation with b and integrating over [0, ] x T3
for0 <t < §, we have on [0, §]

bl < 1bay O 2 S A7 1bay Ol S A7 (7.6)
where the implicit constants depend on ﬁ(t) but not on A. Moreover, by (7.4)
1B a0 < IBO o + B0 S 1
uniformly in A for ¢ € [0, 4].
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We write €; = (—V-ie € j-) to denote the error associated with E(A) defined in
Proposition 3.1 (see (5.3)). Then,

d T Ty 1.y 1.2 7
b(1), by (1)) = (b, €5) — (fg' D%, b)) = (fob”, b)) — (V x ((V x b) x b), b))

3¢
— 1{(=A)*b, b)) — (G, by),
(7.7)

where

G(t) =V x ((Vxb)x B-Bp)+Vx((Vx®B-By) xb).
Comparing this identity with (5.4), the only additional terms on the right hand side are
from fractional dissipation and time dependence of the background magnetic field.

We estimate

(= 8), buy) | = |(b, (=2)"bg)
< 1Bl L2 (= A) by Il 22
where, by (3.4) in Proposition 3.1, we have
I(=2)*bayllzz S 1boylly > boy l7s < 220 G0M,
Next,
(V X ((V x b) x B—B0)), bpy) = —(b, V x (V x bzy) x B —By)))

and using (7.2) together with the fact that 1! ydy acts as a bounded operator on Z;(A),

IV x ((V x bgy) x (B —Bo))ll,2
S 2 U8:boyll 2 + 118256y 1 2 + 1ydyboyll 2 + 11ydydxboyll 12)
<21+ 22).

Similarly, we can write
(VX ((V x (B —=By)) x b), b)) = —(b. (V x (B—Bp)) x (V x b))
and estimate
1V > (B = Bo)) x (V x byl 2 S r*reh™.
This gives

‘<G, Bm)‘ < 214 2% + 1eChM)
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Recalling the error estimate ||€,||; 2 < 1, collecting the terms, and applying (7.6),
d -
‘E(b(t), b, (r))‘ < (1 + 220 eCh @M 421 422 4 xecfo“)) 160l 2.
We integrate in # € [0, £*], where t* := A~ In(A?) with ¢ > 0 to be determined:

t*
/ (1+k2aecf0(2a)m+t2(1+k2+kec_foxr)) dr
0

SCZ +* + )h2otfleCf0(20l))»t* + (f*)3()\.2 + AeCfOKI*)
SJ )\._l ln()\,s) + )\'(20[—1)-‘1-Cf0(201)8 + )\._l ln()\'S) +)\.Cf08_2(1n()\.£))3 << 1

since it is easy to pick & > 0 small (depending only on «, C ) so that
Qa -1+ Ra)Cpre <0, Cpre—-2<0,

recalling that 2e — 1 < 0. Therefore, with such a choice of ¢ > 0, we conclude that
on [0, t*],

- 1 -
(b(®). by (@) > 7{b(0). b (0)) (7.8)

for A large enough. Using the degeneration estimates (3.5)—(3.6) for E(A) (t)att =1t*
(see also the proof of Theorem A), we then obtain

1) Imso 2 11B(O) 122" exp(e fysoAt™) 2 ATH00ATOTS,
Recalling the assumptions on s and sg, we may pick € and g9 = C ) — ¢, so that
(cfpe+1sg >s

which gives a contradiction for A sufficiently large since [|b(t*)| gso < 1. O

~

Remark 7.2 (Modifications for o = %) We sketch the necessary modifications of
the preceding argument for establishing Remark 1.11. Without loss of generality,
we normalize n = 1. Consider the sequence of initial data BE)A) = CAO( fo(y)ox +

b(3)(0)), which is obtained by rescaling the data from (7.3) by CAO; Cy is chosen so that

||B(()A) s < A. Towards a contradiction, assume that lim inf;_, oo ¥ = 8y > 0 and

) ()l s . . . I .
lim sup; _, o, Sup;¢(o.5] % = 0. Using Proposition 3.1 in combination with the

rescaling of time ¢ +— Ciot (which takes into account the rescaling of the initial data)
and proceeding as above, it is possible to show that

- 1 Co
(b3 b)) (1F) > 3 for t* = Y

fo

In (C14)
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for an appropriate constant C; > 0, where bf, (1) = BM (1) — CAO f(t, v)d, and

52}0 (t,x,y) = I;(A)(Ciot, X, y). By duality and the degeneration property in Proposi-
tion 3.1, it follows that

s+
1B ()l as = 16*O) 122° exp(c sy Ashr®) = AT

Choosing Cy, — cf, < €C, (see Remark 3.3), we attain the desired contradiction.

7.3 Proof of Theorem G for (1.12)

We indicate the necessary modifications for the fractionally dissipative Hall-MHD
(1.12). As before, without loss of generality, we take ¢ = 1 (the argument below
works for any v, n > 0). Let l;m (t), by(0) and Bék) be defined as in Sect. 7.2. In
addition, we take u(()k) = 0. By hypothesis, for each A > 1, there exists a solution
®, BW) € L2([0,8]; H” x H®) to (1.12) with initial data (u”, B§"). For the
purpose of contradiction, assume that there exists A > 0 such that solution operator,

sup sup (100l gs0-1 + BP0l ) < 4. (7.9)
A tel0,8]

As before, in what follows, we suppress the dependence of implicit constants on A.
Let (u, b)(t) = (u@y, boy) () = @, B* — B)(t), where B = f(t, y)d, as in
Sect. 7.2. The equation for (u, b) is given by

8,u—IP’<(Vx]§)xb+(be)x]°3)
=—v(=A)'"Pu—P((V xu)xu—(Vxb)xb)

Wb+ V x (uxB)+Vx(Vxb) xB) +Vx(VxB)xb)
= —n(—=A)* — V x (V x b) x b),

V-u=V-b=0.

By taking the inner product of the first two equations with u and b, respectively, and
integrating over [0, ¢] X T3 for0 <t < 8, we have on [0, §],

d 148 _
lu@li2 + 6@l L2 + Vfo [(=A) 2 u(@)|2dt" SN6O)I2 S A5, (7.10)

where the implicit constant depends on ]§(t) but not on A. Moreover,
lu()l gso-1 + 16O 50 S 1
uniformly in A for ¢ € [0, 4].
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Writing §; = (—Vl(—A)’lag)), 81(;2)) and §; = (—VL%, d;.) for the error asso-
ciated with (@i (y), B(A)) defined in Proposition 3.4, the generalized energy identity in
this case reads:

d ~ -
(). by @) + w®). iy 1))
= (. 83) + (b, 85) — (fou™, (B*)") = (fo®™)H, ™) 7.11)
— (fob*, b)) — (foDY, B, )
= (=) Pu i) = n((=8)"b. bay) — (i) — (G, by),
where G is as in Sect. 7.2 and

H:=—(Vx®B-By) xb—(Vxb)x (B-—By).

Comparing this identity with the proof of Theorem C and (7.7), note that the only
additional terms on the RHS are from the fractional dissipation v(—A) 148y and H(r).
For the former, we use Proposition 3.4 to estimate

- 148 48 | 48
(=) TPu, i) = vIl(=A) 2 ull 2 (=A) 2 digy 2 S vI(=A) 2 ull 24P eCnPH,

while for the latter, we move V x away from b by an integration by parts and estimate
[(H, dGy)| < [((V x B = Bo)) x b, i)l + (b, V x (i x B —Bo))| S 1%

In both bounds, we used the property that Vii(;) obeys the same estimates as l;(x). In
conclusion,

d (e i i
‘a (@), by ) + (o), um(r»)‘

S (14229 4 201132 1 2eC0)) 6O 2 + VAP (= A) T u o] 2.

As before, we integrate this inequality over the time interval [0, t*] = [0, 21 In(A%)]
where ¢ > 0 is to be determined. The contribution of the first term on the RHS is
handled as in Sect. 7.2. For the second term, we use Cauchy—Schwarz and the last
term on the LHS of (7.10). Then for ¢ satisfying

Qa -1+ QRa)Cpe <0, 2B—-1D+2B)Cfpe <0, Cpre—2<0,
and A large enough, we obtain
*\ T * kY~ * 3 -
(D(t7), by (™)) + (u(@™), upy (™)) > Z(b(o),b(x)(0)>~
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Observe, moreover, that (u(r), it;) (7)) S A~ Hb(0), B(M (0)) by (7.10) and Propo-
sition 3.4. Hence, we arrive at (7.8) for sufficiently large A, after which the proof
proceeds in the same way as in Sect. 7.2. O
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Appendix A: Existence of an L2-Solution for the Linearized Systems

In this section, we give a sketch of the proof of existence of an L?-solution for the
linearized Hall-MHD and electron-MHD systems, which are recalled here for con-
venience. In the case of Hall-MHD (v > 0), we seek a solution (u, b) € Cy(I; L?)
satisfying

du—vAu =PV xB) x b+ (V x b) x B)

Wb+ VXxuUxB)+Vx(Vxb)xB) +Vx(VxB)xb) =0, (A. 1)
V-u=V-b=0,

in the sense of distributions with the extra requirement u € L,2(I : H') in the case of
v > 0, and in the electron-MHD case, we simply need b € C,,(I; L?) to satisfy

i8tb+Vx((be)xB)+Vx((VxB)xb):0, A.2)

V-b=0.

PropositionA.1 Let M = (T,R), x (T,R), x T, and B be a sufficiently smooth
stationary magnetic field. For any divergence-free initial data (ug, bo) € L*(M),
there exists a solution (u, b) € Cy([0, 00); L?) to (A. 1) with initial data (ug, by)
satisfying

1
5 (OB 200y + 16O 201) + 11211

eCtHVBucl(M)

< 2 (101240, + W0022,)
-2 L>(M) L(M)

forall t > 0. In the case of (A. 2), there is a solution b € Cy([0, 00); L?) corre-
sponding to any divergence-free data by € L*(M) satisfying

1 1 b
Ellb(t)lliz(M) < E”bo”iz(M)eCI”V Bllooqun

forallt > 0.
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Proof The proof is standard; see for instance [41, 42]. An alternative way is to mollify
the equations as well as the data by truncating high frequencies while preserving the
necessary structure for energy estimates, as it is done in [15]. We consider viscous
regularizations of (A. 1) for € > 0, solve the regularized system

u'@ —vAu© =P((V x B) x b© + (V x b©) x B) — eAZ4©
b +Vx O xB)+V x (VxbD)xB)+Vx(VxB)xb©)=—eA?®,
(A.3)

with the same initial data (ug, bg), subject to divergence-free conditions. For each
fixed € > 0, there is a unique global solution (1€, b)) to (A. 3) with initial data
(1o, by) € L2, which is smooth once ¢ > 0. The energy identity (1.4) with the extra
term €| Au'® || 2y on the LHS can be justified for this solution. This shows that the

sequence of solutions {(u‘©), b9)}.¢ is uniformly bounded in C;(1; L?) and u‘® is
bounded uniformly in Ltz(l : H') in the case of v > 0 for any fixed finite time interval
I = [0, T]with T > 0. In the same vein, the solution sequence is uniformly bounded
in Lip,(I; H~*). Applying the Aubin-Lions lemma (see [6,Theorem I1.5.16] for a
proof), we can extract a subsequence (still denoted by {(u'®, b)}) which converges
to some (u, b) in CO(I; H~) for all s < 0. Since the space L*>°(I; L?) is weak-*
compact, we can guarantee that (u, b) € L*°(/; L2) as well.

Clearly we have (u, b)|;=0 = (uo, bo), and the fact that (u, b) is a solution of
(A. 1) and weakly continuous in time follows readily from strong convergence in
cOr; H9).

The case of (A. 2) is only simpler and we omit the proof. O

Remark A.2 We observe that when the stationary magnetic field B and the initial
data enjoy a set of symmetries respected by the Hall-MHD system (or electron-MHD
system), the above proof actually guarantees existence of a solution satisfying the
same set of symmetries as well.
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