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Abstract
In this article, we prove various illposedness results for the Cauchy problem for the
incompressible Hall- and electron-magnetohydrodynamic (MHD) equations without
resistivity. These PDEs are fluid descriptions of plasmas, where the effect of collisions
is neglected (no resistivity), while the motion of the electrons relative to the ions (Hall
current term) is taken into account. The Hall current term endows the magnetic field
equation with a quasilinear dispersive character, which is key to our mechanism for
illposedness. Perhaps the most striking conclusion of this article is that the Cauchy
problems for the Hall-MHD (either viscous or inviscid) and the electron-MHD equa-
tions, under one translational symmetry, are ill-posed near the trivial solution in any
sufficiently high regularity Sobolev space Hs and even in any Gevrey spaces. This
result holds despite obvious wellposedness of the linearized equations near the triv-
ial solution, as well as conservation of the nonlinear energy, by which the L2 norm
(energy) of the solution stays constant in time. The core illposedness (or instability)
mechanism is degeneration of certain high frequency wave packet solutions to the
linearization around a class of linearly degenerate stationary solutions of these equa-
tions, which are essentially dispersive equations with degenerate principal symbols.
The method developed in this work is sharp and robust, in that we also prove nonlinear
Hs-illposedness (for s arbitrarily high) in the presence of fractional dissipation of any
order less than 1, matching the previously known wellposedness results. The results
in this article are complemented by a companion work, where we provide geometric
conditions on the initial magnetic field that ensure wellposedness(!) of the Cauchy
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problems for the incompressible Hall and electron-MHD equations. In particular, in
stark contrast to the results here, it is shown in the companion work that the nonlinear
Cauchy problems are well-posed near any nonzero constant magnetic field.
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1 Introduction

In magnetohydrodynamics (MHD), a plasma is described as a single electrically con-
ducting fluid interactingwith amagnetic field. In the incompressible case, the equation
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of motion takes the form
⎧
⎪⎨

⎪⎩

∂tu+ u · ∇u+ ∇p− ν�u = J× B,

∂tB+ ∇ × E = 0,

∇ · u = ∇ · B = 0,

(MHD)

where u(t) : R3 → R
3 is the bulk plasma velocity field, p(t) : R3 → R is the plasma

pressure, ν ≥ 0 is the plasma viscosity, B(t),E(t) : R
3 → R

3 are the magnetic
and electric fields, and J is the current density. The celebrated ideal (resp. resistive)
MHD equation is obtained by additionally assuming no viscosity ν = 0, Ampére’s
law J = ∇×B and ideal Ohm’s lawE+u×B = 0 (resp. Ohm’s lawE+u×B = ηJ,
where η > 0 is the resistivity); the latter two effective laws close the system in terms
of (u,B).

Actual plasmas, however, are made up of at least two distinct species, namely,
negatively-charged, lighter electrons and positively-charged, heavier ions. When the
motion of the electrons is significantly faster compared to the bulk plasma, which is
the case in many settings of astrophysical importance, Ohm’s law attains a correction
proportional to J × B, called the Hall current term; see [1, 35, 44, 47] for formal
derivations. The resulting system, first introduced by M. J. Lighthill [44], is referred
to as the Hall-MHD equation.

The subject of this paper and its companion [38] is the incompressible Hall-MHD
equation without resistivity, i.e., (MHD) with Ampère’s law, but with Ohm’s law
supplanted by (normalized) generalized ideal Ohm’s law

E+ u× B = J× B.

In terms of (u,B), the system takes the form

⎧
⎪⎨

⎪⎩

∂tu+ u · ∇u+ ∇p− ν�u = (∇ × B) × B,

∂tB− ∇ × (u× B) +∇ × ((∇ × B) × B) = 0,

∇ · u = ∇ · B = 0.

(Hall-MHD)

In the special case ν = 0, the resulting system is called the ideal Hall-MHD equation.
The Hall current term ∇ × ((∇ × B) × B) is both quasilinear1 and of the highest

order; a priori, it may incur derivative losses. For this reason, previous mathematically
rigorous investigations of the Hall-MHD equation weremostly carried out either in the
presence of resistivity [10, 12–16, 18–21], which gives rise to a strong dissipative term
η�B compensating for this loss, or in axisymmetry [11, 39], in which the second order
terms vanish. In the absence of resistivity and symmetries, even the basic question of
(local) wellposedness of the Cauchy problem for (Hall-MHD) had been open. The
answer to this question, as we show in this paper and its companion [38], turns out
to be strikingly rich and markedly different compared to both the resistive Hall-MHD
and the ideal MHD equations.

1 By which we mean that the Hall current term is nonlinear, but is linear in the highest order (i.e., second
order) derivatives of B.
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In the present paper we confirm that the derivative loss in the Hall current term
cannot be avoided in general by establishing a number of illposedness results. In
the central result (Theorem A), we identify a strong instability mechanism for the
linearized (Hall-MHD) around a stationary magnetic field with a degeneracy (i.e.,
vanishing) along a hypersurface, by which the energy of the initial perturbation is
transferred to extremely small scales at a rate proportional to the frequency of the
initial perturbation. Various linear and nonlinear illposedness results are proved as a
consequence of this instability mechanism; see Sects. 1.2–1.4 below for their state-
ments. In particular, we show that the Cauchy problem for (Hall-MHD) is ill-posed
near the trivial solution (u,B) = (0, 0) in any high regularity Sobolev space on any
domain of the form M = T

k × R
3−k with 1 ≤ k ≤ 3 (Corollary D and Theorem E);

this result is on the contrary to the cases of the resistive Hall-MHD equation [15] and
the ideal MHD equation [50]. The Cauchy problem remains illposed even in Gevrey
spaces (Theorem F), which is in stark difference to, for instance, the reverse heat
equation ∂t f = −� f or the ill-posed problems underlying some classical hydro-
dynamical instabilities; see Sect. 1.8. Our method also extends to the fractionally
dissipative case, thereby establishing local illposedness in Hs with arbitrarily high s
as long as the order of the dissipative term in theB-equation is strictly less than 1 (The-
orem G). This result is sharp, exactly matching the wellposedness results previously
obtained by Chae–Wan–Wu [16] in the case the order is at least 1.

In the companion work [38], we complement the illposedness results in this paper
by providing geometric conditions on the initial magnetic field that ensure wellposed-
ness(!) of the Cauchy problems for (Hall-MHD). For instance, in contrast to the
aforementioned illposedness result near the trivial solution, we prove that the Cauchy
problem for (Hall-MHD) is well-posed near any nontrivial constant magnetic field.
We note that the latter setting is the more physically relevant one, going back to the
original work of M. J. Lighthill [44]. For a short (and partial) summary of the results
proved in [38], see Sect. 1.6 below.

The essential features of (Hall-MHD) relevant in the issue of local ill- or well-
posedness are more clearly seen in the simpler system

{
∂tB+ ∇ × ((∇ × B) × B) = 0,

∇ · B = 0,
(E-MHD)

which is called the electron-MHD equation (or the Hall equation) [47,Sect. 10.7]. It
corresponds to the case when the bulk plasma is essentially at rest compared to the
motion of the electrons. All the results in this paper and [38] apply to both (Hal-
l-MHD) and (E-MHD)2. In fact, all the proofs will proceed by first handling the case
of (E-MHD), and then extending the argument to (Hall-MHD).

In both this paper and its companion [38], our basic insight is that the Hall cur-
rent term endows the magnetic field equation with a quasilinear dispersive (i.e.,
Schrödinger-like) character. The main ideas behind both the ill- and wellposedness
results are most natural with such a viewpoint. In particular, the instability mecha-

2 This is with the exception of Theorem E, which works in a somewhat more restrictive setting for the
(Hall-MHD) case.
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nism revealed in this paper is qualitatively distinct from the more classical examples
of hydrodynamic instabilities (Kelvin–Helmholtz, Rayleigh–Taylor, boundary layer
etc.), but it seems to be a prevalent phenomenon for degenerate dispersive equations.
We refer to Sects. 1.7 and 1.8 below for further discussion.

1.1 Basic Properties of (Hall-MHD) and (E-MHD)

To set the stage for the precise formulation of our main results, we begin with a
discussion of some basic properties of (Hall-MHD) and (E-MHD).

Energy Identities

A fundamental property of (Hall-MHD) and (E-MHD), of both mathematical and
physical importance, is the energy identity.

Proposition 1.1 For a solution (u,B) to (Hall-MHD) on M = T
k × R

3−k with suffi-
ciently regularity and spatial decay, we have

d

dt

(
1

2

∫

M
(|u|2 + |B|2)(t) dxdydz

)

= −ν

∫

M
|∇u|2(t) dxdydz.

Similarly, for a solution B to (E-MHD) on M = T
k ×R

3−k with sufficiently regularity
and spatial decay, we have

d

dt

(
1

2

∫

M
|B|2(t) dxdydz

)

= 0.

The expressions inside the parentheses on the LHS are the energies for (Hall-MHD)
and (E-MHD), respectively.

We only sketch the proof for (E-MHD) and leave to the reader the (slightly more
involved but similar) case of (Hall-MHD).Multiplying (E-MHD) byB and integrating
on M , we have

1

2

d

dt

∫

M
|B|2 dxdydz = −

∫

M
B · (∇ × ((∇ × B) × B) dxdydz.

The Hall term multiplied by B disappears since the operator ∇× is symmetric:

∫

M
B · (∇ × ((∇ × B) × B) dxdydz =

∫

M
(∇ × B) · ((∇ × B) × B) dxdydz = 0,

which completes the proof.
However, the situation is different when one tries to control higher Sobolev norms.

For concreteness, consider the task of controlling ‖∂(N )B(t)‖L2 for a solution B to
(E-MHD), where ∂(N ) refers to an N -th order spatial derivative. Performing a similar
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computation as above, we have from the Hall term a contribution of the form

1

2

d

dt

∫

M
|∂(N )B|2 dxdydz = −

∫

M
(∇ × ∂(N )B) · ((∇ × B) × ∂(N )B) dxdydz + · · ·

(1.1)

where the other terms only involve up to N derivatives of B. It is not clear at all how
to bound the integral on the right-hand side using N derivatives of B only, and indeed,
the results of this paper show that this loss of one derivative is unavoidable in certain
cases.

Continuous and Discrete Symmetries

Next, we describe some continuous and discrete symmetries of (Hall-MHD) and
(E-MHD), which will be used in this paper.

• (Translational symmetry) For any (t0, x0, y0, z0) ∈ R × M , (Hall-MHD) and
(E-MHD) are invariant under the translation (u,B) �→ (u,B)(t − t0, x − x0, y −
y0, z − z0) and B �→ B(t − t0, x − x0, y − y0, z − z0), respectively.

• (Rotational symmetry) For any rotation matrix O , (Hall-MHD) and (E-MHD)
are invariant under the rotation (u,B) �→ (O	u, O	B)(O(x, y, z)	) and B �→
O	B(O(x, y, z)	), respectively.

• (Reflection symmetry) (Hall-MHD) and (E-MHD) are invariant under the reflec-
tion about any hyperplane. For instance, the reflection about {y = 0} for
(Hall-MHD) is:

(u,B) �→ R(u,B)(x, y, z) =
⎛

⎝

⎛

⎝
ux (x,−y, z)
−uy(x,−y, z)
uz(x,−y, z)

⎞

⎠ ,

⎛

⎝
−Bx (x,−y, z)
By(x,−y, z)
−Bz(x,−y, z)

⎞

⎠

⎞

⎠ ,

and for (E-MHD) is:

B �→ RB(x, y, z) =
⎛

⎝
−Bx (x,−y, z)
By(x,−y, z)
−Bz(x,−y, z)

⎞

⎠ .

• (Time reversal symmetry) In the ideal case ν = 0, (Hall-MHD) is invariant under
the time reversal (u,B) �→ (−u,−B)(−t, x, y, z), and similarly (E-MHD) is
invariant under B �→ −B(−t, x, y, z).

• (Scaling symmetries for (E-MHD)) For anyα ∈ R, (E-MHD) on M = R
3 is invari-

ant under B �→ λ2−αB(λ−αt, λ−1(x, y, z)). There is no exact scaling symmetry
for (Hall-MHD).

Remark 1.2 Wemention in passing the following additional symmetry, which will not
be used in this paper, but is used in [38]:

• Galilean symmetry for (Hall-MHD), (u,B) �→ (u− Ū,B)(t, (x, y, z) + tŪ).
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Stationary Solutions

As is typical in (magneto)hydrodynamics, (Hall-MHD) and (E-MHD) possess rich
families of stationary solutions. A special class of highly symmetric stationary solu-
tions, namely planar stationary magnetic fields with an additional symmetry, will play
a central role in this paper (see Sect. 1.7). These solutions are characterized by the
following properties:

• (Stationary magnetic field) The solution is of the form B = B̊ for (E-MHD), and
(u,B) = (0, B̊) for (Hall-MHD), where B̊ is a t-independent vector field on R

3

such that ∇ · B̊ = 0 (divergence-free) and (∇ × B̊) × B̊ is a pure gradient.
• (Planarity) B̊ is independent of the z-coordinate and B̊z = 0.
• (Additional symmetry) B̊ = B̊x∂x + B̊y∂y , viewed as a vector field on R

2
x,y , is

invariant under a one-parameter family of isometries of R2
x,y .

The first property implies that (0, B̊) and B̊ solve (Hall-MHD) and (E-MHD), respec-
tively3. In the third property, note that there are only two distinct possibilities up to
symmetries: Either B̊ is independent of one of the coordinates (say x) or it is axi-
symmetric in R

2
x,y .

A complete classification of such stationary solutions is possible:

Proposition 1.3 A smooth planar stationary magnetic field with an additional symme-
try is, up to symmetries, one of the following forms: ( f , g are smooth and c0, c1, d ∈ R)

B̊ = f (y)∂x , (c1y + c0)∂x + d∂y, g(x2 + y2)(x∂y − y∂x ).

We postpone the proof until Sect. 2.2.

Linearization around stationary solutions

Returning to a general stationary solution to (Hall-MHD) of the form (0, B̊), let us
consider perturbations of the form (u,B) = (u, B̊ + b). The linearized equation
satisfied by (u, b) (i.e., the linearization of (Hall-MHD) around B̊) is:

⎧
⎪⎨

⎪⎩

∂t u − ν�u = P((∇ × B̊) × b + (∇ × b) × B̊)

∂t b +∇ × (u × B̊) +∇ × ((∇ × b) × B̊) +∇ × ((∇ × B̊) × b) = 0,

∇ · u = ∇ · b = 0,

(1.2)

where P is the Leray projection operator onto divergence-free vector fields.
In the case of (E-MHD), the linearization around a stationary solution of the form

B̊ takes the form
{

∂t b +∇ × ((∇ × b) × B̊) + ∇ × ((∇ × B̊) × b) = 0,

∇ · b = 0.
(1.3)

3 Indeed, for the B-equation in both (Hall-MHD) and (E-MHD), one uses the fact that gradient is curl-free.
For the u-equation in (Hall-MHD), the contribution of B̊ can be put into the pressure.
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For the linearized equations, the L2 norm of the perturbation is still under control.
Indeed, we have the following linearized energy identities:

Proposition 1.4 For a sufficiently regular and decaying solution (u, b) to (1.2), we
have

d

dt

(
1

2

∫

M
|u|2(t) + |b|2(t) dxdydz

)

+ ν

∫

M
|∇u|2(t) dxdydz

=
∫

M
((b · ∇)B̊ j )u

j − ((u · ∇)B̊ j )b
j dxdydz +

∫

M
((b · ∇)(∇ × B̊) j )b

j dxdydz.

(1.4)

Similarly, for a sufficiently regular and decaying solution b to (1.3), we have

d

dt

(
1

2

∫

M
|b|2(t) dxdydz

)

=
∫

M
((b · ∇)(∇ × B̊) j )b

j dxdydz. (1.5)

We omit the proof, which is a simple exercise in vector calculus.

1.2 Linear Illposedness Results in Sobolev Spaces

The energy identities in Proposition 1.4 suggest that for any “reasonable” solutions to
the linearized equations (1.2) and (1.3) around a sufficiently regular B̊, the L2 norm
(energy)would enjoygood local-in-timebounds.Nevertheless, our results demonstrate
that around certain stationary solutions, the linearized equation is ill-posed(!) in any
higher Sobolev spaces.

Our first main result concerns the linearization of (Hall-MHD) and (E-MHD)
around a linearly degenerate (to be defined below) planar stationary magnetic field
with an additional symmetry. It asserts the existence of a sequence of initial data sets
with frequencies λ ∈ 2N0 , such that the Hs norms of the corresponding solutions for
any s > 0 grow at rates that are sharp in view of the loss of one derivative observed
in (1.1).

In what follows, by an L2-solution on an interval I , we mean:

• (linearized (Hall-MHD) with ν > 0) a pair of vector fields (u, b) such that u ∈
Cw(I ; L2) ∩ L2

t (I ; Ḣ1) and b ∈ Cw(I ; L2) that satisfies (1.2) in the sense of
distributions;

• (linearized (Hall-MHD) with ν = 0) a pair of vector fields (u, b) ∈ Cw(I ; L2)

that satisfies (1.2) with ν = 0 in the sense of distributions; or
• (linearized (E-MHD)) a vector field b ∈ Cw(I ; L2) that satisfies (1.3) in the sense
of distributions.

Here, Cw(I ; L2) is a subspace of L∞(I ; L2) consisting of functions weakly continu-
ous in time with values in L2. Moreover, in the case M = T

3, we assume4 in addition

4 The interpretation of this assumption is that the constant part in (u, b) should not be considered a pertur-
bation, but rather should be put in the background.
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that
∫

M
u(t) =

∫

M
b(t) = 0 for all t ∈ I , (1.6)

where we ignore the condition for u in the case of (E-MHD). Note that, with the
regularity assumptions above, the mean of any solution in the sense of distributions is
preserved; thus it suffices to ensure (1.6) for the initial data.

Theorem A (Sharp norm growth) Consider a stationary planar magnetic field B̊ on
M of one of the following forms5:

(a) (linearly degenerate, translationally-symmetric) On M = (T,R)x ×(T,R)y×Tz ,
B̊ = f (y)∂x where f is uniformly smooth (i.e., f and its derivatives are bounded)
and f (y0) = 0, d f (y0) �= 0 for some y0 ∈ (T,R)y;

(b) (linearly degenerate, axi-symmetric) On M = R
2
x,y × Tz , B̊ = f (r)∂θ =

f (
√

x2 + y2)(x∂y − y∂x ) where B̊ is uniformly smooth6, and f (r0) = 0,
d f (r0) �= 0 for some r0 > 0;

where by the notation (T,R)x we mean that both Tx and Rx are allowed. Then the
following statements hold.

(1) Consider the linearized (Hall-MHD) with ν > 0 around the stationary solution B̊
on a time interval I 
 0. For each λ ∈ N sufficiently large depending on B̊, there
exists an initial data set of the form

• (Case (a): translationally-symmetric background)

u0 = 0, b0 = Re(ei(λx+λG(y)))b(x, y)

where G(y) ∈ C∞((T,R)y) and b(x, y) ∈ S((T,R)x × (T,R)y) with com-
pact support in y and either compact support in x or real-analyticity in x;
or

• (Case (b): axi-symmetric background)

u0 = 0, b0 = Re(ei(λθ+λG(r)))b(r)

where G(r) ∈ C∞((0,∞)) and b(r) ∈ C∞((0,∞)) with compact support in
r ,

such that any corresponding z-independent L2-solution (u, b) exhibits norm
growth of the form

‖b(t)‖W s,p(M) ≥ c
(

s, p, B̊,
‖(u,b)‖L∞(I ;L2)

+‖∇u‖L2(I ;L2)

‖(u0,b0)‖L2

)
‖b0‖W s,p(M)e

c0(B̊)·(s+ 1
2− 1

p )λt
,

5 We use Tz for convenience, but it is not crucial for topological or algebraic reasons; note that both the
stationary solution and the perturbations (i.e., solution to the linearized equation) are independent of z. See
Sect. 1.8 for a further discussion on the issue of z-independence.
6 In terms of f , it is equivalent to the condition that the odd extension of r f to R is uniformly smooth.
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for t ∈ I satisfying0 ≤ t < δ(
‖(u,b)‖L∞(I ;L2)

+‖∇u‖L2(I ;L2)

‖(u0,b0)‖L2
) and for any p ∈ [1,∞],

s ∈ R such that s + 1
2 − 1

p ≥ 0.

(2) Consider the linearized (Hall-MHD) with ν = 0 around the stationary solution B̊
on a time interval I 
 0. For each λ ∈ N sufficiently large depending on B̊, there
exists an initial data set of the form

• (Case (a): translationally-symmetric background)

u0 = 0, b0 = Re(ei(λx+λG(y)))b(x, y)

where G(y) and b(x, y) are as in part (1); or
• (Case (b): axi-symmetric background)

u0 = 0, b0 = Re(ei(λθ+λG(r)))b(r)

where G(r) and b(r) are as in part (1),

such that any corresponding z-independent L2-solution (u, b) on I exhibits norm
growth of the form

‖b(t)‖W s,p(M) ≥ c
(
B̊,

‖(u,b)‖L∞(I ;L2)

‖(u0,b0)‖L2

)
‖b0‖W s,p(M)e

c0(B̊)·(s+ 1
2− 1

p )λt

for t ∈ I satisfying 0 ≤ t < δ(
‖(u,b)‖L∞(I ;L2)

‖(u0,b0)‖L2
) and for any p ∈ [1,∞], s ∈ R

such that s + 1
2 − 1

p ≥ 0.

(3) Consider the linearized (E-MHD) around the stationary solution B̊ on a time
interval I 
 0. For each λ ∈ N sufficiently large depending on B̊, there exists an
initial data set of the form

• (Case (a): translationally-symmetric background)

b0 = Re(ei(λx+λG(y))b

where G(y) and b(x, y) are as in part (1); or
• (Case (b): axi-symmetric background)

b0 = Re(ei(λθ+λG(r)))b(r)

where G(r) and b(r) are as in part (1),

such that any corresponding z-independent L2-solution b on I exhibits norm
growth of the form

‖b(t)‖W s,p(M) ≥ c
(

s, p, B̊,
‖b‖L∞(I ;L2)

‖b0‖L2

)
‖b0‖W s,p(M)e

c0(B̊)·(s+ 1
2− 1

p )λt
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for t ∈ I satisfying 0 ≤ t < δ(
‖b‖L∞(I ;L2)

‖b0‖L2
) and for any p ∈ [1,∞], s ∈ R such

that s + 1
2 − 1

p ≥ 0.

Remark 1.5 Theorem A is carefully formulated so that it does not rely on any well-
posedness theory for the linearized (Hall-MHD) and (E-MHD) equations, whose
validity seems to be a delicate question precisely due to the illposedness issues con-
sidered here.

For a reasonable notion of a solution for the linearized (Hall-MHD) and (E-MHD)
equations, it is expected that the z-independence property follows from uniqueness,
and that the ratios

‖(u, b)‖L∞L2 + ‖∇u‖L2L2

‖(u0, b0)‖L2
,

‖b‖L∞L2

‖b0‖L2

are uniformly bounded by a constant that only depends B̊ in view of the energy
identities in Proposition 1.4.

By appealing to a standard argument based on the Aubin–Lions lemma, one can
show at least the existence of such an L2 solution, for any L2 initial data; see
Appendix A for details. In particular, the class of solutions to which Theorem A
applies is not vacuous.

Remark 1.6 Due to the boundedness of energy, the norm growth in Theorem A nec-
essarily involves a rapid transfer of energy from larger to smaller scales. Such a
phenomenon is reflected in the s-dependence of the growth rate ec0sλt of the Hs

norm (indeed, for s ≥ s0 > 0, the s-dependent growth rate is a quick consequence of
L2 boundedness, Hs0 growth and interpolation). It is also the key mechanism behind
Theorem F below, which asserts illposedness of the linearized equations in all Gevrey
spaces.

This phenomenon is clearly impossible for constant coefficient linear PDEs, where
there are no energy transfers between different Fourier modes. Moreover, it is qualita-
tively different compared to well-known examples of illposedness in hydrodynamics
such as the Kelvin–Helmholtz instability, Rayleigh–Taylor instability and boundary
layer instability, in all of which the growth rate of the Hs norm is independent of s and
wellposedness is recovered in a strong enough Gevrey space (at least in the linearized
case). We refer to Sect. 1.8 for further discussion.

Remark 1.7 When s, p and B̊ are fixed, the norm growth inequality asserted in Theo-
rem A is optimal in that the both sides are comparable (uniformly in λ) for a suitably
constructed wave packet approximate solution with the same initial data (see Sect. 3
for the construction). This optimality is crucial for our proof of the illposedness results
in the fractionally dissipative case (Theorem G). Moreover, with p = 2 and with a
suitable definition of the norms Hs , the constant c may be chosen to be independent
on s; this observation is used in our proof of illposedness in Gevrey spaces (Theo-
rem F). While we expect this property to generalize to all other values of p, we do not
investigate this issue further in this paper.
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Our next result is a conditional refinement of Theorem A. We assume that (1.2)
and (1.3) are well-posed in L2, and show the existence of initial data sets with arbi-
trarily high regularity and decay, such that the corresponding solutions (unique by
assumption) immediately exits any Sobolev space above L2. More precisely, by L2-
wellposedness of the linearized equation on an interval I , we mean the existence of a
bounded linear solution map from L2 into the energy class E(I ), where

E(I ) =

⎧
⎪⎨

⎪⎩

(
Cw(I ; L2) ∩ L2

t (I ; Ḣ1)
)× Cw(I ; L2) for linearized (Hall-MHD), ν > 0;

Cw(I ; L2) × Cw(I ; L2) for linearized (Hall-MHD), ν = 0;
Cw(I ; L2) for linearized (E-MHD).

Since we know the existence of at least one L2 solution, the following result maybe
rephrased as follows: either the linearized system does not have a unique L2 solution
for some L2 data, or there is nonexistence in any higher regularity Sobolev spaces.

Theorem B (Instantaneous instability in Hs with s > 0) Let B̊ and M be as in
Theorem A, and suppose that (1.2) with ν ≥ 0 around (0, B̊) (resp. (1.3) around B̊) is
L2-well-posed on [0, 1].
(1) (C∞, polynomially decaying data) There exists an initial data set (u0, b0) ∈

{0} × S (resp. b0 ∈ S) and 0 < δ ≤ 1 such that the L2-solution (u, b)(t) (resp.
b(t)) fails to be in any local Sobolev space L2 × Hs′

loc (resp. Hs′
loc) for any s′ > 0

and 0 < t < δ.
(2) (Arbitrarily regular data with compact support) For any s > 0, there exists an

initial data set (u0, b0) ∈ {0} × Hs
comp (resp. b0 ∈ Hs

comp) and 0 < δ ≤ 1 such

that the L2-solution (u, b)(t) (resp. b(t)) fails to be in any local Sobolev space
L2 × Hs′

loc (resp. Hs′
loc) for any s′ > 0 and 0 < t < δ.

1.3 Nonlinear Illposedness Results in Sobolev Spaces

Given the preceding illposedness results for the linearized equations, it is natural to ask
whether the corresponding statements are still valid for the nonlinear Cauchy problem.
We show that the nonlinear Cauchy problems for (Hall-MHD) and (E-MHD) are ill-
posed in the sense ofHadamard [32]with (u,B) ∈ L∞

t H2×L∞
t H3 andB ∈ L∞

t H3 in
the Hall- and electron-MHD cases, respectively. Moreover, we establish nonexistence
for certain initial data close to the trivial solution, which may be regarded as the
strongest notion of illposedness.

To describe the results we need some notation and conventions. In what follows,
we denote a function-space ball of radius ε with respect to a norm ‖ · ‖X centered at
x by

Bε(x; X) = {y ∈ x + X : ‖y− x‖X < ε},

and its restriction to compactly supported functions by

Bε(x; Xcomp) = {y ∈ Bε(x; X) : y− x has compact support in M}.
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For any interval I and s0 ≤ 1, the notion of an L∞
t (I ; Hs0(M)) solution b to (E-MHD)

is formulated in the sense of distributions. For (Hall-MHD), we need to also specify the
pressure gradient; we say that (u,B) ∈ L∞

t ([0, δ]; Hs0−1(M))×L∞
t ([0, δ]; Hs0(M))

is a (weak) solution to (Hall-MHD) if the equation is satisfied with

∇ jp = Rk R�∇ j (−uku� + BkB�), (1.7)

where R j = (−�)− 1
2 ∂ j is the Riesz transform.

The first nonlinear illposedness result shows that the solution map near the degen-
erate stationary solutions in high enough Sobolev spaces, even if it exists, must be
unbounded.

Theorem C (Unboundedness of the solution map) Let M = (T,R)x × (T,R)y ×
Tz and the stationary magnetic field B̊ is given either by f (y)∂x or f (r)∂θ as in
Theorem A. Assume that for some ε, δ, r , s, s0 > 0, the solution map for (Hall-MHD)
(resp. (E-MHD)) exists as a map

Bε((0, B̊); Hr
comp × Hs

comp) → L∞
t ([0, δ]; Hs0−1) × L∞

t ([0, δ]; Hs0)
(

resp. Bε(B̊; Hs
comp) → L∞

t ([0, δ]; Hs0)
)

.

Then this solution map is unbounded for s0 ≥ 3, and is not α-Hölder continuous
(0 < α ≤ 1) for s0 > max{2, 3(1− α)}.
Remark 1.8 Let us comment on the statement regarding the absence ofHölder continu-
ity of the solution map. This notion of illposedness is analogous to that in a theorem of
G. Métivier [46,Theorem 3.2], which applies to any first order n ×n nonlinear PDE of
the form ∂t u = F(t, x, u, ∂x u) inRd , where F is real-analytic and nonhyperbolic, i.e.,
∂v F(0, x0, u0, v0) has a nonreal eigenvalue for some (x0, u0, v0) ∈ R

d ×R
n ×R

n×d .
See also a work of F. John ( [40]) which discusses relevance of Hölder continuity for
evolutionary systems of physical origin.

The case α = 1 corresponds to the notion of Lipschitz continuity of the solution
map, which has been considered by many authors. We note that in a work of Guo and
Tice [31] (see also [27]), a somewhat general argument was presented, which enables
one to pass from a strong ill-posedness result for a linearized system to the failure of
Lipschitz continuity for the corresponding nonlinear system. See [31] for details.

Observe that the background stationary magnetic field B̊ in Theorem C may be
arbitrarily close to 0 in quite strong topologies, or more specifically, in Hs

comp(R
2)

using axi-symmetric ones and Hs
comp(Tx ×Ry) using translationally-symmetric ones

for any s > 0. Hence, the preceding result immediately implies that nonlinear Cauchy
problems for (Hall-MHD) and (E-MHD) are ill-posed near the trivial solution in the
same sense.

Corollary D (Unboundedness of the solution map near 0) The results of Theorem C
holds with B̊ ≡ 0.
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Moreover, we show that there exist initial data, which are compactly supported
arbitrarily close to the trivial solution in a high regularity Sobolev space, for which no
solution can be found in the same Sobolev space. We emphasize that uniqueness does
not have to be assumed.

Theorem E (Nonexistence near 0) Let s > 3 + 1
2 and M = (T,R)x × Ry × Tz in

the case of (Hall-MHD) and M = (T,R)x × (T,R)y ×Tz for (E-MHD). Given any
ε > 0, there exist initial data (u0,B0) ∈ Hs−1

comp × Hs for (Hall-MHD) satisfying
‖u0‖Hs−1 + ‖B0‖Hs < ε (resp. B0 ∈ Hs

comp for (E-MHD) satisfying ‖B0‖Hs < ε)

such that for any δ > 0, there is no corresponding L∞
t ([0, δ]; Hs−1 × Hs) solution

to (Hall-MHD) (resp. L∞
t ([0, δ]; Hs) solution to (E-MHD)).

Remark 1.9 The nonlinear ill-posedness result stated in this section can be established
for the scale of Ck,α-spaces (with a straightforward modification of the arguments);
for (Hall-MHD) and (E-MHD), one respectively needs the assumption that (u,B) ∈
Ck−1,α(M) × Ck,α(M) and B ∈ Ck,α(M) with k + α ≥ 2. Note that this level of
regularity corresponds exactly to the threshold for classical solutions – solutions for
which every term in the system can be identified with a continuous function.

1.4 Illposedness Results in Gevrey Spaces

As discussed in Remark 1.6, the s-dependence of the growth rate of the Hs norm in
Theorem A hints at illposedness of (Hall-MHD) and (E-MHD) in all Gevrey spaces;
this behavior is in stark contrast to the ill-posed constant coefficients PDEs, as well
as many traditional examples of ill-posed problems in hydrodynamics. Our goal is to
rigorously illustrate this property; to avoid technical nuisances, we contend ourselves
with a linear illposedness result on the domain7 M = T

3. Before we describe the
statements, let us briefly review the notion of Gevrey regularity classes and some
basic properties. We will follow the illuminating work of Levermore–Oliver [43].

A function b ∈ C∞(T3) belongs to the Gevrey class σ for some σ > 0 if there
exist constants ρ > 0, A < ∞ such that for any α ∈ N

3,

sup
x∈T3

|∂αb(x)| ≤ A

(
α!
ρ|α|

)σ

(1.8)

with ∂α = ∂
α1
x ∂

α2
y ∂

α3
z and |α| = α1 + α2 + α3. We denote Gσ (T3) to be the space of

Gevrey class σ functions. It is closed under multiplication and differentiation for all
σ > 0, and under composition as well for σ ≥ 1. It is clear that for 0 < σ1 < σ2 < ∞,
we have Gσ1(T3) ⊂ Gσ2(T3) ⊂ C∞(T3) and that the containments are proper. It is
well-known that G1(T3) coincides with the space of real analytic functions.

As in [43], it will be convenient to characterize Gevrey classes in terms of the
Sobolev norms. Then using Sobolev embedding, it is not difficult to show that b ∈

7 For consideration of other domains, see Remark 6.5
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Gσ (T3) if and only if there are constants 0 < ρ, A < ∞ such that

‖∂αb‖L2 ≤ A

(
α!

ρ|α|

)σ

(1.9)

where α! = α1!α2!α3!. Furthermore, with the operator |∇| := √−�, we define a
family of normed spaces

D(eτ |∇|1/σ : L2(T3)) = {b ∈ L2(T3) : ‖eτ |∇|1/σ b‖L2 < ∞}.
Then [43,Theorem 4] states that for any σ > 0,

Gσ (T3) =
⋃

τ>0

D(eτ |∇|1/σ : L2(T3)).

Here τ > 0 corresponds precisely to the radius of Gevrey regularity, namely

1

τ
= lim sup

|α|→∞

(‖∂αb‖1/σ
L2

α!

) 1
|α|

. (1.10)

In the case of analytic functions (σ = 1), τ is simply the radius of analyticity.
We are ready to state our linear illposedness results in Gevrey spaces for (Hal-

l-MHD) and (E-MHD).

Theorem F (Gevrey space illposedness) Consider the stationary magnetic field B̊ =
f (y)∂x on T

3 where f (y) is a smooth function on Ty with f (y0) = 0 and f ′(y0) �= 0
for some y0. Then the linearized (Hall-MHD) and (E-MHD) systems at (0, B̊) and
B̊ respectively are illposed in any Gσ (T3) with σ > 0 when f ∈ Gσ (T). To be
more precise, assuming L2-wellposedness, for σ ≥ 1 (resp. 0 < σ < 1) there
exist initial data in Gσ (T3) whose corresponding unique solution escapes C∞(T3)

(resp. ∪σ ′>0Gσ ′
(T3)) instantaneously for t > 0.

In the statement of the above theorem, one can simply take f (y) = sin(y), which
belongs to ∩σ>0Gσ trivially and thus the associated linearized (Hall-MHD) and
(E-MHD) systems are illposed in every Gevrey class Gσ .

Remark 1.10 (Nonlinear illposedness in Gevrey spaces) Using the same methods
involved in extending the linear result to the nonlinear one in the Sobolev case, one can
easily obtain illposedness statements in Gevrey regularity. Let us just state the results
which can be obtained, restricting ourselves to the T3-case. When σ > 1, there exists
B0 ∈ Gσ such that there is no local-in-time C∞ solution to (E-MHD) with initial data
B0. On the other hand, when 0 < σ ≤ 1, we can prove the following norm-inflation
type statement: for any ε > 0, there exists a dataB0 ∈ Gσ such that any corresponding
solution to (E-MHD) in L∞([0, δ]; Gσ ), if exists, satisfies τ(B(t(ε))) < ε for some
0 < t(ε) with t(ε) → 0 as ε → 0. Here, τ(B(t(ε))) denotes the radius of Gevrey-σ
regularity forB(t(ε)). Observe that this statement contradicts the usualwell-posedness
statement in Gevrey spaces; see [43].
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1.5 Illposedness Results in the Fractionally Dissipative Case

The power of λ in the growth rates ec0(s+ 1
2− 1

p )λt in Theorem A is sharp in view of the
loss of one derivative seen in (1.1). These rates are also consistent with the previously
proved wellposedness due to Chae–Wan–Wu [16]8 for the fractionally dissipative
system

{
∂tB+∇ × ((∇ × B) × B) = −η(−�)αB,

∇ · B = 0,
(1.11)

with η ≥ 0 and α > 1/2; see also [15]. In view of the instability observed in this paper,
one can expect this system to be illposed in the range 0 ≤ α < 1/2 and similarly for
the Hall-MHD system with a fractional dissipation in the magnetic field:

⎧
⎪⎨

⎪⎩

∂tu+ u · ∇u+ ∇p− (∇ × B) × B = −ν(−�)1+βu,

∂tB−∇ × (u× B) + ∇ × ((∇ × B) × B) = −η(−�)αB,

∇ · u = ∇ · B = 0,

(1.12)

where 0 ≤ α, β < 1
2 . In the critical case where α = 1

2 , it is not difficult to show that
the system (1.11) is globally well-posed in Hs with s large enough for small (relative
to η) Hs initial data9; a similar argument .

Indeed, we confirm that the fractionally dissipative systems (1.11) and (1.12) are
strongly ill-posed in Sobolev spaces in the expected range 0 ≤ α < 1

2 , in the sense that
the solution map cannot be bounded near the trivial solution (similarly as in Theorem
C).

To avoid excessive technicalities, we contend ourselves with the case M = T
3.

However, with the ideas already in this paper, it is straightforward to extend what
follows to the case M = (T,R)x × (T,R)y × Tz .

Theorem G (Illposedness for fractionally dissipative systems) Let M = T
3, and con-

sider the fractionally dissipative system (1.12) with 0 ≤ α, β < 1
2 , η > 0 and ν ≥ 0

(resp. (1.11) with 0 ≤ α < 1
2 and η > 0). Assume that for some ε, δ, r > 0 and

8 In [16] the domain is R3, but the result easily extends to any of M = (T,R)x × (T,R)y × (T,R)z .
9 The proof of this statement boils down to the inequality (with |∇| = (−�)

1
2 and s large)

∣
∣〈|∇|s∇ × ((∇ × B) × B), |∇|sB〉∣∣ ≤ C‖|∇|s+ 1

2 B‖L2‖|∇| 12 (∇B|∇|sB)‖L2

≤ C‖B‖Hs ‖|∇|s+ 1
2 B‖2

L2 ,

which gives

1

2

d

dt
‖|∇|sB‖2

L2 + (η − C‖B‖Hs )‖|∇|s+ 1
2 B‖2

L2 ≤ 0.

Therefore, there exists a universal constant m0 > 0 such that if ‖B0‖Hs ≤ ηm0 then the solution still
satisfies ‖B(t)‖Hs ≤ ηm0 for all t ≥ 0.
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s0 ≤ s < min{ 1
2α , 1

2β , 3}s0 (resp. s0 ≤ s < min{ 1
2α , 3}s0), the solution operator for

(1.12) (resp. (1.11)) exists as a map

Bε((0, 0); Hr × Hs) → L∞
t ([0, δ]; Hs0−1) × L∞

t ([0, δ]; Hs0)
(
resp. Bε(0; Hs) → L∞

t ([0, δ]; Hs0)
)
.

Then this solution map is unbounded for s0 ≥ 3.

Remark 1.11 (Critical dissipation) By a suitable adaptation of our proof of TheoremG
to the critical case α = 1

2 of (1.11), the following statement may be proved (see
Remark 7.2):

Assume that for some s ≥ 3, the solution operator for (1.11) exists as a map
8 : Hs → L∞

t ([0, δ); Hs), where δ = δ(B0) ∈ (0,∞] is the maximal lifespan of B0;
that is, for any ε > 0, there is no L∞

t ([0, δ + ε); Hs)-solution to (1.11) with initial
data B0. Then, there exists an absolute constant A0 > 0 such that for any A ≥ A0,
there exists a sequence of initial data B(λ)

0 such that

‖B(λ)
0 ‖Hs ≤ ηA for any λ ≥ 1

and at least one of the following holds:

• δ(B(λ)
0 ) → 0 as λ → +∞,

• for any ε > 0, there exists a constant cε > 0 and a sequence t (λ) ∈ (0, δ(B(λ)
0 ))

satisfying t (λ) → 0 as λ → +∞ and ‖8[B(λ)
0 ](t (λ))‖Hs ≥ cεηA(1−ε)s+1.

While this statement does not rule out the possibility of Hs-wellposedness for s large,
it nevertheless shows that the modulus of continuity of t �→ ‖8[B0](t)‖Hs at t = 0
cannot be not uniform for B0 ∈ {B0 ∈ Hs : ‖B0‖Hs ≤ ηA}, which is in contrast to
the case α > 1/2.

Compared to the statement of Theorem C, there are additional restrictions on the
range of s relative to s0, which become more strict as α approaches 1

2 . Similarly with
Theorem C, this nonlinear illposedness is based on a linear one which we do not state.
For the linearized electron-MHD equation with fractional dissipation (i.e., (1.3) with
−η(−�)αb on the right hand side), norm growth statements similar to those given in
Theorem A can be proved but they are valid only for O(λ−1 ln λ) timescale.

1.6 Brief Summary of the Results in [38]

We give a short, partial summary of the results in [38], which are various linear
and nonlinear wellposedness statements for (Hall-MHD) and (E-MHD). They are
complementary to the illposedness results proved in the present paper.

Linear Case

The main linear result in [38] is a local geometric condition on the stationary magnetic
field that (togetherwith some regularity and uniformity conditions) that ensures above-
energy wellposedness for the linearized equations.
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Theorem 1.12 ([38]) Let B̊ be a stationary magnetic field on M = (T,R)x×(T,R)y×
(T,R)z , and consider the deformation tensor associated to B̊:

(B̊)π jk = 1

2
(∇ j B̊k +∇kB̊ j ).

Assume that B̊ is uniformly smooth, |B̊|−1|(B̊)π | is essentially bounded and the fol-
lowing no-orthogonal-deformation condition hold everywhere on M:

(B̊)π |B̊⊥ = 0 (i.e., (B̊)π jkv jwk = 0 if B̊kvk = B̊kwk = 0). (1.13)

Then the Cauchy problems for the linearized (Hall-MHD) and (E-MHD) equations
around the stationary solutions (0, B̊) and B̊, respectively, are well-posed for H∞
(i.e., all derivatives are square integrable) data.

This result, when combined with Theorems A and B, provides a fairly comprehen-
sive description of well- and illposedness of the linearized equations around magnetic
fields of the form f (y)∂x or f (r)∂θ .

Indeed, let us first consider B̊ = f (y)∂x , where f is uniformly smooth. When f
has a zero of order 1, the linear illposedness results (Theorems A and B) apply. On
the other hand, in general we have

(B̊)π =
⎛

⎝
0 1

2∂y f 0
1
2∂y f 0 0
0 0 0

⎞

⎠ .

The no-orthogonal-deformation condition (1.13) obviously fails at a zero of order 1

of f since B̊⊥ = R
3 and (B̊)π �= 0 there. On the other hand, at points where f �= 0,

we have B̊⊥ = span{∂y, ∂z}. Thus, the wellposedness result (Theorem 1.12) applies
whenever f does not vanish anywhere and | f |−1| f ′| is essentially bounded.

Similar statements hold for B̊ = f (r)∂θ = f (r)(x∂y − y∂x ), for which

(B̊)π =
⎛

⎜
⎝

− f ′ xy
r

1
2 f ′ x2−y2

r 0
1
2 f ′ x2−y2

r f ′ xy
r 0

0 0 0

⎞

⎟
⎠ .

At a zero of order 1 of f , (1.13) clearly fails. However, when f �= 0 and (x, y) �=
(0, 0),

B̊⊥ = span
{ x

r
∂x + y

r
∂y, ∂z

}
,

so it can be checked that (B̊)π |B̊⊥ = 0. In conclusion, Theorems A and B apply when
f has a zero of order 1, whereas Theorem 1.12 applies whenever f does not vanish
anywhere and | f |−1| f ′| is essentially bounded.
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Remark 1.13 Note that the no-orthogonal-deformation condition (1.13) fails for B̊ =
cy∂x + d∂y with c �= 0, which is the remaining class of planar stationary magnetic
fields with an additional symmetry according to Proposition 1.3. An analysis at the
level of bicharacteristics (to be explained below) suggests illposedness of the linearized
equations around such a B̊; see Remark 1.16.

Nonlinear Case

The main nonlinear result in [38] is a set of global geometric conditions on the ini-
tial magnetic field that imply wellposedness of the nonlinear Cauchy problems for
(Hall-MHD) and (E-MHD). The precise statement of the conditions and the results
requires more preparation, which would take us too far from the subject of this paper.
Here we will be content with giving a rough statement of a corollary of the nonlinear
results in [38], which illustrates a remarkably different behavior of (Hall-MHD) and
(E-MHD) near nonzero constant magnetic fields, as opposed to the zero magnetic field
(cf. Corollary D and Theorem E).

Theorem 1.14 (A special case of the nonlinear wellposedness result in [38]) Let B̊ be
any nonzero constant vector field on M = Rx × (T,R)y × (T,R)z , whose integral
curves are noncompact. The Cauchy problem for (Hall-MHD) (resp. (E-MHD)) is
locally well-posed on the unit time interval for initial data (u0,B0) such that (u0,B0−
B̊) is sufficiently regular, decaying and small (resp. B0 such that B0 − B̊ is sufficiently
regular, decaying and small).

The key conceptual difference between B̊ = 0 and the constant magnetic field con-
sidered in Theorem 1.14 is that in the latter case one can establish a local smoothing
estimate for the linearized equation, which is a robust (dispersive) smoothing mech-
anism that overcomes the loss of one derivative seen in (1.1). For further details and
more general results, in particular for possibly large perturbations of the constant
magnetic field, we refer to [38].

Remark 1.15 We emphasize that the present article and [38] are logically independent
of each other; neither is a prerequisite for the other. However, since [38] carries out
a more general analysis of (Hall-MHD) and (E-MHD), a concurrent reading of [38]
may be useful for placing the results and the specialized analysis of the present article
in a broader context.

1.7 Main Ideas

Here, we explain the main ideas of the proofs of our results. We note in advance
that Theorem A, which gives the sharp rate of growth for solutions of the linearized
systems, is the basic building block in the proof of all the others.

Dispersive Character of the Hall Current Term

The dispersive character of the Hall current term is most directly seen by linearizing
(E-MHD) around a constant magnetic field B̊ = B̄∂x , where B̄ �= 0. The resulting
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waveform is called the whistler wave, which is well-known in the the plasma physics
literature (see, for instance, [47, Sect. 10.7.1]).

Using the vector calculus identities in Sect. 1.9, the linearized system (1.3) reduces
to

∂t b + B̄∂x∇ × b = 0, ∇ · b = 0. (1.14)

To diagonalize this system, we take the Fourier transform, which gives

iτ b̂(τ, ξ) − B̄ξxξ × b̂(τ, ξ) = 0, ξ · b̂(τ, ξ) = 0.

Note that B̄ξxξ× is an anti-symmetric matrix, and
(
B̄ξxξ×

)2
b̂ = −B̄2ξ2x |ξ |2b̂ (cf.

(1.22)) when ξ · b̂ = 0. Thus B̄ξxξ× restricted to {b̂ ∈ R
3 : ξ · b̂ = 0} is diagonalizble

with eigenvalues ±iB̄ξx |ξ |. It follows that (1.14) splits into two constant coefficient
dispersive PDEs ∂t b±± iωB̊(i−1∇)b± = 0 with the dispersion relations±ωB̊, where

ωB̊ = B̄ξx |ξ |.

Key to the analysis of (1.14) is the group velocity ±∇ξωB̊, which describes the
physical space trajectory of a wave packet solution10, at least for a short time. For
a further discussion of this case, see [38], in which wellposedness near such a B̊ is
established.

Diagonalization of the Principal Symbol and the Bicharacteristics

To look for a mechanism for illposedness, we need an analogous way to analyze more
general linearized systems. For an arbitrary stationary magnetic field B̊, the linearized
system (1.3) takes the form

∂t b + (B̊ · ∇)∇ × b = first or lower order in b.

For each ξ ∈ R
3 \ {0}, the matrix-valued principal symbol pB̊ = −(B̊ · ξ)ξ× may

be diagonalized on the subspace {u ∈ R
3 : ξ · u = 0} in the same fashion as above.

The eigenvalues±i pB̊(x, ξ) = ±iB̊(x) ·ξ |ξ | are analogous to the dispersion relations
±iωB̊(ξ). The analogue of the group velocity ∇ξωB̊ is the Hamiltonian vector field
(∇ξ pB̊,−∇x pB̊) on T ∗M = M × R

3
ξ ; the associated ODE

{
Ẋ = ∇ξ pB̊(X , �),

�̇ = −∇x pB̊(X , �),

10 In this heuristic discussion, by a wave packet solution, we mean a solution that is well-localized in
both the physical and frequency spaces around certain points at each time t , which we call X(t) and �(t),
respectively. By the physical (resp. frequency or phase) space trajectory, we mean the trajectory of X (resp.
� or (X , �)).
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is called the Hamiltonian ODE, and its solution (X , �)(t) is called a bicharacteristic.
A bicharacteristic describes the phase space trajectory of a wave packet solution, at
least for a short time.

Stationary Magnetic Fields with Symmetries; Complete Integrability of the Hamilto-
nian ODE

With the above ideas, the natural first goal is to find a stationary magnetic field B̊
with associated bicharacteristics exhibiting a rapid growth of |�(t)|. To simplify the
problem, it is desirable to restrict to B̊ whose associated Hamiltonian ODE is easily
solved. Therefore, we are motivated to look for stationary magnetic fields with two
independent continuous symmetries, whichmakes the three-dimensional Hamiltonian
ODE completely integrable.

Such considerations lead to the idea of using planar11. The restrictions make possi-
ble a complete classification of all such stationarymagnetic fields; see Proposition 1.3.
It is remarkable that the resulting family is still rich enough to allow formany stationary
B̊ with an instability mechanism.

Instability Mechanism at the Level of Bicharacteristics

We are ready to describe the key instability mechanism at the level of bicharacteristics
in the model case B̊ = y∂x near y = 0. Essentially the same mechanism is present
for B̊ = f (y)∂x or f (r)∂θ near any linear degeneracy of f (i.e., f (y0) = 0 but
f ′(y0) �= 0).
We begin by observing that, in addition to the Hamiltonian pB̊(X , �) =

y(X)�x |�|, the quantities �x and �z are conserved along the bicharacteristics by
the x- and z-invariance of B̊, respectively. Thus y(X)|�| is conserved, which suggests
that bicharacteristics starting from {y = 1} and traveling to {y = 0} would exhibit a
blow-up of |�|.

Motivated by such considerations, we take the bicharacteristic (X , �)(t) with the
initial data X(0) = (0, 1, 0) and �(0) = (λ,−λ, 0) for λ > 0, so that Ẋ(0) points
towards {y = 0}; see Figure 1. Then the ODEs for �y and y = y(X) become

�̇y = −�x |�| = −λ

√

λ2 + �2
y, ẏ = y

�x�y

|�| = λy
�y

√
λ2 + �2

y

which may be explicitly integrated to

�y = −λ sinh(λt + θ0), y = cosh(θ0)

cosh(λt + θ0)
.

where θ0 = sinh−1 1 = log(1+√
2). In particular, y(t) � e−λt and |�(t)| � λeλt as

desired.

11 We note that the assumption B̊z = 0 may seem excessive in this regard, as it is not related to symmetry.
However, this restriction ensures a finer cancellation that is important for the construction of an approximate
solution to the PDE; see Construction of ... below. stationary magnetic fields with an additional symmetry
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Fig. 1 Plot of the bicharacteristic
(X , �)(t) (blue solid curve) on
the background magnetic field
B̊ = y∂x (red dashed lines)

x

y

1

0

(X,Ξ)(t)

Remark 1.16 (Instability at the level of bicharacteristics for B̊ = cy∂x + d∂y , c �= 0)
In the case of cy∂x +d∂y with c �= 0, the ODE for�y is again �̇y = −c�x |�|, where
�x and �z are conserved. So for (�x , �y, �z)(0) = (λ,−λ, 0), |�y | grows as in the
case of B̊ = y∂x ! However, the physical space behavior of the bicharacteristic is quite
different when d �= 0, as it escapes to y → ∞ at a speed that increases with λ. We
leave open the interesting question of whether this mechanism can be made rigorous
at the level of PDEs.

Construction of Degenerating Wave Packets; (2 + 1
2 )-Dimensional Reduction and

Renormalization

The next step is to construct an actual, or at least approximate, solution to the lin-
earized (E-MHD) around B̊ that follows the behavior of such a bicharacteristic; this is
the basic idea of geometric optics (or semiclassical analysis). However, the standard
construction stops short at the so-called semiclassical time scale |t | � λ−1, which is
just not enough for the growth rate ecλt to take effect. To elongate the construction,
we need favorable properties of not only the principal terms, but also the subprincipal
(first order) terms of (E-MHD).

It is in this analysis, which is carried out in Sect. 3 below, that we use the deepest
structural properties of the Hall current term. First, we exploit planarity of B̊ to make
the (2 + 1

2 )-dimensional reduction, which leads to a remarkable simplification of
the first order terms12; see (3.11) and (3.15). Moreover, we make a suitable change-
of-variables and conjugation, which renormalize the second and first order terms,
respectively, to more favorable forms; see (3.13) and (3.17). As a result, for any λ > 0,
which corresponds to the initial frequency, we construct a wave packet approximate
solution b̃(λ) for |t | � 1 (as opposed to |t | � λ−1) that is degenerating in the sense
that all of its Ḣ s norm (resp. its L p norm) diminish or grow (possibly up to a small
error) depending on the sign of s (resp. whether p < 2 or p > 2) at the rate consistent
with the L2 boundedness and the growth rate of |�(t)|; see Proposition 3.1.

12 Aprecise description of this simplification requires an adequate reformulation of the linearized (E-MHD)
as a system of dispersive equations; we refer the interested reader to [38]. Here, we contend ourselves with
just pointing out that it is analogous to the vanishing of the vortex-stretching term for the (2+ 1

2 )-dimensional
Euler equation.
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Generalized Energy Identity and Testing by DegeneratingWave Packets

One way to conclude the proof of the norm growth (Theorem A) for the linearized
(E-MHD) would be to show that an actual solution b(λ) with the same initial data
b(λ)(0) = b̃(λ)(0) is well-approximated by the degenenerating wave packet b̃(λ) con-
structed above, by explicitly estimating the error in the same Sobolev space that we
want to see growth. While this approach is possible, it involves cumbersome tech-
nicalities, such as careful commutations and additional degenerate elliptic estimates;
moreover, it is unclear how to handle in this way an arbitrary L2-solution without
additionally assuming uniqueness (cf. Remark 1.5).

Instead, we introduce what we call the method of testing by degenerating wave
packets, which curtails technicalities and is very robust (the latter property is most
clearly demonstrated by the applications to (Hall-MHD) and to nonlinear settings
below). Inspired by the work of Ifrim–Tataru [34], we seek to capture the leading
order behavior of the actual solution b(λ) by the (energy) inner product 〈b̃(λ), b(λ)〉
with the wave packet approximate solution b̃(λ). By the bilinear generalization of the
energy identity, we can control

∣
∣
∣
∣
d

dt
〈b̃(λ), b(λ)〉

∣
∣
∣
∣ � ‖b̃(λ)(0)‖L2‖b(λ)(0)‖L2 for 0 < t � 1.

Thus, for a sufficiently small T > 0 (independent of λ), 〈b̃(λ), b(λ)〉(t) ≥ 1
2‖b(λ)(0)‖2L2

for 0 < t < T . By Hölder’s inequality and the simple L p-degeneration property of
b̃(λ),

1

2
‖b(λ)(0)‖2L2 ≤ ‖b(λ)(t)‖L p‖b̃(λ)(t)‖L p′ � ‖b(λ)‖L p‖b(λ)(0)‖L2e−c( 1

p − 1
2 )λt

,

which implies the desired growth of all L p norms with p > 2. By a similar argument
using duality and the sharper form of the degeneration property, we also obtain the
growth of all W s,p norms with s + 1

2 − 1
p > 0, as claimed in Theorem A.

Incorporation of the Fluid Component

Now we describe the ideas behind the proof of the norm growth (Theorem A) for the
linearized (Hall-MHD). The starting point is the bilinear generalization of the energy
identity for the linearized (Hall-MHD). Then, through the method of testing by degen-
erating wave packets, the problem is reduced to that of finding suitable approximate
solutions (ũ(λ), b̃(λ)), where λ corresponds to the initial frequency. To solve the latter
problem, we exploit the remarkable structure of the ideal (Hall-MHD) (i.e., ν = 0) that
the combinationZ := B+∇×u is simply transported by u (cf. Remark 3.8). Working
with the “good variables” (Z,B), it follows that u is smoother by one order compared
to B, if it is initially so. Motivated by this consideration, we consider a pair (ũ(λ), b̃(λ))

corresponding to taking the Z-perturbation to be zero and the B-perturbation to be a
degenerating wave packet for the linearized (E-MHD). Naturally, (ũ(λ), b̃(λ)) is then a
suitable approximate solution to the linearized (Hall-MHD) such that ũ(λ) is smoother
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by one order (i.e., smaller by a factor of λ−1) compared to b̃(λ). Amusingly, the same
choice works even for ν > 0, since the improved smoothness of ũ(λ) allows us to treat
the dissipative term ν�u perturbatively in the method of testing by degenerating wave
packets.

Superposition of Instabilities in Frequency Space: Proof Of Theorem B

After the construction of norm-growing solutions (cf. Theorem A), one may simply
superpose (via linearity) a sequence of such solutions with increasing initial frequen-
cies to obtain a solution that is smooth initially, but instantaneously exits any Sobolev
space above L2. This is the basic idea of the proof of Theorem B.We note that in order
to carry it out, however, uniqueness of L2-solutions needs to be assumed.

Contradiction Argument for Nonlinear Illposedness: Proof of Theorem C

We now turn to the first nonlinear illposedness result, Theorem C. Assuming that the
solutionmap exists (i.e., existence and uniqueness) near a stationary solution B̊ as in the
statement of Theorem C, we need to prove its unboundedness and absence of Hölder
continuity depending on the range of s0. In both cases, the idea is to treat the nonlinear
terms as a perturbation in the context of testing by degenerating wave packets, using
the hypothesis together with the energy identity. For instance, the contribution of a
typical nonlinear term ∇b∇b in d

dt 〈b̃(λ), b〉 (where b = B− B̊) obeys

|〈b̃(λ),∇b∇b〉(t)| � ‖b̃(λ)(t)‖L2‖b(t)‖L2‖b(t)‖H3 � ‖b̃(λ)(0)‖L2‖b(0)‖L2‖b‖L∞
t H3,

where we used interpolation in the first inequality, and the energy identity (cf. Propo-
sition 1.1) for the second inequality. This contribution is acceptable thanks to the
contradiction assumption ‖b‖L∞

t Hs0 < ∞ if s0 ≥ 3. Under the assumption of Hölder
continuity, one obtains a better estimate for the nonlinear terms, which allows for a
lower range of s0.

Superposition of Instabilities in Physical Space: Proof of Theorem E

As in the proof of Theorem B, one idea for improving the nonlinear illposedness
result is to superpose perturbations of different initial frequencies. Unfortunately, this
strategybecomes daunting in the nonlinear case, as the low frequencypartmay strongly
influence the high frequency part. Instead, inspired by an idea in Bourgain–Li [4, 5],
we exploit the nonlinear structure of (Hall-MHD) and (E-MHD) to superpose disjoint
sources of instability in physical space. (This idea has been very useful in the study
of fluid equations in critical Spaces [4, 5, 23].) As a result, we prove nonexistence of
the solution in high regularity Sobolev spaces.

More precisely, the idea is to start with a compactly supported stationary solution
B̃ = f̃ (y)∂x (or similarly f̃ (r)∂θ ) with a linear degeneracy, and consider the following
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superposition:

B̊ =
∞∑

k=k0

B̊k :=
∞∑

k=k0

akB̃(L−1
k x, L−1

k (y − yk))

where ak > 0 is decaying sufficiently fast in k so that ‖B̊‖Hs → 0 as k0 → ∞, and the
sequence of center (0, yk) and the scales Lk > 0 are chosen so that B̊k’s have disjoint
supports; as a result, B̊ is a planar stationary magnetic field. Then we perturb each
B̊k with a very high frequency λk , so that the instability induced by the perturbation
dominates the decay of the coefficients ak .

The key ingredient of the proof is localization of the usual and generalized energy
identities (i.e., L2-inner product of the solution with each degenerating wave packet).
The latter task is straightforward since the degenerating wave packets already have
goodphysical space localization properties. The former task is at the heart of thematter;
it is in this aspect that (E-MHD) seems to behavemuch better than (Hall-MHD) (which
may be guessed from the presence of the pressure in (Hall-MHD)), and therefore our
proof can cover M = T

3 only in the case of (E-MHD). We refer to Sects. 5.3 and 5.4
for more details.

Proof of Gevrey Illposedness: Proof of Theorem F

In the proof of Theorem A, the initial perturbation is chosen to be supported away
from the degenerate point for B̊, which allows for the freedom of choosing a C∞
phase G(y) at our convenience (see (3.22) below). However, such choices are clearly
not allowed once the perturbation is required to be in at least the analytic class G1.
The main step in proving Theorem F therefore consists of adapting the construction
of degenerating wave packets for Gevrey class initial perturbations with the phase y
instead of G(y).

Illposedness for the Fractionally Dissipative Systems: Proof of Theorem G

The strategy of the proof is identical to that for TheoremC;wefirst prove norm inflation
of the linearized system and use a contradiction argument to handle the nonlinearity.
Since continuous-in-time loss of one full derivative is explicit in the growth rates given
in Theorem A, we are able to treat the dissipation terms perturbatively. An additional
complication arises due to the fact that now the background magnetic field B̊ is time-
dependent. Replacing B̊(t) by B̊0, one obtains another error term, which is handled
by exploiting its smallness in time.

1.8 Discussions

Further discussion of related papers and subjects is in order.

123



   15 Page 26 of 106 I. Jeong, S. Oh

Work of Chae–Weng [11] in axisymmetry

In their intriguing paper [11], D. Chae and S. Weng showed that (Hall-MHD) is well-
posed13 within axisymmetry, andmoreover that it admits finite time blow-up solutions
with regular initial data. These properties are evident for (E-MHD), which reduces
exactly to inviscid Burger’s equation under axisymmetry and Br = Bz = 0 (see
Sect. 1.9 for our conventions in cylindrical coordinates):

∂tBθ + ∂z(Bθ )2 = 0.

Our results show severe illposedness for arbitrarily small perturbation away from
axisymmetry, if the initial magnetic field either has a linear degeneracy or vanishes in
an open annulus.Whether there is a regime in which both local wellposedness (outside
symmetry) and the finite time blow-up of Chae–Weng hold remains an interesting open
problem.

Comparison with the Ideal MHD and AlfvénWaves

As is well-known, the linearized idealMHDaround a constant magnetic field B̊ = B̄∂x

(B̄ �= 0) exhibits a wave propagation phenomenon; the waveform is called the Alfvén
wave [47, Sect. 10.5]. Unlike whistler waves, whose group speed is proportional to
the frequency (dispersive), the group speed of Alfvén waves is independent of the
frequency (hyperbolic). Moreover, while whistler waves can propagate in directions
transversal to the magnetic field (which in fact plays a key role in our instability
mechanism; see Figure 1), Alfvén waves travel only along the magnetic field lines.

Comparison with Instabilities in Hydrodynamics

The instability mechanism presented in this work is drastically different and much
stronger compared to more traditional hydrodynamical instabilities, such as the
Kelvin–Helmholtz, Rayleigh–Taylor, and boundary layer instabilities. They can be
respectively described by the Birkhoff–Rott, (compressible or incompressible) Euler
with variable density, and Prandtl equations.

In the case of the Kelvin–Helmholtz instability (see [45,Chap. 9]), the linearization
around a steady solution explicitly takes the form ∂t b = |∇|b where b is the pertur-
bation. This shows the growth rate of eλt for initial data with frequency �λ. Next,
the growth rate of ecλ1/2t is classically known for the linearized systems describing
Rayleigh–Taylor (both for compressible and incompressible models; see for instance
[22, 31] and the references therein). While far less trivial, the same growth rate in fre-
quency was established for the linearized Prandtl equations near certain shear flows
[25].

From such growth rates, it follows immediately that these linear equations are ill-
posed in Hs with all s ≥ 0, while the Hall-MHD and electron-MHD equations enjoy

13 This observation is implicit in [11], and was later made explicit in [39] in the ideal case. To be more
precise, one furthermore requires uθ = Br = Bz = 0.
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stability in L2. On the other hand, these growth rates are not so catastrophic in the
sense that as long as the initial data have Fourier spectrum decaying exponentially
fast, such a decay property should propagate at least for some time interval. Indeed,
local wellposedness in the analytic regularity class for these models (both for linear
and nonlinear cases) have been established; see, for instance, [3, 8, 26, 48, 49, 51].
The propagation of analytic regularity can be reformulated in terms of the growth
of the sequence of Sobolev norms Hs (s ≥ 0), and as far as frequency localized
perturbations are concerned, the above growth rates show that all the Hs norms grow
at a rate uniform in s. In stark contrast to this observation, TheoremA explicitly shows
the growth rate of ecsλt for the Hs norm of a perturbation whose frequency is initially
localized near λ, which is not compatible with local wellposedness in the analytic
class. The difference in the growth mechanism in our systems can be summarized
as follows: rather than simple amplitude growth of Fourier modes, instability is due
to transfer of energy to higher Fourier modes with speed proportional to the initial
frequency. We also note that unlike our situation, where an L2 bound allows one to
treat the nonlinear terms perturbatively, the passage from a linear Hs illposedness
result to a nonlinear one in the above problems is highly nontrivial (but see the works
[9, 22, 25, 30, 31]).

On a different note, we point out that geometric optics techniques, which form the
basis of our approach in this paper, have been employed to study localized instabilities
of ideal fluids; see the review article [24] and the references therein.

On the Illposedness Result of Brushlinskii–Morozov [7] in the Compresible Case

We note an insightful early investigation of Brushlinskii–Morozov [7] that demon-
strated illposedness (or in their terminology, “nonevolutionarity”) of the ideal
Hall-MHD in the compressible case. The instability is also due to the degeneracy
of the Hall current term; however, it is based on compressibility and is closer to the
traditional instabilities discussed earlier (for instance, it is proved by finding highly
oscillating plane wave solutions whose amplitudes grow).

Instabilities in Degenerate Dispersive Equations

While our instability mechanism is qualitatively different from the traditional instabil-
ities discussed above, it is prevalent in degenerate dispersive equations, which arise
from a diverse range of physical and mathematical sources (see the papers cited below
and references therein).

An instructive example that is closest to (Hall-MHD) is the two-dimensional vari-
able coefficient ultrahyperbolic Schrödinger equation:

∂t b + i f (y)∂x∂yb = 0, (t, x, y) ∈ R× R
2. (1.15)

Away from the hyperplanes on which f vanishes, this equation is explicitly solvable
by essentially the same procedure as in Sect. 3 below: take the Fourier transform in x ;
make the change of variables (t, y) �→ (τ, η) so that ∂τ = ξx∂t , ∂η = f (y)∂y ; then
observe that the resulting equation is the simple transport equation with the operator
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∂τ − ∂η. From such an explicit solution, it may be checked that (1.15) exhibits a
qualitatively similar illposedness as that in Theorem A near a linearly degenerate
point y0 of f , i.e., f (y0) = 0 with f ′(y0) �= 0. Moreover, we note that the ideas
in this paper allow for a straightforward generalization of such an illposedness to
nonlinear perturbations of (1.15).

Another illuminating exercise is to re-examine the classical example of an ill-posed
degenerate dispersive equation due to Craig–Goodman [17]. Its behavior seems a bit
different from that of (Hall-MHD) at first sight, but it may ultimately be understood
by the methodology in this paper. The equation is

∂t u ± x∂3x u = 0, (t, x) ∈ R× R. (1.16)

By explicitly solving the equation, Craig–Goodman showed that (1.16) is well-posed
in the direction ±t > 0, and ill-posed in the opposite direction. The unidirectionality,
which is different from our case, may already be observed at the level of the (formal)
energy identity for (1.16), which is

1

2
‖u(t)‖2L2 ± 3

2
‖∂x u‖2L2((0,t);L2)

= 1

2
‖u(0)‖2L2 . (1.17)

The deeper reason for the unidirectionality is the the behavior of bicharacteristics,
all of which propagate towards (resp. away from) the degeneracy in the direction of
ill-(resp. well-)posedness; see [17,Sect. 2].

To exhibit illposedness in this example with the methodology of this paper, one
begins by constructing degenerating wave packets for ±t ≤ 0 based on the bichar-
acteristics propagating towards the degeneracy (cf. Sect. 3). Next, the key ingredient
needed to upgrade the behavior of degenerating wave packets to that of actual solu-
tions is a generalized energy identity (cf. Sect. 4). The energy identity (1.17) for u
is unsuitable for this purpose due to the presence of the term involving ∂x u. Never-
theless, the problematic term may be removed by considering a suitable conjugation
v = T u up to acceptable lower order terms (e.g., a Fourier multiplier T̂ u = m(ξ )̂u

with m(ξ) smooth and m(ξ) = sgn ξ |ξ | 12 for |ξ | > 1 would do). Such an approach
has the advantage of being far more robust compared to the explicit solution method
in [17].

For further discussion and results in this direction, we refer to our follow-up work
[36], in which we extend the methods developed in this paper to establish illposedness
of the Cauchy problem in standard function spaces, such as Sobolev spaces with
arbitrary high regularities, for a wide class of one-dimensional nonlinear degenerate
dispersive equations (in particular, degenerate KdV-type equations, for which (1.16)
serves as a model). See also the prior works [2, 17] in the direction of illposedness for
degenerate dispersive equations. Concerning the existence and uniqueness of solutions
with degeneracies14, we also note the interesting recent works [28, 29, 33].

14 The illposedness results in [36] also apply to the equations considered in [28, 29, 33], which seem
contradictory at first sight. Rather, these results are complementary. To wit, while [36] shows that even the
existence of the solution map fails with respect to standard function spaces (e.g., high regularity Sobolev
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Removing z-Independence

Since our domain M is always taken to be periodic in z and we work exclusively with
z-independent solutions (with the exception of Theorem E), the reader might wonder
whether this is essential. However, this is not the case. First of all, let us point out that
in Theorem A, the requirement that the L2-solution to the linearized equations be z-
independent may be easily lifted. (This is rather trivial, as the extra terms appearing in
the linearization for a z-dependent solution come with ∂z , so that they disappear after
integrating by parts against a degenerating wave packet which is z-independent.) In a
similar vein, the linearized equations themselves can be considered in R

3, and using
the method developed in this paper, it is not difficult to prove the same rate of growth
for initial data which has either compact support or decaying fast in the z-direction.

However, the preceding discussion is not entirely satisfactory, as the background
magnetic field B̊ is still kept z-independent. More interestingly, by considering the lin-
earized systems against a z-dependent background magnetic field solving (Hall-MHD)
or (E-MHD), which may be compactly supported in R

3, it is possible to prove non-
linear illposedness results for compactly supported data in R

3. For more details, see
our follow-up work [37], in which this strategy is carried out.

1.9 Notation, Conventions and Some Useful Vector Calculus Identities

Here, we collect some notation, conventions and vector calculus identities that will be
used freely in the remainder of the paper.

Notation and Conventions

By A � B, we mean that there exists some positive constant C > 0 such that
|A| ≤ C B. The dependency of the implicit constant C is specified by subscripts,
e.g. A �E B. By A � B, we mean A � B and A � B.

We denote by R the real line, Z the set of integers, T = R/2πZ the torus with
length 2π , N0 = {0, 1, 2, . . .} the set of nonnegative integers and N = {1, 2, . . .} the
set of positive integers.

We write M for the 3-dimensional domain of the form T
k × R

3−k (0 ≤ k ≤ 3)
equipped with the rectangular coordinates (x, y, z), and M2 = M2

x,y for the two-
dimensional projection of M along the z-axis. We use the notation 〈u, v〉M and 〈u, v〉
for the standard L2-inner product for vector fields on M and M2, respectively; i.e.,

〈u, v〉M =
∫

M
u · v dxdydz, 〈u, v〉 =

∫

M2
u · v dxdy.

Given a vector u on M2, we define its perpendicular u⊥ by

u⊥ =
(−uy

ux

)

,

Footnote 14 continued
spaces), [28, 33] prove existence and uniqueness in certain function spaces adapted to the degeneracies of
the solution.
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and accordingly, we introduce the perpendicular gradient operator

∇⊥ =
(−∂y

∂x

)

. (1.18)

We use the usual notation W s,p for the L p-based Sobolev space of regularity s;
when p = 2, we write Hs = W s,2. The mixed Lebesgue norm L p

x Lq
y is defined as

‖u‖L p
x Lq

y
= ‖‖u(x, y)‖Lq

y
‖L p

x
.

The norm L p
t Hs is defined similarly.

Given any space X of functions on M , we denote by Xcomp(M) the subspace of
compactly supported elements of X , and by Xloc(M) the space of functions u such
that χu ∈ Xloc(M) for any smooth compactly supported function χ on M .

Vector Calculus Identities

We recall some useful vector calculus identities:

U× (V×W) = V(U ·W) −W(U · V), (1.19)

∇ × (U× V) = (V · ∇)U+ U(∇ · V) − (U · ∇)V− V(∇ · U), (1.20)

(∇ × U) × V = (V · ∇)U− V j∇U j , (1.21)

∇ × (∇ × U) = −�U+∇(∇ · U). (1.22)

Vector Calculus in Cylindrical Coordinates

The cylindrical coordinates (r , θ, z) are defined by

r =
√

x2 + y2, θ = tan−1 y

x
.

In this paper, we use the coordinate derivative basis (∂r , ∂θ , ∂z) to decompose vectors
into components, i.e., given a vector U on M , we define its components Ur ,Uθ ,Uz

by

U = Ur∂r + Uθ ∂θ + Uz∂z .

Another widespread choice is its normalization (er , eθ , ez) = (∂r , r−1∂θ , ∂z), which
differs from our choice by factors of r . The advantage of our choice is that the change
of coordinates formulas are simpler; the disadvantage is that the inner product takes
the inconvenient form

U · V = UrVr + r2UθVθ + UzVz . (1.23)
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The gradient, curl and divergence in the cylindrical coordinates are

∇a = (∂r a)∂r + (r−2∂θa)∂θ+(∂za)∂z, (1.24)

∇ × (Ur∂r + Uθ ∂θ + Uz∂z) = (r−1∂θUz − r∂zUθ )∂r + (r−1∂zUr − r−1∂rUz)∂θ

+r−1(∂r (r
2Uθ ) − ∂θUr )∂z, (1.25)

∇ · (Ur∂r + Uθ ∂θ + Uz∂z) = r−1∂r (rUr ) + ∂θUθ + ∂zUz . (1.26)

Assuming that a is independent of z, the perpendicular gradient takes the form

∇⊥a = −(r−1∂θa)∂r + (r−1∂r a)∂θ . (1.27)

1.10 Organization of the Paper

The rest of the paper is organized as follows.

• In Sect. 2, we carry out some basic algebraic manipulation and derive the
energy identities for the linearized (Hall-MHD) and (E-MHD) under the (2+ 1

2 )-
dimensional reduction, which is a particularly simple reformulation of these
equations assuming z-independence.

• Sect. 3 is the heart of this paper, where we construct degenerating wave packet
approximate solutions to the linearized (E-MHD) and (Hall-MHD), under the
(2+ 1

2 )-dimensional reduction and around a planar stationary magnetic field with
an additional symmetry.

• In Sect. 4, the energy identities in Sect. 2 and the degenerating wave packets
constructed in Sect. 3 are combined to prove the linear Sobolev illposedness results,
Theorems A and B.

• In Sect. 5, we establish the nonlinear illposedness results, Theorems C and E.
• In Sect. 6, we establish the (linear) Gevrey illposedness result, Theorem F.
• Finally, in Sect. 7, we establish the illposedness result for the fractionally dissipa-
tive systems, Theorem G.

The paper is supplemented with Appendix A, where we sketch the proof of existence
of an L2-solution for the linearized systems.

2 The (2+ 1
2)-Dimensional Reduction and Linearized Energy

Identities

The purpose of this section is to record the basic algebraic manipulations and energy
identities for our proof of the illposedness results.

2.1 The (2+ 1
2 )-Dimensional Reduction of (Hall-MHD) and (E-MHD)

Herewe derive a simpler reformulation of (Hall-MHD) and (E-MHD) under one trans-
lational symmetry (or, more concretely, independence on the z-coordinate), which
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involves the z-component of the solution and of its curl. Following the usual termi-
nology in fluid mechanics, we refer to this procedure as the (2 + 1

2 )-dimensional
reduction. The derivation in this subsection is formal; for justification in cases that
arise in applications, we refer to Propositions 2.1 and 2.3.

The (2+ 1
2 )-Dimensional Reduction of (Hall-MHD)

We take the system (Hall-MHD) and simplify it under the assumption of z-
independence. Dealing with the equation for B first, we have

∂tB− (B · ∇)u+ (u · ∇)B+ (B · ∇)(∇ × B) − ((∇ × B) · ∇)B = 0.

Taking the z-component, we obtain

∂tBz − (B · ∇)uz + (u · ∇)Bz + (B · ∇)(∇ × B)z = 0.

with the observation that

((∇ × B) · ∇)Bz = ∂yBz∂xBz − ∂xBz∂yBz = 0.

On the other hand, returning to the form

∂tB−∇ × (u× B) +∇ × ((∇ × B) × B) = 0

then using (1.22), (1.21) and z-independence, we obtain

∂t (∇ × B)z + �
(
(u× B)z − (B · ∇)Bz) = 0. (2.1)

Turning to the equation for u, taking the z-component gives

∂tuz + (u · ∇)uz − ν�uz = (B · ∇)Bz,

where we note that the pressure term vanishes by z-independence. Taking the z-
component of the curl gives

∂t (∇ × u)z + (u · ∇)(∇ × u)z − ν�(∇ × u)z = (B · ∇)(∇ × B)z .

Note that the divergence-free condition reads

∂xBx + ∂yBy = 0, ∂xux + ∂yuy = 0.

We introduce the notation ω = (∇ × u)z for the z-component of the vorticity. Then
we arrive at the following closed system of four scalar quantities depending on two
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variables (x, y):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tuz + (u · ∇)uz − (B · ∇)Bz − ν�uz = 0,

∂tω − (u · ∇)ω − (B · ∇)(∇ × B)z − ν�ω = 0,

∂tBz − (B · ∇)uz + (u · ∇)Bz + (B · ∇)(∇ × B)z = 0,

∂t (∇ × B)z + �
(
(u× B)z − (B · ∇)Bz) = 0,

(2.2)

where the system is to be supplemented with the div-curl relations

{
∂xux + ∂yuy = 0,

∂xuy − ∂yux = ω,
(2.3)

as well as

{
∂xBx + ∂yBy = 0,

∂xBy − ∂yBx = (∇ × B)z .
(2.4)

The (2+ 1
2 )-Dimensional Reduction of (E-MHD)

The case of (E-MHD) is easily obtained from the preceding computation by formally
setting uz and ω equal to zero. The (2+ 1

2 )-dimensional reduction of (E-MHD) is the
closed system of two scalar quantities

Bz, (∇ × B)z,

depending only on two variables (x, y), of the following form:

{
∂tBz + (B · ∇)(∇ × B)z = 0,

∂t (∇ × B)z − �(B · ∇)Bz = 0.
(2.5)

As before, the system is to be supplemented with the div-curl relation

{
∂xBx + ∂yBy = 0,

∂xBy − ∂yBx = (∇ × B)z .
(2.6)

where the mean B̄ only arises in the case M2 = T
2.

2.2 Stationary Planar Magnetic Fields with an Additional Symmetry

In this short subsection,weprovide a quick proof of Proposition 1.3 using the preceding
computation.
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Proof of Proposition 1.3 In what follows, we write B instead of B̊ for simplicity. By
planarity, Bz = 0, and by stationarity, ∂tB = 0. Thus, it follows from (2.5) that

B · ∇(∇ × B)z = 0 in M . (2.7)

As remarked above, there are two possibilities for an additional symmetry: Either (1)
B is independent of one of the coordinates, which may be taken to be x without loss
of generality, or (2) Bx∂x + By∂y is axi-symmetric in R

2
x,y , where the axis may be

taken to be the origin (0, 0) without loss of generality.
In case (1), (2.7) and the divergence-free condition amount to:

By∂2yB
x = 0, ∂yBy(y) = 0,

whose general solution has the form B = f (y)∂x or B = (c1y + c0)∂x + d∂y , as
desired.

In case (2), we write B in the cylindrical coordinates (r , θ, z) as

B = Br (r)∂r + Bθ (r)∂θ .

Then (2.7) and the divergence-free condition become

Br∂r (r
−1∂r (r

2Bθ )) = 0, ∂r (rBr ) = 0.

The second equation (divergence-free) and the requirement of smoothness of B at the
origin force Br = 0; thus we are left with a general solution of the form B = f (r)∂θ .

��

2.3 Perturbed and Linearized Equations Under the (2+ 1
2 )-Dimensional

Reduction

Here we derive the full and linearized equations satisfied by the perturbation (u,B) =
(0, B̊) + (u, b) of the stationary solutions (0, B̊) considered in Theorem A, under the
(2+ 1

2 )-dimensional reduction. We first present formal derivations, and then describe
the precise sense in which the reduced equations hold for L2-solutions in Proposi-
tion 2.1.

In our derivation, as in the definition of an L2-solution for the linearized equations,
we assume the mean-zero condition (1.6) for the perturbations when M2 = T

2
x,y ,

which ensure that Biot–Savart-type identities hold; see (2.8) and (2.12) below.

Translationally-Symmetric Background, (Hall-MHD)

Consider a translationally-symmetric background magnetic field of the form B̊ =
f (y)∂x . Recall that u = u, B = B̊+ b; the vector fields u and b are divergence-free.
Introducing now

(∇ × b)z = −�ψ, (∇ × u)z = ω
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we formally have the Biot–Savart-type identity

bx,y = −∇⊥ψ, ux,y = −∇⊥(−�)−1ω. (2.8)

Since

(∇ × B̊)z = − f ′(y),

we have

ψ = (−�)−1((∇ × B)z + f ′(y)), ω = ω.

Therefore, from (2.2), we may derive the following perturbation equation satisfied by
the quadruple (uz, ω, bz, ψ):

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂t u
z − f (y)∂x bz − ν�uz = −u · ∇uz,

∂tω − f ′′(y)∂xψ + f (y)∂x�ψ − ν�ω = −u · ∇ω + ∇⊥ψ · ∇�ψ,

∂t b
z − f (y)∂x uz + f ′′(y)∂xψ − f (y)∂x�ψ = −u · ∇bz − ∇⊥ψ · ∇uz

−∇⊥ψ · ∇�ψ,

∂tψ − f (y)∂x (−�)−1ω + f (y)∂x bz = −u · ∇ψ +∇⊥ψ · ∇bz .

(2.9)

Removing all the quadratic terms in u and b, we arrive at the linearized system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t u
z − f (y)∂x bz − ν�uz = 0,

∂tω − f ′′(y)∂xψ + f (y)∂x�ψ − ν�ω = 0,

∂t b
z − f (y)∂x uz + f ′′(y)∂xψ − f (y)∂x�ψ = 0,

∂tψ − f (y)∂x (−�)−1ω + f (y)∂x bz = 0.

(2.10)

We note that the LHS of the equation for ∂tω in (2.9) and (2.10) may be rewritten in
the divergence form

∂tω −∇ · ( f ′∇⊥ψ) + ∂x ( f �ψ) − ν�ω. (2.11)

Translationally-Symmetric Background, (E-MHD)

The counterpart of the perturbation equation for the electron-MHD case is simply
obtained by setting ω = uz = 0. Thus, the Bio–Savart-type identity is

bx,y = −∇⊥ψ, (2.12)

the perturbation equation is of the form

{
∂t b

z + f ′′(y)∂xψ − f (y)∂x�ψ = −∇⊥ψ · ∇�ψ,

∂tψ + f (y)∂x bz = ∇⊥ψ · ∇bz,
(2.13)
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and linearized equation is

{
∂t b

z − f (y)∂x�ψ + f ′′(y)∂xψ = 0,

∂tψ + f (y)∂x bz = 0.
(2.14)

Axisymmetric Background, (Hall-MHD)

Let us take the systems (2.2) and (2.5) and write down the linearized equations around
B̊ = f (r)∂θ . We shall use the standard cylindrical coordinates system (r , θ, z) with
coordinate vectors (∂r , ∂θ , ∂z), and denote the components of a vector U in the fol-
lowing form:

U = Ur∂r + Uθ ∂θ + Uz∂z .

Assuming z-independence component functions in cylindrical coordinates, the for-
mulas (1.25) and (1.26) simplify to:

∇ × (Ur ∂r + Uθ ∂θ + Uz∂z) = r−1∂θUz∂r − r−1∂rUz∂θ + r−1(∂r (r
2Uθ ) − ∂θUr )∂z,

∇ · (Ur ∂r + Uθ ∂θ + Uz∂z) = r−1∂r (rUr ) + ∂θUθ . (2.15)

Moreover, for a scalar function a independent of z, a combination of (1.26) and (1.24)
imply

�a = 1

r
∂r (r∂r a) + 1

r2
∂2θ a. (2.16)

Equipped with the above preliminaries, we are ready to derive the perturbation and
linearized equations. We write (u,B) = (u, B̊+ b) and introduce

(∇ × b)z = −�ψ, (∇ × u)z = ω.

Since

(∇ × B̊)z = r−1∂r (r
2 f ),

we obtain that

ψ = (−�)−1((∇ × B)z − r−1∂r (r
2 f )), ω = ω.

Then, using

br = 1

r
∂θψ, bθ = −1

r
∂rψ,
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which follows from the formulas b = −∇⊥ψ and (1.27), we obtain the following
perturbation equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t u
z − f (r)∂θ bz − ν�uz = −u · ∇uz,

∂tω −
(

f ′′(r) + 3

r
f ′(r)

)

∂θψ + f (r)∂θ�ψ − ν�ω = −u · ∇ω +∇⊥ψ · ∇�ψ,

∂t b
z − f (r)∂θ uz +

(

f ′′(r) + 3

r
f ′(r)

)

∂θψ − f (r)∂θ�ψ = −u · ∇bz −∇⊥ψ · ∇uz

−∇⊥ψ · ∇�ψ,

∂tψ − f (r)∂θ (−�)−1ω + f (r)∂θ bz = −u · ∇ψ +∇⊥ψ · ∇bz .

(2.17)

Removing all the quadratic terms in u and b, we arrive at the linearized system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t u
z − f (r)∂θbz − ν�uz = 0,

∂tω −
(

f ′′(r) + 3

r
f ′(r)

)

∂θψ + f (r)∂θ�ψ − ν�ω = 0,

∂t b
z − f (r)∂θuz +

(

f ′′(r) + 3

r
f ′(r)

)

∂θψ − f (r)∂θ�ψ = 0,

∂tψ − f (r)∂θ (−�)−1ω + f (r)∂θbz = 0.

(2.18)

Moreover, by the formulas u = −∇⊥(−�)−1ω and (1.27),

ur = 1

r
∂θ (−�)−1ω, uθ = −1

r
∂r (−�)−1ω.

As before, the LHS of the equation for ∂tω can be rewritten in the divergence form

∂tω −∇ ·
(
(r f ′ + 2 f )∇⊥ψ

)
+ r−1∂θ (r f �ψ) − ν�ω. (2.19)

Note the similarity of the form with linearized systems around a translationally-
symmetric planar stationary solution.

Axisymmetric Background, (E-MHD)

The (2 + 1
2 )-dimensional perturbation equation in the case of (E-MHD) are simply

obtained by formally setting u = 0 in (2.17):

⎧
⎪⎨

⎪⎩

∂t b
z − f (r)∂θ�ψ +

(

f ′′(r) + 3

r
f ′(r)

)

∂θψ = −∇⊥ψ · ∇�ψ,

∂tψ + f (r)∂θbz = ∇⊥ψ · ∇bz .

(2.20)
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The corresponding linearized equation is

⎧
⎪⎨

⎪⎩

∂t b
z − f (r)∂θ�ψ +

(

f ′′(r) + 3

r
f ′(r)

)

∂θψ = 0,

∂tψ + f (r)∂θbz = 0.
(2.21)

Justification for L2-Solutions

The linearized equations derived in this subsection hold for L2-solutions to (1.2) and
(1.3) in the following sense.

Proposition 2.1 Let (u, b) be a z-independent L2-solution to (1.2) around (0, B̊),
where either (a) B̊ = f (y)∂x or (b) B̊ = f (r)∂θ as in Theorem A. Then (uz, ω, bz, ψ),
defined from (u, b) as above, is well-defined up to addition of a space-independent
distribution15 for ψ , and the Biot–Savart-type identity (2.8) holds. Moreover, (2.10)
or (2.18), respectively in cases (a) or (b), holds when tested against vector-valued
functions of the form

(φu,∇ · (−�)−1φx,y
ω , φb,∇φψ)

where φu, φ
x,y
ω , φb, φψ ∈ C∞

c (I × M).
Analogously, for a z-independent L2-solution b to (1.3) around the same B̊, (bz, ψ)

is well-defined up to addition of a space-independent distribution for ψ , and the Biot–
Savart-type identity (2.12) holds. Moreover, (2.14) or (2.21), respectively in cases (a)
or (b), holds when tested against vector-valued functions of the form

(φb,∇φψ)

where φb, φψ ∈ C∞
c (I × M).

Note that the ambiguity of ψ is harmless, in view of the fact that ∂tψ is tested against
∇φψ and all other occurrences of ψ in (2.8), (2.10) and (2.18) in the case of (1.2)
(resp. (2.12), (2.14) and (2.21) in the case of (1.3)) come with a spatial derivative; in
every instance the space-independent distribution is annihilated.

The proof is straightforward, so we only sketch the main points. We focus on the
case of (1.2), as (1.3) is entirely analogous. In the derivation, the only place where
one has to be careful is when inverting−� on (∇ × b)z and ω = (∇ × u)z , for which
we rely on the following result:

Lemma 2.2 In M2 = (T,R)x × (T,R)y , consider the Poisson equation

−�w = ∂x gx + ∂y gy,

where gx , gy ∈ L2. Then there exists a solution w ∈ L1
loc ∩ Ḣ1 such that ‖∇w‖L2 �

‖gx,y‖L2 , which is unique up to addition of a constant.

15 That is, a distribution on I × M whose spatial gradient vanishes.
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The key point in the proof of this lemma is the quantitative estimate ‖∇w‖L2 �
‖gx,y‖L2 ,which is a consequence of L2-boundedness ofRiesz transformson (T,R)x×
(T,R)y ; this estimate allows one to solve the equation by approximating gx , gy with
smooth functions. We omit the obvious details.

By Lemma 2.2,ψ and (−�)−1ω are well-defined as a distribution on I × M2 up to
addition of a space-independent distribution. Regardless of the ambiguity, the Biot–
Savart-type identities in (2.8) are justified, where the mean-zero condition is needed
when M2 = T

2
x,y . The rest of the derivation can be followed without change, and the

property that (u, b) solves (1.2) in the sense of distributions translates to (2.10) and
(2.18) (in the respective cases) with the test functions as above.

2.4 Energy Identities Under the (2+ 1
2 )-Dimensional Reduction

Here, we first formally derive energy-type identities for inhomogeneous solutions to
the linearized equations computed in Sect. 2.3, which play a central role in our paper.
These identities are then justified in two important cases that arise in this paper, namely

for a pair of L2-solutions with an additional H
1
2 regularity for b, or for a pair of an

L2-solution and a suitable test function (Proposition 2.3).

Translationally-Symmetric Case, (Hall-MHD)

We first consider the case B̊ = f (y)∂x for (Hall-MHD). Motivated by the form of
(2.10), we introduce the error terms

δ(ν)
u [uz, ω, bz, ψ] = ∂t u

z − f (y)∂x bz − ν�uz,

δ(ν)
ω [uz, ω, bz, ψ] = ∂tω + f (y)∂x�ψ − f ′′(y)∂xψ − ν�ωz,

δb[uz, ω, bz, ψ] = ∂t b
z − f (y)∂x�ψ + f ′′(y)∂xψ − f (y)∂x uz,

δψ [uz, ω, bz, ψ] = ∂tψ + f (y)∂x bz − f (y)∂x (−�)−1ω.

(2.22)

Consider two quadruples of scalar functions

(ũz, ω̃, b̃z, ψ̃), (uz, ω, bz, ψ).

and the two associated pairs of planar vector fields (ũx,y, b̃x,y) and (ux,y, bx,y) given
by

(ũx,y, b̃x,y) = (−∇⊥(−�)−1ω̃,−∇⊥ψ̃),

(ux,y, bx,y) = (−∇⊥(−�)−1ω,−∇⊥ψ).

Introducing the shorthands

(δ
(ν)

ũ , δ
(ν)

ω̃
, δb̃, δψ̃ ) = (δ(ν)

u , δ(ν)
ω , δb, δψ)[ũz, ω̃, b̃z, ψ̃],
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and

(δ(ν)
u , δ(ν)

ω , δb, δψ) = (δ(ν)
u , δ(ν)

ω , δb, δψ)[uz, ω, bz, ψ],

the desired (bilinear) energy identity is given by

d

dt

(
〈b̃, b〉 + 〈ũ, u〉

)
+ 2ν〈∇ũ,∇u〉

= −〈 f ′′∂x ψ̃, bz〉 − 〈b̃z, f ′′∂xψ〉 − 〈 f ′∇ψ̃, ux,y〉 − 〈ũx,y, f ′∇ψ〉
+ 〈∇⊥δψ̃ ,∇⊥ψ〉 + 〈∇⊥ψ̃,∇⊥δψ 〉 + 〈δb̃, bz〉 + 〈b̃z, δb〉
− 〈∇⊥(−�)−1δ

(ν)

ω̃
, ux,y〉 − 〈ũx,y,∇⊥(−�)−1δ(ν)

ω 〉 + 〈δ(ν)

ũ , uz〉 + 〈ũz, δ(ν)
u 〉.

(2.23)

This identity is essentially (1.4), but allowing for errors on the RHS of the linearized
equations. It is the precise form of the errors given in (2.22) that is important here.

To prove (2.23), we use (2.22) (and (2.11) for ∂t ω̃, ∂tω) to compute

d

dt
〈b̃, b〉 + d

dt
〈ũ, u〉 + 2ν〈∇ũ,∇u〉

= 〈∂t∇⊥ψ̃,∇⊥ψ〉 + 〈∇⊥ψ̃, ∂t∇⊥ψ〉 + 〈∂t b̃
z, bz〉 + 〈b̃z, ∂t b

z〉
+ 〈∂t∇⊥(−�)−1ω̃,∇⊥(−�)−1ω〉 + 〈∇⊥(−�)−1ω̃, ∂t∇⊥(−�)−1ω〉 + 2ν〈ω̃, ω〉
+ 〈∂t ũ

z, uz〉 + 〈ũz, ∂t u
z〉 + 2ν〈ũz, uz〉

= 〈− f ∂x b̃z + f ∂x (−�)−1ω̃,−�ψ〉 + 〈−�ψ̃,− f ∂x bz + f ∂x (−�)−1ω〉
+ 〈 f ∂x�ψ̃ + f ∂x ũz − f ′′∂x ψ̃, bz〉 + 〈b̃z, f ∂x�ψ + f ∂x uz − f ′′∂xψ〉
+ 〈∇⊥(−�)−1

(
−∂x ( f �ψ̃) + ∇ · ( f ′∇⊥ψ̃)

)
,∇⊥(−�)−1ω〉

+ 〈∇⊥(−�)−1ω̃,∇⊥(−�)−1
(
−∂x ( f �ψ) +∇ · ( f ′∇⊥ψ)

)
〉

+ 〈 f ∂x b̃z, uz〉 + 〈ũz, f ∂x bz〉
+ 〈∇⊥δψ̃ ,∇⊥ψ〉 + 〈∇⊥ψ̃,∇⊥δψ 〉 + 〈δb̃, bz〉 + 〈b̃z, δb〉
+ 〈∇⊥(−�)−1δ

(ν)

ω̃
,∇⊥(−�)−1ω〉 + 〈∇⊥(−�)−1ω̃,∇⊥(−�)−1δ(ν)

ω 〉
+ 〈δ(ν)

ũ , uz〉 + 〈ũz, δ(ν)
u 〉.

Manyhigh order terms cancel, essentially from the same energy structure as in Proposi-
tion 1.4. In this process, the formal identity ((∇⊥)(−�)−1)∗(∇⊥)(−�)−1 = (−�)−1

is used. After a suitable distribution of derivatives, we arrive at

d

dt
〈b̃, b〉 + d

dt
〈ũ, u〉 + 2ν〈∇ũ,∇u〉

= 〈− f ′′∂x ψ̃, bz〉 + 〈b̃z,− f ′′∂xψ〉
− 〈 f ′∇⊥ψ̃,∇(−�)−1ω〉 − 〈∇(−�)−1ω̃, f ′∇⊥ψ〉
+ 〈∇⊥δψ̃ ,∇⊥ψ〉 + 〈∇⊥ψ̃,∇⊥δψ 〉 + 〈δb̃, bz〉 + 〈b̃z, δb〉
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+ 〈∇⊥(−�)−1δ
(ν)

ω̃
,∇⊥(−�)−1ω〉 + 〈∇⊥(−�)−1ω̃,∇⊥(−�)−1δ(ν)

ω 〉
+ 〈δ(ν)

ũ , uz〉 + 〈ũz, δ(ν)
u 〉.

Then switching ∇ and ∇⊥ in the third and fourth terms on the RHS (which incurs a
sign change), and using ux,y = −∇⊥(−�)−1ω (as well as the counterpart for ũx,y),
we obtain (2.23).

Translationally-Symmetric Case, (E-MHD)

Next, we consider the case B̊ = f (y)∂x for (E-MHD). In view of (2.14), we introduce
the error terms

εb[bz, ψ] = ∂t b
z + f ′′(y)∂xψ − f (y)∂x�ψ,

εψ [bz, ψ] = ∂tψ + f (y)∂x bz .
(2.24)

Consider two pairs of scalar functions

(b̃z, ψ̃) (bz, ψ),

and the associated planar vector fields b̃x,y = −∇⊥ψ̃ and bx,y = −∇⊥ψ . As before,
we introduce the shorthands

(εb̃, εψ̃ ) = (εb, εψ)[b̃z, ψ̃], (εb, εψ) = (εb, εψ)[bz, ψ].

Then

d

dt
〈b̃, b〉 = −〈 f ′′∂x ψ̃, bz〉 − 〈b̃z, f ′′∂xψ〉

+ 〈∇⊥εψ̃ ,∇⊥ψ〉 + 〈∇⊥ψ̃,∇⊥εψ 〉
+ 〈εb̃, bz〉 + 〈b̃z, εb〉.

(2.25)

This identity is obtained from (2.23) by formally setting ũz, ω̃, uz, ω equal to zero.

Axisymmetric Case, (Hall-MHD)

Now we consider the case B̊ = f (r)∂θ for (Hall-MHD). In view of (2.18), we intro-
duce

δ(ν)
u [uz, ω, bz, ψ] = ∂t u

z − f ∂θ bz − ν�uz,

δ(ν)
ω [uz, ω, bz, ψ] = ∂tω + f (r)∂θ�ψ − ( f ′′(r) − 3

r
f ′(r))∂θψ − ν�ω,

δb[uz, ω, bz, ψ] = ∂t b
z − f (r)∂θ�ψ + ( f ′′(r) + 3

r
f ′(r))∂θψ − f (r)∂θuz,

δψ [uz, ω, bz, ψ] = ∂tψ + f (r)∂θbz − f (r)∂θ (−�)−1ω.

(2.26)
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Consider two quadruples of scalar functions

(ũz, ω̃, b̃z, ψ̃), (uz, ω, bz, ψ),

and define the associated pairs of planar vector fields (ũ, b̃), (u, b), respectively, and
the error terms (δ

(ν)

ũ , δ
(ν)

ω̃
, δb̃, δψ̃ ), (δ(ν)

u , δ(ν)
ω , δb, δψ) as before. The energy identity

in this case is

d

dt

(
〈b̃, b〉 + 〈ũ, u〉

)
+ 2ν〈∇ũ,∇u〉

= −〈(r f ′′ + 3 f ′)r−1∂θ ψ̃, bz〉 − 〈b̃z, (r f ′′ + 3 f ′)r−1∂θψ〉
− 〈(r f ′ + 2 f )∇ψ̃, ur ,θ 〉 − 〈ũr ,θ , (r f ′ + 2 f )∇ψ〉
+ 〈∇⊥δψ̃ ,∇⊥ψ〉 + 〈∇⊥ψ̃,∇⊥δψ 〉
+ 〈δb̃, bz〉 + 〈b̃z, δb〉
− 〈∇⊥(−�)−1δω̃, ur ,θ 〉 − 〈ũr ,θ ,∇⊥(−�)−1δω〉
+ 〈δ(ν)

ũ , uz〉 + 〈ũz, δ(ν)
u 〉.

(2.27)

The derivation is similar to (2.23); we leave the details to the reader.

Axisymmetric Case, (E-MHD)

Finally, we consider the case B̊ = f (r)∂θ for (E-MHD). From (2.21), we introduce
the error terms

εb[bz, ψ] = ∂t b
z − f (r)∂θ�ψ + ( f ′′(r) + 3

r
f ′(r))∂θψ,

εψ [bz, ψ] = ∂tψ + f (r)∂θbz .

(2.28)

Consider two pairs of scalar functions

(b̃z, ψ̃), (bz, ψ),

and define the associated planar vector fields b̃x,y , bx,y , respectively, and the error
terms (εb̃, εψ̃ ), (εb, εψ), respectively, as before. The energy identity in this case is

d

dt
〈b̃, b〉 = −〈(r f ′′ + 3 f ′)r−1∂θ ψ̃, bz〉 − 〈b̃z, (r f ′′ + 3 f ′)r−1∂θψ〉

+ 〈∇⊥εψ̃ ,∇⊥ψ〉 + 〈∇⊥ψ̃,∇⊥εψ 〉
+ 〈εb̃, bz〉 + 〈b̃z, εb〉,

(2.29)

which is obtained by formally setting ũz, ω̃, uz, ω equal to zero in (2.27).
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Justification of the Energy Identities

The above energy identities can be rigorously justified under the following conditions:

Proposition 2.3 The energy identities (2.23) and (2.27) hold in the following two
cases:

• (ũz, ω̃, b̃z, ψ̃)and (uz, ω, bz, ψ)are derived from L2-solutions (ũ, b̃)and (u, b)as
in Proposition 2.1, respectively, under the additional conditions (u, b) ∈ Ct (I ; L2)

and b̃, b ∈ L2
t (I ; H

1
2 ); or

• (uz, ω, bz, ψ) is derived from an L2-solution (u, b) as in Proposition 2.1, and
(ũz, ω̃, b̃z, ψ̃) obeys16

(ũz,∇(−�)−1ω̃) ∈ Ct (I ; L2), (b̃z,∇ψ̃) ∈ Ct (I ; L2) ∩ L1
t (I ; H1),

and the error terms obey

δ
(ν)

ũ ,∇(−�)−1δ
(ν)

ω̃
, δb̃,∇δψ̃ ∈ L1

t (I ; L2),

and when ν > 0, also

∇ũz, ω̃ ∈ L2
t (I ; L2).

Analogously, the energy identities (2.25) and (2.29) hold in the following two cases:

• (b̃z, ψ̃) and (bz, ψ) are derived from L2-solutions b̃ and b as in Proposi-
tion 2.1, respectively, under the additional conditions b ∈ Ct (I ; L2) and b̃, b ∈
L2

t (I ; H
1
2 ); or

• (bz, ψ) is derived from an L2-solution b as in Proposition 2.1, and (b̃z, ψ̃) obeys

(b̃z,∇ψ̃) ∈ Ct (I ; L2) ∩ L1
t (I ; H1)

and the error terms obey

εb̃,∇εψ̃ ∈ L1
t (I ; L2).

The idea is to first mollify (ũz, ω̃, b̃z, ψ̃) and (uz, ω, bz, ψ) in space; then the deriva-
tion of the energy identities go through, with additional errors generated from the
mollification. Next, one checks that the above conditions allow one to take the mollifi-
cation parameter to zero in the energy identities, while the mollification errors vanish.
For instance, in the case of (Hall-MHD), under the condition that (ũ, b̃), (u, b) ∈ E(I )
one can show, using standard commutator estimates for mollifiers, that all mollifica-
tions errors go to zero except δb̃, δψ̃ and δb, δψ , which lose one derivative in the
commutator with the Hall term. Roughly speaking, distributing this loss equally to b
and b̃ results in the first case, and shifting it to b̃ results in the second case. We omit
the straightforward details.

16 Here, by the assertion ∇(−�)−1ω̃ ∈ X , we mean ω̃ is of the form −�w where ∇w ∈ X .
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3 Construction of DegeneratingWave Packets

The goal of this section is to carry out the construction of a degenerating wave packet
approximate solutions for the linearized (E-MHD) and (Hall-MHD) equations around
stationary solutions as in Theorem A.

3.1 Statement of theMain Propositions

The aim of this subsection is to state precisely the main properties of the construction
in this section.

We begin with some preparations. In what follows, we write ∂−1
x for a right inverse

of ∂x that is formally defined as follows:

∂−1
x g =

{∫ x
0 g(x ′) dx ′ + ∫ 2π

0 x ′g(x ′) dx ′ when (T,R)x = Tx ,
∫ x
−∞ g(x ′) dx ′ when (T,R)x = Rx .

When (T,R)x = Tx , ∂−1
x g is well-defined only when

∫
g dx = 0. In this case, note

that
∫

∂−1
x g dx = 0. When (T,R)x = Rx , ∂−1

x g stays in S(Rx ) if g ∈ S(Rx ) and∫
g dx = 0.
Assuming that ∂−1

x is well-defined for eiλx g, we introduce the notation

g(−1;λ) = iλe−iλx∂−1
x (eiλx g), g(−2;λ) = iλe−iλx∂−1

x (eiλx g(−1;λ)), etc.

The factor iλ is inserted to compensate for the effect of ∂−1
x on eiλx g; see Lemma 4.1

below, where the advantage of this normalization is most evident.
For any x0 ∈ (T,R)x , we introduce the x-translation operator

Tx0g(x, y, z) = g(x − x0, y, z).

We first state the main result in the case of (E-MHD).

Proposition 3.1 (Construction of degenerating wave packets for (E-MHD)) Let B̊ and
M be as in Theorem A. Then the following statements hold.

(a) (translationally-symmetric case) Consider case (a) in Theorem A, i.e., B̊ =
f (y)∂x and M2 = (T,R)x × (T,R)y . Assume, without loss of generality, that
f (0) = 0 and f ′(0) > 0, and fix y1 > 0 such that

f ′(y) >
1

2
f ′(0), 0 < f (y) <

1

2
for y ∈ [0, y1].

Then to any λ ∈ N0 and a complex-valued Schwartz function g0(x, y) ∈ S(M2)

such that

supp g0 ⊆ (T,R)x × ( 12 y1, y1),
∫

eiλx g0(x, y) dx = 0 for all y ∈ (0, y1),(3.1)
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we may associated a pair (b̃z
(λ), ψ̃(λ))[g0] satisfying the following properties:

• (linearity) the map g0 �→ (b̃z
(λ), ψ̃(λ))[g0] is (real) linear;

• (initial data) at t = 0, we have

b̃z
(λ)(0) = λ f −1∂−1

x Re

(
1

i
eiλ(x+G(y))g0

)

+ f −1∂−1
x Re

×
(

eiλ(x+G)

(
1

2

f 2∂y f
√
1− f 2

g0 − f
√

1− f 2∂y g0 − (1+ f 2)∂x g0

))

(3.2)

and

ψ̃(λ)(0) = λ−1Re
(

eiλ(x+G(y))g0
)

, (3.3)

where G(y) is a smooth function on y ∈ (0, y1) determined by f , and

‖b̃z
(λ)(0)‖L2 + ‖∇ψ̃(λ)(0)‖L2 ≥ c‖g0‖L2 − Cλ−1‖g0‖H1;

• (x-invariance) for any x0 ∈ (T,R)x ,

(b̃z
(λ), ψ̃(λ))[e−iλx0Tx0g0] = Tx0(b̃

z
(λ), ψ̃(λ))[g0];

• (regularity estimates) for any m ∈ N0 and t ≥ 0,

max
0≤k,�,k+�≤m

‖(λ−2∂t )
k(λ−1∂x )

�(λ−1 f ∂y)
m−k−�b̃z

(λ)(t)‖L2 � ‖g(−1;λ)
0 ‖Hm+1 ,

max
0≤k,�,k+�≤m

‖(λ−2∂t )
k(λ−1∂x )

�(λ−1 f ∂y)
m−k−�∇ψ̃(λ)(t)‖L2 �‖g0‖Hm+1 ;

• (degeneration) there exists 0 < c f < C f such that the following holds:
– For 1 ≤ p ≤ ∞ and s ∈ R obeying 1

p − s ≤ 1
2 , we have

‖b̃(λ)(t)‖L p
x W s,p

y
�s λseC f (s− 1

p + 1
2 )λt‖(g0, g(−1;λ)

0 )‖W �s +2,p , (3.4)

where b̃x,y
(λ) (t) = −∇⊥ψ̃(λ);

– There exists a decomposition b̃(λ)(t) = b̃main
(λ) (t)+ b̃small

(λ) (t) such that for

any 1 ≤ p ≤ ∞ and s ∈ R be obeying s − 1
p + 1

2 ≤ 0, we have

‖b̃main
(λ) (t)‖L p

x W s,p
y

�s λsec f (s− 1
p + 1

2 )λt‖(g0, g(−1;λ)
0 )‖W �−s +2,p , (3.5)

and for any 1 ≤ p ≤ ∞ and s ∈ R such that − 1
2 < s − 1

p + 1
2 ≤ 0, we

have

‖b̃small
(λ) (t)‖L p

x W s,p
y

�s λ−1ec f (s− 1
p + 1

2 )λt‖(g0, g(−1;λ)
0 )‖W 2,p ; (3.6)
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and analogous estimates hold for (λ−1∂x )
mb̃(λ) for any m ∈ N0;

• (error bounds) for t ≥ 0, εψ [b̃z
(λ), ψ̃(λ)](t) = 0 and

‖εb[b̃z
(λ), ψ̃(λ)](t)‖L2 � ‖g(−1;λ)

0 ‖H4 .

In the above statements, we omitted the dependence of the implicit constants on
f .

(b) (axi-symmetric case: B̊ = f (r)∂θ and M2 = R
2
x,y). Assume, without loss of

generality, that f ′(r0) > 0, and fix r1 > 0 such that

f ′(r) >
1

2
f ′(r0), 0 < f (r) <

1

2
for r ∈ [r0, r1].

Then for any λ ∈ N0 and a complex-valued smooth radial function g0(r) such
that

supp g0 ⊆ ( 12 (r0 + r1), r1), (3.7)

we may associated a pair (b̃z
(λ), ψ̃(λ))[g0] satisfying the following properties:

• (linearity) the map g0 �→ (b̃z
(λ), ψ̃(λ))[g0] is linear;

• (initial data) at t = 0, we have

b̃z
(λ)(0) = − f −1Re

(
eiλ(θ+G(r))g0

)

− f −1λ−1Re

(

ieiλ(θ+G)

(
1

2

f 2∂r f
√
1− f 2

g0 − f
√

1− f 2∂r g0

))

and

ψ̃(λ)(0) = λ−1Re
(

eiλ(θ+G(r))g0
)

,

where G(r) is a smooth function on r ∈ (r0, r1) determined by f , and

‖b̃z
(λ)(0)‖L2 + ‖∇ψ̃(λ)(0)‖L2 ≥ c‖g0‖L2 − Cλ−1‖g0‖H1 ,

where c, C > 0 are absolute constants;
• (regularity estimates) for any m ∈ N0 and t ≥ 0,

max
0≤�≤m

‖(λ−2∂t )
k(λ−1∂θ )

�(λ−1 f ∂r )
m−k−�b̃z

(λ)(t)‖L2 � ‖g0‖Hm+1 ,

max
0≤�≤m

‖(λ−2∂t )
k(λ−1∂θ )

�(λ−1 f ∂r )
m−k−�∇ψ̃(λ)(t)‖L2 � ‖g0‖Hm+1;

• (degeneration) there exists 0 < c f < C f such that the following holds:
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– For 1 ≤ p ≤ ∞ and s ∈ R obeying 1
p − s ≤ 1

2 , we have

‖b̃(λ)(t)‖L p
θ W s,p

r
�s λseC f (s− 1

p + 1
2 )λt‖g0‖W �s +2,p ,

where b̃r
(λ) = r−1∂θ ψ̃(λ) and b̃θ

(λ) = −r−1∂r ψ̃(λ);

– There exists a decomposition b̃(λ)(t) = b̃main
(λ) (t)+ b̃small

(λ) (t) such that for

any 1 ≤ p ≤ ∞ and s ∈ R be obeying s − 1
p + 1

2 ≤ 0, we have

‖b̃main
(λ) (t)‖L p

θ W s,p
r

�s λsec f (s− 1
p + 1

2 )λt‖g0‖W �−s +2,p ,

and for any 1 ≤ p ≤ ∞ and s ∈ R such that − 1
2 < s − 1

p + 1
2 ≤ 0, we

have

‖b̃small
(λ) (t)‖L p

θ W s,p
r

�s λ−1ec f (s− 1
p + 1

2 )λt‖g0‖W 2,p ;

and analogous estimates hold for (λ−1∂θ )
�b̃(λ) for any � ∈ N0;

• (error bounds) for t ≥ 0, εψ [b̃z
(λ), ψ̃(λ)](t) = 0 and

‖εb[b̃z
(λ), ψ̃(λ)](t)‖L2 � ‖g0‖H4 .

In the above statements, we omitted the dependence of the implicit constants on
f , r0 and r1.

Note that, in case (a), the mean-zero property in (3.1) ensures that g(−1;λ)
0 ∈ S(M2)

with the same support property as g0.

Remark 3.2 Key to our instability mechanism is the degeneration property. As it will
be clear in our construction, the wave packet (b̃z

(λ), ψ̃(λ)) is initially supported in

( 12 y1, y1), but travels towards the hypersurface {y = 0} (where we focus on case (a)

for concreteness), on which B̊ is linearly degenerate. In this process, its y-support
degenerates at a rate determined by λwhile the L2 norm remains invariant; byHölder’s
inequality, we already obtain the L p-degeneration inequality

‖b̃(λ)‖L2
x L p

y
� e−c f (

1
p − 1

2 )λt‖(g0, g(−1;λ)
0 )‖H1 . (3.8)

We remark that the simpler inequality (3.8) may be used in place of (3.5)–(3.6) in the
ensuing proofs to establish some norm growth inequalities, but these are not sharp in
the case s > 0.
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To ensure such a behavior, which is not time symmetric, the choice of b̃z
(λ)(0) is

crucial. Changing its sign reverses time17 for (2.14), and the corresponding wave
packet expands its y-support while keeping the L2 norm invariant.

Remark 3.3 A careful inspection of the proof reveals that the optimal constants c f and
C f are actually given by f ′(0) − δ and f ′(0) (in the axi-symmetric case, f ′(r0) − δ

and f ′(r0)), respectively, where δ ↘ 0 as we move the support of g0 closer to the
degeneracy.

Remarkably, the construction in the case of (Hall-MHD) turns out to be a minor
extension of Proposition 3.1 for a suitable choice of ũz

(λ) and ω̃(λ).

Proposition 3.4 (Construction of degenerating wave packets for (Hall-MHD)) Let B̊,
M, λ and g0 be as in Proposition 3.1. In case (a) and when (T,R)x = Rx , assume
also that

∫

xeiλx g0(x, y) dx = 0 for all y ∈ (0, y1). (3.9)

In each case, in addition to (b̃z
(λ), ψ̃(λ)), take

ũz
(λ)[g0] = −ψ̃(λ)[g0], ω̃(λ)[g0] = −b̃z

(λ)[g0]. (3.10)

Then the following properties hold:

• (smoothing for fluid components) for t ≥ 0, we have

‖ũz
(λ)(t)‖L2 + ‖∇⊥(−�)−1ω̃(λ)(t)‖L2 � λ−1‖(g0, g(−1;λ)

0 , g(−2;λ)
0 )‖H1 ,

‖∇ũz
(λ)(t)‖L2 + ‖ω̃(λ)(t)‖L2 � ‖(g0, g(−1;λ)

0 )‖H1;
• (error estimates) for t ≥ 0, we have

δ(ν)
u [ũz

(λ), ω̃(λ), b̃z
(λ), ψ̃(λ)] + ν�ψ̃ = 0,

‖∇⊥(−�)−1(δ(ν)
ω [ũz

(λ), ω̃(λ), b̃z
(λ), ψ̃(λ)] + ν�b̃z)(t)‖L2 � λ−1‖(g(−1;λ)

0 , g(−2;λ)
0 )‖H4 ,

‖δ(ν)
b [ũz

(λ), ω̃(λ), b̃z
(λ), ψ̃(λ)](t)‖L2 � ‖(g0, g(−1;λ)

0 , g(−2;λ)
0 )‖H4 ,

‖∇δ
(ν)
ψ [ũz

(λ), ω̃(λ), b̃z
(λ), ψ̃(λ)](t)‖L2 � ‖g(−2;λ)

0 ‖H4 .

In case (b), g(−1;λ)
0 and g(−2;λ)

0 are replaced by g0. In the above statements, we omitted
the dependence of the implicit constants on f , y1 (in case (a)), and r1−r0 (in case (b)).

Note that, in case (a) andwhen (T,R)x = Tx , themean-zero condition in (3.1) ensures
that g(−2;λ)

0 ∈ S(M2) with the same support property as g0. When (T,R)x = Rx , the

additional condition (3.9) implies the same properties of g(−2;λ)
0 .

17 Note that the time reversal symmetry for (E-MHD) does not immediately induce the analogous symmetry
for the linearized equation (1.3), since the background solution B̊ reverses sign. However, for a planar
stationary magnetic field, we may apply an additional reflection about {z = 0}, and obtain a time reversal
symmetry for (1.3); this is what we observe here.
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3.2 Derivation of a Single Second-Order-in-Time Equation and Renormalization

In this subsection, we carry out the following algebraic manipulations needed for our
proof of Proposition 3.1:

• derivation of a single equation for ψ , which is second order in t ;
• introduction of a suitable change of variables (y, ψ) �→ (η, ϕ) for B̊ = f (y)∂x

(resp. (r , ψ) �→ (η, ϕ) for B̊ = f (r)∂θ ), which removes the degeneracy in the
principal term and kills all subprincipal (i.e., third order) terms;

• introduction of a rescaled time τ = λt , which puts the equation in a form where a
standard WKB-type ansatz is applicable (see Sect. 3.3 below).

The viability of the secondmanipulation, which is crucial for the proof Proposition 3.1,
is the main advantage of using the (2 + 1

2 )-dimensional reduction and working with

the stationary solutions of the form B̊ = f (y)∂x or f (r)∂θ .

Translationally-Symmetric Background

In order to construct an approximate solution for (2.14), we begin by noting that ψ

obeys the following equation:

∂2t ψ + f (y)2∂2x �ψ − f (y) f ′′(y)∂2x ψ = 0. (3.11)

Indeed, (3.11) follows by taking ∂t of the second equation in (2.14), and using the first
equation to substitute ∂t bz . Conversely, we may reconstruct (ψ, bz) from a solution
ψ to (3.11) by defining

bz = −( f ∂x )
−1∂tψ, (3.12)

provided that ( f ∂x )
−1 is well-defined for ∂tψ .

Next, we make a change of variables for (3.11) to fix the degeneracy in the term
f 2∂2x ∂2y . Take the connected component of {y : f (y) > 0} (in either T or R) that
intersects any neighborhood of 0. On this component, take the maximum y1 > 0 such
that f ′(y) ≥ f ′(0)/2 and f (y) ≤ 1

2 for y ∈ [0, y1]; if no such maximum exists,
simply take y1 large enough so that supp h ⊆ (T,R)x × [0, y1]. For y ∈ [0, y1], we
make a change of variables η = η(y), where

η′(y) = 1

f (y)
, η(y1) = 0,

so that η → −∞ as y → 0+. Then (3.11) becomes

∂2t ψ + ∂2x ∂2ηψ + f 2∂4x ψ − ( f −1∂η f )∂2x ∂ηψ −
(
∂η

(
f −1∂η f

))
∂2x ψ = 0.

By construction, h is supported in (T,R)x × [0, y1], on which such a change of
variables is valid.
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Finally, for a parameter λ > 0 to be chosen later, we introduce

τ = λt, ϕ = f − 1
2 ψ.

The parameter λwill be themagnitude of the space-time frequency of our approximate

solution. The role of the conjugation ϕ = f − 1
2 ψ is to remove the third order term

−( f −1∂η f )∂2x ∂ηψ . Indeed, ϕ in the (τ, x, η) coordinate system solves:

∂2τ ϕ + (λ−1∂x )
2∂2ηϕ + λ2 f 2(λ−1∂x )

4ϕ

−
[
1

2
∂η( f −1∂η f ) + 1

4
f −2(∂η f )2

]

(λ−1∂x )
2ϕ = 0. (3.13)

Note that ϕ is related to b by

bx = ∂η( f
1
2 ϕ)

f
, by = − f

1
2 ∂xϕ, bz = −∂t∂

−1
x ϕ

f
1
2

. (3.14)

Axisymmetric Background

In the same fashion as before, from (2.21) we derive the following single second-
order-in-time equation for ψ :

∂2t ψ + f (r)2∂2θ �ψ − f (r)

(

f ′′(r) + 3

r
f ′(r)

)

∂2θ ψ = 0. (3.15)

Conversely, a solution (ψ, bz) to (2.21) can be reconstructed from a solution ψ to
(3.15) by defining

bz = −( f ∂θ )
−1∂tψ, (3.16)

provided that ( f ∂θ )
−1 is well-defined for ∂tψ .

Expanding the Laplacian in the cylindrical coordinates, (3.15) can be rewritten as

∂2t ψ + f 2∂2θ ∂2r ψ + 1

r
f 2∂2θ ∂rψ + f 2∂4θ ψ − f

(

f ′′ + 3

r
f ′
)

∂2θ ψ = 0.

Fix r1 > r0 so that f ′ ≥ 1
2 f ′(r0) and f ≤ 1

2 on [r0, r1], and furthermore supp h ⊆
{(θ, r) : r0 ≤ r ≤ r1}. Make a change of variables η = η(r), where

η′(r) = 1

f (r)
, η(r1) = 0.
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Note that η → −∞ as r → r+
0 . Moreover, ∂η f = f ∂r f and ∂ηr = f . Thus, in the

(t, η, θ)-coordinate system, we have

∂2t ψ + ∂2θ ∂2ηψ + f 2∂4θ ψ +
(

r−1∂ηr − f −1∂η f
)

∂2θ ∂ηψ

−
(

∂η

(
f −1∂η f

)
+ 3

r
∂η f

)

∂2θ ψ = 0.

Finally, for a parameter λ ∈ N0 to be fixed later, we introduce

τ = λt, ϕ =
(

r

f

) 1
2

ψ.

Then ϕ solves the following equation in the (τ, θ, η) coordinate system:

∂2τ ϕ + (λ−1∂θ )
2∂2ηϕ + λ2 f 2(λ−1∂θ )

4ϕ

−
[
1

2
∂η( f −1∂η f ) + 1

4
f −2(∂η f )2 + 3r−1∂η f − 1

4
r−2 f 2

]

(λ−1∂θ )
2ϕ = 0.

(3.17)

Note that ϕ is related to b by

br =
(

f

r

) 1
2

∂θϕ, bθ = − 1

r f
∂η

((
f

r

) 1
2

ϕ

)

, bz = −∂t∂
−1
θ ϕ

f
1
2

. (3.18)

3.3 AWKB-Type Ansatz

Here we carry out the core construction of the degenerating wave packet approximate
solutions in the case of (E-MHD). In this subsection, we work exclusively in the
renormalized coordinates (τ, x, η); correspondingly, we use the shorthand f (η) =
f (y(η)). Moreover, we suppress the dependence of implicit constants on f .

AWKB-Type Ansatz for B̊ = f (y)@x

We start with the case B̊ = f (y)∂x and M2 = (T,R)x × (T,R)y . We work with
ϕ(τ, x, η) and use a WKB-type ansatz

ϕ = λ−1eiλ(x+�(τ,η))h(τ, x, η),

with the initial condition h(0, x, η) = h0(x, η), where we assume that

h0 ∈ S((T,R)x × Rη), supp h0 ⊆ (T,R)x × (−∞, 0).
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To obtain the equations for � and h, we simply evaluate:

e−iλ(x+�(τ,η))
[
∂2τ + (λ−1∂x )

2∂2η + λ2 f 2(λ−1∂x )
4
]
(λ−1eiλ(x+�(τ,η))h(τ, x, η))

= −λ(∂τ�)2h + 2i∂τ�∂τ h + i∂2τ �h + λ−1∂2τ h

+
(
−λ(∂η�)2 + i∂2η� + 2i∂η�∂η + λ−1∂2η

)
(−h + 2i(λ−1∂x )h + (λ−1∂x )

2h)

+ f 2
(
λh − 4i∂x h − 6λ−1∂2x h + 4iλ−2∂3x h + λ−3∂4x h

)

= λ(−(∂τ�)2 + (∂η�)2 + f 2)h

+ (2i∂τ�∂τ + i∂2τ � − i∂2η� − 2i∂η�∂η − 2i(∂η�)2∂x − 4i f 2∂x )h

+ λ−1(· · · )

(3.19)

and setting the first two terms on the far RHS (which are expected to be of orders λ

and 1, respectively) to vanish, we obtain respectively the equations

(∂τ�)2 − (∂η�)2 = f 2, (3.20)

and

(∂τ�∂τ − ∂η�∂η − (∂η�)2∂x − 2 f 2∂x )h = −1

2
(∂2τ � − ∂2η�)h. (3.21)

We seek a solution of (3.20) such that for η < 0, h from (3.21) is being transported
to η → −∞.

Hamilton–Jacobi Equation

We start by solving (3.20). Taking �(τ, η) = τ + G(η), G needs to satisfy 1− f 2 =
(G ′(η))2 (recall that we have assumed from the beginning that f < 1/2 in η ≤ 0).
We choose G so that G ′(η) > 0 and G(η) − η → 0 as η → −∞; thus

G(η) = η +
∫ η

−∞

(√

1− f 2(η′) − 1

)

dη′, (3.22)

which fixes

�(τ, η) = τ + η +
∫ η

−∞

(√

1− f 2(η′) − 1

)

dη′, (3.23)

and leads to

(∂τ −
√

1− f 2∂η − (1+ f 2)∂x )h = −1

2

f ∂η f
√
1− f 2

h. (3.24)

123



On the Cauchy Problem for the Hall… Page 53 of 106    15 

Our choice of the sign of G ′(η) is justified by the fact that the characteristics for the
LHS of (3.24) travel towards η → −∞ forward in time, as we will explicitly compute
below.

Remark 3.5 The fact that we can explicitly solve the equation for the phase � (i.e.,
the Hamilton–Jacobi equation) is a manifestation of complete integrability of the
bicharacteristic flow around B̊ as in Theorem A.

Characteristics for the Transport Operator

Our next step is to analyze the transport operator

L = ∂τ −
√

1− f 2∂η − (1+ f 2)∂x , (3.25)

towards the goal of estimating h via the transport equation (3.24).
To control the characteristics associate toL, we need information on the coefficients.

Note that

η(y) ≈ c + c0 ln y

for some constant c and c0 = ∂y f (0) > 0, where we use ≈ to denote that the ratio of
both sides converges to 1 as y → 0 (or equivalently, η → −∞). This implies that

f (η) ≈ c′ec0η (3.26)

and in particular we obtain 0 < f (η) ≤ Cec0η for all η ≤ 0 for some constant
C > 0 independent of η (but depending on f ). Similarly, ∂η f = f ∂y f and ∂2η f =
f 2∂2y f + f

(
∂y f

)2 imply

|∂η f |(η) ≤ C‖∂y f ‖L∞
y

f (η) � ec0η,

|∂2η f |(η) ≤ (‖ f ∂2y f ‖L∞
y

+ ‖(∂y f )2‖L∞
y

) f (η) � ec0η,

for η ≤ 0. Continuing, it is straightforward to see that

|∂(n)
η f |(η) �n f (η) � ec0η, ∀η ≤ 0. (3.27)

With the above information, we are now ready to study the geometry of the char-
acteristics X(τ ), Y (τ ) associated to L, which are defined as

d

dτ
(X(τ, x0, η0), Y (τ, x0, η0)) =

(

−(1+ ( f (Y ))2),−
√

1− ( f (Y ))2
)

,

(X(0, x0, η0), Y (0, x0, η0)) = (x0, η0),

(3.28)
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so that

d

dτ
h(τ, X(τ ), Y (τ )) = (Lh) (τ, X(τ ), Y (τ )). (3.29)

Wewill always assume that η0 < 0 (by hypothesis, the support of h0 lies in this region),
which guarantees that f −1∂η f > c0/2 where c0 = ∂y f (0) > 0 from our choice of
the change of variables from y to η. From (3.28), one sees that Y is independent of x0
and

η0 − τ ≤ Y (τ, η0) ≤ η0 − τ

2
. (3.30)

In particular, observe that Y (τ, η0) stays in (−∞, 0) if η0 ∈ (−∞, 0). Using that
f (η) ≤ Cec0η with the equation for ∂τ X we obtain that

x0 − 2τ < X(τ, x0, η0) < x0 − τ. (3.31)

Analysis of the Transport Equation

We now analyze (3.24) and obtain estimates for h. First, observe that (3.24) can be
simplified using the method of integrating factors. Indeed, introducing a real-valued
function α(τ, x, η) defined by

Lα = −1

2

f ∂η f
√
1− f 2

, (3.32)

with the initial condition α(τ = 0) = 0, we see that

L(e−αh) = 0. (3.33)

By (3.27) and the bound | f | < 1
2 , for any m ∈ N0 observe that

∣
∣
∣
∣
∣
∂m
η

(

−1

2

f ∂η f
√
1− f 2

)∣
∣
∣
∣
∣
� e2c0η for η ∈ (−∞, 0).

Moreover, again by (3.27) and the bound | f | < 1
2 , we have

[∂m
η ,L] =

m∑

�=0

cm
� (η)∂η, |cm

� (η)| � e2c0η for η ∈ (−∞, 0), (3.34)

while L commutes with ∂x and ∂τ .
In view of (3.30), the exponential factor e2c0η turns into an exponential decay in τ

along each characteristics. Thus, by the above commutator relations, integration along
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characteristics and Gronwall’s inequality, we immediately obtain the following L∞
bound for α:

sup
0≤k+�≤m

sup
τ≥0

‖∂k
τ ∂�

x∂m−�−k
η α(τ)‖L∞

x,η
�m1.

For e−αh, we wish to prove L p bounds for 1 ≤ p ≤ ∞. For this purpose, we note tha
tthe divergence of L with respect to the volume form dx ∧ dη obeys

∣
∣divdx∧dηL

∣
∣ =

∣
∣
∣
∣
∣

f ∂η f
√
1− f 2

∣
∣
∣
∣
∣
� e2c0η for η ∈ (−∞, 0), (3.35)

which also decays exponentially along characteristics. Thus, for any 1 ≤ p ≤ ∞, we
obtain

max
0≤k,�,k+�≤m

sup
τ≥0

‖∂k
τ ∂�

x∂m−�−k
η (e−αh)(τ )‖L p

x,η
�m ‖∂�

x∂m−�
η h0‖W m,p

x,η
.

Therefore, we have arrived at the following result:

Lemma 3.6 Let h be the solution to (3.24) with smooth initial data h0 supported on
η ≤ 0. Then for any 1 ≤ p ≤ ∞, we have

max
0≤k,�,k+�≤m

sup
τ≥0

‖∂k
τ ∂�

x∂m−k−�
η h(τ )‖L p

x,η
�m ‖h0‖W m,p

x,η
.

Moreover,

sup
τ≥0

‖∂m
η h(τ )‖L p

x,η
�m ‖h0‖L p

x W m,p
η

.

As another application of (3.35), we estimate the size of the η-support of h(τ ):

Lemma 3.7 Let h be the solution to (3.24) with smooth initial data h0 supported
on (T,R)x × [η0, η1] ⊆ (T,R)x × (−∞, 0]. Then supp h(τ, ·, ·) ⊆ (T,R)x ×
[Y (τ, η1), Y (τ, η0)]. Moreover,

|Y (τ, η1) − Y (τ, η0)| � η1 − η0.

Proof The statement concerning supp h(τ, ·, ·) is easily proved using the method of
characteristics. To prove the remaining statement, it suffices to restrict our attention to
the case (T,R)x = Tx . Let χ(τ, x, η) be the solution to Lχ = 0 with χ(0, ·, ·) equal
to the characteristic function of [η0, η1] in η. By the method of characteristics, we see
that χ(τ, x, η) is independent of x and is equal to the characteristic function of the
interval [Y (τ, η0), Y (τ, η1)] in η. Hence, Y (τ, η1) − Y (τ, η0) = ∫

χ(τ, η) dη, while
the latter is comparable to the value at τ = 0 (i.e., η1 − η0) thanks to (3.35) (which,
as remarked above, exponentially decay along characteristics). ��
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Error in the'-Equation

Finally, we estimate the error in the ϕ-equation. Let eϕ[h0; λ](τ, x, η) be the LHS of
(3.13) evaluatedwithϕ = λ−1eiλ(x+�(τ,η))h. Inwhat follows,wewill often abbreviate
eϕ = eϕ[h0; λ](τ, x, η). We compute

eϕ = −λ−1eiλ(x+�)(
1

2
∂η

(
f −1∂η f

)+ 1

4
( f −1∂η f )2)(−h + 2i(λ−1∂x )h + (λ−1∂x )

2h)

+ λ−1eiλ(x+�)
(
∂2τ h + ∂2η (−h + 2i(λ−1∂x )h + (λ−1∂x )

2)h

+iλ(∂2η� + 2∂η�∂η)(2i(λ−1∂x )h + (λ−1∂x )
2h))

−λ2(∂η�)2(λ−1∂x )
2h + f 2(−6∂2x h + 4iλ−1∂3x h + λ−2∂4x h)

)
.

(3.36)

For each fixed τ ≥ 0, we see that eϕ is bounded in L2
x,η by

‖eϕ(τ )‖L2
x,η

�λ−1(‖h‖L2
x,η

+ ‖∂2τ h‖L2
x,η

+ ‖∂2η h‖L2
x,η

+ ‖∂2η∂2x h‖L2
x,η

+ ‖∂4x h‖L2
x,η

)(τ )

�λ−1‖h0‖H4 .

(3.37)

Moreover, when we compute ∂x eϕ , we only lose at most a constant multiple of λ

(when ∂x falls on the phase eiλ(x+�)). Therefore, for any integer m ≥ 0, we obtain

sup
τ≥0

‖(λ−1∂x )
meϕ(τ )‖L2

x,η
�m λ−1‖h0‖H4+m . (3.38)

Modifications for B̊ = f (r)@�

Finally, we sketch the necessary modifications needed in case B̊ = f (r)∂θ , which are
all minor. The ansatz now takes the form

ϕ = λ−1eiλ(θ+�(τ,η))h(τ, η),

with the initial condition h(0, η) = h0(η) satisfying

h0 ∈ C∞(Rη), supp h0 ⊆ (−∞, 0).

Note that θ plays the role of x , and h(τ, η) is chosen to be independent of θ .
Since (3.13) and (3.17) differ only by terms of order 2 (in space) and lower, the

Hamilton–Jacobi and transport equations satisfied by � and h are exactly the same as
in the previous case, where the term −(1+ f 2)∂x is dropped. Therefore, Lemma 3.6
holds with x replaced by θ .

In this case, we define eϕ[h0; λ](τ, x, η) to be the LHS of (3.17). Again, since
(3.13) and (3.17) differ only by terms of order λ−1 and lower, it is straightforward to
establish the analogues of (3.37) and (3.38) hold with x replaced by θ (and without
m on the RHS of (3.38), although this point will be irrelevant).
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3.4 Proof of Propositions 3.1 and 3.4

We are ready to complete the proofs of the results stated in Sect. 3.1.

Proof (Proof of Proposition 3.1) We first handle case (a), i.e., when B̊ = f (y)∂x . We
apply the WKB construction in Sect. 3.3 to

h(−1)
0 (x, η) = 1

iλ
f − 1

2 (y(η))g(−1;λ)
0 (x, y(η)), h0(x, η) = f − 1

2 (y(η))g0(x, y(η)),

and denote the resulting amplitudes (i.e., the solution to (3.21)) by h(−1) and h, respec-
tively. By construction, we have the relations

eiλx+iλτ+iλG(η)h(τ, x, η) = ∂x

(
eiλx+iλτ+iλG(η)h(−1)(τ, x, η)

)
,

eϕ[h0; λ] = ∂x eϕ[h(−1)
0 ; λ].

Given h, we define the approximate solution by

b̃z
(λ) = f − 1

2 λRe

(
1

i
ei(λ2t+λx+λG(η(y)))(h(−1) + 1

iλ
∂τ h(−1))(λt, x, η(y))

)

, (3.39)

ψ̃(λ) = f
1
2 λ−1 Re

(
ei(λ2t+λx+λG(η(y)))h(λt, x, η(y))

)
. (3.40)

From the definition, it follows that the identities

∂t ψ̃(λ) = f
1
2 λ−1Re

(
ei(λ2t+λx+λG(η(y)))(λ∂τ h + iλ2h)

)

= f
1
2 λ∂xRe

(

iei(λ2t+λx+λG(η(y)))(
1

iλ
∂τ h(−1) + h(−1))

)

= − f ∂x b̃z
(λ)

hold. Next, from the construction, the linearity and x-invariance properties (as stated
in Proposition 3.1) are clear. Evaluating the expression (3.40) at t = 0, we obtain that

ψ̃(λ)(t = 0) = f
1
2 λ−1Re

(
eiλ(x+G)h0

)
= λ−1Re

(
eiλ(x+G)g0

)
.

Next, using the relation between ψ̃(λ) and b̃z
(λ), we have

b̃z
(λ)(t = 0) = λ f − 1

2 ∂−1
x Re

(
1

i
eiλ(x+G)(h0 + 1

iλ
(∂τ h)0

)

and the first term is simply

λ f −1∂−1
x Re

(
1

i
eiλ(x+G)g0

)
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whereas the second term is given by

− f − 1
2 ∂−1

x Re
(

eiλ(x+G)(∂τ h)0

)

= − f − 1
2 ∂−1

x Re

(

eiλ(x+G)(

√

1− f 2∂η + (1+ f 2)∂x − 1

2

f ∂η f
√
1− f 2

)h0

)

= − f − 1
2 ∂−1

x Re

(

eiλ(x+G)(−1

2

f
1
2 ∂η f

f 2
√
1− f 2

g0 + f − 1
2

√

1− f 2∂ηg0 + f − 1
2 (1+ f 2)∂x g0)

)

= f −1∂−1
x Re

(

eiλ(x+G)(
1

2

∂y f
√
1− f 2

g0 − f
√

1− f 2∂y g0 − (1+ f 2)∂x g0)

)

.

To prove the initial data lower bound, it suffices to estimate ∂x ψ̃(λ). Note that

∂x ψ̃(λ) = Re(eiλ(x+G(y))g0) + λ−1Re(eiλ(x+G(y))∂x g0)

and clearly the second term in L2 is bounded by Cλ−1‖g0‖H1 . Regarding the first
term, we compute

(
Re(eiλ(x+G(y))g0)

)2 = 1

4
(eiλ(x+G(y))g0 + e−iλ(x+G(y))ḡ0)

2

= 1

2
|g0|2 + 1

4
e2iλ(x+G(y))g2

0 + 1

4
e−2iλ(x+G(y))ḡ0

2.

Thus, integrating this equation over M2 and using integration by parts in x for the last
two terms, we obtain the desired initial data lower bound.

To verify the remaining assertions in Proposition 3.1, we need to transfer the upper
bounds proved in Sect. 3.3 to the present context. At t = τ = 0 and any 0 ≤ k ≤ m,
we have the relations

‖∂k
x ∂m−k

η h0‖L2
x,η

= ‖ f − 1
2 ∂k

x ( f ∂y)
m−k f − 1

2 g0‖L2
x,y

�m ( f ′(0)y1)
−1‖g0‖Hm

x,y
,

(3.41)

and

‖∂k
x ∂m−k

η h(−1)
0 ‖L2

x,η
= λ−1‖ f − 1

2 ∂k
x ( f ∂y)

m−k f − 1
2 g(−1;λ)

0 ‖L2
x,y

�m ( f ′(0)y1)
−1λ−1‖g(−1;λ)

0 ‖Hm
x,y

. (3.42)

Combined with Lemma 3.6, for any m ∈ N0 and t ≥ 0, we have

max
0≤�,k,�+k≤m

‖(λ−2∂t )
�(λ−1∂x )

k(λ−1 f ∂y)
m−k−� f −1ψ̃(λ)(t)‖L2

x,y
�m,( f ′(0)y1)−1λ−1‖g0‖Hm

x,y
,

(3.43)

max
0≤�,k�+k≤m

‖(λ−2∂t )
�(λ−1∂x )

k(λ−1 f ∂y)
m−k−�b̃z

(λ)(t)‖L2
x,y

�m,( f ′(0)y1)−1‖g(−1;λ)
0 ‖Hm+1

x,y
.

(3.44)
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The regularity estimates now follow in a straightforward manner; note that in order to
estimate ∂x ψ̃(λ), we needed to use the fact that f < 1

2 on the support of (ψ̃(λ), b̃z
(λ)).

We now prove the degeneration properties. As a preparation, we begin by noting
that each component b̃x

(λ) = ∂yψ̃(λ), b̃y
(λ) = −∂x ψ̃(λ) and b̃z

(λ) of b̃(λ) of b̃(λ) may be
written in the form

b̃x,y,z
(λ) (t, x, y) = f − 1

2 (y)Re
(

ei(λ2t+λx+λG(η(y)))h̃x,y,z
(λ) (λt, x, η(y))

)
, (3.45)

where, for any p ∈ [1,∞], m ∈ N0 and τ ≥ 0, each of h̃x
(λ), h̃ y

(λ) and h̃z
(λ) obeys

‖∂m
η h̃x,y,z

(λ) (τ, x, η)‖L p
x,η

�m ‖(g0, g(−1;λ)
0 (x, y))‖

W m+1,p
x,y

, (3.46)

supp h̃x,y,z
(λ) (τ, ·, ·) ⊆ (T,R)x × (Y (τ, 0) − Ysupp, Y (τ, 0))η, (3.47)

where Y (τ, η0) is the η-characteristic for L introduced in Sect. 3.3, and Ysupp is inde-
pendent of τ , λ (but dependent on f ). Indeed, from (3.39), (3.40) and Lemma 3.6,
(3.46)with theW m+1,p

x,η -normon theRHS follows.Recall that supp (g0, g(−1;λ)
0 ) (in the

variables x, η) is contained in (T,R)x × [η( 12 y1), η(y1)] ⊆ (T,R)x × [− 2
c0
log 2, 0],

where the the last inclusion follows from the hypothesis f ′(y) ≥ 1
2c0 and the

choice η(y1) = 0. Thus, the values of f is comparable on supp (g0, g(−1;λ)
0 ), so

that ‖(g0, g(−1;λ)
0 ‖

W m+1,p
x,η

� ‖(g0, g(−1;λ)
0 ‖

W m+1,p
x,y

(with a constant depending only on

m and f ); hence (3.46) follows. For (3.47), we use Lemma 3.7 and preceding assertion
about the η-support of the initial data.

In what follows, we will only be using (3.45), (3.46) and (3.47), and hence the
components b̃x,y,z

(λ) will be treated in the same manner; hence the superscripts x, y, z

will often be suppressed. Moreover, the same proof applies to (λ−1∂x )
�b̃(λ) for any

� ∈ N0.
Let fλt = f (y(Y (λt, 0))). Note that, by (3.26), (3.45) and (3.47), for t ≥ 0 we

have

f (y) � f (y(Y (λt, 0))) = fλt on supp b̃(λ)(t, ·, ·), (3.48)

i.e., fλt is the typical value of f on the support of b̃(λ). We claim that

‖Py;k b̃(λ)(t, x, y)‖L p
x,y

�m (2−kλ f −1
λt )m f

1
p − 1

2
λt ‖(g0, g(−1;λ)

0 )‖
W m+1,p

x,y
for 2k ≥ λ f −1

λt , (3.49)

‖Py;k b̃(λ)(t, x, y)‖L p
x,y

�m (2kλ−1 fλt )
m f

1
p − 1

2
λt ‖(g0, g(−1;λ)

0 )‖
W m+1,p

x,y
for f −1

λt ≤ 2k ≤ λ f −1
λt ,

(3.50)

‖Py;k b̃(λ)(t, x, y)‖L p
x,y

� λ−12(1− 1
p )k f

1
2

λt ‖(g0, g(−1;λ)
0 )‖

W 2,p
x,y

for 2k ≤ f −1
λt , (3.51)
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where Py;k is the inhomogeneous Littlewood–Paley projection18 to y-frequencies
� 2k .

First, we demonstrate how (3.4)–(3.6) follow from the preceding estimates. To
prove (3.4), it suffices to bound

∑
k≥− log2 fλt

2sk‖Py;k b̃(λ)‖L p
x,y

by the RHS of (3.4),
via the triangle inequality and the frequency localization property of Py;k . We split
the k-summation into the ranges above and use (3.49) with m > max{s, 0}, (3.50)
with m > max{−s, 0} and (3.51) in the respective ranges; as a result, we would obtain
(3.4) with fλt on the RHS in place of e−c f λt . Finally, we use

e−C f λt � fλt = f (y(Y (τ, 0))) � e−c f λt with c f = 1

2
c0 = 1

2
∂y f (0),

C f = 2c f = ∂y f (0), (3.52)

which follows from (3.26) and −τ ≤ Y (τ, 0) ≤ − τ
2 from (3.30), to eliminate fλt .

For the proof of (3.5)–(3.6), we decompose b̃(λ) into b̃main
(λ) + b̃small

(λ) , where

b̃main;x,y,z
(λ) =

∑

k≥− log2 fλt

Py;k b̃x,y,z
(λ) , b̃small;x,y,z

(λ) =
∑

k<− log2 fλt

Py;k b̃x,y,z
(λ) .

Proceeding as before using (3.49) with m > max{s, 0}, (3.50) with m > max{−s, 0}
and (3.52), we obtain (3.5). From (3.51) and (3.52), (3.6) also follows.

To complete the proof of the degeneration properties, it remains to establish (3.49)–
(3.51). For (3.49) in the case m = 1, we write Py;k = 2−k∂y P̃y;k , where P̃y;k is a
convolution operator in y with an integrable kernel (the integral is bounded by an
absolute constant), and estimate

‖Py;k b̃(λ)(t, x, y)‖L p
x,y

� 2−k‖∂y b̃(λ)(t, x, y)‖L p
x,y

� 2−kλ‖ f
1
p − 3

2 G ′(η)h̃(λ)(λt, x, η)‖L p
x,η

+ 2−k‖ f
1
p − 3

2 h̃(λ)(λt, x, η)‖L p
x,η

+ 2−k‖ f
1
p − 3

2 ∂η h̃(λ)(λt, x, η)‖L p
x,η

.

For the second inequality, we used (3.45), ∂y = f −1∂η and dy = f dη. Using (3.46),
(3.47) and (3.48) (recall also that G ′(η) = √

1− f 2(η) and that f < 1/2 in {η < 0}),
(3.49) in the case m = 1 follows. The cases m ≥ 2 are treated similarly.

For (3.50), we use the identity eiλG(η(y)) = i−1λ−1(G ′(η(y))−1 f ∂yeiλG(η(y)) to
rewrite (3.45) as

b̃(λ)(t, x, y) = Re
(

i−1λ−1(G ′(η(y)))−1∂yei(λ2 t+λx+λG(η(y))) f
1
2 (y)h̃(λt, x, η(y))

)

= ∂yRe
(

i−1λ−1(G ′(η(y)))−1ei(λ2 t+λx+λG(η(y))) f
1
2 (y)h̃(λt, x, η(y))

)

− Re
(

i−1λ−1ei(λ2 t+λx+λG(η(y)))∂y

(
(G ′(η(y)))−1 f

1
2 (y)h̃(λt, x, η(y))

))
.

18 The precise definition is as follows. Denote by Fy [ f (y)](ŷ) the Fourier transform in y, where ŷ is the
dual variable. Consider a smooth partition of unity 1 = m0(ŷ)+∑

k mk (ŷ) onR, where m0 = 1 on [−1, 1]
and vanishes outside of [−2, 2] and mk (ŷ) = m≤0(ŷ/2k ) − m≤0(ŷ/2k−1). Correspondingly, we define
{Py;k }k∈N0 by Fy [Py;k f ](ŷ) = mk (ŷ)Fy [ f ](ŷ).
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Taking Py;k of both sides and considering their L p
x,y-norms, we obtain

‖Py;k b̃(λ)(t, x, y)‖L p
x,y

� 2kλ−1‖Py;k(ei(λ2t+λx+λG(η(y))) f
1
2 (y)h̃(λt, x, η(y)))‖L p

x,y

+ λ−1‖Py;k(ei(λ2t+λx+λG(η(y)))∂y(G
′(η(y))−1

f
1
2 (y)h̃(λt, x, η(y))))‖L p

x,y
.

(3.53)

To prove (3.50) in the case m = 1, we use ∂y = f −1∂η and dy = f dη to estimate the
RHS by

2kλ−1‖ f
1
2+ 1

p h̃(λt, x, η)‖L p
x,η

+ λ−1‖ f − 1
2+ 1

p h̃(λt, x, η)‖L p
x,η

+ λ−1‖ f − 1
2+ 1

p ∂ηh̃(λt, x, η)‖L p
x,η

,

and then apply (3.46), (3.47) and (3.48). Note that since 2k ≥ ec f λt , the contribution of
the first term dominates those of the other two. The cases m ≥ 2 follows by repeating
the above “differentiation by parts” procedure.

Finally, to prove (3.51), we resume from (3.53). Using Bernstein’s inequality in y

(i.e., that Py;k : L p
y → 2(1− 1

p )k L1
y is bounded), changing the variable y to η and then

applying Hölder’s inequality in η (making use of (3.47)), we estimate the RHS by

2(2− 1
p )k

λ−1‖ f
3
2 h̃(λt, x, η)‖L p

x L1
η
+ 2(1− 1

p )k
λ−1‖ f

1
2 h̃(λt, x, η)‖L p

x L1
η

+ 2(1− 1
p )k

λ−1‖ f
1
2 ∂ηh̃(λt, x, η)‖L p

x L1
η

� 2(2− 1
p )k

λ−1‖ f
3
2 h̃(λt, x, η)‖L p

x,η
+ 2(1− 1

p )k
λ−1‖ f

1
2 h̃(λt, x, η)‖L p

x,η

+ 2(1− 1
p )k

λ−1‖ f
1
2 ∂ηh̃(λt, x, η)‖L p

x,η
.

Lastly, we apply (3.46), (3.47) and (3.48), which proves (3.51).
To conclude the proof in case (a), it only remains to establish the error bounds. By

definition εψ [b̃z
(λ), ψ̃(λ)] = 0, and

εb[b̃z
(λ), ψ̃(λ)] = λ2Re f − 1

2 eϕ[h(−1)
0 ; λ],

so that

‖εb[b̃z
(λ), ψ̃(λ)](t)‖L2

x,y
= ‖λ2eϕ[h(−1)

0 ; λ](λt)‖L2
x,η

� λ‖h(−1)
0 ‖H4

x,η
� ‖g(−1;λ)

0 ‖H4
x,y

,

as desired.
The proof in case (b) is a minor modification of that in case (a). Here, as g0 is

independent of θ , there is no need for an auxiliary function g(−1;λ)
0 . We apply the
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WKB construction in Sect. 3.3 to

h0(η) = f − 1
2 (r(η))g0(r(η)),

and define

b̃z
(λ) = f − 1

2 λRe

(
1

iλ
ei(λ2t+λθ+λG(η(r)))h(λt, η(r))

)

, (3.54)

ψ̃(λ) = f − 1
2 λ−1Re

(
ei(λ2t+λθ+λG(η(r)))h(λt, η(r))

)
. (3.55)

Then the properties stated in Proposition 3.1 are proved in the same manner as in
case (a). We omit the obvious details. ��

Next, we turn to the proof of Proposition 3.4 for (Hall-MHD). As we will see, a
(technical) part of the proof is to ensure that ∇(−�)−1 are well-defined in various
contexts. In the case B̊ = f (y)∂x , we always prepare the the RHS to be of the form
∂x a, so that we may rely on L2-boundedness of the singular integral ∇(−�)−1∂x on
M2 = (T,R)x × (T,R)y . In the case B̊ = f (r)∂θ on M2 = R

2, we use a similar trick
with ∂θ in place of ∂x ; indeed, by writing ∂θa = ∂x (ya) − ∂y(xa), we may handle
∇(−�)−1∂θ .

Proof (Proof of Proposition 3.4)
We first handle the case (a), i.e., B̊ = f (y)∂x . As in the proof of Proposition 3.1,

we construct h(−1) and h from g(−1;λ)
0 and g0, respectively, and define b̃z

(λ), ψ̃(λ) by

(3.39), (3.40), respectively. Moreover, we define ũz
(λ) and ω̃(λ) from b̃z

(λ), ψ̃(λ) as in
(3.10). Then the estimates for ũz

(λ), ∇ũz
(λ) and ω̃(λ) claimed in Proposition 3.4 follow

from (3.43) and (3.44). To handle ∇⊥(−�)−1ω̃(λ), we observe that, by x-invariance,

∇⊥(−�)−1ω̃(λ) = −∇⊥(−�)−1∂x∂
−1
x b̃z

(λ) = −∇⊥(−�)−1∂x f − 1
2 λ

(

ei(λ2t+λx+λG(η(y))(h(−2) + 1

iλ
∂τ h(−2))(λt, x, η(y))

)

where h(−2) is constructed by the WKB analysis in Sect. 3.3 applied to

h(−2)
0 (x, η) = 1

(iλ)2
f − 1

2 (y(η))g(−2;λ)
0 (x, y(η)),

for which we have, for any 0 ≤ k ≤ m,

‖∂k
x ∂m−k

η h(−2)
0 ‖L2

x,η
= λ−2‖ f − 1

2 ∂k
x ( f ∂y)

m−k f − 1
2 g(−2;λ)

0 ‖L2
x,y

�m ( f ′(0)y1)
−1λ−2‖g(−2;λ)

0 ‖Hm
x,y

.
(3.56)

Using Lemma 3.6 in Sect. 3.3, we obtain the desired estimate for ∇⊥(−�)−1ω̃(λ).
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It remains to verify the error estimates stated in Proposition 3.4. Comparing (2.22)
and (2.24), observe that with our choice of ũz

(λ) and ω̃(λ),

δ(ν)
u [ũz

(λ), ω̃(λ), b̃z
(λ), ψ̃(λ)] + ν�ψ̃(λ) = −εψ [b̃z

(λ), ψ̃(λ)],
δ(ν)
ω [ũz

(λ), ω̃(λ), b̃z
(λ), ψ̃(λ)] + ν�b̃z

(λ) = −εb[b̃z
(λ), ψ̃(λ)],

δ
(ν)
b [ũz

(λ), ω̃(λ), b̃z
(λ), ψ̃(λ)] = εb[b̃z

(λ), ψ̃(λ)] + f ∂x ψ̃(λ),

δ
(ν)
ψ [ũz

(λ), ω̃(λ), b̃z
(λ), ψ̃(λ)] = εψ [b̃z

(λ), ψ̃(λ)] + f ∂x (−�)−1b̃z
(λ).

(3.57)

The estimates for δ(ν)
u , δ(ν)

b and∇δ
(ν)
ψ follow from the error estimates in Proposition 3.1

and the preceding bound for ∇⊥(−�)−1b̃z
(λ) = −∇⊥(−�)−1ω̃(λ) (for the last term).

For ∇⊥(−�)−1δ(ν)
ω , we need to estimate ∇⊥(−�)−1εb. Again by x-invariance, note

that

∇⊥(−�)−1εb[b̃(λ), ψ̃(λ)] = λ2∇⊥(−�)−1Re f − 1
2 eϕ[h(−1)

0 ; λ]
= λ2∇⊥(−�)−1∂xRe f − 1

2 eϕ[h(−2)
0 ; λ].

Then the desired estimate for the L2 norm of the last term follows from L2-
boundedness of ∇⊥(−�)−1∂x , (3.37) and (3.56).

The proof in case (b) (i.e., B̊ = f (r)∂θ ) is similar, so we only sketch the necessary
modifications. We define (b̃z

(λ), ψ̃(λ)) by (3.54) and (3.55) as in the proof of Propo-
sition 3.1, and (ũz

(λ), ω̃(λ)) as in (3.10). Again, the estimates for ũz
(λ), ∇ũz

(λ) and ω̃(λ)

claimed inProposition3.4 follow from theprecedingproof.Tohandle∇⊥(−�)−1ω̃(λ),
we simply write

ω̃(λ) = −b̃z
(λ) = ∂θ

(
(iλ)−1b̃z

(λ)

)
,

and observe that since b̃z
(λ)(t) is always supported in {r < r1}, for any t ≥ 0 we have

‖∇⊥(−�)−1∂θ (iλ)−1b̃z
(λ)(t)‖L2 = λ−1‖∇⊥(−�)−1(∂y(xb̃z

(λ)) − ∂x (yb̃z
(λ)))(t)‖L2

� r1λ
−1‖b̃z

(λ)(t)‖L2 ,

as desired. Finally, the error estimates follow from (2.26), (2.28), the error estimates
in Proposition 3.1, the preceding bound for ∇⊥(−�)−1b̃z

(λ), and

‖∇⊥(−�)−1εb[b̃z
(λ), ψ̃(λ)]‖L2 � r1λ

−1‖εb[b̃z
(λ), ψ̃(λ)]‖L2 ,

which is proved again using the trick of pulling out (iλ)−1∂θ from εb[b̃z
(λ), ψ̃(λ)]. ��

Remark 3.8 Key to the proof was the remarkable simplicity of the error terms under the
choice (3.10), for which the fluid variables ũz

(λ) and ω̃(λ) are also one order smoother
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than energy. The origin of such a nice structure may be traced back to the existence
of a set of “good variables” for (Hall-MHD) with ν = 0: Introducing the vector field

Z := B+ ω,

(Hall-MHD) with ν = 0 has the following reformulation in terms of (Z,B):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tZ+ u · ∇Z− Z · ∇u = 0,

∂tB+ u · ∇B− B · ∇u+ ∇ × ((∇ × B) × B) = 0,

∇ · Z = ∇ · B = 0,

∇ × u = Z− B, ∇ · u = 0.

(3.58)

For more details on this reformulation we refer to [38], where it plays a central role.
This reformulation have already appeared in the work of Chae andWolf in [13] for the
purpose of obtaining partial regularity results for the 2 + 1

2 dimensional Hall-MHD
system.

In terms of these variables, our approximate solution for (Hall-MHD) with ν = 0
corresponds to taking the Z-perturbation zero, and the B-perturbation identical to the
(E-MHD) case. The last div-curl identities for u explains why this choice results in
the crucial smoothing of ũ(λ) by one order compared to b̃(λ).

4 Proof of the Linear Illposedness Results in Sobolev Spaces

In this section, we prove Theorems A and B.

4.1 Proof of Theorems A and B for (E-MHD)

In order to apply Proposition 3.1, we begin by constructing a family of bump functions
p0,λ on (T,R)x for which we have a uniform control of p(− j;λ)

0,λ :

Lemma 4.1 For each λ ∈ N and n ∈ N, there exist nonzero p0,λ ∈ S((T,R)x ) such

that each p(− j;λ)
0,λ for 1 ≤ j ≤ n is well-defined and belongs to S((T,R)x ), obeys

‖(p0,λ, . . . , p(−n;λ)
0,λ )‖Hm

x
�m,n ‖p0,λ‖L2 for every m ∈ N0, (4.1)

and has one of the following properties:

• p0,λ, . . . , p(−n;λ)
0,λ are supported in (−1, 1); or

• F[p0,λ], . . . ,F[p(−n;λ)
0,λ ] are supported in (−1, 1).

We emphasize that the implicit constant is independent of λ.

Proof In Tx , the simple choice p0,λ = 1 does the job.
In Rx , the second case is easily handled by making a λ-independent choice p0,λ =

p0, where p0 �= 0 and suppF[p0] ⊆ (−1, 1). Indeed, since F[eiλx p0] is supported
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away from 0, (4.1) follows from the formula

F[p(−n;λ)
0 ](ξ) =

(
λ

ξ + λ

)n

F[p0](ξ).

Thus, the only remaining case is the first case in Rx . We start with a nonnegative
function p0 ∈ C∞

c (−1, 1) with
∫

p0 dx = 1. We would like to construct p0,λ as

a small perturbation of p0; however, to make each p(− j;λ)
0,λ is supported in (−1, 1),

we need to ensure that
∫

xk p0,λ dx = 0 for k = 0, . . . , n − 1. For this purpose, we
introduce auxiliary functions qk for k = 0, . . . , n − 1 that are defined as follows:

qk(x) = 2k+1

k! (∂k
x p0)(2x).

Then q0 �= p0 (by the support property),
∫

q0 = 1, supp qk ⊆ (−1, 1) and

∫

xkqk = 1,
∫

x j qk = 0 for any 1 ≤ k ≤ n, 0 ≤ j ≤ k − 1.

In other words, the matrix A jk = ∫
x j qk dx is upper triangular with diagonal entries

all equal to 1; in particular, A is invertible with ‖A−1‖ �p0 1. Now, for any λ ∈ N,
we define

p0,λ = p0(x) −
n−1∑

j=0

α j (λ)q j (x),

where α j (λ) ∈ R’s are chosen so that
∫

xk p0,λ = 0 for k = 0, . . . , n − 1. Such a
choice exists by the invertibility of A, and we have the estimate

sup
0≤ j≤n−1

|α j (λ)| �p0 sup
0≤ j≤n−1

∣
∣
∣
∣

∫

x j eiλx p0(x) dx

∣
∣
∣
∣ .

Finally, by repeated integration by parts, observe that the RHS is bounded by
CN ,p0λ

−N for any N > 0. From this property, the desired uniform-in-λ estimate
(4.1) follows. ��

We now complete the proof of Theorem A.

Proof of TheoremA We consider only the translationally-symmetric case, as the proof
in the axi-symmetric case requires only minor modifications. The proof is a straight-
forward application of Proposition 3.1. We divide the argument into three simple
steps.

(i) choice of initial data
We start with an initial amplitude with single frequency and normalized energy

g0,λ(x, y) = p0,λ(x)q0(y),
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where p0 is given by Lemma 4.1 and q0 is a fixed smooth function supported in
( 12 y1, y1). Then we apply Proposition 3.1 to construct the initial data

b̃(λ)(0) = (∂yψ̃(λ)(0),−∂x ψ̃(λ)(0), b̃z
(λ)(0))

for (2.14), and normalize its L2 norm by 1. The lower bound stated in Proposition 3.1
guarantees that (by taking λ ≥ 1 large if necessary) ‖g0,λ‖L2�1 uniformly in λ & 1.
We denote by b̃(λ) = (∂yψ̃(λ),−∂x ψ̃(λ), b̃z

(λ)) the corresponding degenerating wave

packet solution, and b(λ) be an L2-solution with the same initial data.
(ii) application of the generalized energy identity
Notice that since b̃(λ) is smooth, Proposition 2.1 is applicable. Then using (2.25),

we obtain

〈b̃(λ), b(λ)〉(t) − 〈b̃(λ), b(λ)〉(0)
= 〈b̃(λ), b(λ)〉(t) − 1

=
∫ t

0

∫

− f ′′(∂x ψ̃(λ)b
z
(λ) + ∂xψ(λ)b̃

z
(λ)) +∇⊥εψ̃ · ∇⊥ψ(λ) + εb̃bz

(λ) dxdyds

and then applying the error bounds from Proposition 3.1 gives that

∣
∣
∣〈b̃(λ), b(λ)〉(t) − 〈b̃(λ), b(λ)〉(0)

∣
∣
∣ � t‖b(λ)‖L∞(I ;L2)

(
‖b̃(λ)‖L∞(I ;L2) + ‖∇⊥εψ̃‖L∞(I ;L2) + ‖εb̃‖L∞(I ;L2)

)

� t‖b(λ)‖L∞(I ;L2)

where the multiplicative constants depend on f but not on λ. Thus, choosing 0 < T =
T (

‖b‖L∞(I ;L2)

‖b0‖L2
) sufficiently small (independent of λ),

〈b̃(λ), b(λ)〉(t) >
1

2
for t ∈ [0, T ]. (4.2)

(iii) growth of Sobolev norms
Let p′ ∈ [1,∞] and s ∈ R such that s + 1

p′ − 1
2 ≥ 0. By our normalization of

b̃(λ)(0) and (3.5), we have the decomposition b̃(λ) = b̃main
(λ) + b̃small

(λ) , where

‖b̃main
(λ) (t)‖

L p′
x W−s,p′

y
�s λ−se

−c f (s+ 1
p′ − 1

2 )λt
, ‖b̃small

(λ) (t)‖L2
x,y

� λ−1,

whichholds uniformly for t ∈ [0, T ]. Let p be theLebesguedual of p (i.e., 1p = 1− 1
p′ ).

By (4.2), duality, (3.5) and (3.6),

1

2
< 〈b̃(λ), b(λ)〉(t) ≤ ‖b̃main

(λ) ‖
L p′

x W−s,p′
y

‖b(λ)‖L p
x W s,p

y
+ ‖b̃small

(λ) ‖L2
x,y

‖b(λ)‖L2
x,y
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≤ Csλ
−se

−c f (s+ 1
p′ − 1

2 )λt‖b(λ)‖L p
x W s,p

y
+ Cλ−1.

By requiring λ to be sufficiently large, we may absorb the last term into the LHS. Due
to our construction and normalization, it is easy to see that ‖b(λ)(0)‖W s,p

x,y
� λs ; hence

we have proved the desired norm growth. ��
We now prove Theorem B. Recall that for the purpose of stating this result, we have

assumed that the solution map is uniquely well-defined for L2 initial data.

Proof of Theorem B Again, we only consider the translationally-symmetric case; in the
axi-symmetric case, θ plays the role of x and the arguments are somewhat simpler
thanks to the periodicity in θ . Note that it is sufficient to consider an arbitrarily small
s′ > 0; in particular, we may assume that s′ < 1

2 .
We construct initial data b̃(λ)(0) for all λ ≥ λ0, where λ0 ∈ N is sufficiently large

with respect to B̊, as in the proof of Theorem A. Using the L2-solution map, the
solution b(λ) with initial data b(λ)(0) = b̃(λ)(0) is well-defined on the time interval
[0, 1]. Each b(λ)(0) is normalized to be 1 in L2. The idea is to take the series

b =
∑

λ

αλb(λ)

with an appropriate choices of {λ} ⊆ 2N0 and αλ > 0. Note that x-translation is
preserved by uniqueness. By linearity and boundedness, ∂x ’s are propagated. Further-
more, again by linearity and boundedness, any x-frequency support properties are
preserved.

When b(λ) is chosen so that its x-frequency support lies in the region λ + O(1)
(that is, the first statement of Theorem 1.12 and the second case of Lemma 4.1),
then we simply choose αλ to be any super-polynomially decaying sequence such that
ecλαλ → ∞ for any c > 0, and arrange λ’s so that

〈b(λ′)(t), b̃(λ)(t)〉 = 0 if λ′ �= λ.

This choice of coefficients αλ guarantees that the initial data is C∞-smooth. On
the other hand, consider 0 < t < δ, where δ > 0 is sufficiently small so that
〈b(λ)(t), b̃(λ)(t)〉 > 1

2 (see the proof of Theorem A). By the orthogonality condition,

1

2
αλ < 〈b(λ)(t), b̃(λ)(t)〉 = 〈b(t), b̃(λ)(t)〉 � ‖b(t)‖Hs′ ‖b̃(λ)(t)‖H−s′ .

Since 0 < s′ < 1
2 , by (3.5), (3.6) and our normalization, we have ‖b̃(λ)‖H−s′ �s′

λ−s′e−c0(B̊)s′λt ; thus ‖b(t)‖Hs′ � αλλ
s′ec0(B̊)s′λt , where the implicit constant is inde-

pendent of λ and t . Taking λ → ∞, we see that b(t) /∈ Hs′ for any 0 < t < δ, as
desired.

Next, we consider the second statement in Theorem 1.12, i.e., when we would
like supp b(λ) ⊆ (−1, 1) × (T,R)y × Tz . We construct p0,λ(x) by Lemma 4.1 with
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n > s + 1, and choose αλ = λ−s . For λ′ > λ, we simply have

∑

λ′>λ

〈αλ′b(λ′), b̃(λ)〉(t) �
∑

λ′>λ

λ′−s � λ−s .

On the other hand, to treat λ′ < λ, we require b̃(λ) to obey

‖(λ−1∂x )
−k b̃(λ)‖L∞([0,1];L2) �k 1

for all 0 ≤ k ≤ n. To prove the above estimate, use the x-invariance to estimate the
LHS in terms of g(−n−1;λ)

0,λ (x, y) = p(−n−1;λ)
0,λ (x)q(y) and then use (4.1). Thus

∑

λ′<λ

〈αλ′b(λ′), b̃(λ)〉(t) =
∑

λ′<λ

〈αλ′(λ−1∂x )
nb(λ′), (λ

−1∂x )
−nb̃(λ)〉(t)

�
∑

λ′<λ

(
λ′

λ

)n

λ′−s � λ−s

where the last inequality holds since n > s + 1. Choosing λ’s to be sufficiently
separated, we may ensure that the last implicit constant in each estimate is small.
Hence for 0 < t < δ, where δ > 0 is sufficiently small so that 〈b(λ)(t), b̃(λ)(t)〉 > 1

2
(see the proof of Theorem A), we obtain

λ−s � 〈b(t), b̃(λ)(t)〉 � ‖b(t)‖Hs′ ‖b̃(λ)(t)‖H−s′ .

As before, we have ‖b̃(λ)‖H−s′ �s′ λ−s′e−c0(B̊)s′λt . Thus ‖b(t)‖Hs′ � λs′−sec0(B̊)s′λt ,
where the implicit constant is independent of λ, t . Taking λ → ∞, we see that
b(t) /∈ Hs′ for any 0 < t < δ.

The fact that b(t) is not contained even in the local Sobolev space Hs′
loc follows

from the preceding duality arguments, as the approximate solution b̃ is compactly
supported in y and either compactly supported or decaying sufficiently fast in x . This
finishes the proof. ��

4.2 Proof of Theorems A and B for (Hall-MHD)

The proof is analogous with the case of electron-MHD. However, a slight twist from
the (E-MHD) case is to choose

u0(λ) = 0.

The idea is that it differs from the initial data in Proposition 3.4 only by O(λ−1), so
it does not matter. When ν > 0, we need to use the dissipation term to control some
errors; however, the same scheme works.
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Proof of TheoremA for (Hall-MHD) Again, we focus only on the translationally sym-
metric case.

(i) choice of initial data
We take the same function g0,λ as in the above proof, and apply Proposition 3.4 to

construct the degenerating wave packets b̃(λ), ũ(λ) associated with g0,λ. We normalize
g0,λ so that the L2 norm of b̃(λ)(0) becomes 1 (we still have ‖g0,λ‖L2�1 uniformly in
λ & 1). Now let (u(λ), b(λ)) be a solution with the initial data (0, b̃(λ)(0)).

(ii) application of the generalized energy identity
Notice that since the functions ũ(λ), b̃(λ) are smooth, Proposition 2.1 is applicable.

Then using (2.23), we obtain

〈b̃(λ), b(λ)〉(t) − 〈b̃(λ), b(λ)〉(0) + 〈ũ(λ), u(λ)〉(t) − 〈ũ(λ), u(λ)〉(0) + 2ν
∫ t

0
〈∇ũ(λ),∇u(λ)〉ds

= 〈b̃(λ), b(λ)〉(t) − 1+ 〈ũ(λ), u(λ)〉(t) + 2ν
∫ t

0
〈∇ũ(λ),∇u(λ)〉ds

=
∫ t

0

∫

− f ′′(∂x ψ̃(λ)b
z
(λ) + ∂xψ(λ)b̃

z
(λ)) − f ′(∇ψ̃(λ) · ∇⊥(−�)−1ω(λ)

+ ∇ψ(λ) · ∇⊥(−�)−1ω̃(λ))

+ ∇⊥δψ̃ · ∇⊥ψ(λ) + δb̃bz
(λ) + ∇⊥(−�)−1δ

(ν)

ω̃
· ∇⊥(−�)−1ω + δ

(ν)

ũ uz
(λ) dxdyds

and then after a bit of rearranging,

∣
∣
∣〈b̃(λ), b(λ)〉(t) − 1

∣
∣
∣ � ‖ũ(λ)(t)‖L2‖u(λ)(t)‖L2 + νt1/2‖∇ũ(λ)‖L∞(I ;L2)‖u(λ)‖L2(I ;Ḣ1)

+ t‖b(λ)‖L∞(I ;L2)

(
‖b̃(λ)‖L∞(I ;L2) + ‖∇⊥δψ̃‖L∞(I ;L2) + ‖δb̃‖L∞(I ;L2)

)

+ t‖u(λ)‖L∞(I ;L2)

(
‖b̃(λ)‖L∞(I ;L2) + ‖∇⊥(−�)−1(δ

(ν)

ω̃

+ν�ω̃(λ))‖L∞(I ;L2) + ‖δ(ν)

ũ + ν�ψ̃(λ)‖L∞(I ;L2)

)

+ νt1/2‖u(λ)‖L2(I ;Ḣ1)

(
‖ω̃(λ)‖L∞(I ;L2) + ‖∇ψ̃(λ)‖L∞(I ;L2)

)

and applying the error bounds together with the smoothing estimates from Proposi-
tion 3.1, for λ ≥ 1, 0 < t ≤ 1 we obtain

∣
∣
∣〈b̃(λ), b(λ)〉(t) − 1

∣
∣
∣ � ((1+ ν)t1/2 + λ−1)

(
‖b(λ)‖L∞(I ;L2) + ‖u(λ)‖L∞(I ;L2) + ‖u(λ)‖L2(I ;Ḣ1)

)

where the multiplicative constants depend on f but not on λ. Thus, choosing 0 <

T ≤ 1 sufficiently small (independent of λ and depending on ν only when ν & 1),
we obtain for all sufficiently large λ that

〈b̃(λ), b(λ)〉(t) >
1

2
for t ∈ [0, T ]. (4.3)

(iii) growth of Sobolev norms
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With (4.3) in hand, the proof of the norm growth estimate proceeds exactly as in the
electron-MHD case, via duality and the degeneration estimates. We omit the details.

��
Proof of Theorem B for (Hall-MHD) We simply repeat the proof of Theorem B for the
electron-MHD case, using instead the lower bound (4.3): take data and solution of the
form

b =
∑

λ

αλb(λ), b̃ =
∑

λ

αλb̃(λ)

with appropriately chosen αλ as in the above proof. ��

5 Proof of the Nonlinear Illposedness Results in Sobolev Spaces

We are in a position to complete the proof of Theorem C. We emphasize in advance
that in the proof below, all the implicit constants are independent of λ as well as the
adequate normof the solutionmap (whichwill be finite by a contradiction assumption).

5.1 Proof of Theorem C for (E-MHD)

We consider only the case when B̊ = f (y)∂x ; the proof in the axi-symmetric case
requires only minor modifications. The proof is by contradiction. That is, we further
assume from now on that for s0 ≥ 3, the solution map is bounded, and for s0 >

max{2, 3(1− α)}, the solution map is α-Hölder continuous.
(i) choice of initial data
We fix a complex-valued Schwartz function g0(x, y) ∈ S(M2) with

supp g0 ⊆ (T,R)x × ( 12 y1, y1).

We may take g0 to be compactly supported in x as well. Then, for λ ∈ N, we choose
the initial data explicitly as

B(λ)(0) = B̊+ ελ−s−nb̃(λ)(0) (5.1)

where ε > 0, s > 0 and f are from the statement of the theorem, n ≥ 0 is a parameter
that will be chosen to be depending on s, α below, and

b̃(λ)(0) = (−∂yψ̃(λ)(0), ∂x ψ̃(λ)(0), b̃z
(λ)(0)),

where the pair (ψ̃(λ)(0), b̃z
(λ)(0)) is explicitly given in (3.3), (3.2). For each λ, we

normalize ‖b̃(λ)(0)‖L2 = 1. Since ‖b̃(λ)(0)‖Ḣ s′ �s′ λs′ for any s′ > 0, the initial data

B(λ)(0) belongs to the ball Bε(B̊; Hs
comp), by replacing the coefficient ε in (5.1) by

ε/A for some large constant A > 0 independent of λ if necessary.
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(ii) application of the generalized energy identity
By the assumption of Theorem C, there exists δ > 0 and a unique local solution

B(λ)(t) in L∞
t ([0, δ], Hs0). The additional hypothesis guarantees that, for all λ ∈ N,

the sequence of solutions

b(λ)(t) := B̊− B(λ)(t)

is uniformly bounded in the space L∞
t ([0, δ], Hs0) (with s0 depending on α). More-

over, by the uniqueness assumption, b(λ) is independent of z, and introducing ψ(λ)

such that b(λ) = (∇⊥ψ(λ), bz
(λ)), we have that the pair (ψ(λ), b(λ)) solves the system

(cf. (2.13))

{
∂t b

z
(λ) − f ∂x�ψ(λ) + f ′′∂xψ(λ) = −∇⊥ψ(λ) · ∇�ψ(λ)

∂tψ(λ) + f ∂x bz
(λ) = ∇⊥ψ(λ) · ∇bz

(λ)

(5.2)

with initial data (ψ̃(λ)(0), b̃z
(λ)(0)).

Regarding the approximate solution (ψ̃(λ), b̃(λ)), let us recall the error bounds

sup
t∈[0,δ]

‖εb̃(t)‖L2 � 1,

sup
t∈[0,δ]

‖∇εψ̃‖L2 � 1,

where all the implicit constants are independent of λ. By the definition of the error
terms, we have

{
∂t b̃

z
(λ) − f ∂x�ψ̃(λ) + f ′′∂x ψ̃(λ) = εb̃

∂t ψ̃(λ) + f ∂x b̃z
(λ) = εψ̃ .

(5.3)

Using (5.2) and (5.3), we compute that

d

dt
〈b(λ)(t), b̃(λ)(t)〉 = −〈 f ′′∂x ψ̃(λ), bz

(λ)〉 − 〈b̃z
(λ), f ′′∂xψ(λ)〉

+ 〈∇εψ̃ ,∇ψ(λ)〉 + 〈∇ψ̃(λ),∇(∇⊥ψ(λ) · ∇bz
(λ))〉

+ 〈εb̃, bz
(λ)〉 + 〈b̃z

(λ),−∇⊥ψ(λ) · ∇�ψ(λ)〉.
(5.4)

First, we proceed in the case s0 ≥ 3 to contradict boundedness of the solution map.
We bound the first and the third lines on the RHS, respectively, by

∣
∣
∣−〈 f ′′∂x ψ̃(λ), bz

(λ)〉 − 〈b̃z
(λ), f ′′∂xψ(λ)〉

∣
∣
∣ � ‖b̃(λ)‖L2‖b(λ)‖L2 � ‖b(λ)‖L2
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and

∣
∣
∣〈εb̃, bz

(λ)〉 + 〈b̃z
(λ),−∇⊥ψ(λ) · ∇�ψ(λ)〉

∣
∣
∣ � ‖εb̃‖L2‖b(λ)‖L2

+ ‖b̃(λ)‖L2‖∇�ψ(λ)‖L2‖b(λ)‖L∞

� ‖b(λ)‖L2 ,

where we have used that supt∈[0,δ] ‖b̃(λ)‖L2 � 1, the error bound on ‖εb̃‖L2 , and the
uniform bound

‖∇�ψ(λ)‖L2‖b(λ)‖L∞ � ‖b(λ)‖1/3L2 ‖b(λ)‖2/3H3 ‖b(λ)‖2/3L2 ‖b(λ)‖1/3H3

� ‖b(λ)‖L2‖b(λ)‖H3 � ‖b(λ)‖L2 ,

for s0 ≥ 3. Regarding the second line we have

〈∇εψ̃ ,∇ψ(λ)〉 + 〈∇ψ̃(λ),∇⊥ψ(λ) · ∇∇bz
(λ)〉 + 〈∇ψ̃(λ),∇⊥∇ψ(λ) · ∇bz

(λ)〉

and the first two terms are bounded by a constant multiple of ‖b(λ)‖L2 , again with
s0 ≥ 3. Lastly,

∣
∣
∣〈∇ψ̃(λ),∇⊥∇ψ(λ) · ∇bz

(λ)〉
∣
∣
∣ � ‖∇2ψ(λ)∇bz

(λ)‖L2 � ‖∇b(λ)‖2L4 � ‖b(λ)‖L2‖b(λ)‖H3

by an application of the Sobolev inequality. Collecting the bounds and using the energy
identity for b(λ), we conclude that

∣
∣
∣
∣
d

dt
〈b(λ)(t), b̃(λ)(t)〉

∣
∣
∣
∣ � ‖b(λ)(t)‖L2 � ‖b(λ)(0)‖L2

where the implicit constants are independent on λ. Therefore, by taking sufficiently
small 0 < T ≤ δ, we can guarantee that

〈b(λ)(t), b̃(λ)(t)〉 >
1

2
‖b(λ)(0)‖L2 = 1

2
ελ−s−n, 0 < t ≤ T .

uniformly for all sufficiently large λ.
Now we show how to arrive at the above inequality in the case 0 < α ≤ 1 under

the α-Hölder continuity assumption. While the choice of n ≥ 0 did not play any role
in the above, now we shall take it to be sufficiently large. Using the assumption of
Hölder continuity around the stationary solution B̊, we obtain the bound

‖b(λ)‖Hs0 � εαλ−nα.
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Then, we can obtain better bounds on the quadratic terms ‖∇b(λ)‖2L4 and ‖b(λ)∇2

b(λ)‖L2 . Regarding the former, we bound

‖∇b(λ)‖2L4 � ‖b(λ)‖2θL2‖b(λ)‖2(1−θ)

Hs0 , θ = 1− 3

2s0
� ε2(1−θ)α+2θλ−2θ(n+s)−2(1−θ)nα � ελ−n−s

for s0 > max{ 32 , 3(1 − α)} by taking n sufficiently large. A similar bound can be
obtained for ‖b(λ)∇2b(λ)‖L2 , now with s0 > max{2, 3(1− α)}.

(iii) growth of Sobolev norms
Proceeding as in the proof of Theorem A using duality and (3.5)–(3.6), we obtain

‖b(λ)(t)‖Hs0 �s0 λs0ec f s0λt‖b(λ)(0)‖L2 = ελs0−s−nec f s0λt ,

which is a contradiction since λ may be arbitrarily large. This finishes the proof for
the electron-MHD case. ��

5.2 Proof of Theorem C for (Hall-MHD)

We shall restrict ourselves to the case s0 ≥ 3, necessary changes for the Hölder case
of s0 > max{2, 3(1− α)} being obvious. We also fix B̊ = f (y)∂x and some ν ≥ 0.

To begin with, take the initial data as in (5.1) together with trivial initial velocity;
that is, u(λ)(0) = 0. Then, by the assumption of existence and uniqueness, we obtain
a z-independent solution quadruple (uz

(λ), ω(λ), bz
(λ), ψ(λ)) to the system (2.9). The

solution is uniformly bounded (in λ) in the space

∇uz
(λ), ω(λ) ∈ L∞([0, δ]; Hs0−1), ∇ψ(λ), bz

(λ) ∈ L∞([0, δ]; Hs0)

with some constant δ > 0. Appealing to Proposition 3.4 with initial data (3.2), (3.3),
and (3.10), we obtain the approximate solution (ũz

(λ), ω̃(λ), b̃z
(λ), ψ̃(λ)) with the esti-

mates

‖ũz
(λ)(t)‖L2 + ‖∇⊥(−�)−1ω̃(λ)(t)‖L2 � λ−1,

‖∇ũz
(λ)(t)‖L2 + ‖ω̃(λ)(t)‖L2 � 1,

and

‖δ(ν)

ũ (t) + ν�ψ̃(λ)(t)‖L2 � λ−1,

‖∇⊥(−�)−1(δ
(ν)

ω̃
+ ν�ω̃(λ))(t)‖L2 � λ−1,

‖δ(ν)

b̃
(t)‖L2 � 1,

‖∇δ
(ν)

ψ̃
(t)‖L2 � 1.
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Now using (2.23), we obtain

d

dt

(
〈b̃(λ), b(λ)〉(t) + 〈ũ(λ), u(λ)〉(t)

)
+ 2ν〈∇ũ(λ),∇u(λ)〉

= −〈 f ′′∂x ψ̃(λ), bz
(λ)〉 − 〈b̃z

(λ), f ′′∂xψ(λ)〉 − 〈 f ′∇ψ̃(λ), ux,y
(λ) 〉 − 〈ũx,y

(λ) , f ′∇ψ(λ)〉
+ 〈∇⊥δψ̃ ,∇⊥ψ(λ)〉 + 〈∇⊥ψ̃(λ),∇⊥δψ 〉 + 〈δb̃, bz

(λ)〉 + 〈b̃z
(λ), δb〉

− 〈∇⊥(−�)−1δ
(ν)

ω̃
, ux,y

(λ) 〉 − 〈ũx,y
(λ) ,∇⊥(−�)−1δ(ν)

ω 〉 + 〈δ(ν)

ũ , uz
(λ)〉 + 〈ũz

(λ), δ
(ν)
u 〉.

and then, the terms on the first line of the RHS are bounded simply by

∣
∣
∣−〈 f ′′∂x ψ̃(λ), bz

(λ)〉 − 〈b̃z
(λ), f ′′∂xψ(λ)〉 − 〈 f ′∇ψ̃(λ), ux,y

(λ) 〉 − 〈ũx,y
(λ) , f ′∇ψ(λ)〉

∣
∣
∣

� ‖b̃(λ)‖L2‖b(λ)‖L2 + ‖b̃(λ)‖L2‖u(λ)‖L2 + ‖ũ(λ)‖L2‖b(λ)‖L2 � ‖b(λ)‖L2 + ‖u(λ)‖L2 .

(5.5)

To bound the other terms,we recall the formof the error for a solution of the (nonlinear)
Hall-MHD equations (cf. (2.9) and (2.22)):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

δ(ν)
u = −ux,y

(λ) · ∇uz
(λ),

δ(ν)
ω = −ux,y

(λ) · ∇ω(λ) +∇⊥ψ(λ) · ∇�ψ(λ) = ∇ · (−ω(λ)u
x,y
(λ) + �ψ(λ)∇⊥ψ(λ)),

δb = −ux,y
(λ) · ∇bz

(λ) − ∇⊥ψ(λ) · ∇uz
(λ) −∇⊥ψ(λ) · ∇�ψ(λ),

δψ = −ux,y
(λ) · ∇ψ(λ) +∇⊥ψ(λ) · ∇bz

(λ).

For the approximate solution, we write δũ = δ
(ν)

ũ + ν�ũz
(λ) and δω̃ = δ

(ν)

ω̃
+ ν�ω̃(λ).

Then,

∣
∣
∣〈∇⊥δψ̃ ,∇⊥ψ(λ)〉 + 〈∇⊥ψ̃(λ),∇⊥δψ 〉

∣
∣
∣

� ‖b(λ)‖L2 + ‖∇⊥u(λ) · ∇ψ(λ)‖L2 + ‖u(λ) · ∇∇⊥ψ(λ)‖L2

+‖∇⊥∇⊥ψ(λ) · ∇bz
(λ)‖L2 + ‖∇⊥ψ(λ) · ∇∇⊥bz

(λ)‖L2

� ‖b(λ)‖L2 + ‖u(λ)‖L2 (5.6)

where we have used

‖∇⊥∇⊥ψ(λ) · ∇bz
(λ)‖L2 � ‖b(λ)‖L2‖b(λ)‖H3 � ‖b(λ)‖L2

as in the electron-MHD case. Next,

∣
∣
∣〈δb̃, bz

(λ)〉 + 〈b̃z
(λ), δb〉

∣
∣
∣ � ‖δb̃‖L2‖b(λ)‖L2 + ‖b̃z

(λ)‖L2‖u(λ)‖L2‖∇bz
(λ)‖L∞

+ ‖b̃z
(λ)‖L2‖b(λ)‖L2(‖∇uz

(λ)‖L∞ + ‖b(λ)‖H3)

� ‖b(λ)‖L2 + ‖u(λ)‖L2 .

(5.7)
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Now rewriting

− 〈∇⊥(−�)−1δ
(ν)

ω̃
, ux,y

(λ) 〉 − 〈ũx,y
(λ) ,∇⊥(−�)−1δ(ν)

ω 〉
= −〈∇⊥(−�)−1(δω̃ + ν�ω̃(λ)), ux,y

(λ) 〉 − ν〈∇⊥ω̃(λ), ux,y
(λ) 〉

+ 〈ũx,y
(λ) ,∇⊥(−�)−1∇ · (−ω(λ)u

x,y
(λ) + �ψ(λ)∇⊥ψ(λ))〉,

we obtain

∣
∣
∣−〈∇⊥(−�)−1δ

(ν)

ω̃
, ux,y

(λ) 〉 − 〈ũx,y
(λ) ,∇⊥(−�)−1δ(ν)

ω 〉
∣
∣
∣

� ‖∇⊥(−�)−1(δω̃ + ν�ω̃(λ))‖L2‖u(λ)‖L2 + ν‖ω̃(λ)‖L2‖∇u(λ)‖L2

+ ‖ũ(λ)‖L2(‖ω(λ)‖L∞‖u(λ)‖L2 + ‖�ψ(λ)‖L∞‖b(λ)‖L2)

� ‖b(λ)‖L2 + ‖u(λ)‖L2 + ν‖∇ũ(λ)‖L2‖∇u(λ)‖L2 .

(5.8)

Lastly,

∣
∣
∣〈δ(ν)

ũ , uz
(λ)〉 + 〈ũz

(λ), δ
(ν)
u 〉

∣
∣
∣ � ‖δũ + ν�ψ̃(λ)‖L2‖u(λ)‖L2 + ν‖∇ũ(λ)‖L2‖∇u(λ)‖L2 .

(5.9)

Collecting the bounds (5.5)–(5.9) and recalling that ‖∇ũ(λ)‖L2 � 1 (cf. Proposi-
tion 3.4), we obtain

d

dt

(
〈b̃(λ), b(λ)〉(t) + 〈ũ(λ), u(λ)〉(t)

)
� ‖b(λ)‖L2 + ‖u(λ)‖L2 + ν‖∇u(λ)‖L2 ,

and integrating in time and using the energy inequality

‖b(λ)(t)‖2L2 + ‖u(λ)(t)‖2L2 + 2ν
∫ t

0
‖∇u(λ)‖2L2ds

� ‖b(λ)(0)‖2L2 + ‖u(λ)(0)‖2L2 = ‖b(λ)(0)‖2L2

gives

∣
∣
∣〈b̃(λ), b(λ)〉(t) − 〈b̃(λ), b(λ)〉(0)

∣
∣
∣ � (t + ν1/2t1/2 + λ−1)‖b(λ)(0)‖L2 .

Since

〈b̃(λ), b(λ)〉(0) = ‖b(λ)(0)‖L2(1+ O(λ−1)),

we may take a small number 0 < T ≤ δ such that for all sufficiently large λ,

〈b̃(λ), b(λ)〉(t) >
1

2
‖b(λ)(0)‖L2 , t ∈ [0, T ].
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The rest of the argument is the same as in the electron-MHD case. The proof is
complete. ��

5.3 Proof of Theorem E for (E-MHD)

In this section, we give the proof of Theorem E for (E-MHD). Compared to (Hal-
l-MHD), a rather strong localization is possible in this case, and thus the proof works
also on M = T

3. We proceed in several steps.
(i) choice of initial data and contradiction hypothesis
As described in Sect. 1.7, the key idea is to superpose many instabilities in physical

space. In order to fit everything in a compact interval, which allows us to consider the
case M = T

3, and control the constants involved in the instability argument, we use
a simple rescaling argument.

Let M , s > 3 + 1
2 and ε > 0 be given by the statement of Theorem E; in what

follows, we suppress the dependence of implicit constants on s. We simultaneously
give constructions involving the translational- and axi-symmetric stationary magnetic
fields; the former construction works for M = Tx × (T,R)y × Tz , and the latter
applies to all of M = (T,R)x × (T,R)y × Tz . To this end, we take

B̊(tr ,axi) =
∞∑

k=k0

B̊(tr ,axi)
k :=

∞∑

k=k0

2−skB̃(tr ,axi)(2k x, 2k(y − yk)), yk = 2−
k
2

(5.10)

where

B̃tr (x, y) = f tr
0 (y)∂x

in the translationally symmetric case, and

B̃axi (x, y) = f axi
0 (

√

x2 + y2)(x∂y − y∂x )

in the axi-symmetric case. Here, k0 ≥ 10 is some large positive integer (to be specified
later), f tr

0 (y) ∈ C∞
comp supported in |y| ≤ 1/10 and f tr

0 (y) = y for |y| ≤ 1/20, and

f axi
0 ∈ C∞

comp is supported in r ≤ 1/5 and satisfies f axi
0 (r) = r−1/20 for 1/40 ≤ r ≤

1/10.We further assume that f axi
0 is a constant for r small so that B̃axi defines a smooth

vector field on R
2
x,y . Note that in both cases, B̊(tr ,axi)

k is a stationary solution and the

supports of B̊(tr ,axi)
k are disjoint, so B̊(tr ,axi) defines a stationary solution to (E-MHD).

The coefficient 2−sk guarantees that B̊tr
k ∈ Hs

comp(M) with ‖B̊tr
k ‖Hs � 2− 1

2 k when

M = Tx × (T,R)y × Tz , and B̊axi
k ∈ Hs

comp(M) with ‖B̊tr
k ‖Hs � 2− 1

2 k when

M = (T,R)x × (T,R)y ×Tz . In all cases, B̊(tr ,axi) ∈ Hs
comp(M) and we may ensure

that ‖B̊(tr ,axi)‖Hs < 1
2ε by taking k0 large enough.
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We now fix the initial data. In the translationally symmetric case, take some com-
pactly supported function gtr

0 ∈ C∞(M) that is independent of x and whose y-support
is contained in 1/40 < y < 1/20 so that the hypotheses of Proposition 3.1 is satisfied
for g0 = gtr

0 , B̊ = B̃tr = f tr
0 (y)∂x and y1 = 1

20 . Then define b̃(λ) := (∇⊥ψ̃(λ), b̃z
(λ))

to be the associated degenerating wave packet solution provided by Proposition 3.1.
For

λk = 2Nk

for some N & 1 sufficiently large to be specified later (depending only on s), we
define

b̃tr
k (t, x, y, z) = 2

k
2 b̃(2−kλk )

(2−sk22k t, 2k x, 2k(y − yk)),

ψ̃ tr
k (t, x, y, z) =2−

k
2 ψ̃(2−kλk )

(2−sk22k t, 2k x, 2k(y − yk)),
(5.11)

By construction, e−iλk x b̃tr
k (x, y, z) is independent of both x and z, and by suitably

normalizing gtr
0 , we may take ‖b̃tr

k ‖L2 = 1. Note that these definitions are consistent
with the relation (b̃x,y

k )tr = ∇⊥ψ̃ tr
k . Then, we define the initial data to be

Btr
0 = B̊tr +

∞∑

k=k0

2−kλ−s
k b̃tr

k (t = 0). (5.12)

Recalling that b̃tr
k is uniformly bounded in L2, we see that ‖λ−s

k b̃tr
k (t = 0)‖Hs � 1;

thanks to the factor 2−k , we have Btr
0 ∈ Hs

comp and we may ensure that ‖Btr
0 ‖Hs < ε

by taking k0 large.
We proceed similarly in the axi-symmetric case. Take gaxi

0 (r) ∈ C∞
comp with

supp (gaxi
0 ) ⊂ (3/40, 1/10). With this choice, the hypotheses of Proposition 3.1 in

the axi-symmetric case is satisfied with B̃axi = f axi
0 (r)∂θ and g0 = gaxi

0 . Applying
Proposition 3.1 with this data gives b̃(λ) = (∇⊥ψ̃(λ), b̃z

(λ)) and define

b̃axi
k (t,x, y, z) = 2k b̃(2−kλk )

(2−sk22k t,2k x, 2k(y − yk)). (5.13)

We then define the initial data as

Baxi
0 = B̊axi +

∞∑

k=k0

2−kλ−s
k b̃axi

k (t = 0). (5.14)

Again, Baxi
0 ∈ Hs

comp(M) and we may take ‖Baxi
0 ‖Hs < ε by taking k0 adequately

large.
At this point, from (5.11) and (5.13), it is easy to check that b̃(tr ,axi)

k obeys the
following types of boundedness, error and degeneration estimates, respectively:

‖b̃k(t)‖L2 � 2Cs k, (5.15)
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‖εb̃,k(t)‖L2 + ‖∇εψ̃,k(t)‖L2 � 2Cs k, (5.16)

‖b̃(tr ,axi)(t)‖
L2

x H
− 1
4

y

� 2Cs k exp
(
−2−cs kλk t

)
, (5.17)

where cs, Cs > 0 are constants depending only on s (that may change from line to
line) and

εb̃,k(t) = εb[b̃z
k, ψ̃k], εψ̃,k(t) = εψ [b̃z

k, ψ̃k]

are defined according to (2.24) and (2.28) respect to B̊(tr ,axi)
k , (b̃z

k)
(tr ,axi) and ψ̃

(tr ,axi)
k .

Towards a contradiction, we assume that there exist δ > 0 and a solution
B(tr ,axi) ∈ L∞

t ([0, δ]; Hs) to (E-MHD) with initial data (5.12) and (5.14), and set
b(t) := B(tr ,axi)(t) − B̊(tr ,axi), respectively. Since we do not assume uniqueness of
the solution, b(t) may depend on z as well, and it satisfies19

∂t b + (b · ∇)(∇ × B̊) − (∇ × B̊) · ∇b + (B̊ · ∇)(∇ × b) − (∇ × b) · ∇B̊

= ∇ × ((∇ × b) × b).
(5.18)

(ii) localization of the energy identity
Before we continue, let us briefly give an outline of the argument. As discussed in

Sect. 1.7, we would like to localize the energy identity for b (as well as the generalized
energy identity between b and b̃k in the next step) to the support of B̊(tr ,axi)

k . If the
corresponding localized statements were exactly true, the proof will be completed
immediately since near B̊(tr ,axi)

k , the Hs-norm of the perturbation will grow at a rate
of λk t , which clearly dominate losses of 2Ak coming from various normalizations, by
taking λk = 2Nk with N large. Not surprisingly, the main enemy is the loss of one
derivative coming from the commutator [χ, (B̊ · ∇)(∇ × b)] where χ is a cutoff. A
derivative on b localized to the support of B̊k could in principle cost λk , but we gain a
little bit by a time integration, which gives a necessary control of the local energy in
the time scale � λ

s/(s+1)
k , which is still sufficient for unbounded growth in k.

Now we proceed to prove a localized version of the energy estimate for the pertur-
bation b. The proof is similar for both the translationally- and axi-symmetric cases,
and for simplicity we only consider the translationally symmetric case from now on.
Ideally we would like to show that the L2-norm of b localized to the support of B̊k

admits an energy inequality by itself, but since there will be some contribution from
neighboring pieces, we use cutoff functions with fast decaying tails which can accom-
modate such interactions. To this end, we prepare aC∞ positive functionχ : R → R+
with the following properties:

• χ(y) = 1 for y ∈ [−1/4, 1/4]20,
• |χ ′(y)| ≤ |χ(y)| for all y ∈ R, and

19 Even in this case, (E-MHD) can be reformulated in terms of bz and ψ , where −�x,yψ = (∇ × b)z

with �x,y := ∂xx + ∂yy . But now the expression for ∂t ψ involves non-local terms.
20 This property is not essential but for convenience of the estimates below.
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• χ decays exponentially; i.e. χ(y) ≤ 2−|y| for y > 1/2.

Then, in the case (T,R)y = Ry , we simply define χk(y) := χ(2k(y − yk)). In the
case of Ty = R/(2πZ), which we view as the interval [−π, π ] with the endpoints
identified,we proceed as follows: for k sufficiently large, take the 2π -periodic function

∑

n∈Z
χk(y + 2πn)

and one may modify this function only on the interval [yk − 2−1−k, yk + 2−1−k] so
that it is identically 1 on [yk − 2−2−k, yk + 2−2−k], which we redefine as χk . Note
that in this process we can guarantee that |χ ′

k(y)| � 2k |χ(y)| on Ty with a constant

independent of k. Regarding the decay, we shall only need |χk(y)| � 2−2k |y−yk | for
|y − yk | ≤ 1/10, which holds for all k sufficiently large, in the case of Ty as well. For
the simplicity of the argument we shall proceed in the case of Ry . Multiplying both
sides of (5.18) by χk(y) and taking the L2 inner product in M with χk(y)b, we obtain

∣
∣
∣〈χk(b · ∇)(∇ × B̊), χkb〉

∣
∣
∣ � ‖∇2B̊‖L∞‖χkb‖2L2 ,

〈χk(∇ × B̊) · ∇b, χkb〉 = 0

(after integrating by parts as (∇ × B̊) · ∇ = − f ′(y)∂z commutes with χk), and

∣
∣
∣〈χk((B̊ · ∇)(∇ × b) − (∇ × b) · ∇B̊), χkb〉

∣
∣
∣ = 4

∣
∣〈χ ′

k f bz, ∂x (χkbx )〉∣∣
� 2k‖χkb‖L2‖∇(χkb)‖L2

�s 2
k‖χkb‖2−

1
s

L2 ‖χkb‖
1
s
Hs � 22k‖b‖

1
s
Hs‖χkb‖2−

1
s

L2

after observing cancellations using integration by parts. We then used the algebra
property of Hs with Sobolev embedding. (Actually it is clear that the previous inner
product should be of the form

∫
χ ′

kχkb∇b since unless a derivative falls on the cutoff
we obtain complete cancellations). Finally we treat the nonlinearity

〈χk∇ × ((∇ × b) × b), χkb〉,

which has terms of the type 〈χ ′
kb∇b, χkb〉 after integration by parts since unless the

curl falls on χk , we obtain a cancellation. The bound |χ ′
k | � 2k |χk | allows us to

estimate such terms by � 2k‖∇b‖L∞‖χkb‖2
L2 . Collecting all the estimates,

d

dt
‖χkb‖L2 � 22k

(

‖χkb‖1−
1
s

L2 + ‖χkb‖L2

)

(5.19)
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where the implicit constant now depends on ‖b‖L∞
t Hs . Let us estimate, at the initial

time, the local energy

‖χkb(t = 0)‖2L2 = 2−2kλ−2s
k +

∑

k0≤k′,k′ �=k

2−2k′
λ−2s

k′ ‖χk b̃k′(t = 0)‖2L2 .

Note that the contribution to the above sum for k′ > k is negligible relative to 2−2kλ−2s
k

from the decay of 2−2k′
λ−2s

k′ in k′. On the other hand, for k′ < k, we use the decay of

χk : for any k′ < k, the support of b̃k′ is separated from yk by at least c2− k
2 with c > 0

independent of k. Hence,

|χk | � 2−c2
k
2 �N ,s 2

−4Nsk � 2−2kλ−2s
k

on the support of b̃k′ with any k′ > k ≥ k0, and we obtain that ‖χkb(t =
0)‖L2� 2−2kλ−s

k by choosing k0 sufficiently large with respect to N , s. Using this
together with (5.19) yields that

‖χkb(t)‖L2 �s

(
2−

k
s λ−1

k + 22k t
)s

�s 2
−kλ−s

k + 22ks t s . (5.20)

(iii) localization of the generalized energy identity and conclusion of the proof
We shall now need a version of the generalized energy inequality which is localized

in space. As before, since the argument is similar for both the translationally- and axi-
symmetric cases, we only consider the translationally symmetric case for simplicity.

Recall from the construction in Sect. 3 that the support of the rescaled and translated
degeneratingwave packet b̃k is contained in [yk−2−2−k, yk+2−2−k], and in particular
χk b̃k = χ2

k b̃k . We now compute

d

dt
〈χkb, b̃k〉 = 〈−χk f ′∂zbz + χk f ′′by − χk f ∂x (∂x by − ∂ybx ), b̃z

k〉
+ 〈χkbz, f ∂x�x,yψ̃k − f ′′∂x ψ̃k + εb̃z ,k〉
+ 〈−χk f ′∂zby − χk f ∂x (∂zbx − ∂x bz), χk b̃y〉
+ 〈χkby, f ∂xx b̃z

k − ∂xεψ̃,k〉
+ 〈χk f ′∂zbx + χk∂y( f (∂zbx − ∂x bz)) + χk f ∂z(∂x by − ∂ybx ), b̃x

k 〉
+ 〈χkbx ,−χk∂y( f ∂x b̃z) + χk∂yεψ̃,k〉 + 〈χk∇ × ((∇ × b) × b), b̃k〉.

Taking absolute values, the terms containing εb̃z ,k and εψ,k are bounded by

� ‖χkb‖L2

(
‖εb̃z ,k‖L2 + ‖∇εψ̃,k‖L2

)
.
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Next, the terms involving a z-derivative vanish after moving the derivative to the other
side, from z-independence of b̃k . This leaves us with

I : = 〈χk f (y)∂x (∂ybx − ∂x by) + χk f ′′by, b̃z
k〉 + 〈χkbz, f ∂x�x,yψ̃k − f ′′∂x ψ̃k〉

+ 〈−χk f ∂xx bz, ∂x ψ̃k〉 + 〈−χkby,− f ∂xx b̃z
k〉

+ 〈−χk∂y( f ∂x bz), ∂yψ̃k〉 + 〈χkbx ,−∂y( f ∂x b̃z
k)〉

and

I I : = 〈χk∇ × ((∇ × b) × b), b̃k〉.

After observing cancellations, we see that

|I | =
∣
∣
∣2〈bx , χ ′

k∂x b̃z
k〉 + 2〈χ ′

k∂yψ̃k, f ∂x bz〉 + 〈χk f ′′by, b̃z
k〉 − 〈χkbz, f ′′∂x ψ̃k〉

∣
∣
∣

� ‖χkb‖L2‖b̃k‖L2

where we have used the fact that b̃k vanishes on the support of χ ′
k . Finally, using that

χ ′
k b̃k ≡ 0 and χk b̃k = χ2

k b̃k , we bound

|I I | � ‖∇2b‖L∞‖χkb‖L2‖b̃k‖L2 + ‖∇(χkb)‖2L4‖b̃k‖L2

�s 2
sk‖b‖Hs‖χkb‖L2‖b̃k‖L2 .

We have therefore arrived at the following inequality:

∣
∣
∣
∣
d

dt
〈χkb, b̃k〉

∣
∣
∣
∣ �s 2

ks(1+ ‖b‖Hs )‖χkb‖L2

(
‖εb̃z ,k‖L2 + ‖∇εψ̃,k‖L2 + ‖b̃k‖L2

)

�s 2
Cs k‖χkb‖L2 , (5.21)

where we have used (5.15) and (5.16); the final constant depends also on ‖b‖L∞
t Hs .

We are in a position to complete the proof. Combining (5.20) with (5.21) gives

∣
∣
∣〈χkb, b̃k(t)〉 − λ−s

k

∣
∣
∣ �s 2Cs k

∫ t

0

(
2−kλ−s

k + 22ks t ′s
)
dt ′ �s 2Cs k(2−kλ−s

k t + 22ks t s+1),

so that we are able to obtain

〈χkb, b̃(λk )〉(t) ≥ 1

2
2−kλ−s

k

on the time interval [0, t∗k ] with

t∗k = 2−cs kλ
− s

s+1
k (5.22)
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where λk = 2Nk with N = N (s) & 1 and k0 is sufficiently large. Taking k0 larger if
necessary, it is easy to guarantee that t∗k ≤ δ for all k ≥ k0.

Next, using interpolation in y, we have

2−kλ−s
k � ‖b̃(λk )(t

∗
k )‖

L2
x H

− 1
4

y

‖χkb(t∗k )‖
L2

x H
1
4

y

� ‖b̃(λk )(t
∗
k )‖

L2
x H

− 1
4

y

‖χkb(t∗k )‖1−
1
4s

L2 ‖χkb(t∗k )‖
1
4s
Hs .

By the degeneration property (5.17), (5.20) and (5.22), it follows that

‖χkb(t∗k )‖Hs �s 2
−Cs kλ

−3 s2
s+1

k exp

(

2−cs kλ
1

s+1
k

)

.

By the algebra property of Hs , we may replace the LHS by ‖b(t∗k )‖Hs by altering C ′
s

on the RHS. Now recall that λk = 2Nk ; thus by taking N = N (s) sufficiently large,
we may ensure that

‖b(t∗k )‖Hs �s 2
cs k

for some cs > 0 independent of k ≥ k0. This clearly contradicts boundedness of
‖b‖L∞

t Hs . ��

5.4 Proof of Theorem E for (Hall-MHD)

Here we indicate the necessary modifications for the case of (Hall-MHD). In this
case, the energy identity for u does not obey as favorable localization properties as in
(E-MHD) due to the pressure (see (5.25)). Instead, we require M to be noncompact
(more specifically, (T,R)y = Ry) and place the instabilities at dyadic loci yk � μk .

(i) choice of initial data and contradiction hypothesis
Again, two constructions using the translation- and axi-symmetric building blocks

can be described almost simultaneously. We borrow the definitions of B̃(tr ,axi),
f (tr ,axi)
0 and g(tr ,axi)

0 from the previous proof. In the Hall-MHD case, the station-
ary magnetic field is taken to be

B̊(tr ,axi) =
∞∑

k=k0

B̊(tr ,axi)
k :=

∞∑

k=k0

2−kB̃(tr ,axi)(x, y − yk), yk = yk−1 + μk,

where y1 = 1 and μ & 1 depending only on N and s. Compared to (5.10), note
that there are no spatial rescalings, and the requirement that (T,R)y = Ry is used to
justify the choices of yk .

Next, we apply Proposition 3.4 for g0 = g(tr ,axi)
0 and B̊ = B̃(tr ,axi) (with y1 = 1

20 in
the translationally symmetric case and (r0, r1) = ( 1

20 ,
1
10 ) in the axi-symmetric case),

from which we obtain b̃(λ) = (∇⊥ψ̃(λ), b̃z
(λ)) and ũ(λ) = (∇⊥(−�)−1b̃z

(λ),−ψ̃(λ)).

For λk = 2Nk with N to be chosen later, we set

b̃(tr ,axi)
k (t, x, y, z) = b̃(λk )(2

−k t, x, y − yk), ψ̃
(tr ,axi)
k (t, x, y, z) = ψ̃(λk )(2

−k t, x, y − yk).
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By construction, itmay be checked that (b̃(tr ,axi)
k , ũ(tr ,axi)

k ) obeys all estimates claimed

in Propositions 3.1 and 3.4 (formulated in terms of B̊(tr ,axi)
k , (b̃z

k)
(tr ,axi) and ψ̃

(tr ,axi)
k )

with implicit constants of size O(2Ck).
We take as the initial data

B(tr ,axi)
0 = B̊(tr ,axi) +

∞∑

k=k0

2−kλ−s
k b̃(tr ,axi)

k (t = 0), u(tr ,axi)
0 = 0.

Clearly, (u0,B0) ∈ Hs−1
comp × Hs

comp, and its Hs−1 × Hs can be smaller than ε > 0 by
taking k0 sufficiently large.

Towards contradiction, assume there exists a solution (u,B) ∈ L∞
t ([0, δ]; Hs−1×

Hs) for some δ > 0 with initial data (u0,B0) with u0 = 0 and B0 is defined as in
(5.12). Set b(t) = B(t) − B̊. The system of equations for u and b are:

∂tu+ u · ∇u+∇p− ν�u = (∇ × B) × B (5.23)

and

∂t b + (b · ∇)(∇ × B̊) − (∇ × B̊) · ∇b + (B̊ · ∇)(∇ × b) − (∇ × b) · ∇B̊

= ∇ × ((∇ × b) × b) + B · ∇u− u · ∇B.
(5.24)

(ii) localization of the energy identity
For simplicity, we proceed in the case of translationally symmetric case, and leave

the similar axi-symmetric case to the reader.
Let us first obtain a simple L2-estimate for p. Recall from (1.7) that p has been

only fixed up to a constant; we fix this ambiguity by defining p as

p =
∑

i, j

Ri R j (uiu j ) −
∑

i, j

Ri R j (BiB j ) − |B|2
2

. (5.25)

Then we obtain21

‖p‖L2 � ‖|u|2‖L2 + ‖|B|2‖L2 � ‖u‖2Hs−1 + ‖B‖2Hs

using the embeddings ‖|u|2‖L2 � ‖u‖L∞‖u‖L2 � ‖u‖2
Hs−1 and similarly for B.

We now introduce the cutoff functions. This time, we fix some smooth function
χ(y) ≥ 0 supported on [−1, 1], χ(y) = 1 on [−1/2, 1/2] and define

χk(y) = χ(2μ−k(y − yk)).

We have that χk is supported on [yk − μk/2, yk + μk/2], and |χ ′
k(y)| � μ−k .

21 In fact, the same estimate justifies the choice of p as above for our solution.
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Wemultiply both sides of (5.23) by χk and take the L2 inner product with χku. We
handle the RHS as

〈χk(∇ × B) × B, χku〉 = 〈χkB · ∇B, χku〉 − 〈χk∇ |B|2
2

, χku〉
= 〈χk(B · ∇)b, χku〉 + 〈|B|2∇χk, χku〉,

where we have used that B̊ ·∇B̊ = 0 and an integration by parts. Applying integration
by parts to the other terms, we obtain

∣
∣
∣
∣
1

2

d

dt
‖χku‖2L2 − 〈χk(B · ∇)b, χku〉

∣
∣
∣
∣

� ‖χ ′
k‖L∞‖χku‖L2

(
‖|u|2‖L2 + ‖p‖L2 + ‖|B|2‖L2 + ν‖∇u‖L2

)

� ‖χ ′
k‖L∞‖χku‖L2

(5.26)

on t ∈ [0, δ]with a constant depending on ν ≥ 0 and the normof (u,B) in L∞
t (Hs−1×

Hs). We now multiply both sides of (5.24) by χk and take the L2-inner product with
χkb. We proceed similarly as in the (E-MHD) case, except that we simply use the
quantity ‖χ ′

k‖L∞ whenever a derivative falls on χk . Then we obtain this time

∣
∣
∣
∣
1

2

d

dt
‖χkb‖2L2 − 〈χk(B · ∇)u, χkb〉

∣
∣
∣
∣ � ‖∇2B̊‖L∞‖χkb‖2L2 + ‖χ ′

k‖L∞‖∇b‖L2‖χkb‖L2

+ ‖χ ′
k‖L∞‖b∇b‖L2‖χkb‖L2 + ‖∇B‖L∞‖χku‖L2‖χkb‖L2

�
(‖χ ′

k‖L∞ + ‖χkb‖L2 + ‖χku‖L2
) ‖χkb‖L2 ,

(5.27)

where the last implicit constant depends on ‖B‖L∞
t Hs . Then, putting (5.26) and (5.27)

together and applying integration by parts, we have

|−〈χk(B · ∇)b, χku〉 − 〈χk(B · ∇)u, χkb〉| � ‖χ ′
k‖L∞‖|B|b‖L2‖χku‖L2

and hence

∣
∣
∣
∣
d

dt
(‖χku‖2L2 + ‖χkb‖2L2 )

∣
∣
∣
∣ � ‖χ ′

k‖L∞‖χku‖L2 + (‖χ ′
k‖L∞ + ‖χkb‖L2 + ‖χku‖L2

) ‖χkb‖L2 .

Note that ‖χkb(t = 0)‖L2 = 2−kλ−s
k = 2−(Ns+1)k . We now choose μ & 1 in a

way that (depending only on N and s) ‖χ ′
k‖L∞ � μ−k � 2−(Ns+1)k . Then using

Gronwall’s inequality, we obtain, for t ∈ [0, δ],

‖χku(t)‖2L2 + ‖χkb(t)‖2L2 � 2−2kλ−2s
k = ‖χkb(t = 0)‖2L2 (5.28)

with an implicit constant independent of k.
(iii) localization of the generalized energy identity and conclusion of the proof
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Using the same cutoff χk as in the previous step, it is straightforward to obtain a
localized version of the generalized energy inequality in this case: taking the L2-inner
product with the degenerating wave packet solution (b̃k, ũk) from step (i), we may
prove

∣
∣
∣
∣
d

dt
〈χkb, b̃k〉 + d

dt
〈χku, ũk〉

∣
∣
∣
∣ �s 2

Cs k‖χkb(t = 0)‖L2 .

The rest of the argument is parallel with the (E-MHD) case, using interpolation and the
degeneration property. In fact, the proof in this case is simpler since the energy bound
(5.28) is stronger and valid for a longer time. We omit the straightforward details. ��

6 Proof of Gevrey Space Illposedness

6.1 Reduction to Construction of DegeneratingWave Packets

We shall treat the electron- and Hall-MHD cases simultaneously. The main step of
the proof is a version of Proposition 3.1 and Proposition 3.4 applicable for Gevrey
(in particular, analytic) class of data. Note that the statement of Proposition 6.1 is
essentially the same with Propositions 3.1 and 3.4 except for the form of the initial
data and the phase is now taken to be eiλ(x+y). For simplicity, we restrict ourselves
to the x-independent case. This allows us to only consider degenerating wave packets
that are pure functions of y, modulo the phase eiλx .

Proposition 6.1 Let B̊ = f (y)∂x as in Theorem F, and assume without loss of gen-
erality that f (0) = 0 and f ′(0) > 0. Let g0(y) ∈ C∞(T) be a complex-valued
function such that f −1g0 ∈ C∞(T) as well. Assume further that g0 is supported in
[−y1, y1] for some y1 > 0. For any such g0 and λ ∈ N0, we may associated a pair
(b̃z

(λ), ψ̃(λ))[g0] satisfying the following properties:

• (linearity) the map g0 �→ (b̃z
(λ), ψ̃(λ))[g0] is linear;

• (x-separation) for all t , e−iλx b̃z
(λ) and e−iλx ψ̃(λ) are functions of y only;

• (initial data) at t = 0, we have

b̃z
(λ)(0) = −eiλ(x+y)

(√
2g0 + 1√

2iλ
(∂y g0 − 1

2
f −1∂y f g0)

)

, (6.1)

ψ̃(λ)(0) = λ−1eiλ(x+y)g0, (6.2)

and

‖Re[b̃z
(λ)(0)]‖L2 + ‖Re[∇ψ̃(λ)(0)]‖L2 ≥ c‖g0‖L2 − Cλ−1‖g0‖H1;

• (regularity estimates) for any m ∈ N0 and t ∈ [0, 1],

sup
0≤k≤m

‖(λ−2∂t )
k(λ−1 f ∂y)

m−k b̃z
(λ)(t)‖L2 � ‖g0‖Hm+1 ,
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sup
0≤k≤m

‖(λ−2∂t )
k(λ−1 f ∂y)

m−k∇ψ̃(λ)(t)‖L2 � ‖g0‖Hm+1;

• (L p-degeneration) for any 1 ≤ p ≤ 2 and t ∈ [0, 1], with some c f > 0,

‖b̃z
(λ)(t)‖L2

x L p
y
+ ‖∇ψ̃(λ)(t)‖L2

x L p
y

� e−c f (
1
p − 1

2 )λt‖g0‖H1;

• (error bounds) for t ∈ [0, 1], εψ [b̃z
(λ), ψ̃(λ)](t) = 0 and

‖εb[b̃z
(λ), ψ̃(λ)](t)‖L2 � ‖g0‖H2 .

In the case of Hall-MHD, in addition to (b̃z
(λ), ψ̃(λ)), we take

ũz
(λ)[g0] = −ψ̃(λ)[g0], ω̃(λ)[g0] = −b̃z

(λ)[g0] (6.3)

and then we have

• (smoothing for fluid components) for t ∈ [0, 1], we have

‖ũz
(λ)(t)‖L2 + ‖∇⊥(−�)−1ω̃(λ)(t)‖L2 � λ−1‖g0‖H1 ,

‖∇ũz
(λ)(t)‖L2 + ‖ω̃(λ)(t)‖L2 � ‖g0‖H1;

• (error estimates) for t ∈ [0, 1], we have

δ(ν)
u [ũz

(λ), ω̃(λ), b̃z
(λ), ψ̃(λ)] + ν�ψ̃ = 0,

‖∇⊥(−�)−1(δ(ν)
ω [ũz

(λ), ω̃(λ), b̃z
(λ), ψ̃(λ)] + ν�ω̃)(t)‖L2 � λ−1‖g0‖H2 ,

‖δ(ν)
b [ũz

(λ), ω̃(λ), b̃z
(λ), ψ̃(λ)](t)‖L2 � ‖g0‖H2 ,

‖∇δ
(ν)
ψ [ũz

(λ), ω̃(λ), b̃z
(λ), ψ̃(λ)](t)‖L2 � ‖g0‖H2 .

Remark 6.2 Note that g0 itself cannot belong to all Gevrey classes (in particular, ana-
lytic) since it has compact support. In the proof below, we shall take some Gevrey
class function g̃0 which is supported near y = 0 and truncate it to obtain g0.

Remark 6.3 While stronger degeneration properties on par with (3.4)–(3.6) are
expected to hold, in order to reduce the amount of technicality, we chose to state
and prove only the simpler L p-degeneration property that is sufficient for the proof of
Theorem F.

We now give the proof of Theorem F assuming the above statement.

Proof Wefirst consider (2.14), the linearized electron-MHDequations at B̊ = f (y)∂x ,
with data having a single frequency in x . We may take some function g̃0(y) such that
g̃0 and f −1g̃0 belong to Gσ given σ > 0, since we have assumed that f (y) ∈ Gσ and
Gσ is closed under multiplication.
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Take some y1 > 0 and let χ be a smooth bump function in y with χ = 1 on
|y| ≤ y1/2 and vanishes for |y| > y1. We could have assumed that the support of g̃0
contains the interval [−y1/2, y1/2]. Take g0 := g̃χ and define

b̃(λ)(0) = (∂yψ̃(λ)(0),−∂x ψ̃(λ)(0), b̃z
(λ)(0))

with (b̃z
(λ), ψ̃(λ))[g0] which is provided by Proposition 6.1. On the other hand, define

the initial data b(λ)(0) from

bz
(λ)(0) := −eiλ(x+y)

√
2g0, ψ(λ)(0) := λ−1eiλ(x+y)g0

which clearly belongs to Gσ . We may take the real parts of b̃(λ)(0), b(λ)(0) to ensure
that the data are real-valued, and further normalize the L2-norm of b̃(λ)(0) by 1. We
then proceed as in the proof of Theorem A: denoting the unique solution of (2.14)
with initial data b(λ)(0) by b(λ)(t), we have

∣
∣
∣〈b̃(λ), b(λ)〉(t) − 〈b̃(λ), b(λ)〉(0)

∣
∣
∣ � t‖b(λ)‖L∞([0,t];L2) � t‖b(λ)(0)‖L2 .

On the other hand,

〈b̃(λ), b(λ)〉(0) � ‖b(λ)(0)‖L2

independently of λ so that for sufficiently small δ > 0, we obtain

〈b̃(λ), b(λ)〉(t) � ‖b(λ)(0)‖L2 , t ∈ [0, δ] (6.4)

again with a constant independent of λ.
We now claim that there exists c∗ ∈ R such that for each positive integer n,

‖∂n
y b(λ)(t)‖L2 � e(c∗+c f λt)n‖b(λ)(0)‖L2 , (6.5)

We emphasize that the implicit constant is independent of n. When n = 1, the claim
follows by (6.4), the degeneration property and the Sobolev inequality as before. Next,
for any n ≥ 1, we have

‖∂yb(λ)‖L2 ≤ ‖b(λ)‖
n−1

n
L2 ‖∂n

y b(λ)‖
1
n
L2

which can be seen easily by using the Fourier transform. Then (6.5) follows from the
case n = 1 and the bound supt∈[0,δ] ‖b(λ)(t)‖L2 ≤ ec∗‖b(λ)(0)‖L2 for some c∗ ∈ R

independent of λ.
To conclude the proof in the electron-MHD case, we consider initial data of the

form

b(0) =
∑

λ∈N
cλb̃(λ)(0)
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where we normalize each b̃(λ)(0) in L2 and cλ = e−λ1/σ . This ensures that the initial
data belongs to Gσ (T3). Again by the assumption of uniqueness, we deduce that the
solution satisfies

‖∂n
y b(t)‖2L2(T3)

�
∑

λ∈N
c2λe(c∗+2c f λt)n =

∑

λ∈N
e−2λ1/σ+2(c∗+c f λt)n . (6.6)

At this point, we divide the argument into two cases: Case 1: σ ≥ 1When σ ≥ 1, this
series simply does not converge for any t > 0 for n large depending on t, σ , which
concludes the proof.

Case 2: 0 < σ < 1 Fix a small parameter 0 < ε � σ 2

1−σ
. Since each summand on the

RHS of (6.6) is nonnegative, we may show that, for sufficiently large n depending on
c f , c∗ and t ,

‖∂n
y b(t)‖L2(T3) � ecσ (c f t)

1
1−σ n

1
1−σ +c∗n, cσ = σ

σ
1−σ − σ

1
1−σ , (6.7)

by keeping only the summand with λ = �(σc f t)
σ

1−σ n
σ

1−σ  .22 Observe the crucial
properties that 1

1−σ
> 1 and cσ > 0, since 0 < σ < 1. Recalling (1.10) and the

crude bound n! � en log n , we see that (6.7) implies that the Gσ ′
radius of convergence

of b(t) is zero (i.e., b(t) /∈ Gσ ′
) for every σ ′ > 0. This finishes the proof for the

electon-MHD case.
We now indicate the necessary modifications for the Hall-MHD case. In addition to

the initial data b(λ)(0) defined above,we simply take u(λ)(0) = 0. Let (u(λ), b(λ)) be the
solution with the initial data (0, b(λ)(0)) which exists by assumption. Then, applying
the generalized energy inequality from Proposition 2.3 with the degenerating wave
packet from Proposition 6.1 yields

∣
∣
∣〈b̃(λ), b(λ)〉(t) − 〈b̃(λ), b(λ)〉(0)

∣
∣
∣

� ((1+ ν)t1/2 + λ−1)
(
‖b(λ)‖L∞(I ;L2) + ‖u(λ)‖L∞(I ;L2) + ‖u(λ)‖L2(I ;Ḣ1)

)

applying the error bounds together with the smoothing estimates from Proposition 6.1.
Thus, choosing 0 < δ ≤ 1 sufficiently small, we obtain for all sufficiently large λ that

〈b̃(λ), b(λ)〉(t) � ‖b(λ)(0)‖L2 for t ∈ [0, δ].

The rest of the argument is the same with the electron-MHD case. ��

6.2 Analysis of the Hamilton-Jacobi Equation

The heart of the matter in establishing Proposition 6.1 is to repeat the WKB-type
analysis for the phase function which is simply given initially by y. That is, we seek a

22 The choice of λ is motivated by the Laplace method for deriving asymptotics of an exponential integral.
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solution of (3.20) with initial data �(0, η) = y(η). Before we proceed, we recall the
renormalized form of (2.14): after change of variables

τ = λt, η′(y) = 1

f (y)
, ϕ = f − 1

2 ψ =: eiλxφ

we arrive at

∂2τ φ − ∂2ηφ + λ2 f 2φ +
[
1

2
∂η( f −1∂η f ) + 1

4
f −2(∂η f )2

]

φ = 0. (6.8)

The ansatz for φ will be

φ(τ, η) = λ−1eiλ�(τ,η)h(τ, η)

where h0 = h(0, ·) is simply given by f − 1
2 g0 with g0 given in the statement of

Proposition 6.1. We recall the system of equations

(∂τ�)2 − (∂η�)2 = f 2, �(0, η) = y(η) (6.9)

and

(∂τ�∂τ − ∂η�∂η)h = −1

2
(∂2τ � − ∂2η�)h. (6.10)

Explicitly Solvable Model Case

It will be instructive to take a look at the simplest model case of f (y) = y, to get
an idea of the behavior of the solutions to (6.9) and (6.10). In this case, f (η) = eη

and hence �(0, η) = eη. Let us also set h0(η) = eη (for η ≤ 0). Here and in the
following, we shall use the notation A ∼ B to denote that the ratio A/B converges to
some positive constant in the limit η → −∞, and use A ≈ B when the constant is 1.
Taking the ansatz �(τ, η) = eη H(τ ), we are led to solve

(H ′)2 − H2 = 1, H(0) = 1

and we have the solution (unique up to sign)

H(τ ) = sinh(τ − c0), c0 = sinh−1(1).

With this �, (6.10) becomes simply

(
∂τ − tanh(τ − c0)∂η

)
h = 0,

123



   15 Page 90 of 106 I. Jeong, S. Oh

noticing the cancellation ∂2τ � − ∂2η� = 0. The solution is then explicitly given by

h(τ, η) = h0

(

η + log(
cosh(τ − c0)

cosh(−c0)
)

)

= eη cosh(τ − c0)

cosh(−c0)
.

One sees that in this case, all the characteristic curves are parallel in the (τ, η)-plane
and moves to η → −∞ with asymptotically unit speed, and that h(τ, η)/eη+τ → 1
along each characteristic curve in the region η < − log( cosh(τ−c0)

cosh(−c0)
) ≈ −τ . Assuming

that the support of h0 is contained in {η < C} for some C > 0, one sees that all the
Sobolev norms of h(τ ) are uniformly bounded in terms of the corresponding norm of
the initial data in the limit τ → +∞.

Initial Data

We now take some general smooth f with ∂y f (0) = c0 > 0. We recall that

η(y) ≈ c + 1

c0
ln y

for some constant c (which can be normalized to be 0), and hence

f (η) ≈ c0ec0η.

We had the following asymptotic expressions for the derivatives:

|∂(n)
η f |(η) �n f (η) � ec0η, ∀η ≤ 0. (6.11)

We note that from �(0, η) = y(η), ∂η�(0, η) = f (η) ≈ c0ec0η. Therefore,
∂τ�(0, η) = √

2 f (η) ≈ √
2c0ec0η. Similarly, one may check that ∂τη�(0, η) =√

2∂η f (η), ∂2τ �(0, η) = ∂2η�(0, η) = ∂η f (η).

Characteristics

Define the characteristic curves by

d

dτ
Y (τ, η0) = −∂η�

∂τ�
(τ, Y (τ, η0)), Y (0, η0) = η0.

Then, differentiating the equation for � in τ and η, we respectively obtain

d

dτ
∂τ�(τ, Y (τ, η0)) = 0 (6.12)

and

d

dτ
∂η�(τ, Y (τ, η0)) = f f ′

∂τ�
(τ, Y (τ, η0)). (6.13)
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Therefore, we deduce that

d

dτ

(

−∂η�

∂τ�
(τ, Y (τ, η0))

)

= − f f ′

(∂τ�)2
(τ, Y (τ, η0)) < 0.

Since ∂η�/∂τ�|τ=0 = 1/
√
2 and ∂η�/∂τ� ≤ 1 from the equation, we obtain

η0 − τ < Y (τ, η0) ≤ η0 − 1√
2
τ (6.14)

for all τ ≥ 0 and η0 large negative. In particular f (τ, Y (τ, η)) ≤ ec0(η−cτ) and
similarly for f ′, so that (6.13) implies ∂η�(τ, Y (τ, η))�ec0η. In the following we
shall always assume that η0 ≤ 0 is taken to be sufficiently negative so that the above
estimates hold.

Second Derivatives of8

We compute

d

dτ

(
∂ττ�

∂τ�
(τ, Y (τ, η0))

)

= f 2

(∂τ�)2

(
∂τ�

∂η�

)2 (
∂ττ�

∂τ�

)2

(τ, Y (τ, η0)). (6.15)

For each fixed η0 � −1, we introduce Q(τ ) = (∂ττ�/∂τ�)(τ, Y (τ, η0)). Since the
RHS of (6.15) is nonnegative, for all τ ≥ 0 it follows that

Q(τ ) ≥ Q(0) > 0.

Next, note that ∂τ� is invariant and ∂τ �
∂η�

is decreasing along characteristics; at τ = 0

they are equal to
√
2 f (η0) and

√
2, respectively. Thus,

d

dτ
Q(τ ) ≤ f 2(Y (τ, η0))

f 2(η0)
Q(τ )2.

Solving this differential inequality, we see that

Q(τ ) ≤ Q(0)

1− Q(0)
∫ τ

0
f 2(Y (τ,η0))

f 2(η0)
dτ ′

,

as long as the denominator is positive. Recall that Q(0) ≈ 1√
2

c0 and f (η0) ≈ c0ec0η0

as η0 → −∞. Moreover, Y (τ, η0) ≤ η0 − 1√
2
τ by (6.14). Thus,

Q(0)
∫ τ

0

f 2(Y (τ, η0))

f 2(η0)
dτ ′ ≈ c0√

2

∫ ∞

0
e−

√
2c0τ ′

dτ ′ ≤ 1

2
,
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which ensures that the above denominator is � 1 for all sufficiently negative η0.
In conclusion, we have proved that

∂ττ�

∂τ�
(τ, Y (τ, η))�1

for all η sufficiently negative. In turn, using (6.12) and (6.13), we respectively deduce
that

∂ητ�

∂τ�
= ∂τ�

∂η�

∂ττ�

∂τ�
�1,

∂2η�

∂τ�
= ∂τ�

∂η�

∂τη�

∂τ�
− f f ′

∂η�∂τ�
�1

along the characteristics, for sufficiently negative η.

Higher Derivatives

To begin with, differentiating (6.9) twice, we obtain a linear system of equations in
third order derivatives of �:

⎧
⎪⎨

⎪⎩

(∂ττ�)2 + ∂τ�∂τττ� − (∂τη�)2 − ∂η�∂ττη� = 0,

∂τη�∂ττ� + ∂τ�∂ττη� − ∂ηη�∂τη� − ∂η�∂τηη� = 0,

∂τ�∂τηη� + (∂τη�)2 − (∂ηη�)2 − ∂η�∂ηηη� = ( f ′)2 + f f ′′.
(6.16)

An estimate on a single third-order term along the characteristics lead to the corre-
sponding estimates for all the other third-order derivatives, using (6.16). To this endwe
shall estimate ∂τττ�: differentiating (6.12) twice in τ and using that ∂τ� is constant
along the characteristics,

d

dτ

∂τττ �

∂τ �
(τ, Y (τ, η0)) = ∂ττ �

∂τ �

2 f 2

∂τ �∂η�

∂ττη�

∂τ �
+ ∂τ

(
∂ττ �

∂τ �

f 2

∂τ �∂η�

)
∂τ �

∂η�

∂ττ �

∂τ �

= ∂ττ �

∂τ �

2 f 2

∂τ �∂η�

(
(∂ττ �)2

∂τ �∂η�
+ ∂τττ �

∂τ �

∂τ �

∂η�
− (∂τη�)2

∂τ �∂η�

)

+ ∂ττ �

∂τ �

f 2

∂τ �∂η�

(
∂τττ �

∂τ �
− ∂ττ �(2∂ττ �∂η� + ∂τ �∂τη�)

(∂τ �)2∂η�

)
∂τ �

∂η�
,

where the expressions on the RHS’s are evaluated at (τ, Y (τ, η0)). Apart from the
expression ∂τττ�/∂τ� which we need to estimate, all the ratios appearing on the last
expression are of�1, except that f 2/(∂τ�∂η�) decays exponentially in τ . From this
we conclude that

∂τττ�

∂τ�
(τ, Y (τ, η0))�1

for all η0 sufficiently negative. Using (6.16) we also deduce

∂3�

∂τ�
(τ, Y (τ, η0))�1.
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It is clear now that a similar estimates hold for higher derivatives of arbitrary order.
For instance, to obtain such estimates for the fourth order derivatives, it is sufficient to
prove ∂4τ �/∂τ��1, and for this purpose one simply needs to differentiate the above
expression for ∂τττ�/∂τ� in τ and observe that the RHS can be written in the form
where all the expressions are of order 1 except for the quantity ∂4τ �/∂τ� itself which
is multiplied with a temporally decaying factor f 2/(∂τ�∂η�).

Analysis of the Transport Equation

We consider

L = ∂τ − ∂η�

∂τ�
∂η,

towards the goal of estimating h via the transport equation (6.10). Before we begin,
note that the divergence of L with respect to dη is

− ∂η

∂η�

∂τ�
= ∂2η� − ∂2τ �

∂τ�
. (6.17)

Comparing this expression with the RHS of (6.10), we see that the L2-norm is
conserved: ‖h(τ )‖L2 = ‖h0‖L2 . We shall now proceed to show that actually all W s,p-
norms of h are uniformly bounded in τ as well.

First, observe that (6.10) can be simplified using the method of integrating factors:
introducing a real-valued function α(τ, η) defined by

Lα = −1

2

∂2τ � − ∂2η�

∂τ�
, (6.18)

with the initial condition α(τ = 0) = 0, we see that

L(e−αh) = 0. (6.19)

For any m ∈ N0 we claim that

∣
∣
∣
∣
∣
∂m
η

(

−1

2

∂2τ � − ∂2η�

∂τ�

)∣
∣
∣
∣
∣
(τ, Y (τ, η0)) �m e−2cc0τ

holds for η � −1. It follows directly from (3.27) and the estimates for derivatives of
� along the characteristics obtained in the above. To see this in the case m = 0, note
that

∂2τ � − ∂2η� = ∂η�

∂τ�
∂τη� − ∂τ�

∂η�
∂τη� + f f ′

∂η�
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so that

−1

2

∂2τ � − ∂2η�

∂τ�
= 1

2

∂τη�

∂τ�

f 2

∂τ�∂η�
− 1

2

f f ′

∂η�∂τ�
,

which is �e−2cc0τ when evaluated along a characteristic. It is now straightforward to
extend the above estimate to m ≥ 1. Then by (6.17), for any � ≥ 1 we have decay of
the coefficients

∣
∣
∣
∣∂

�
η

(
∂η�

∂τ�

)∣
∣
∣
∣ (τ, Y (τ, η0)) �� e−2cc0τ .

In the case � = 1, it shows that the divergence of L with respect to dη decays expo-
nentially in τ along characteristics.

Using the above observations, we obtain the following L∞-bound for α:

sup
0≤k≤m

sup
τ≥0

‖∂k
τ ∂m−k

η α(τ)‖L∞
η

�m1

from which it follows that

Lemma 6.4 Let h be the solution of (3.21) with smooth initial data h0 supported on
η ≤ 0. Then we have the estimates

max
0≤k≤m

sup
τ≥0

‖∂k
τ ∂m−k

η h(τ )‖L p(Rη) �m ‖h0‖W m,p(Rη)

for any integer m ≥ 0 and 1 ≤ p ≤ ∞.

Remark 6.5 One may consider the x-dependent case of the transport system as in
(3.21) with � solving (6.9). From

L = ∂τ − ∂η�

∂τ�
∂η − (∂η�)2 + 2 f 2

∂τ�
∂x , (6.20)

and

d

dτ
X(τ, x0, η0) := − (∂η�)2 + 2 f 2

∂τ�
(τ, Y (τ, η0)) ∼ ec0η0 ,

we see that η0-gradient of the speed of the X -characteristics does not decay in τ .
This inevitably gives rise to a linear in τ growth for η-derivatives of h; indeed in the
expression for L[∂ηh], we have

∂η

(
(∂η�)2 + 2 f 2

∂τ�

)

∂x h
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on the right hand side, which does not decay in τ along the characteristics whereas
all the other coefficients are exponentially decaying. Therefore we cannot hope for a
uniform-in-λ error estimates for our WKB ansatz after returning to the t-variable.

In view of this, the explicit choice of the phase function in (3.23) is not just for
simplicity, but it is precisely the choice which allows uniform estimates for the η-
derivatives of h in τ .

6.3 DegeneratingWave Packet Approximate Solutions

In this subsection, we complete the proof of Proposition 6.1.We note here that we shall
only consider the region y > 0, but a parallel argument can be given for y < 0 with
a similar change of coordinates. (Strictly speaking, the wave packets can be simply
defined to be zero for y ≤ 0 and still the proof of Theorem F goes through.)

(i) case of (E-MHD)
The first step is to estimate the error in the φ-equation. Given g0, we apply the

WKB construction from the previous subsection with

h0(η) := f − 1
2 (y(η))g0(y(η))

to obtain (�, h) and define

ψ̃(λ) = f
1
2 λ−1eiλ(x+�(λt,η(y)))h(λt, η(y)), b̃z

(λ) = −( f ∂x )
−1(∂t ψ̃(λ)).

Then it is clear that

ψ̃(λ)(t = 0) = λ−1eiλ(x+y)g0

and

b̃z
(λ)(t = 0) = −( f ∂x )

−1(∂t ψ̃(λ))|t=0 = − f −1(iλ)−1(iλ∂τ �(t = 0)g0 + ∂τ g0)e
iλ(x+y)

= − f −1
(√

2 f g0 + 1

iλ
∂τ g0

)

eiλ(x+y)

= −
(√

2g0 + 1√
2iλ

(∂y g0 − 1

2
f −1∂y f g0)

)

eiλ(x+y)

using

(∂τ g)0 = 1√
2

f
3
2 ∂y

(
f − 1

2 g0
)

which follows from evaluating (6.19) at τ = 0. The claimed lower bound on the
initial data can be checked in a straightforward manner, and the upper bounds for
ψ̃(λ), b̃z

(λ) follow from the corresponding bounds on h as in the proof of Proposition 3.1.
The L p-degeneration property follows since in the (τ, η)-coordinates, the support of
(ψ̃(λ), b̃z

(λ)) moves to η → −∞ with speed at least 1/
√
2.
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The last step is to estimate the error. Denote by eφ = eφ[h0; λ](τ, η) the LHS of
(6.8) evaluated with φ = λ−1eiλ�(τ,η)h(τ, η). It is a straightforward computation to
see that for each τ ≥ 0,

‖eφ(τ )‖L2
η

� λ−2
(
‖h‖L2 + ‖∂2τ h‖L2 + ‖∂2ηh‖L2

)
(τ ) � λ−2‖h0‖H2

η
.

Then from εb[b̃z
(λ), ψ̃(λ)] = λ2eiλx f − 1

2 eφ , it follows that

‖εb[b̃z
(λ), ψ̃(λ)]‖L2

x,y
� ‖h0‖H2

η
� ‖g0‖H2

y
.

(ii) case of (Hall-MHD)
First, defining ũz

(λ) and ω̃(λ) from b̃z
(λ), ψ̃(λ) as in (6.3), the claimed estimates for

ũz
(λ), ∇ũz

(λ), ω̃(λ), and ∇⊥(−�)−1ω̃(λ) follow directly from the regularity estimates

for b̃z
(λ) and ψ̃(λ), using L2-boundedness of the operator ∇⊥(−�)−1∂x and the fact

that ∂−1
x gives simply division by iλ. Moreover, the error estimates follow in a similar

way, using the relation (3.57) and that εb[b̃z
(λ), ψ̃(λ)] = λ2eiλx f − 1

2 eφ . ��

7 Proof of Illposedness for Fractionally Dissipative Systems

The goal of this section is to give the proof of Theorem G. As discussed in the intro-
duction, we only consider the case M = T

3. The proof is parallel to the proof of
Theorems A and C. We shall use the exact same degenerating wave packets con-
structed earlier; the only difference is that there are additional error terms arising from
the dissipative term and the time-dependence of the background magnetic field, which
is also induced by the dissipative term.

7.1 BackgroundMagnetic Fields

Upon taking B̊ = f (t, y)∂x into (1.11), or (ů, B̊) = (0, f (t, y)∂x ) into (1.12), the
nonlinearity vanishes and we are left with

∂t f (t, y) = −η(−�)α f (t, y). (7.1)

From now on, we shall fix the initial data f0 to be a function satisfying the following
assumptions:

• f0 is C∞-smooth,
• f0 meets all the requirements stated in Proposition 3.1 with y1 = 1

2 ; that is,

f0(0) = 0, f ′
0(0) > 0, f ′

0(y) >
1

2
f ′
0(0) and 0 < f0(y) <

1

2
for y ∈ [0, 1

2
],

• f0 is odd at y = 0, and
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• (−�)α f0 ≡ 0 on [0, 1
2 ].23

It is not difficult to see that by first taking g ∈ C∞(Ty) to be some odd function
which is supported outside of [−1, 1], we can arrange f0 := (−�)−αg to satisfy all
the required properties above.

Using Fourier series, it is easy to see that there is a unique smooth solution f (t) to
(7.1) with initial data f0, which satisfies f (t, 0) = 0 for all t ≥ 0. We shall need the
following simple

Lemma 7.1 We have, for f0 satisfying the assumptions above and for any δ > 0,

‖t−2y−1( f (t, y) − f0(y))‖L∞([0,δ];W 1,∞(0, 12 ))

+ ‖t−2( f (t, y) − f0(y))‖L∞([0,δ];W 2,∞(0, 12 )) � f0,δ η.

(7.2)

Proof Since (7.1) preserves the odd symmetry, we have f (t, 0) = 0 for all t ≥ 0.
Similarly, ∂t f (t, ·) and ∂2t f (t, ·) vanish at y = 0 for all t ≥ 0. We then estimate

| f (t, y) − f0(y) − t(∂t f )|t=0(y)|
|y| =

∣
∣
∣
∣

∫ t

0

∫ s

0

∂2t f (τ )

|y| dτds

∣
∣
∣
∣ ≤

t2

2
‖∂2t ∂y f ‖L∞([0,δ]×Ty ).

From standard energy estimates, we have that

‖∂2t ∂y f ‖L∞([0,δ]×Ty) � f0,δ η.

Since (∂t f )|t=0 = −η(−�)α f0 vanishes on (− 1
2 ,

1
2 ) from the assumption on f0, we

have that

‖t−2y−1( f (t, y) − f0(y))‖L∞([0,δ]×(0, 12 )) � f0,δ η.

The other estimates can be obtained similarly. ��
In the remainder of this section, unless otherwise specified, we suppress the depen-
dence of implicit constants on f0.

7.2 Proof of Theorem G for (1.11)

We now prove TheoremG in the electron-MHD case, assuming 0 ≤ α < 1
2 and η > 0.

Towards a contradiction, assume that there exist δ, ε > 0 and s ≥ s0 ≥ 3 such that
the solution operator is well-defined and bounded as a map

Bε(0; Hs) → L∞
t ([0, δ]; Hs0).

23 This is a cheap way to avoid error terms of order O(t) in the generalized energy estimate. Presumably,
a more appropriate way to proceed is to repeat the entire WKB analysis with time-dependent coefficient
f (t).
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Note that we are also assuming s < 3s0 and s < s0
2α . Under this assumption, we

consider the sequence of initial data parameterized by λ:

B(λ)
0 = f0(y)∂x + b(λ)(0), (7.3)

where f0 satisfies all the assumptions from above and b(λ)(0) will be specified below.
(As before, by rescaling the data we can assume without loss of generality that ε = 1,
although strictly speaking, the value of η will now depend on ε as well. The following
argument works for any large constant η.) Then, for each λ ≥ 1, there is a solution
B(λ)(t) ∈ L∞([0, δ]; Hs) to (1.11) with initial data B(λ)

0 . We have that, from the
assumption of boundedness of the solution operator,

sup
λ

sup
t∈[0,δ]

‖B(λ)(t)‖Hs0 ≤ A (7.4)

for some constant A > 0. In the following, the constants C, c, · · · may depend on A.
For simplicity of the notation, we shall drop the dependence of the solution in λ from
now on.

We now specify b(λ)(0). As in Theorem A, let b̃(λ) be the degenerating wave packet
provided by Proposition 3.1 with f = f0 associated with a nonzero smooth compactly
supported profile g0. Taking the support of g0 to be sufficiently close to y = 0, we
may ensure that the constants C f0 , c f0 in (3.4)–(3.6) obey C f0 = c f0 + ε0, where
ε0 = ε0(α) will be specified below. In what follows, we suppress the dependence of
implicit constants on g0. We take

b(λ)(0) = λ−s b̃(λ)(0).

We now define b(λ)(t) := B(λ)(t) − B̊(t) := B(t) − f (t, y)∂x , where f (t) is the
solution of (7.1) with initial data f0.We also set B̊0 = f0(y)∂x . To lighten the notation,
in what follows we simply write b(t) = b(λ)(t).

The equation for b is given by
{

∂t b +∇ × ((∇ × b) × B̊) + ∇ × ((∇ × B̊) × b) = −η(−�)αb − ∇ × ((∇ × b) × b),

∇ · b = 0.

(7.5)

Taking the inner product of the first equation with b and integrating over [0, t] × T
3

for 0 ≤ t < δ, we have on [0, δ]

‖b(t)‖L2 � ‖b(λ)(0)‖L2 � λ−s‖b̃(λ)(0)‖L2 � λ−s (7.6)

where the implicit constants depend on B̊(t) but not on λ. Moreover, by (7.4)

‖b(t)‖Hs0 ≤ ‖B(t)‖Hs0 + ‖B̊(t)‖Hs0 � 1

uniformly in λ for t ∈ [0, δ].
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We write εb̃ = (−∇⊥εψ̃ , εb̃z ) to denote the error associated with b̃(λ) defined in
Proposition 3.1 (see (5.3)). Then,

d

dt
〈b(t), b̃(λ)(t)〉 = 〈b, εb̃〉 − 〈 f ′′

0 bz, b̃y
(λ)〉 − 〈 f ′′

0 by, b̃z
(λ)〉 − 〈∇ × ((∇ × b) × b), b̃(λ)〉

− η〈(−�)αb, b̃(λ)〉 − 〈G, b̃(λ)〉,
(7.7)

where

G(t) := ∇ × ((∇ × b) × (B̊− B̊0)) +∇ × ((∇ × (B̊− B̊0)) × b).

Comparing this identity with (5.4), the only additional terms on the right hand side are
from fractional dissipation and time dependence of the background magnetic field.

We estimate
∣
∣
∣〈(−�)αb, b̃(λ)〉

∣
∣
∣ =

∣
∣
∣〈b, (−�)α b̃(λ)〉

∣
∣
∣

≤ ‖b‖L2‖(−�)α b̃(λ)‖L2

where, by (3.4) in Proposition 3.1, we have

‖(−�)α b̃(λ)‖L2 � ‖b̃(λ)‖1−2α
L2 ‖b̃(λ)‖2αH1 � λ2αeC f0 (2α)λt .

Next,

〈∇ × ((∇ × b) × (B̊− B̊0)), b̃(λ)〉 = −〈b,∇ × ((∇ × b̃(λ)) × (B̊− B̊0))〉

and using (7.2) together with the fact that λ−1y∂y acts as a bounded operator on b̃(λ),

‖∇ × ((∇ × b̃(λ)) × (B̊− B̊0))‖L2

� t2(‖∂x b̃(λ)‖L2 + ‖∂2x b̃(λ)‖L2 + ‖y∂y b̃(λ)‖L2 + ‖y∂y∂x b̃(λ)‖L2)

� t2(1+ λ2).

Similarly, we can write

〈∇ × ((∇ × (B̊− B̊0)) × b), b̃(λ)〉 = −〈b, (∇ × (B̊− B̊0)) × (∇ × b̃(λ))〉

and estimate

‖(∇ × (B̊− B̊0)) × (∇ × b̃(λ))‖L2 � t2λeC f0λt .

This gives

∣
∣
∣〈G, b̃(λ)〉

∣
∣
∣ � t2(1+ λ2 + λeC f0λt )
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Recalling the error estimate ‖εb‖L2 � 1, collecting the terms, and applying (7.6),

∣
∣
∣
∣
d

dt
〈b(t), b̃(λ)(t)〉

∣
∣
∣
∣ �

(
1+ λ2αeC f0 (2α)λt + t2(1+ λ2 + λeC f0λt )

)
‖b(0)‖L2 .

We integrate in t ∈ [0, t∗], where t∗ := λ−1 ln(λε) with ε > 0 to be determined:

∫ t∗

0

(
1+ λ2αeC f0 (2α)λt + t2(1+ λ2 + λeC f0λt )

)
dt

�α t∗ + λ2α−1eC f0 (2α)λt∗ + (t∗)3(λ2 + λeC f0λt∗)

� λ−1 ln(λε) + λ(2α−1)+C f0 (2α)ε + λ−1 ln(λε) + λC f0 ε−2(ln(λε))3 � 1

since it is easy to pick ε > 0 small (depending only on α, C f0 ) so that

(2α − 1) + (2α)C f0ε < 0, C f0ε − 2 < 0,

recalling that 2α − 1 < 0. Therefore, with such a choice of ε > 0, we conclude that
on [0, t∗],

〈b(t), b̃(λ)(t)〉 >
1

2
〈b(0), b̃(λ)(0)〉 (7.8)

for λ large enough. Using the degeneration estimates (3.5)–(3.6) for b̃(λ)(t) at t = t∗
(see also the proof of Theorem A), we then obtain

‖b(t∗)‖Hs0 � ‖b(0)‖L2λs0 exp(c f0s0λt∗) � λεc f0 s0λs0−s .

Recalling the assumptions on s and s0, we may pick ε and ε0 = C f0 − c f0 so that

(c f0ε + 1)s0 > s

which gives a contradiction for λ sufficiently large since ‖b(t∗)‖Hs0 � 1. ��
Remark 7.2 (Modifications for α = 1

2 ) We sketch the necessary modifications of
the preceding argument for establishing Remark 1.11. Without loss of generality,
we normalize η = 1. Consider the sequence of initial data B(λ)

0 = A
C0

( f0(y)∂x +
b(λ)(0)), which is obtained by rescaling the data from (7.3) by A

C0
; C0 is chosen so that

‖B(λ)
0 ‖Hs ≤ A. Towards a contradiction, assume that lim infλ→∞ δ(λ) = δ0 > 0 and

lim supλ→∞ supt∈[0,δ0]
‖B(λ)(t)‖Hs

A(1−ε)s+1 = 0. Using Proposition 3.1 in combination with the

rescaling of time t �→ A
C0

t (which takes into account the rescaling of the initial data)
and proceeding as above, it is possible to show that

〈b∗
(λ), b̃∗

(λ)〉(t∗) >
1

2
for t∗ = C0

C f0λA
ln (C1A)
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for an appropriate constant C1 > 0, where b∗
(λ)(t) = B(λ)(t) − A

C0
f (t, y)∂x and

b̃∗
(λ)(t, x, y) = b̃(λ)(

A
C0

t, x, y). By duality and the degeneration property in Proposi-
tion 3.1, it follows that

‖b∗(t∗)‖Hs � ‖b∗(0)‖L2λs exp(c f0 Asλt∗) � A
c f0
C f0

s+1
.

Choosing C f0 − c f0 < εC f0 (see Remark 3.3), we attain the desired contradiction.

7.3 Proof of Theorem G for (1.12)

We indicate the necessary modifications for the fractionally dissipative Hall-MHD
(1.12). As before, without loss of generality, we take ε = 1 (the argument below
works for any ν, η ≥ 0). Let b̃(λ)(t), b(λ)(0) and B(λ)

0 be defined as in Sect. 7.2. In

addition, we take u(λ)
0 = 0. By hypothesis, for each λ ≥ 1, there exists a solution

(u(λ),B(λ)) ∈ L∞([0, δ]; Hr × Hs) to (1.12) with initial data (u(λ)
0 ,B(λ)

0 ). For the
purpose of contradiction, assume that there exists A > 0 such that solution operator,

sup
λ

sup
t∈[0,δ]

(
‖u(λ)(t)‖Hs0−1 + ‖B(λ)(t)‖Hs0

)
≤ A. (7.9)

As before, in what follows, we suppress the dependence of implicit constants on A.
Let (u, b)(t) = (u(λ), b(λ))(t) = (u(λ),B(λ) − B̊)(t), where B̊ = f (t, y)∂x as in

Sect. 7.2. The equation for (u, b) is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂t u − P

(
(∇ × B̊) × b + (∇ × b) × B̊

)

= −ν(−�)1+βu − P ((∇ × u) × u − (∇ × b) × b)

∂t b +∇ × (u × B̊) +∇ × ((∇ × b) × B̊) + ∇ × ((∇ × B̊) × b)

= −η(−�)αb − ∇ × ((∇ × b) × b),

∇ · u = ∇ · b = 0.

By taking the inner product of the first two equations with u and b, respectively, and
integrating over [0, t] × T

3 for 0 ≤ t < δ, we have on [0, δ],

‖u(t)‖L2 + ‖b(t)‖L2 + ν

∫ t

0
‖(−�)

1+β
2 u(t ′)‖L2 dt ′ � ‖b(0)‖L2 � λ−s, (7.10)

where the implicit constant depends on B̊(t) but not on λ. Moreover,

‖u(t)‖Hs0−1 + ‖b(t)‖Hs0 � 1

uniformly in λ for t ∈ [0, δ].
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Writing δũ = (−∇⊥(−�)−1δ
(0)
ω̃

, δ
(0)
ũz ) and δb̃ = (−∇⊥δψ̃ , δb̃z ) for the error asso-

ciated with (ũ(λ), b̃(λ)) defined in Proposition 3.4, the generalized energy identity in
this case reads:

d

dt

(
〈b(t), b̃(λ)(t)〉 + 〈u(t), ũ(λ)(t)〉

)

= 〈u, δũ〉 + 〈b, δb̃〉 − 〈 f ′
0ux,y, (b̃x,y)⊥〉 − 〈 f ′

0(b
x,y)⊥, ũx,y〉

− 〈 f ′′
0 bz, b̃y

(λ)〉 − 〈 f ′′
0 by, b̃z

(λ)〉
− ν〈(−�)1+βu, ũ(λ)〉 − η〈(−�)αb, b̃(λ)〉 − 〈H, ũ(λ)〉 − 〈G, b̃(λ)〉,

(7.11)

where G is as in Sect. 7.2 and

H := −(∇ × (B̊− B̊0)) × b − (∇ × b) × (B̊− B̊0).

Comparing this identity with the proof of Theorem C and (7.7), note that the only
additional terms on the RHS are from the fractional dissipation ν(−�)1+βu andH(t).
For the former, we use Proposition 3.4 to estimate

|ν〈(−�)1+βu, ũ(λ)〉| = ν‖(−�)
1+β
2 u‖L2‖(−�)

1+β
2 ũ(λ)‖L2 � ν‖(−�)

1+β
2 u‖L2λβeC f0βλt ,

while for the latter, we move ∇× away from b by an integration by parts and estimate

|〈H, ũ(λ)〉| ≤ |〈(∇ × (B̊− B̊0)) × b, ũ(λ)〉| + |〈b,∇ × (ũ(λ) × (B̊− B̊0))〉| � t2.

In both bounds, we used the property that ∇ũ(λ) obeys the same estimates as b̃(λ). In
conclusion,

∣
∣
∣
∣
d

dt

(
〈b(t), b̃(λ)(t)〉 + 〈u(t), ũ(λ)(t)〉

)∣∣
∣
∣

�
(
1+ λ2αeC f (2α)λt + t2(1+ λ2 + λeC f0λt )

)
‖b(0)‖L2 + νλβeC f βλt‖(−�)

1+β
2 u(t)‖L2 .

As before, we integrate this inequality over the time interval [0, t∗] = [0, λ−1 ln(λε)]
where ε > 0 is to be determined. The contribution of the first term on the RHS is
handled as in Sect. 7.2. For the second term, we use Cauchy–Schwarz and the last
term on the LHS of (7.10). Then for ε satisfying

(2α − 1) + (2α)C f0ε < 0, (2β − 1) + (2β)C f0ε < 0, C f0ε − 2 < 0,

and λ large enough, we obtain

〈b(t∗), b̃(λ)(t
∗)〉 + 〈u(t∗), ũ(λ)(t

∗)〉 >
3

4
〈b(0), b̃(λ)(0)〉.
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Observe, moreover, that 〈u(t), ũ(λ)(t)〉 � λ−1〈b(0), b̃(λ)(0)〉 by (7.10) and Propo-
sition 3.4. Hence, we arrive at (7.8) for sufficiently large λ, after which the proof
proceeds in the same way as in Sect. 7.2. ��
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Appendix A: Existence of an L2-Solution for the Linearized Systems

In this section, we give a sketch of the proof of existence of an L2-solution for the
linearized Hall-MHD and electron-MHD systems, which are recalled here for con-
venience. In the case of Hall-MHD (ν ≥ 0), we seek a solution (u, b) ∈ Cw(I ; L2)

satisfying

⎧
⎪⎨

⎪⎩

∂t u − ν�u = P((∇ × B̊) × b + (∇ × b) × B̊)

∂t b +∇ × (u × B̊) +∇ × ((∇ × b) × B̊) +∇ × ((∇ × B̊) × b) = 0,

∇ · u = ∇ · b = 0,

(A. 1)

in the sense of distributions with the extra requirement u ∈ L2
t (I ; Ḣ1) in the case of

ν > 0, and in the electron-MHD case, we simply need b ∈ Cw(I ; L2) to satisfy

{
∂t b +∇ × ((∇ × b) × B̊) + ∇ × ((∇ × B̊) × b) = 0,

∇ · b = 0.
(A. 2)

Proposition A. 1 Let M = (T,R)x × (T,R)y × Tz and B̊ be a sufficiently smooth
stationary magnetic field. For any divergence-free initial data (u0, b0) ∈ L2(M),
there exists a solution (u, b) ∈ Cw([0,∞); L2) to (A. 1) with initial data (u0, b0)
satisfying

1

2

(
‖u(t)‖2L2(M)

+ ‖b(t)‖2L2(M)

)
+ ν‖u‖2

L2([0,t];Ḣ1)

≤ 1

2

(
‖u0‖2L2(M)

+ ‖b0‖2L2(M)

)
eCt‖∇B̊‖C1(M)

for all t > 0. In the case of (A. 2), there is a solution b ∈ Cw([0,∞); L2) corre-
sponding to any divergence-free data b0 ∈ L2(M) satisfying

1

2
‖b(t)‖2L2(M)

≤ 1

2
‖b0‖2L2(M)

eCt‖∇2B̊‖L∞(M)

for all t > 0.
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Proof The proof is standard; see for instance [41, 42]. An alternative way is to mollify
the equations as well as the data by truncating high frequencies while preserving the
necessary structure for energy estimates, as it is done in [15]. We consider viscous
regularizations of (A. 1) for ε > 0, solve the regularized system

{
∂t u

(ε) − ν�u(ε) = P((∇ × B̊) × b(ε) + (∇ × b(ε)) × B̊) − ε�2u(ε)

∂t b
(ε) + ∇ × (u(ε) × B̊) + ∇ × ((∇ × b(ε)) × B̊) + ∇ × ((∇ × B̊) × b(ε)) = −ε�2b(ε),

(A. 3)

with the same initial data (u0, b0), subject to divergence-free conditions. For each
fixed ε > 0, there is a unique global solution (u(ε), b(ε)) to (A. 3) with initial data
(u0, b0) ∈ L2, which is smooth once t > 0. The energy identity (1.4) with the extra
term ε‖�u(ε)‖L2(M) on the LHS can be justified for this solution. This shows that the
sequence of solutions {(u(ε), b(ε))}ε>0 is uniformly bounded in Ct (I ; L2) and u(ε) is
bounded uniformly in L2

t (I ; Ḣ1) in the case of ν > 0 for any fixed finite time interval
I = [0, T ] with T > 0. In the same vein, the solution sequence is uniformly bounded
in Lipt (I ; H−4). Applying the Aubin-Lions lemma (see [6,Theorem II.5.16] for a
proof), we can extract a subsequence (still denoted by {(u(ε), b(ε))}) which converges
to some (u, b) in C0(I ; H−s) for all s < 0. Since the space L∞(I ; L2) is weak-*
compact, we can guarantee that (u, b) ∈ L∞(I ; L2) as well.

Clearly we have (u, b)|t=0 = (u0, b0), and the fact that (u, b) is a solution of
(A. 1) and weakly continuous in time follows readily from strong convergence in
C0(I ; H−s).

The case of (A. 2) is only simpler and we omit the proof. ��
Remark A. 2 We observe that when the stationary magnetic field B̊ and the initial
data enjoy a set of symmetries respected by the Hall-MHD system (or electron-MHD
system), the above proof actually guarantees existence of a solution satisfying the
same set of symmetries as well.
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