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Abstract. This article represents the fourth and final part of a four-paper sequence whose
aim is to prove the Threshold Conjecture as well as the more general Dichotomy Theorem
for the energy critical 4 + 1 dimensional hyperbolic Yang–Mills equation. The Threshold
Theorem asserts that topologically trivial solutions with energy below twice the ground state
energy are global and scatter. The Dichotomy Theorem applies to solutions in arbitrary
topological class with large energy, and provides two exclusive alternatives: Either the
solution is global and scatters, or it bubbles off a soliton in either finite time or infinite time.

Using the caloric gauge developed in the first paper, the continuation/scattering criteria
established in the second paper, and the large data analysis in an arbitrary topological class
at optimal regularity in the third paper, here we perform a blow-up analysis which shows
that the failure of global well-posedness and scattering implies either the existence of a
soliton with at most the same energy bubbling off, or the existence existence of a nontrivial
self-similar solution. The proof is completed by showing that the latter solutions do not
exist.

Contents

1. Introduction 2
1.1. The energy critical hyperbolic Yang–Mills equation 2
1.2. The main results 7
1.3. A brief history and broader context 12
1.4. Notation, conventions and preliminaries 15
1.5. Structure of the present paper 17
2. An outline of the first three papers 18
2.1. The caloric gauge 19
2.2. Local well-posedness in the caloric gauge and energy dispersed solutions 22
2.3. Topological classes and large data solutions 24
3. Monotonicity formulas 26
3.1. The energy-momentum tensor and conservation laws 26
3.2. Monotonicity formulas 28
4. A compactness result 30
5. Regularity of stationary connections 31
6. No finite energy self-similar solutions 35
7. The bubbling-off result 39
8. No null concentration 43
9. Proof of the Threshold Theorem and the Dichotomy Theorem 54
Appendix A. Tools for analysis of gauge transformations 57
A.1. Results from [40] 57
A.2. Solvability of div-curl systems 58

1



A.3. Uhlenbeck’s lemmas 62
References 63

1. Introduction

This article represents the fourth and last of a four-paper sequence devoted to the study
of finite energy solutions to the energy critical 4 + 1 dimensional hyperbolic Yang–Mills
equation. The four installments of the series are concerned with

(a) the caloric gauge for the hyperbolic Yang–Mills equation, [38];
(b) large data energy dispersed caloric gauge solutions, [39];
(c) topological classes of connections and large data local well-posedness, [40];
(d) the Threshold Conjecture and soliton bubbling/scattering dichotomy for large data

solutions, present article.

A short overview of the four papers is provided in the survey paper [41].

Our first goal in this paper is to prove the Threshold Conjecture for the hyperbolic Yang–
Mills equation; this asserts that the solution is global and scatters for all topologically trivial
data with energy below 2EGS, where EGS represents energy of the ground state (i.e., lowest
energy steady state) for this problem.

Secondly, we consider solutions with energy above this threshold, and prove the following
Dichotomy Theorem: either (i) the solution is topologically trivial, global and scatters, or (ii)
it “bubbles off” a soliton in either finite time (which corresponds to blow-up) or in infinite
time. Here “soliton bubbling off” means that a sequence of symmetry- and gauge-equivalent
solutions must converge to a soliton, namely a Lorentz transform of a steady state.

As a main common component of both theorems, we separately state and prove a Bubbling
Theorem, which provides a necessary and sufficient condition for soliton bubbling off purely
in terms of the the energy distribution of the solution.

The paper is organized as follows. In the first section we provide some background material
on the hyperbolic Yang–Mills equation, and then we give the statements of the main results
in Theorem 1.7 (the Bubbling Theorem), Theorem 1.8 (the Threshold Theorem), and finally
Theorem 1.11 (the Dichotomy Theorem). In the second section we provide a brief overview
of the results in the first three papers of the sequence [38],[39],[40]. The remainder of the
paper is devoted to the proof of the main results.

1.1. The energy critical hyperbolic Yang–Mills equation.

1.1.1. Lie groups and algebras. Let G be a compact noncommutative Lie group and g its
associated Lie algebra. We denote by Ad(O)X = OXO−1 the action ofG on g by conjugation
(i.e., the adjoint action), and by ad(X)Y = [X, Y ] the associated action of g, which is given
by the Lie bracket. We introduce the notation ⟨X, Y ⟩ for a bi-invariant inner product on g,

⟨[X, Y ], Z⟩ = ⟨X, [Y, Z]⟩, X, Y, Z ∈ g,

or equivalently

⟨X, Y ⟩ = ⟨Ad(O)X,Ad(O)Y ⟩, X, Y ∈ g, O ∈ G.
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If G is semisimple then one can take ⟨X, Y ⟩ = −tr (ad(X)ad(Y )) i.e. negative of the Killing
form on g, which is then positive definite. However, a bi-invariant inner product on g exists
for any compact Lie group G.

An important concrete case is G = SU(2), the group of 2× 2 unitary matrices with unit
determinant. In that case, g = su(2), which is the space of 2×2 anti-hermitian matrices with
zero trace, [X, Y ] = XY −Y X, Ad(O)X = OXO−1, and ⟨X, Y ⟩ = −trXY for X, Y ∈ su(2)
and O ∈ SU(2), with the usual matrix multiplication and trace operations.

1.1.2. The hyperbolic Yang–Mills equation. Let R1+4 be the (4 + 1) dimensional Minkowski
space with the standard Lorentzian metric m = diag(−1, 1, 1, 1, 1). Denote by Aα : R1+4 →
g, α = 0, 1, . . . , 4, a connection 1-form1 taking values in the Lie algebra g, and by Dα the
associated covariant differentiation,

DαB := ∂αB + [Aα, B],

acting on g-valued functions B. The commutator of two covariant derivatives takes the form
(DαDβ −DβDα)B = [Fαβ, B], where F is the curvature tensor

Fαβ := ∂αAβ − ∂βAα + [Aα, Aβ].

The curvature tensor obeys the Bianchi identity, namely

DαFβγ +DβFγα +DγFαβ = 0.

The (hyperbolic) Yang–Mills equation for A is the Euler–Lagrange equation associated
with the formal Lagrangian action functional

L(A) = 1

2

∫︂
R1+4

⟨Fαβ, F
αβ⟩ dxdt.

Here we are using the standard convention of raising or lowering indices using the metric m,
as well as summing up repeated upper and lower indices. Thus, the Yang–Mills equation
takes the form

DαFαβ = 0. (1.1)

There is a natural energy-momentum tensor associated to the Yang–Mills equation, namely

Tαβ(A) = 2⟨F γ
α , Fβγ⟩ −

1

2
mαβ⟨Fγδ, F

γδ⟩.

If A solves the Yang–Mills equation (1.1) then Tαβ is divergence free,

∂αTαβ = 0. (1.2)

Integrating this for β = 0 yields the conserved energy

E(A) = E{t}×R4(A) =

∫︂
{t}×R4

T00 dx =

∫︂
{t}×R4

1

2
⟨Fjk, F

jk⟩+ ⟨F0j, F
j

0 ⟩ dx, (1.3)

1The geometric setting for the hyperbolic Yang–Mills equation is the space of connections on a vector
bundle on a Lorentzian manifold; here, for simplicity, we give a concrete formulation on R1+4. For a more
geometric description, we refer the reader to [40].
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which is constant in time. Here we are using the convention of using roman indices j, k, . . .
for the spatial indices {1, . . . , 4}. For a general subset U ⊂ R4, we define the local energy in
U to be

E{t}×U(A) =

∫︂
{t}×U

T00 dx.

1.1.3. Symmetries. The group of symmetries for the the Yang–Mills equation play a key role
in our analysis. Its components are as follows:

(1) Translations, both in space and in time;
(2) the Lorentz group of linear coordinate changes;
(3) the scaling group,

A(t, x) → λA(λt, λx).

The conserved energy functional E is invariant with respect to scaling precisely in dimension
4+1. For this reason we call the 4+1 problem energy critical ; this is one of the motivations
for our interest in this problem.

1.1.4. Gauge invariance and Yang–Mills solutions. In order to study the Yang–Mills equa-
tion as a well-defined evolution in time, we first need to address its gauge invariance. Given
a G-valued function O on R1+4, we introduce the notation

O;α = ∂αOO−1.

Such a function O induces the gauge transformation

Aα −→ G(O)A := Ad(O)Aα −O;α,

under which equation (1.1) is invariant. In order to uniquely determine the solutions to
the Yang–Mills equation, one needs to add an additional set of constraint equations which
uniquely determine a gauge. This procedure is known as gauge fixing.

The choice of a gauge plays a central role in the study of the Yang–Mills equation. There
are multiple interesting classical gauge choices, e.g. the Lorenz gauge, the temporal gauge
and the Coulomb gauge. Neither of these is well-suited for the global (in spacetime) large
data problem, and a main goal of our first paper [38] is to introduce a better alternate gauge
choice, namely the caloric gauge. We briefly return to the issue of gauge choice in Section 1.2,
and then give a more detailed discussion in Section 2.

1.1.5. Initial data sets. In order to consider the Yang–Mills problem as an evolution equation
we need to consider its initial data sets. An initial data set for (1.1) is a pair of g-valued
1-forms (aj, ej) on R4. We say that (aj, ej) is the initial data set for a Yang–Mills solution
A if

(Aj, F0j)|{t=0} = (aj, ej).

Note that (1.1) imposes the condition that the following equation be true for any initial data
for (1.1):

Djej = 0. (1.4)

Here, Dj denotes the covariant derivative with respect to the aj connection. This equation
is the Gauss (or the constraint) equation for (1.1). In what follows, we denote by f = fij
the curvature of a. We refer to Section 1.4 for the notation H1(O), H1

loc(O) etc. concerning
function spaces.
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Definition 1.1. a) A regular initial data set for the Yang–Mills equation is a pair (aj, ej) ∈
HN

loc×HN−1, N ≥ 2, also with f ∈ HN−1, which has finite energy and satisfies the constraint
equation (1.4).

b) A finite energy initial data set for the Yang–Mills equation is a pair (aj, ej) ∈ H1
loc×L2,

with f ∈ L2, and which satisfies the constraint equation (1.4).

We remark that the family of regular initial data sets is dense in the class of finite energy
data. This is not entirely trivial due to the nonlinear constraint equation.

1.1.6. Yang–Mills solutions. Due to the gauge invariance properties, we need to be more
careful than usual about what we call a solution to the hyperbolic Yang–Mills equation:

Definition 1.2. a) Let N ≥ 2. A regular solution to the Yang–Mills equation in an open set
O ⊂ R1+4 is a connection A in O obeying (A, ∂tA) ∈ CtH

N
loc ×CtH

N−1
loc (O), whose curvature

satisfies F ∈ CtH
N−1
loc (O) and which solves the equation (1.1).

b) A finite energy solution to the Yang–Mills equation in the open set O is a connection
A obeying (A, ∂tA) ∈ CtH

1
loc ×CtL

2
loc(O), whose curvature satisfies F ∈ CtL

2(O) and which
is the limit of regular solutions in this topology.

We carefully remark that this definition does not require a gauge choice. Hence, at this
point solutions are still given by equivalence classes. Corresponding to the above classes of
solutions, we have the classes of gauge transformations which preserve them:

Definition 1.3. a) Let N ≥ 2. A regular gauge transformation in an open set O ⊂ R1+4 is
is a map

O : O → G

with the following regularity properties:

(O;t,x, ∂tO;t,x) ∈ CtH
N+1
loc × CtH

N
loc(O).

b) An admissible gauge transformation in an open set O ⊂ R1+4 is a similar map with the
following regularity properties:

(O;t,x, ∂tO;t,x) ∈ CtH
1
loc × CtL

2
loc(O).

Using this notion we can now talk about gauge-equivalent connections:

Definition 1.4. Two finite energy connections A(1) and A(2) in an open set O ⊂ R1+4 are
gauge equivalent if there exists an admissible gauge transformation O so that

A(2)
α = G(O)A(1)(= OA(1)

α O−1 − ∂αOO−1).

We list some simple properties of finite energy connections and admissible gauge transfor-
mations in an open set O (see [40]):

• If A(1) and A(2) are finite energy gauge-equivalent connections then the bounds for
the corresponding gauge transformation O depend only on the corresponding bounds
for A(1) and A(2).

• If A(1) and A(2) are regular gauge-equivalent connections then the corresponding
gauge transformation O is also regular, with uniform bounds in terms of A(1), A(2).

• The family of regular admissible gauge transformations is dense in the family of
admissible gauge transformations.
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• If A(1) and A(2) are gauge-equivalent finite energy connections, then A(1) is a finite
energy solution to the Yang–Mills equation (1.1) if and only if A(2) is.

• If A is a finite energy connection then its equivalence class [A] is closed in the corre-
sponding topology.

In terms of local well-posedness, it is easier to work in a gauge. At this point we know
that (see the more detailed discussion in Section 2):

(i) Small data global well-posedness holds in the Coulomb gauge [31], caloric gauge [39]
and temporal gauge [39].

(ii) Large data local well-posedness holds for large caloric data in the caloric gauge [39]
and for arbitrary large data in the temporal gauge [40].

(iii) Uniqueness of finite energy solutions (up to gauge transformations) [40].

1.1.7. Topological classes. The family of finite energy Yang–Mills data sets (a, e) is not a
connected topological space in the above topologies. Instead, they are classified according
to their topological class, see [40] and also the discussion in Section 2. The topological class
is easily seen to be preserved dynamically for both regular and finite energy solutions to the
hyperbolic Yang–Mills equation.

A special role in the present paper is played by the class [0] of 0, whose elements we call
topologically trivial connections. These have the equivalent characterization that they can

be described using Ḣ
1
connections [40], see Theorem 2.16 below. The topologically trivial

connections are the subject of both the first two papers [38] and [39] in our four-paper series,
as well as of the Threshold Theorem below.

For our purposes here, we will use a specific topological invariant, namely the characteristic
number χ defined by

χ(a) =

∫︂
R4

−⟨f ∧ f⟩ = 1

4

∫︂
R4

−⟨fij, fkℓ⟩ dxi ∧ dxj ∧ dxk ∧ dxℓ,

which depends only on the topological class [a] of a. Two key properties of χ are that
χ([0]) = 0 and the pointwise bound

|⟨f ∧ f⟩| ≤ 1

2
⟨fjk, f jk⟩ ≤ T00(a), (1.5)

which is referred to as the Bogomoln’yi bound ; see [40] for their proofs.
In the case G = SU(2) the topological class of a is fully described by the characteristic

number χ, which is in fact a multiple of the second Chern number c2 computed from a.
The Chern number c2 turns out to be an integer, and each such integer defines a connected
component in the space of finite energy connections in R4. For a general Lie group G
the characteristic number χ of a connection a provides only a partial description of the
topological class of a.

1.1.8. Harmonic Yang–Mills connections and the ground state. A harmonic Yang–Mills con-

nection in R4 is a Ḣ
1

loc connection a which is a critical point for the (static) energy functional

Ee(a) =
∫︂
R4

1

2
⟨f, f⟩.
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On the one hand they are the steady states for the hyperbolic Yang–Mills flow, and on the
other hand they are celebrated objects in geometric analysis with spectacular applications
to four-dimensional topology; see [8].

The Euler–Lagrange equation satisfied by a takes the form

Dℓfℓj = 0,

which becomes an elliptic system for a in a suitable gauge (e.g. Coulomb).
The key elliptic regularity result is as follows:

Theorem 1.5 (Uhlenbeck [57, 58]). Harmonic Yang–Mills connections a ∈ H1
loc(R4) are

smooth in a suitable gauge. More generally, H
d
2
loc harmonic Yang–Mills connections in any

d-dimensional Riemannian manifold (M, g) are smooth.

As far as the energy of harmonic Yang–Mills connections and the energy in different
topological classes is concerned, the key properties are as follows, see [40]:

Theorem 1.6. Let G be a noncommutative compact Lie group. Let

EGS = inf{Ee(a) : a is a nontrivial harmonic Yang–Mills connection on a G-bundle on R4}.
Then the following statements hold.

(1) There exists a nontrivial harmonic Yang–Mills connection a so that Ee(a) = EGS < ∞.
(2) Let a be any nontrivial harmonic Yang–Mills connection. Then either Ee(a) ≥ 2EGS,

or
|χ| = Ee(a) ≥ EGS.

This result is a combination of classical results [2, 6, 8] concerning energy minimizing
solutions within a topological class (called instantons), as well as a recent energy lower bound
for the non-minimizing solutions proved by Gursky–Kelleher–Streets [17]. For a derivation,
see [40, Section 6]. When G = SU(2), the first instanton a is given explicitly by the classical
construction of BPST/ADHM [2, 6]; we refer to [8, Chapter 3] for an exposition.

As a corollary, Theorem 1.6 shows that in the class of topologically trivial connections,
harmonic Yang–Mills connections must have energy at least 2EGS. Based on this, we will
call subthreshold data/solution any topologically trivial hyperbolic Yang–Mills data/solution
with energy below 2EGS.

1.2. The main results. We consider the Cauchy problem for the hyperbolic Yang–Mills
equation (1.1) with finite energy data (a, e). As discussed earlier, this problem is known to
be locally well-posed [39, 40] for large data and globally well-posed for small data [31]. Here
we are interested in the global large data problem, and we seek to address the following two
questions:

• Global well-posedness;
• Scattering of the solution.

Preliminary remarks on each point in relation to the notion of the topological class of
solutions are in order.

Global well-posedness. Because of the finite speed of propagation and the small data result,
a classical argument shows that at the blow-up time T we must have energy concentration
in a backward light cone centered at a point (T,X),

C(T,X) = {(t, x) ∈ R1+4 : |x−X| < T − t}.
7



In particular, the question of global well-posedness is of local nature, i.e., has nothing to do
with the topological class of the initial data.

Scattering. In a classical sense, a solution A for the Yang–Mills equation would be scat-
tering if as t approaches infinity, A(t) approaches a free wave. Such a definition is unrealistic
in our situation. In the first place, it is gauge-dependent. Secondly, the small data result in
[31] shows that, even in a favorable gauge, classical scattering cannot occur, and instead one
needs to consider some form of modified scattering. Even so, there is no chance of scattering
unless the solution A is topologically trivial; this is due to the fact that any solution which
decays in a scale invariant Lp norm for p > 2 must be topologically trivial. We refer to
Remark 1.10 for a description of our notion of scattering.

We now present our main results, which are divided into two classes. The first consists
of a gauge-independent bubbling off result. In a nutshell, it asserts that time-like energy
concentration implies soliton bubbling off. To state it, we need some notation. Given a
backward (resp. forward) light cone

(T,X)C = {(t, x) ∈ R1+4 : |x−X| < T − t}(︁
resp. (T,X)C = {(t, x) ∈ R1+4 : |x−X| < t− T}

)︁
,

we introduce the time slices

(T,X)St =
(T,X)C ∩ ({t} × R4)(︁

resp. (T,X)St =
(T,X)C ∩ ({t} × R4)

)︁
,

and for 0 < γ < 1, the time-like cone

(T,X)Cγ = {(t, x) ∈ R1+4 : |x−X| < γ(T − t)}(︁
resp. (T,X)Cγ = {(t, x) ∈ R1+4 : |x−X| < γ(t− T )

)︁
.

When the tip (T,X) coincides with the spacetime origin, we omit the superscript (T,X) and
write C = (0,0)C, St =

(0,0)S, Cγ = (0,0)Cγ etc.
For any future time-like vector, which in general takes the form (1, v) with |v| < 1, we

denote by Lv the Lorentz transformation2 with velocity v.
Then we have:

Theorem 1.7 (Bubbling Theorem). a) Let A be a finite energy Yang–Mills connection which
blows up in finite time at (T,X). Assume in addition that for some 0 < γ < 1 we have

lim sup
t↗T

E(T,X)Cγ∩(T,X)St
(A) > 0. (1.6)

Then there exists a sequence of points (T,X)C ∋ (tn, xn) → (T,X) and scales rn > 0 with the
following properties:

(1) Time-like concentration,

lim sup
n→∞

xn −X

|tn − T |
= v, for some |v| < 1.

2More concretely, when v ̸= 0, Lv is the linear transformation on R1+4 that preserves m, maps (1, v) to

(
√︁

1− |v|2, 0) and equals the identity in span{(1, 0), (1, v)}⊥. When v = 0, L0 is simply the identity.
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(2) Below self-similar scale,

lim sup
n→∞

rn
|tn − T |

= 0.

(3) Convergence to soliton:

lim
n→∞

rnG(On)A(tn + rnt, xn + rnx) = LvQ(t, x) in H1
loc([−1/2, 1/2]× R4)

for some sequence of admissible gauge transformations On and finite energy harmonic
Yang–Mills connection Q. Here, Lv is the Lorentz transformation with velocity v.

b) Let A be a finite energy Yang–Mills connection which is global forward in time. Assume
in addition that for some 0 < γ < 1 we have

lim sup
t↗∞

ECγ∩St(A) > 0, (1.7)

where we recall that C = (0,0)C, St =
(0,0)St, Cγ = (0,0)Cγ etc3. Then there exists a sequence

of points C ∋ (tn, xn) → ∞ and scales rn > 0 with the following properties:

(1) Time-like concentration,

lim sup
n→∞

xn

tn
= v, for some |v| < 1.

(2) Below self-similar scale,

lim sup
n→∞

rn
tn

= 0.

(3) Convergence to soliton:

lim
n→∞

rnG(On)A(tn + rnt, xn + rnx) = LvQ(t, x) in H1
loc([−1/2, 1/2]× R4)

for some sequence of admissible gauge transformations On and finite energy harmonic
Yang–Mills connection Q. Here, Lv is the Lorentz transformation with velocity v.

Next, we turn to the second class of main results, which concern global well-posedness and
scattering properties of (1.1). For this, we need to briefly introduce our gauge choices:

Caloric gauge. This is our main choice of gauge, in which we have the strongest gauge-
dependent control of solutions. We say that a connection a on R4 is in caloric gauge if its
Yang–Mills heat flow

∂sAj(x, s) = DℓFℓj(x, s), Aj(x, s = 0) = aj(x)

exists globally in heat-time s and lims→∞A(s) = 0. Denoting by C the manifold of finite

energy caloric connections, and by TL2C the completion of its tangent space in L2, a solution
to the Yang–Mills equation in the caloric gauge can be interpreted as a continuous curve
(Ax, ∂tAx)(t) in TL2C (see [38] and Section 2.1).

The Yang–Mills equation written in this gauge has a favorable structure, akin to the
classical Coulomb gauge. But in contrast to the Coulomb gauge, the caloric gauge may be
imposed for all subthreshold data (to be discussed below), making it a natural setting for
the Threshold Theorem.

3Since this part concerns the limit t → ∞, the precise choice of the tip (0, 0) is irrelevant; any choice leads
to an equivalent statement.
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Temporal gauge. This is a classical gauge defined by the condition

A0 = 0,

which plays an auxiliary role in our work. The structure of (1.1) in this gauge is less
favorable, but nevertheless it has the advantage of respecting causality (i.e., finite speed of
propagation) of (1.1).

Direct analysis of (1.1) in the temporal gauge at energy regularity is fraught with diffi-
culties; however, we observe a suitable structure in the caloric gauge, which allows us to
transfer some (but not all) bounds to the temporal gauge. These bounds are enough to
establish small energy global well-posedness, which can then be turned into large data local
well-posedness in temporal gauge by causality (see [40] and Section 2.3). This result provides
a suitable setting for considering evolution of arbitrary finite energy data, albeit with more
indirect control.

We refer to the beginning of Section 2 for a further discussion of various gauges that arise
in our work.

We now present the Threshold Theorem, which asserts global well-posedness and scattering
for initial data with energy below a sharp threshold. In view of existence of solitons, which
are counterexamples for scattering, the threshold may first appear to be the ground state
energy EGS. However, as we aim for scattering, we would need to limit ourselves to the class
of topologically trivial connections, in which the ground state energy is 2EGS by Theorem 1.6.
Thus our result is as follows:

Theorem 1.8 (Threshold Theorem). The Yang–Mills equation (1.1) is globally well-posed
in the caloric gauge for all topologically trivial initial data below the energy threshold 2EGS

and the corresponding solutions scatter in the following sense:

a) (Regular data) For regular data (aj, b0j) ∈ TL2C ∩ ḢN
, then there exists a unique global

regular caloric solution (Aj, ∂0Aj) ∈ C(R, TL2C∩ḢN
), also with (A0, ∂0A0) ∈ C(R, Ḣ1∩ḢN

),

which has a Lipschitz dependence on the initial data locally in time in the Ḣ ∩ ḢN
topology.

b) (Rough data) The flow map admits an extension

TL2C ∋ (aj, bj) → (Aα, ∂tAα) ∈ C(R, TL2C)

and which is continuous in the H ∩ Ḣσ
topology for σ < 1 and close to 1.

c) (Weak Lipschitz dependence) The flow map is globally Lipschitz in the Ḣσ
topology for

σ < 1, close to 1.
d) (Scattering) The S1 norm of A is finite. More precisely,

∥Ax∥S1 + ∥∇A0∥
ℓ1L2Ḣ

1
2
< ∞. (1.8)

Here, Ḣσ
= Ḣ

σ × Ḣ
σ−1

. For the norm S1, see Remark 1.10. The norm ℓ1L2Ḣ
1
2 is defined

as ∥u∥
ℓ1L2Ḣ

1
2
=

∑︁
k ∥Pku∥

L2
t Ḣ

1
2
x

; see Section 1.4 below for our notation and conventions.

Remark 1.9. The preceding theorem is stated for initial data (a, b) ∈ TL2C which are already
in the caloric gauge. However, by our results on the Yang–Mills heat flow (in particular,
the corresponding Threshold Theorem), any topologically trivial gauge covariant Yang–Mills

data set (ã, e) ∈ Ḣ
1×L2 with energy below 2EGS admits a gauge-equivalent caloric data set

(a, b), with appropriate dependence properties; see Section 2.1 below.
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Remark 1.10. The S1 norm represents, with only minor changes, the same combination of
Strichartz, Xs,b and null frame norms previously used in the study of the Maxwell-Klein-
Gordon equation [30, 37] and the small data problem for Yang–Mills in [31]. The S1 bound
on Ax implies a host of other dispersive bounds in the caloric gauge, including Strichartz
bounds, renormalizability property, elliptic bounds for A0 etc. In particular, finiteness of the
S1 norm of Ax can be viewed as a scattering statement, as it shows that the caloric solutions
decay in Strichartz and other norms.

Our final result, which both extends and complements the Threshold Theorem, allows for
data which are either topologically nontrivial, or are topologically trivial but above the 2EGS

threshold. It aims to establish the full dichotomy between the bubbling off property on the
one hand, and the global well-posedness and scattering on the other:

Theorem 1.11 (Dichotomy Theorem). The Yang–Mills equation (1.1) is locally well-posed
in the temporal gauge for arbitrary finite energy data. Further, one of the following two
properties must hold for the forward maximal solution:

a) The solution is topologically trivial, global, and scatters at infinity (t = ∞).
b) The solution bubbles off a soliton, in the sense that either

(1) it blows up in finite time and the conclusion of Theorem 1.7(a) holds; or
(2) it exists globally (forward in time) and the conclusion of Theorem 1.7(b) holds.

Of course, by time reversibility, the same conclusion holds backward in time as well.
One can view the first two theorems as corollaries of this last result, modulo the different

gauge assumptions. However, we prefer to state them separately because each of them
represent key and largely disjoint steps in the the proof of this last result. In addition, the
Threshold Theorem represents a long sought after goal in this field.

Some further comments are in order concerning the scattering property in the first part
of the last theorem. As discussed in Remark 1.10, in the context of subthreshold solutions
scattering means that solutions are global in the caloric gauge with a bounded S1 norm. As
it turns out, here scattering carries almost exactly the same meaning. Precisely, we show
that for large enough T , the solution admits a caloric representation on the time interval
[T,∞), which has a finite S1 norm. One consequence of this is that scattering solutions must
always be topologically trivial.

Also, as far as the soliton bubbling off property is concerned, blow up solutions with this
property are known to exist. The constructions in [26, 43] give such examples4 whose energies
may be arbitrarily close to the threshold 2EGS, and the recent work [19] provides5 a blow
up solution at exactly the threshold energy 2EGS. These solutions concentrate at the blow-
up point following a rescaled soliton profile, where the soliton scale differs logarithmically
from the self-similar scale. Similarly, solutions where bubbling occurs at infinity also exist.
For Yang–Mills in the topologically trivial class, this was achieved in [18]; interestingly,
the nonscattering solution in [18] has exactly the threshold energy 2EGS (see also [19]).

4The constructions in [26, 43] are for G = SU(2) in the first topological class with c2 = 1 and with
energies close to EGS, but a straightforward gluing argument at infinity produces the desired topologically
trivial solutions.

5We note that [19] moreover gives a complete classification of possible dynamics at the threshold energy
under equivariance symmetry.
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Such solutions have been obtained for related models such as the energy critical wave maps
equation in the one-bubble case, see [9].

1.3. A brief history and broader context. A natural point of view is to place the
present papers and results within the larger context of geometric wave equations, which also
includes wave maps (WM), Maxwell–Klein–Gordon (MKG) and Einstein equations. Two
common features of all these problems are that they admit a Lagrangian formulation, and
have some natural gauge invariance properties. Following are some of the key developments
that led to the present work.

1. The null condition. A crucial early observation in the study of both long range and low
regularity solutions to geometric wave equations was that the nonlinearities appearing in the
equations have a favorable algebraic structure, which was called null condition, and which
can be roughly described as a cancellation condition in the interaction of parallel waves. In
the low regularity setting, this was first explored in work of Klainerman and Machedon [21],
and by many others later on.

2. The Xs,b spaces. A second advance was the introduction of the Xs,b spaces6, also first
used by Klainerman and Machedon [21] in the context of the wave equation. Their role was
to provide enough structure in order to be able to take advantage of the null condition in
bilinear and multilinear estimates. Earlier methods, based on energy bounds, followed by
the more robust Strichartz estimates, had proved inadequate to the task.

3. The null frame spaces. To study nonlinear problems at critical regularity one needs
to work in a scale invariant setting. However, it was soon realized that the homogeneous
Xs,b spaces are not even well defined, not to mention suitable for this. The remedy, first
introduced in work of the second author [54] in the context of wave maps, was to produce
a better description of the fine structure of waves, combining frequency and modulation
localizations with adapted frames in the physical space. This led to the null frame spaces,
which played a key role in subsequent developments for wave maps.

4. Renormalization. A remarkable feature of all semilinear geometric wave equations is
that while at high regularity (and locally in time) the nonlinearity is perturbative, this is no
longer the case at critical regularity. Precisely, isolating the non-perturbative component of
the nonlinearity, one can see that this is of paradifferential type; in other words, the high
frequency waves evolve on a variable low frequency background. To address this difficulty,
the idea of Tao [47], also in the wave maps context, was to renormalize the paradifferential
problem, i.e., to find a suitable approximate conjugation to the corresponding constant
coefficient problem. In the case of wave maps, the conjugating operator is essentially a gauge
transform (i.e., a Lie group-valued function), while in the case of Maxwell–Klein–Gordon and
Yang–Mills one needs a Lie group-valued pseudo-differential operator; see [44, 29, 30, 31] and
the discussion below.

5. Induction of energy. The ideas discussed so far seem to suffice for small data critical
problems. Attacking the large data problem generates yet another range of difficulties. One
first step in this direction is Bourgain’s induction of energy idea [7], which is a convenient
mechanism to transfer information to higher and higher energies. We remark that an alter-
nate venue here, which sometimes yields more efficient proofs, is the Kenig–Merle idea [20]

6The concept, and also the notation, is due to Bourgain, in the context of KdV and NLS type problems.
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of constructing minimal blow-up solutions. However, the implementation of this method in
problems which require renormalization seems to cause considerable trouble. For a further
discussion on this issue, we refer to [28], where this method was carried out in the cases of
energy critical wave maps into the hyperbolic plane.

6. Caloric gauge. Another difficulty arising in the context of large data solutions is that
of finding a good gauge, which at the same time applies to large data and at the same time
has good analytic properties. The caloric gauge, used in our work, is a global version of a
local caloric gauge previously introduced by the first author [33, 34], and is based on an idea
proposed by Tao [48] in the wave maps context.

7. Energy dispersion. One fundamental goal in the study of large data problems is to
establish a quantitative dichotomy between dispersion and concentration. The notion of
energy dispersion, introduced in joint work [45, 46] of the second author and Sterbenz in the
wave maps context, provides a convenient measure for pointwise concentration. Precisely, at
each energy there is an energy dispersion threshold below which dispersion wins. We remark
that, when it can be applied, the Kenig-Merle method [20] yields more accurate information;
for instance, see [28]. However, the energy dispersion idea, which is what we follow in the
present series of papers, is much easier to implement in conjunction with renormalization.

8. The frequency gap. One obstacle in the transition from small to large data in renor-
malizable problems is that the low frequency background may well correspond to a large
solution. Is this fatal to the renormalized solution? The answer to that, also originating in
[45, 46], is that may be a second hidden source of smallness, namely a large frequency gap
between the high frequency wave and the low frequency background it evolves on.

9. Morawetz estimates (monotonicity formulas). The outcome of the ideas above is a
dichotomy between dispersion and scattering on one hand, and very specific concentration
patterns, e.g., solitons, self-similar solutions on the other hand. The Morawetz estimates,
first appearing in this role in the work of Grillakis [15], are a convenient and relatively simple
tool to identify and, if possible, eliminate such concentration scenarios. In the present work,
in analogy with the elliptic and parabolic literature, such an estimate is interpreted as a
monotonicity formula (Section 3).

We now narrow the scope of discussion, and review some earlier developments on the wave
maps (WM), Maxwell–Klein–Gordon (MKG) and hyperbolic Yang–Mills (YM) equations
related to the present paper.

(MKG) and (YM) above the scaling critical regularity. We start our discussion with a
short and incomplete survey of the (YM) problem above the scaling critical regularity. We
also discuss the (MKG) problem, which has been often studied as a simpler model for (YM)
with a commutative gauge group.

In the two and three dimensional cases, which are energy subcritical, global regularity of
sufficiently regular solutions was shown in the early works [11, 12]. These papers in fact
handled the more general Yang–Mills-Higgs system, which includes both (YM) and (MKG)
as special cases. In dimension d = 3, local well-posedness in the energy space of (MKG) and
(YM) was proved in [22] and [23], respectively. In the higher dimensional case d ≥ 4, an
essentially optimal local well-posedness result for a model problem closely related to (MKG)
was obtained in [24].
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However, a new difficulty arises in the large data7 problem for (YM): Namely, the gauge
transformation law is nonlinear due to the noncommutative gauge group. In particular,
gauge transformations into the Coulomb gauge obey a nonlinear elliptic equation, for which
no suitable large data regularity theory is available. Note, in comparison, that such gauge
transformations obey a linear Poisson equation in the case of (MKG). In [23], where finite
energy global well-posedness of the 3+1 dimensional (YM) problem was proved, this issue
was handled by localizing in spacetime via the finite speed of propagation to gain smallness,
and then working in local Coulomb gauges8. An alternative, more robust approach without
spacetime localizations to the same problem has been put forth by the first author in [33, 34],
inspired by [48]. The idea is to use an associated geometric flow, namely the Yang–Mills
heat flow, to select a global-in-space Coulomb-like gauge for data of any size.

The energy critical (WM) problem. Before turning to the (MKG) and (YM) problems
at critical regularity, we briefly recall some recent developments on the wave maps equation
(WM), where many of the methods we implement here have their roots. We confine our
discussion to the energy critical problem in 2+1 dimensions, which is both the most difficult
and the most relevant to our present paper. For the small data problem, global well-posedness
was established in [54], [47], [55]. More recently, the Threshold Theorem for large data wave
maps, which asserts that global well-posedness and scattering hold below the ground state
energy, was proved in [45, 46] in general, and independently in [28] and [51, 49, 50, 52, 53]
for specific targets (namely the hyperbolic space). See also [32] for a sharp refinement in
the case of a two-dimensional target, taking into account an additional topological invariant
(namely, the degree of the wave map), in analogy with the refined threshold 2EGS in our
work. Our present strategy was strongly influenced by [45, 46].

For the energy critical (WM), in the important case of spherical targets, we also note
the recent development due to Grinis [16], which says that along a well-chosen sequence of
times, all time-like energy concentration must be in the form of a superposition of rescaled
solitons. Our Bubbling Theorem (Theorem 1.7) is a first step for proving an analogous result
for (YM). In [10], this was complemented with a decay of the energy near the cone when the
total energy is sufficiently close to the ground state.

The (MKG) and (YM) problems at critical regularity. Next, we discuss the (YM) problems
at critical regularity. As before, we simultaneously consider the corresponding problems for
(MKG), which is a simpler commutative analogue of (YM).

Before discussing history, let us clarify a key structural difference between (WM) on the
one hand and (MKG), (YM) on the other, whose understanding is crucial for making progress
on the latter two problems. Roughly speaking, all three equations can be written in a form
where the main ‘dynamic variables’, which we denote by ϕ, obey a possibly nonlinear gauge
covariant wave equation □Aϕ = · · · , and the associated curvature F [A] is determined by ϕ.
In the case of (WM), this dependence is simply algebraic, whereas for (MKG) and (YM) the
curvature F [A] obeys a wave equation with a nonlinearity depending on ϕ. This difference
manifests in the renormalization procedure for each equation: For (WM) it suffices to use a

7More precisely, a suitable scaling critical norm of the connection A (e.g., ∥A∥Ld
x
) or the curvature F (e.g.,

∥F∥
L

d
2
x

) is large.

8On the other hand, a closely related spacetime localization approach, but relying on new “initial data
surgery” techniques, is developed in [40], which yields an alternative proof of the main result of [23].
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physical space gauge transformation, whereas for (MKG) and (YM) it is necessary to use a
microlocal (more precisely, pseudo-differential) gauge transformation that exploits the fact
that A solves a wave equation in a suitable gauge.

The first such renormalization argument appeared in [44], in which global regularity of
(MKG) for small critical Sobolev data was established in dimensions d ≥ 6. This work was
followed by a similar high dimensional result for (YM) in [29]. The small data result in
the energy critical dimension 4 + 1 was obtained in [30]. Finally, the large data result for
(MKG) in dimension 4 + 1 was proved by the authors in [36, 37, 35] and independently by
[27]. Although the implementation differs in many places, the outline of the three papers
[36, 37, 35] is broadly followed in the present work. In particular we borrow a good deal of
notation, ideas and estimates from both [30] and [36, 37, 35]. On the other hand, we remark
that [27] followed the strategy of [28]. For the (YM) problem in 4 + 1 dimensions, the small
data global result was only recently proved in [31], which is another direct predecessor the
present work.

We conclude with a remark on differences between (MKG) and (YM). The issue of non-
commutative gauge group for the large data problem has already been discussed. Another
important difference between (MKG) and (YM) in 4 + 1 dimensions is that the latter prob-
lem admits nontrivial steady states (i.e., harmonic Yang–Mills connections). These solutions
are known to lead to a finite time blow up; see [26, 43], so for (YM) one must prove the
Threshold Theorem, instead of a unconditional result as in (MKG). Finally, (YM) is more
‘strongly coupled’ as a system compared to (MKG), in the sense that the connection A itself
obeys a covariant wave equation. This feature necessitates a more involved renormalization
procedure compared to (MKG).

Other related works. In related developments, one should also note the works [4, 5] on the
closely related cubic Dirac equation, as well as the massive Dirac–Klein–Gordon system, as
well as [14] on the Maxwell–Dirac equation and [13] on the massive Maxwell–Klein–Gordon
system.

1.4. Notation, conventions and preliminaries. Here we collect more notation and con-
ventions used in the remainder of this paper.

Asymptotic notation.

• A ≲ B and A = O(B) both mean A ≤ CB for some constant C > 0. The dependence
of C on various parameters is specified by subscripts. When A ≲ B and B ≲ A, we
write A ∼ B.

Tensor calculus.

• We employ the usual index notation, the Einstein convention of summing up repeated
upper and lower indices. We use greek indices, such as α, β, γ, . . ., for all coordinates
x0 = t, x1, x2, x3, x4, and latin indices, such as i, j, k, ℓ, . . ., for the spatial coordinates
x = (x1, . . . , x4).

• Given a metric (which is usually the Minkowski metric m on R1+4, unless otherwise
stated), we write ∇ for the associated Levi-Civita connection. Tensorial indices are
raised and lowered using the metric.
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Exterior differential calculus.

• The wedge product ∧ and the differential d for differential forms are defined in
the usual way. A k-form ω can be viewed as a k-covariant tensor; we have ω =∑︁

β1<···<βk
ωβ1...βk

dxβ1 ∧ · · · ∧ dxβk where ωβ1...βk
is the coordinate expression of ω as

a tensor.
• ιX is the interior product with a vector field X, i.e., (ιXω)β1...βk−1

= Xαωαβ1...βk−1
,

and LX is the Lie derivative with respect to X.
• The pointwise inner product (·, ·) of two k-forms is defined so that {θα1 ∧ · · · ∧
θαk}{α1<···<αk} is an orthonormal basis, where {θα} is any orthonormal basis with
respect to a given metric on T ∗Rd (note that this differs by the usual induced metric
for tensors by k!).

• The Hodge star operator ⋆ is defined so that η ∧ ⋆ω = (η, ω) dVol, where dVol is the
volume form. The codifferential δ is the adjoint of d with respect to the L2-product∫︁
⟨·, ·⟩ dVol. The Hodge Laplacian is defined to be −∆ = δd + dδ, so that it agrees

with the usual Laplacian
∑︁

j ∂
2
j for 0-forms (or functions) on R4.

Subsets of Rd.

• For a bounded open set U ∈ Rd and λ > 0, λU is defined to be rescaling of U by the
factor λ centered at the barycenter of U .

• BR(x) is the 4-dimensional ball of radius r centered at x. When x = 0, we simply
write BR = BR(0).

• A(R′,R)(x) is the 4-dimensional annulus of inner and outer radii R′ and R, respectively,
centered at x ∈ R4. When x = 0, we simply write A(R′,R) = A(R′,R)(0).

• Consider the forward light cone centered at (0, 0):

C = {(t, x) : 0 < t < ∞, |x| < t}.
For t0 ∈ R and I ⊂ R, we define

CI ={(t, x) : t ∈ I, |x| < t}, ∂CI ={(t, x) : t ∈ I, |x| = t},
St0 ={(t, x) : t = t0, |x| < t}, ∂St0 ={(t, x) : t = t0, |x| = t}.

For δ ∈ R, we define the translated cones

Cδ ={(t, x) : max{0, δ} < t < ∞, |x| < t− δ}.

The corresponding objects Cδ
I , ∂C

δ
I , S

δ
t0
and ∂Sδ

t0
are defined in the obvious manner.

Polar coordinate systems.

• Hyperbolic polar coordinates on C ⊂ R1+4. We parametrize the cone C = {(t, x) ∈
R1+4 : |x| < t} by (t, x) = ρy, where ρ =

√︁
t2 − |x|2 > 0 and y ∈ H4 := {(t, x) ∈

R1+4 : t2 − |x|2 = 1, t > 0}. We write dy for the volume form on H4.
• Polar coordinates on R4. We parametrize R4 \ {0} by x = rΘ, where r = |x| and
Θ ∈ S3 = {x ∈ R4 : |x| = 1}.

Given a covariant tensor ωβ1...βk
(e.g., a k-form) on R4 \ {0}, we use the schematic

notation ωΘ...Θ(r, ·) for its pullback onto each constant-r sphere. To formulate the
calculus of such objects, we view each ωΘ...Θ(r, ·) as a 1-form on the unit sphere S3.
We write ̸g for the metric on the unit sphere S3, ∇̸ for the associated Levi–Civita
connection, D̸ = ∇̸+ ad(A) for the covariant derivative, dΘ for the volume form and
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Lp
Θ for the Lebesgue spaces with respect to dΘ. We write ωΘ

Θ for the trace with
respect to ̸g of a covariant tensor; accordingly, ∇̸ΘωΘ is the divergence operator with
respect to ̸g and dΘ, and D̸ΘωΘ is the covariant divergence for a g-valued 1-form.

Given a subset U ⊂ R4 \ {0}, we define the ∥ωΘ...Θ∥Lp(U) to be the Lp(U) norm
of |ωΘ...Θ|, where |ωΘ...Θ|2 = ̸g(ωΘ...Θ, ωΘ...Θ). Note that ∥ωΘ...Θ∥Lp(A(R′,R))

∼R′,R

∥ωΘ...Θ∥Lp
r((R′,R);Lp

Θ) for any 0 < R′ < R.

Functions spaces.

• ∂ (without sub- or superscripts) is the spatial gradient ∂ = (∂1, ∂2, . . . , ∂4), and ∇
is the spacetime gradient ∇ = (∂0, ∂1, . . . , ∂4). We write ∂(n) (resp. ∇(n)) for the
collection of n-th order spatial (resp. spacetime) derivatives, and ∂(≤n) (resp. ∇(≤n))
for those up to order n.

• Ẇ
σ,p
(Rd;V ) is the homogeneous Lp-Sobolev space of order σ for functions from Rd

into a normed vector space V . In the special case p = 2, we write Ḣ
σ
(Rd;V ) =

Ẇ
σ,2
(Rd;V ). The inhomogeneous counterparts are denoted by W n,p(Rd;V ) and

Hn(Rd;V ), respectively. We often suppress Rd and V when it is clear from the
context.

• The mixed spacetime norm Lq
tẆ

n,r

x of functions on R1+d is often abbreviated as

LqẆ
n,r

.
• Generally, a function space on an open subset U ⊆ R4 is defined by restriction, i.e.,
∥u∥X(U) = inf{∥ũ∥X : ũ ∈ X, ũ ↾U= u}. A similar convention applies for a function
space on an open subset O ⊆ R1+4.

• The local function space Xloc(U) is defined as

Xloc(U) =
⋂︂

Br(x):Br(x)⊆U

X(Br(x)).

Littlewood–Paley theory, dyadic function spaces and frequency envelopes.

• {Pk}k∈Z denotes the usual Littlewood–Paley projections in the variable x ∈ R4.
• A dyadic function space X is a collection {Xk}k∈Z of normed spaces on either R4 or
R1+4. Often we use the same space for each k, in which case we simply write X = Xk.
We define ℓpX by the norm ∥u∥pℓpX =

∑︁
k ∥Pku∥pX , with the usual modification for

p = ∞. An important example is the L2-Sobolev space Hσ = ℓ2Hσ.
• An admissible frequency envelope c is a sequence {ck}k∈Z of positive numbers satis-
fying max{ cj

ck
, ck
cj
} ≤ C2δfe|k−j| for some constant C depending on c and an absolute

constant δfe > 0 inherited from [38, 39].
• We define ∥u∥Xc = supk c

−1
k ∥Pku∥Xk

. If ∥u∥Xc ≤ 1, then we say that c is a frequency
envelope for u in X.

1.5. Structure of the present paper. The remainder of the paper is structured as follows.
Section 2. Here we review the main results in the first three papers of the series [38], [39]

and [40], emphasizing the parts which are needed here.
Section 3. This is where we state and prove all the conservation laws and monotonicity

formulas that are used in this paper. We also explore a few consequences of the monotonicity
formulas.
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Section 4. We use a “good gauge” representation theorem (Theorem 2.20) for large energy
Yang–Mills connections in order to prove a strong local compactness statement, Theorem 4.1,
that we rely on on in our blow-up analysis.

Section 5. Here we study the regularity of connections that either stationary or self-
similar, and show that such connections must be gauge equivalent to a smooth connection.
This is akin to elliptic theory for harmonic Yang–Mills connections.

Section 6. We show that there does not exist any nontrivial self-similar solutions to
Yang–Mills with finite energy, thus eliminating one of the main potential obstructions to our
results.

Section 7. Here we carry out the blow-up analysis and prove the Bubbling Theorem
(Theorem 1.7). This proof uses all of the previous five sections.

Section 8. In this section we prove that sharp energy concentration cannot occur near the
null cone. This is critical in order to be able to separate the bubbling-off scenario from the
scattering, energy dispersed case.

Section 9. Finally, here we complete both the proof of the Threshold Conjecture, see
Theorem 1.8, and the dichotomy result in Theorem 1.11.

Appendix A. We collect some technical tools needed for our analysis of gauge transforma-
tions, especially in Sections 5, 6 and 8.
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2. An outline of the first three papers

Our aim here is to provide a brief outline of the first three papers [38],[39] and [40], to
the extent necessary in order to complete the proof of the large data results in the present
paper. For a more comprehensive review of the full series of four papers we instead refer the
reader to our survey article [41].

Let us take as a starting point of our discussion the following small data result proved
earlier in [31]:

Theorem 2.1. The hyperbolic Yang–Mills equation in R4+1 is globally well-posed in the
Coulomb gauge for all initial data with small energy.

Even before considering well-posedness results for the large data, the first difficulty one
faces is that the Coulomb gauge does not appear to fully extend to large data in general, and
not even to subthreshold data (see Remark 2.2 below). For this reason, our first paper [38] is
devoted solely to the gauge problem; precisely, inspired by earlier work of Tao [48] and of the
first author [33, 34], we develop a new gauge for the hyperbolic Yang–Mills problem (1.1),
namely the caloric gauge. Using this gauge, the most difficult gauge-dependent analysis of
the Yang–Mills equation is carried out in [39]. The caloric gauge is the natural setting of
our Threshold Theorem (Theorem 1.8).
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Remark 2.2. To use the global Coulomb gauge, one would need the solution to the following
open problem: the existence of a regular gauge transformation O to Coulomb gauge for a
general subthreshold (hence topologically trivial) connection a on R4 with a quantitative
control on the critical norm ∥O;x∥Ḣ1 . For the interested reader, we refer to [42, Open Prob-
lem 1.3] and [60], where similar problems for other critical norms of O;x are studied on closed
4-manifolds.

On the other hand, for the large data analysis in [40] causality plays a key role, so we shift
the (soft part of the) analysis to the temporal gauge. The causality property of the temporal
gauge allows us to formulate a local well-posedness theory of the hyperbolic Yang–Mills
equation for arbitrary finite energy data (and in particular, in arbitrary topological class),
which is the setting for our Dichtomy Theorem (Theorem 1.11). We note, however, that the
strong S-norm control on the solution is lost in the temporal gauge.

We summarize the discussion on various gauges so far in the following table:

Gauge choice Definition Appearances Remarks

(global) Coulomb ∂kAk = 0 Thm. 2.1
Requires small initial energy; ex-
pect S-norm control; no direct us-
age in this paper.

Caloric Definition 2.6
Thms. 1.8,
1.11†, 2.11,
2.13

Requires trivial topological class
and finite caloric size; expect S-
norm control.

Temporal A0 = 0
Thms. 1.11†,
2.12, 2.18,
2.19

No restriction on the topological
class or energy; no S-norm control.

Table 1. Gauge choices for the initial value problem. †: In Theorem 1.11,
the initial value problem is posed in the temporal gauge, but the scattering
statement involves the caloric gauge; see Remark 1.10.

Finally, we note that our Bubbling Theorem (Theorem 1.7) is formulated in a gauge-
independent fashion9. Indeed, most of the work in the present paper is carried out in a
gauge-covariant fashion, while using the gauge-dependent results in [39] and [40] at critical
junctures.

2.1. The caloric gauge. The goal of the first paper [38] is to

• Introduce the caloric gauge;
• Show that the caloric gauge is well-defined for all subthreshold data; and
• Provide a comprehensive formulation of the hyperbolic Yang–Mills equation in the
caloric gauge which is sufficiently accurate for the subsequent analysis.

The caloric gauge is defined using the Yang–Mills heat flow

∂sAj = DkFjk, Aj(s = 0) = aj (2.1)

which implicitly assumes the gauge condition As = 0 (which we refer to as the local caloric
gauge) relative to the fully covariant formulation of the same equation. This can be naively

9However, the notion of scattering is formulated with the help of the caloric gauge; see Remark 1.10.
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viewed as parabolic system for the curl of A (or the curvature F ), coupled with a transport
equation for the divergence of A. Because these two equations are strongly coupled, this
evolution displays an interesting mix of semilinear and quasilinear features.

Our interest is in initial data a for which this solution is global, with the curvature F
satisfying global parabolic bounds. To capture this, we use the L3 norm of F as a control
norm, and call it the caloric size of a,

Q(a) =

∫︂ ∞

0

∫︂
R4

|F |3dxds. (2.2)

We note that this is a gauge invariant quantity. For solutions with finite caloric size, we have
the following structure theorem:

Theorem 2.3 ([38, Corollary 5.14]). Let a ∈ Ḣ
1
be a connection so that Q(a) < ∞. Then

this solution has the property that the limit

lim
s→∞

A(s) = a∞

exists in Ḣ
1
. Further, the limiting connection is flat, f∞ = 0, and the map a → a∞ is locally

Lipschitz in Ḣ
1
, HN (N ≥ 1) and Ḣ

1 ∩ Ḣ
N

(N ≥ 2).

Next, using the monotonicity formula for the energy, we prove the Dichotomy Theorem
for the Yang–Mills heat flow:

Theorem 2.4 ([38, Theorem 6.1]). One of the following two properties must hold for the

maximally extended Ḣ
1
Yang–Mills heat flow:

a) The solution is global and its caloric size is finite;
b) The solution bubbles off a nontrivial harmonic Yang–Mills connection, either

(1) at a finite blow-up time s < ∞, or
(2) at infinity s = ∞.

Combined with topological triviality of Ḣ
1
connections, we are led to the Threshold The-

orem, with the identical threshold as in the hyperbolic case:

Theorem 2.5 ([38, Theorem 6.6]). The Yang–Mills heat flow is globally well-posed in Ḣ
1

for all subthreshold initial data a ∈ Ḣ
1
. Precisely, there exists a nondecreasing function

Q : [0, 2EGS) → R+

so that for all subthreshold data a with energy E we have

Q(a) ≤ Q(E). (2.3)

For connections with finite caloric size, we define the (global) caloric gauge as follows:

Definition 2.6. A connection a ∈ Ḣ
1
is caloric if Q(a) < ∞ and the global solution to its

associated Yang–Mills heat flow has the property a∞ = 0.

It is easy to see that for all connections a for which the conclusion of Theorem 2.5 holds
there is a unique10 equivalent caloric gauge. This is because a∞ is flat and thus can be
represented as

a∞ = O−1∂xO

10Up to constant conjugations
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for a suitable gauge transformation O. Then by gauge invariance the equivalent connection

ã = G(O)a = OaO−1 − ∂xOO−1

is caloric. More precisely, we have

Proposition 2.7 ([38, Proposition 7.2]). For each Ḣ
1
connection ã in R4 with Q(a) < ∞,

there exists an unique (up to constant gauge transformations) gauge-equivalent connection a,
which is a caloric gauge connection. Further, the map ã → a is continuous in the quotient
topology defined by the distance

d(a1, a2) = inf
O∈G

∥Oa1O
−1 − a2∥Ḣ1 .

A key result in [38] asserts that:

Theorem 2.8 ([38, Proposition 7.7 and Theorem 7.8]). The space C of all caloric connections
is a C1 submanifold of the space

H = {a ∈ Ḣ
1
: ∂jaj ∈ ℓ1L2}.

In addition, for all subthreshold caloric connections with energy E and caloric size Q we have
the bound

∥a∥2H := ∥a∥2
Ḣ

1 + ∥∂jaj∥2ℓ1L2 ≲E,Q 1.

The second part of the state space norm H reflects the fact that caloric connections satisfy
a nonlinear form of the Coulomb gauge condition.

The second part of [38] is devoted to modeling the hyperbolic Yang–Mills equation as

an evolution on the caloric manifold. Precisely, the state space for this evolution is TL2C,
which is the L2 completion of the tangent space TC. We will view the spatial components
(Ax, ∂tAx) ∈ TL2C as the dynamic variables, and the temporal parts A0, ∂0A0 as auxiliary.

Correspondingly, we call a pair (a, b) ∈ TL2C (i.e., a ∈ C, b ∈ TL2

a C) a caloric gauge initial
data set for (1.1). This is related to the gauge-covariant notion of initial data sets as follows:

Theorem 2.9 ([38, Theorem 8.1]). a) Given any Yang–Mills initial data pair (a, e) ∈ Ḣ
1×L2

with finite caloric size, there exists a caloric gauge data set (ã, b) ∈ TL2C and a0 ∈ Ḣ
1
, so

that (ã, ẽ) is gauge equivalent to (a, e), where

ẽk = bk −D
(ã)
k a0.

b) Given any caloric gauge initial data set (ã, b) ∈ TL2C, there exists a unique a0 ∈ Ḣ
1
, with

Lipschitz dependence on (a, b) ∈ Ḣ
1 × L2, so that

ek = bk −D
(a)
k a0

satisfies the constraint equation (1.4).

By this result, we may indeed fully describe Yang–Mills connections in the caloric gauge
as continuous functions

I ∋ t → (Ax, ∂tAx)(t) ∈ TL2C.
The equations for the dynamical variables (Ax, ∂tAx) are proved to have the form

□AAk = P[Aj, ∂kAj] + 2∆−1∂kQ(∂αAj, ∂αAj) +R(A, ∂tA) (2.4)
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together with a compatibility condition

∂kAk = DA(A) := Q(A,A) +DA3(A), (2.5)

where the temporal component A0 and its time derivative ∂tA0 are uniquely determined by
(Ax, ∂tAx) and admit the expressions

A0 =A0(A) := ∆−1[A, ∂tA] + 2∆−1Q(A, ∂tA) +A3
0(A), (2.6)

∂tA0 =DA0(A) := −2∆−1Q(∂tA, ∂tA) +DA3
0(A). (2.7)

Here P is the Leray projector, Q is a symmetric bilinear form with symbol11

Q(ξ, η) =
ξ2 − η2

2(ξ2 + η2)
. (2.8)

The cubic error terms are R, DA(3), A3
0 and DA3

0 are “better behaved” in the following
sense. First, we recall the following definition from [38]:

Definition 2.10 (Envelope preserving map; [38, Definition 9.1]). Let X, Y be dyadic norms.
A map F : X → Y is said to be envelope-preserving of order ≥ n (n ∈ N with n ≥ 2) if for
any admissible frequency envelope c for a in X, we have

∥PkF(a)∥Y ≲∥a∥X cnk .

The cubic error terms R, DA(3), A3
0 and DA3

0 are envelope preserving maps between the
following spaces:

R : Str1 → L1L2 ∩ L2Ḣ
− 1

2 , (2.9)

DA3 : Str1 → L1Ḣ
1 ∩ L2Ḣ

1
2 , (2.10)

A3
0 : Str

1 → L1Ḣ
2 ∩ L2Ḣ

3
2 , (2.11)

DA3
0 : Str

1 → L1Ḣ
1 ∩ L2Ḣ

1
2 . (2.12)

Here Str1 collects several standard non-endpoint Strichartz norms with the appropriate
scaling. Since we work with solutions with ℓ2 dyadic summability, by the envelope preserving
property, for each of the above bounds we freely gain ℓ1 dyadic summability of the above
norms. One should think of all these cubic nonlinear expressions above as playing perturba-
tive roles in the analysis. We remark that these expressions obey nice difference bounds as
well; for details, see [38, Definition 9.1 and Theorem 9.2].

2.2. Local well-posedness in the caloric gauge and energy dispersed solutions.
Our second paper [39] aims to establish both a local well-posedness result and a more refined
continuation and scattering criteria for subthreshold solutions to the hyperbolic Yang–Mills
equation in the caloric gauge.

In what follows, we will call hyperbolic Yang–Mills connections in the caloric gauge simply
caloric Yang–Mills waves.

We begin with the local well-posedness result. We define the ϵ-energy concentration scale
rϵc of a finite energy Yang–Mills initial data set (a, e) to be

rϵc = rc(E)[a, e] = sup{r > 0 : EBr(x)[a, e] ≤ ϵ ∀x ∈ R4}.
11Although the symbol looks anti-symmetric, it is compensated by the Lie bracket in the definition of

bilinear multipliers for g-valued functions; see [38, Definition 3.1].
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Then we have:

Theorem 2.11 (Local well-posedness in caloric gauge, [39, Theorem 1.12]). There exists a
non-increasing function ϵ∗ = ϵ∗(E ,Q) > 0 and a non-decreasing function M∗(E ,Q) such
that, the Yang–Mills equation in caloric gauge is locally well-posed on the time interval
I = [−rϵ∗c , rϵ∗c ] for initial data with energy E and initial caloric size Q. More precisely,
the following statements hold.

a) (Regular data) Let (a, b) ∈ TL2C be a smooth initial data set with energy E and initial
caloric size Q. Then there exists a unique smooth solution At,x to the Yang–Mills equation
in caloric gauge on I.

b) (Rough data) The data-to-solution map admits a continuous extension

TL2C ∋ (a, b) ↦→ (Ax, ∂tAx) ∈ C(I, TL2C)

within the class of initial data with energy concentration scale ≥ rc.
c) (A-priori bound) The solution defined as above obeys the a-priori bound

∥Ax∥S1[I] ≤ M∗(E ,Q).

d) (Weak Lipschitz dependence) Let (a′, b′) ∈ C×L2 be another initial data set with similar
bounds and energy concentration scale ≥ rc. Then for σ < 1 close to 1 we have the Lipschitz
bound

∥Ax − A′
x∥Sσ [I] ≲M∗(E),Q,σ ∥(a, f)− (a′, f ′)∥

Ḣ
σ×Ḣ

σ−1 .

We remark that bounds for the auxiliary variables A0, ∂0A0 follow a-posteriori from the
S1 bound for Ax; see [39, Theorem 5.1] for such bounds.

In particular, if the energy of the initial data set is smaller than ϵ∗ := min{ϵ∗(1), 1}, then
the corresponding solution At,x in caloric gauge exists globally and obeys the bound

∥Ax∥S1[(−∞,∞)] ≤ M∗(E).

Thus in particular this result also provides a caloric gauge version of the Coulomb gauge
small data result in [31].

One downside of using either the Coulomb or caloric gauge is that causality is lost. To
remedy this, in [39] we prove that the well-posedness result can also be transferred to the
temporal gauge A0 = 0:

Theorem 2.12 ([39, Theorem 1.17]). The hyperbolic Yang–Mills equation in R4+1 is globally
well-posed in the temporal gauge for all initial data with small energy.

This result includes existence, uniqueness, continuous dependence on the initial data and
propagation of higher regularity. In particular the finite energy solutions are identified as
the unique limits of regular solutions. A downside of this theorem is that it does not provide
the S1 regularity of solutions, or any other dispersive bounds.

The second main result in [39] is the following theorem, which uses the energy dispersed
norm ED defined on a time interval I by

∥F∥ED[I] = sup
k∈Z

2−2k∥PkF∥L∞[I].

The result asserts that caloric solutions to Yang–Mills with sufficiently small energy disper-
sion are extendable and satisfy uniform bounds:
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Theorem 2.13 (Regularity of energy dispersed solutions [39, Theorem 1.15]). There exists
a positive non-increasing function ϵ(E) and a non-decreasing function M(E) such that if At,x

is a solution (in the sense of Theorem 2.11) to the Yang–Mills equation in caloric gauge on
I with energy E and that obeys

∥F∥ED[I] ≤ ϵ(E), Q(A(0)) ≤ 1,

then it satisfies the a-priori bound

∥Ax∥S1[I] ≤ M(E),
as well as

sup
t∈I

Q(A(t)) ≪ 1.

Moreover, A can be continued as a solution to the Yang–Mills equation in caloric gauge past
finite endpoints of I.

2.3. Topological classes and large data solutions. Unlike the first two papers, the
third one [40] is concerned with large data solutions which are not necessarily topologically
trivial, and thus cannot be directly studied using the global caloric gauge. The goal of [40]
is two-fold:

• To describe finite energy initial data sets topologically and analytically.
• To provide a good local theory for finite energy solutions.

Here we work in two settings:

a) For initial data in R4 and solutions in R1+4, or time sections thereof.
b) For initial data in a ball BR and solutions in the corresponding domain of dependence

D(BR) = {|x|+ |t| < R} or time sections thereof.

In terms of the initial data, in addition to the energy, a key role is played by the ϵ-energy
concentration scale localized to the ball BR

rϵc = sup{r > 0 : EBr(x)∩BR
[(a, e)] ≤ ϵ ∀x ∈ BR},

as well as the outer concentration radius

Rϵ
c = inf{r > 0 : EBr(x)[(a, e)] ≤ ϵ for some x ∈ R4 }.

2.3.1. Finite energy data sets. We begin with an excision result, which provides small energy
extensions outside an annulus:

Proposition 2.14 ([40, Theorem 1.16]). Let (a, e) be a small energy data set in B4 \ B1.
Then we can find a small energy exterior data set (ã, ẽ) in R4 \ B1 which agrees with (a, e)
in B2 \B1. Furthermore, if (a, e) is smooth then (ã, ẽ) can also be chosen to be smooth.

For initial data sets in a ball, it is useful to work with a good gauge:

Proposition 2.15 ([40, Theorem 1.4]). Given an initial data (a, e) in BR with finite energy
and ϵ-energy concentration scale rC, there exists a gauge-equivalent initial data (ã, ẽ) in BR

which satisfies the bound
∥ã∥

Ḣ
1∩L4 ≲ϵ,

rC
R

1. (2.13)

Consider now finite energy initial data (a, e) in R4. Here we need to distinguish between
a in different topological classes. We begin with the topologically trivial maps:
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Theorem 2.16 ([40]). A finite energy connection a is topologically trivial if and only if it

admits a representation a ∈ Ḣ
1
in a suitable gauge.

Finally, for topologically nontrivial initial data in Rn we also can find a good global gauge:

Theorem 2.17 (Good global gauge theorem [40, Theorem 1.5]). Let a ∈ H1
loc be a finite

energy connection. Then there exists a global representative a such that

a = −χO(∞);x + b

where 1 − χ is smooth and compactly supported, O(∞)(x) is a smooth 0-homogeneous map

taking values in G and b ∈ Ḣ
1
.

Here one can identify the topological class of a with the homotopy class [O] of O : S3 → G.
in particular O in the last theorem can be chosen arbitrarily within this homotopy class.

2.3.2. Finite energy solutions. A consequence of [31] and of the first two papers in the series
[38, 39] is that the small data problem for the 4 + 1 dimensional hyperbolic Yang–Mills
equation is well-posed in several gauges: Coulomb, caloric, and temporal. In [40] we exploit
the temporal gauge small data result, combined with causality, to obtain results for the large
data problem.

For the subsequent results, set rc = rϵ0c where ϵ0 ≪ 1 is the energy bound for the small
data result. The main local-in-time result is as follows:

Theorem 2.18 ([40, Theorem 1.22]). a) For each finite energy data set (a, e) in R4 with
concentration scale rc there exists a unique finite energy solution A to (1.1) in the time
interval [−rc, rc] in the temporal gauge A0 = 0, depending continuously on the initial data.
Furthermore, any other finite energy solution with the same data must be gauge equivalent
to A.

b) The same result holds for data in a ball BR and the solution in the corresponding domain
of uniqueness D(BR) ∩ (I × R4).

Now we consider the continuation question. The next result asserts that temporal solu-
tions can be continued until energy concentration (i.e., a blow-up) occurs. Thus, temporal
solutions are also maximal solutions for the Yang–Mills equation.

Theorem 2.19 ([40, Theorems 1.22 and 1.23]). a) For each finite energy data set (a, e) in
R4, let (Tmin, Tmax) be the maximal time interval on which the temporal gauge solution A
exists. If Tmax is finite then we have

lim
t→Tmax

rc(t) = 0.

Further, there exists some X ∈ R4 so that the energy concentration occurs in the backward
light cone C = {|x−X| ≤ Tmax − t} centered at (Tmax, X), in the sense that

lim
t↗T

EC∩St(A) > ϵ0. (2.14)

The similar result holds for for Tmin.
b) The same result holds for data in a ball BR and the solution in the corresponding domain

of uniqueness D(BR).
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We remark that vanishing of rc follows from [40, Theorem 1.22], and existence of an energy
concentration point follows by a standard argument; see, e.g., [35, Lemma 8.1].

The temporal gauge is convenient in order to deal with causality, but not so much in terms
of regularity, as it lacks good S bounds. For this reason it is convenient to borrow the caloric
gauge regularity:

Theorem 2.20 ([40, Theorem 1.25]). Let A be a finite energy Yang–Mills solution in a cone
section C[t1,t2] with energy concentration scale rc. Then in a suitable gauge A satisfies the
bound

∥A∥
L∞(Ḣ

1∩L4)
+ ∥∂tA∥L∞L2 + ∥∂jAj∥

ℓ1L2Ḣ
1
2
+ ∥∇A0∥

ℓ1L2Ḣ
1
2
+ ∥□Ax∥

ℓ1L2Ḣ
− 1

2
≲E, rc

t2
1 (2.15)

in the smaller cone C4rc
[t1,t2]

where the radius has been decreased by 4rc.

For the notation C[t1,t2] and C4rc
[t1,t2]

, we refer to Section 1.4. The proof of this theorem

requires a good gluing technique for local connections with suitable regularity; see [40] for
details. We note that the term ∥∂jAj∥

ℓ1L2Ḣ
1
2
is missing in the statement of [40, Theo-

rem 1.25], but is evident from the proof (see, in particular, [40, Eqs. (5.6), (5.8)]).

3. Monotonicity formulas

3.1. The energy-momentum tensor and conservation laws. We start by introducing
the notion of a null frame and the associated null decomposition of a curvature 2-form,
which provides a very useful decomposition of the energy momentum tensor. At each point
p = (t0, x0) ∈ R1+4, we introduce the null pair

L = ∂t +
x

|x|
· ∂x, L = ∂t −

x

|x|
· ∂x,

and also orthonormal vectors {ea}a=1,...,3 which are orthogonal to L and L. Observe that
each ea is tangent to the sphere ∂Bt0,r0 := {t0}× ∂Br0(0) where r0 = |x0|. The set of vectors
{L,L, e1, e2, e3} at p is called a null frame at p associated to L,L.
We define the null decomposition of the 2-form F with respect to {L,L, ea} as

αa := F (L, ea), αa := F (L, ea), ϱ :=
1

2
F (L,L), σab := F (ea, eb).

Note that ϱ is a g-valued function, αa, αb are g-valued 1-forms on ∂Bt0,r0 and σab is a g-valued
2-form on ∂Bt0,r0 . We define their pointwise absolute values as

|α|2 :=
∑︂

a=1,...,3

α2
a, |α|2 :=

∑︂
a=1,...,3

α2
a, |σ|2 :=

∑︂
1≤a<b≤3

σ2
ab.

Recall from Section 1 that the energy-momentum tensor associated to a connection A is

Tαβ(A) = 2⟨F γ
α , Fβγ⟩ −

1

2
mαβ⟨Fγδ, F

γδ⟩. (3.1)

We observe that T is a symmetric 2-tensor, which is gauge invariant at each point. Moreover
for each finite energy solution solution to (1.1), the energy-momentum tensor satisfies

∂αTαβ(A) = 0. (3.2)

This is verified directly for smooth connections, and it then transfers to finite energy Yang–
Mills connections by approximation with smooth connections.
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A simple way of obtaining energy identities for Yang–Mills equation is to contract the
energy-momentum tensor with a well-chosen vector field, an then integrate over a suitable
domain.

Given a vector field X on O, we define its deformation tensor to be the Lie derivative of
the metric with respect to X, i.e., (X)π := LXm. Using covariant derivatives, (X)π also takes
the form

(X)παβ = ∇αXβ +∇βXα

or expressed in coordinates
(X)πµν = X(mµν) + ∂µ(X

α)mαν + ∂ν(X
α)mαµ (3.3)

Using the deformation tensor, we define the associated 1- and 0-currents of A as
(X)Pα(A) :=Tαβ(A)X

β,

(X)K(A) :=
1

2
Tαβ(A)

(X)παβ.
(3.4)

Then by (3.2) we obtain
∇α((X)Pα(A)) =

(X)K(A). (3.5)

Now energy identities for the Yang–Mills flow are obtained by integrating this identity over
spacetime regions. Of course, this is most useful when (X)π either vanishes (i.e. X is Killing)
or when it has a sign.

The simplest choice for X is X = T = ∂0, the unit vector in the time direction. Then
(T )π = 0, so (3.5) becomes

∇α((T )Pα(A)) = 0. (3.6)

In particular we have

(T )P0 =
1

2
⟨Fjk, F

jk⟩+ ⟨F0j, F
j

0 ⟩ =
∑︂
α<β

|Fαβ|2,

therefore integrating (3.6) between time slices yields the well-known conservation of energy

E{t}×R4(A) =

∫︂
(T )P0(A) dx =

∫︂ ∑︂
α<β

|Fαβ|2 is constant in t.

In general, for U ⊂ R4 we introduce the notation

E{t}×U(A) =

∫︂
{t}×U

(T )P0(A) dx.

We also need to use energy estimates in sections C[t1,t2] of the cone C. For this we define
the energy flux on the lateral surface of the cone section by

F∂C[t0,t1]
(A) =

1

2

∫︂
∂C[t0,t1]

(T )PL(A)r
3 dvdσS3

Then we have

Lemma 3.1. Let A be a finite energy Yang–Mills connection on I ×R4 where I ⊂ R+ is an
open interval. Then for every t0, t1 ∈ I with t0 ≤ t1, the following statements hold:
a) The energy flux on F∂C[t0,t1]

(A) is non-negative and additive, i.e.,

F∂C[t0,t1]
(A) = F∂C[t0,t

′]
(A) + F∂C[t′,t1]

(A) for t′ ∈ [t0, t1]. (3.7)
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b) The energy-flux relation holds:

ESt1
(A)− ESt0

(A) = F∂C[t0,t1]
(A). (3.8)

The nonnegativity is straightforward since the flux density is expressed in terms of the
curvature components in the null frame as

(T )PL(A) = |ϱ|2 + |σ|2 + |α|2.
The identities are again straightforward for smooth solutions, and obtained by approximation
with smooth solutions otherwise.

A consequence of Lemma 3.1 is a simple but crucial decay result for the flux:

Corollary 3.2. Let A be a finite energy Yang–Mills connection on I × R4 where I ⊂ R4 is
an open interval. Then the following statements hold.

a) If (0, δ] ⊆ I for some δ > 0, then we have

lim
t1→0

F∂C(0,t1]
(A) = 0, (3.9)

b) If [δ,∞) ⊆ I for some δ > 0, then we have

lim
t0,t1→∞

F∂C[t0,t1]
(A) = 0. (3.10)

3.2. Monotonicity formulas. Here we are interested in the case when the expression
(X)K(A) is nonnegative definite. Our primary vector field here will be

X0 =
1

ρ0
(t∂t + x · ∂x) , ρ0 =

√︁
t2 − |x|2

for (t, x) ∈ C. We also introduce the null coordinates

u0 = t− |x|, v0 = t+ |x|.
Straightforward computations (see [35]) lead to the relation

(X)K(A) =
2

ρ0
|ιX0F |2, (3.11)

where |ιX0F |2 = mαβιX0FαιX0Fβ. Of course m is indefinite, but |ιX0F |2 is nonnegative due
to the fact that X0 is time-like inside the cone C. Thus the relation (3.5) becomes

∇α((X0)Pα) =
2

ρ0
|ιX0F |2 ≥ 0 (3.12)

where the interesting components of (X0)P are

(X0)PL =
(︂v0
u0

)︂ 1
2 |α|2 +

(︂u0

v0

)︂ 1
2
(︂
|ϱ|2 + |σ|2

)︂
, (3.13)

(X0)PL =
(︂u0

v0

)︂ 1
2 |α|2 +

(︂v0
u0

)︂ 1
2
(︂
|ϱ|2 + |σ|2

)︂
. (3.14)

All expressions above are singular on the cone, so we cannot12 directly integrate the relation
(3.12) on sections of the cone C. To remedy this, we will translate the field X0 downward

12Unless the flux is zero. This is in general not the case, instead we will work in settings where the flux
is merely small.
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by ε. Defining

ρε =
√︁

(t+ ε)2 + |x|2, Xε =
1

ρε
((t+ ε)∂t + x · ∂x)

uε = t+ ε− |x|, vε = t+ ε+ |x|,

we now have the shifted relations

∇α((Xε)Pα) =
2

ρε
|ιXεF |2 (3.15)

where

(Xε)PL =
(︂vε
uε

)︂ 1
2 |α|2 +

(︂uε

vε

)︂ 1
2
(︂
|ϱ|2 + |σ|2

)︂
, (3.16)

(Xε)PL =
(︂uε

vε

)︂ 1
2 |α|2 +

(︂vε
uε

)︂ 1
2
(︂
|ϱ|2 + |σ|2

)︂
. (3.17)

We also remind the reader that since ∂t =
1
2
(L+ L), we have

(Xε)P0 =
1

2
((Xε)PL + (Xε)PL).

Integrating now the relation (3.12) over an appropriate section of the cone C yields the
following:

Proposition 3.3. Let A be a finite energy Yang–Mills connection on [ε, 1] × R4, where
ε ∈ (0, 1). Suppose furthermore that A satisfies

ES1(A) ≤ E, F∂C[ε,1]
(A) ≤ ε

1
2E. (3.18)

Then ∫︂
S1

(Xε)P0(A) dx+

∫︂∫︂
C[ε,1]

2

ρε
|ιXεF |2dtdx ≲ E, (3.19)

where the implicit constant is independent of ε, E.

Using Proposition 3.3, we can also establish a version of (3.19) that is localized away from
the boundary of the cone. This statement will be useful for propagating lower bounds in a
time-like region towards (0, 0).

Proposition 3.4. Let A a finite Yang–Mills connection in [ε, 1] × R4, where ε ∈ (0, 1).
Suppose furthermore that A satisfies (3.18). Then for 2ε ≤ δ0 < δ1 ≤ t0 ≤ 1, we have∫︂

S
δ1
1

(X0)P0(A) dx ≤
∫︂
S
δ0
t0

(X0)P0(A) dx+ C
(︂
(δ1/t0)

1
2 + | log(δ1/δ0)|−1

)︂
E. (3.20)

The proofs of Propositions 3.3 and 3.4 are similar to those of Propositions 5.4 and 5.5 in
[35], respectively, and thus are omitted.
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4. A compactness result

Here we establish the following compactness result for a locally uniformly bounded se-
quence of Yang–Mills connections which are asymptotically stationary:

Theorem 4.1. Let A(n) be a sequence of finite energy Yang–Mills connections in [−2, 2]×B2R

which is uniformly bounded, in the sense that the norms

∥A(n)∥
L∞(Ḣ

1∩L4)
, ∥∂tA(n)∥L∞L2 , ∥∇A

(n)
0 ∥

ℓ1L2Ḣ
1
2
, ∥□A(n)

x ∥
ℓ1L2Ḣ

− 1
2

(4.1)

on [−2, 2]×B2R are uniformly bounded in n. Assume moreover that

lim
n→∞

∥ιV F (n)∥L2([−2,2]×B2R) = 0,

where V is a smooth time-like vector field (i.e., m(V, V ) < 0). Then on a subsequence we
have

A(n) → A in H1([−1, 1]×BR)

where A solves the hyperbolic Yang–Mills equation (in the sense of distributions), satisfies
ιV F = 0, and has regularity

Ax ∈ ℓ1H
3
2 ([−1, 1]×BR), ∇A0 ∈ ℓ1L2H

1
2 ([−1, 1]×BR).

Clearly, by scaling, this result is applicable to any spacetime cylinder (t0 − 2T, t0 + 2T )×
B2R(x0). In the sequel, Theorem 4.1 will be applied to a sequence A(n) on nested open sets
O(n)(⊂ O(n+1)), which satisfies the hypothesis on each spacetime cylinder inside O(n) for
sufficiently large n after taking a suitable gauge transformation; see Section 7 below. Thus,
on any open set O′ ⊂ O′ ⊂

⋃︁
n O(n), we will extract a subsequential limit via a diagonal

procedure possessing the local regularity

Ax ∈ ℓ1H
3
2
loc(O

′), ∇A0 ∈ ℓ1L2H
1
2
loc(O

′).

Proof. Let χ be a smooth cutoff supported in [−2, 2]×B2R, which is identically 1 in [−1, 1]×
BR. Consider the sequence {χA(n)}, which is now globally defined in R1+4. Moreover, we
claim that {χA(n)} is uniformly bounded with respect to n in the global-in-spacetime version
of the norms listed in (4.1); the bound depends on R and the corresponding norms of A(n)

on [−2, 2] × B2R. Indeed, it is straightforward to reduce the claim to the following global-
in-spacetime commutator bounds:

∥[∇, χ]B∥L∞L2 ≲R ∥B∥L∞L4 ,

∥[∇, χ]B∥
ℓ1L2Ḣ

1
2
≲R ∥∇B∥L∞L2 ,

∥[□, χ]B∥
ℓ1L2Ḣ

− 1
2
≲R ∥∇B∥L∞L2 ,

These commutator bounds, in turn, follow from the usual Littlewood–Paley trichotomy
analysis.

Next, we microlocally split the connections χA(n) into a high modulation part and a low
modulation part

χ(t, x)A(n) = A(n),lo + A(n),hi := η(Dt,x)χ(t, x)A
(n) + (1− η(Dt,x))χ(t, x)A

(n)

i.e., with a classical order zero multiplier η which is supported in a small neighborhood
{||τ | − |ξ|| < κ|ξ|} of the null cone {τ 2 = ξ2} and which is identically 1 in the smaller
neighborhood {||τ | − |ξ|| < κ

2
|ξ|}. We choose κ small enough so that ∂0 and V α∂α are

30



microlocally elliptic (i.e., |τ | ≳ |τ | + |ξ| and |V 0τ + V kξk| ≳ |τ | + |ξ|) on the support of
η(τ, ξ)χ(t, x), which is possible since ∂0 and V α∂α are time-like.
Since □ is microlocally elliptic in the support of 1−η(τ, ξ), the uniform bound for □(χA(n))

implies that the high modulation parts A
(n),hi
x are uniformly bounded in ℓ1H

3
2 . The same

happens with the ∇(χA
(n)
0 ) component in its entirety in ℓ1L2H

1
2 . On a subsequence we get

convergence in H1([−1, 1]×BR) for A
(n),hi
x and A

(n)
0 with the limits Ahi

x ∈ ℓ1H
3
2 ([−1, 1]×BR)

and ∇A0 ∈ ℓ1L2H
1
2 ([−1, 1]×BR), respectively.

It remains to consider the low modulation part of A
(n)
x . For this we expand ιV F as

(ιV F )β = V αFαβ = V α(∂αAβ − ∂βAα + [Aα, Aβ])

Separating the cases β = 0 and β ̸= 0, we view this as a system for Ak of the form

V α∂αAk − ∂k(V
jAj) =

(︁
−(ιV F )k + V α[Aα, Ak] + V 0∂kA0

)︁
− (∂kV

j)Aj, (4.2)

∂0(V
jAj) =

(︁
−(ιV F )0 + V j(∂jA0 + [Aj, A0])

)︁
+ (∂0V

j)Aj. (4.3)

Here the LHS can be viewed as a system in Ak which is microlocally elliptic of order 1 on
the support of η(τ, ξ)χ(t, x). To exploit this fact, we apply η(Dt,x)χ(t, x) to the both sides
and rewrite the above system as

V α∂α(η(Dt,x)χAk)− ∂k(η(Dt,x)χV
jAj) = η(Dt,x)χ(RHS of (4.2))

+ [V α∂α, η(Dt,x)χ]Ak − [∂k, η(Dt,x)χ]V
jAj

∂0(η(Dt,x)χV
jAj) = η(Dt,x)χ(RHS of (4.3)) + [∂0, η(Dt,x)χ]V

jAj.

It is straightforward to check that the resulting RHS has size

oL2(1) +O
ℓ1H

1
2
(1),

where we note that only the terms of the form (ιV F )β contribute oL2(1). Thus, on a sub-

sequence, we get convergence in H1([−1, 1] × BR) first for η(Dt,x)χV
jA

(n)
j and then for

A
(n),lo
x = η(Dt,x)(χAx), with the limits in ℓ1H

3
2 ([−1, 1]× BR). Now the convergence of F (n)

in L2([−1, 1]×BR) is easy to establish. □

5. Regularity of stationary connections

Here we consider the solutions provided as limiting connections in Theorem 4.1 (see the
discussion following the theorem). These have the local regularity

Ax ∈ ℓ1H
3
2
loc(O), ∇A0 ∈ ℓ1L2H

1
2
loc(O) (5.1)

on some open subset O of R1+4, and satisfy

ιV F = 0. (5.2)

We further specialize to the following two cases:

(i) V is constant and time-like, or
(ii) V = S = xα∂α is the scaling vector field.

Moreover, in Case (ii), A is defined in the forward light cone, i.e., O ⊂ C. The goal of this
section is to establish the following (qualitative) regularity result.
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Proposition 5.1. Let A be a hyperbolic Yang–Mills connection on an open set O ⊂ R1+4 that
satisfies the above properties. Then in any open set O′ such that O′ ⊂ O, the connection A is
gauge-equivalent, via continuous local gauge transformations to a smooth connection. More
precisely, there exists an open covering {B} of O′ and a continuous gauge transformation O
on each B such that Ã = G(O)A is smooth.

Passing to a smaller set O′ makes the statement and the proof simple. This point will
not be problematic for our application, thanks to the following extension result for a smooth
hyperbolic Yang–Mills connection satisfying (5.2):

Proposition 5.2. Let A be a hyperbolic Yang–Mills connection on an open set O ⊂ R1+4

that satisfies the above properties. Assume furthermore that A is smooth. Then A is gauge-
equivalent, via a smooth gauge transformation, to a smooth connection Ã = G(O)A obeying
ιV Ã = 0 and LV Ã = 0. Moreover, the extension of Ã to

⋃︁
s∈R

(V )Φs(O) via LV Ã = 0, which

we still denote by Ã, remains a smooth hyperbolic Yang–Mills connection satisfying (5.2).

Here, (V )Φs is the one-parameter family of diffeomorphisms generated by the vector field
V and LV is the Lie derivative with respect to V , i.e., LV Ã = d

ds
(V )Φ∗

sÃ|s=0.
In the sequel, we will apply Proposition 5.1 so that

O′ =

{︄
(−1

4
, 1
4
)× R4 in Case (i),

C
3
2

[ 3
2
,∞)

in Case (ii).

In both cases O′ is contractible so that the gauge-equivalent smooth connection may be
represented by a single g-valued 1-form Ã on O′. By continuity of the local gauge trans-
formations, it follows that the global gauge transformation O from A to Ã is continuous.
Moreover, by the formula

O;α = Ad(O)A− Ã,

regularity (5.1) and smoothness of Ã, O is admissible in the sense of Definition 1.3. Finally,
by Proposition 5.2 the smooth connection Ã extends to a smooth stationary Yang–Mills
connection on R1+4 =

⋃︁
s∈R

(V )Φs(O′) in Case (i), and to a smooth self-similar Yang–Mills

connection on C =
⋃︁

s∈R
(V )Φs(O′) in Case (ii); see Section 7 below.

The remainder of the section is devoted to the proofs of Propositions 5.1 and 5.2.

Proof of Proposition 5.1. We first describe the main idea. In both cases, the basic observa-
tion is that we can use the relation ιV F = 0 to change the Yang–Mills equation to be elliptic
in spacetime. More precisely, A obeys the Yang–Mills equation with the (inverse) metric
changed from m−1, which is Lorentzian, to

e−1 = m−1 − 2

m(V, V )
V ⊗ V. (5.3)

Indeed, by the variational formulation of the Yang–Mills equation, it suffices to show that,
under the condition (5.2), the Lagrangian with respect to m agrees with that with respect
to e, i.e.,

(m−1)αα
′
(m−1)ββ

′
FαβFα′β′dVolm = (e−1)αα

′
(e−1)ββ

′
FαβFα′β′dVole,
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where dVolm (resp. dVole) is the volume form associated with m (resp. e). This property

is easily verified by choosing at each point an m-orthonormal frame that includes V̂ =
|m(V, V )|−1/2V , which is also e-orthonormal (and vice versa) by (5.3).
Therefore, our connection A is harmonic in (O, e). Since it has local regularity Ax ∈

ℓ1H
3
2
loc(O) and ∇A0 ∈ ℓ1L2H

1
2
loc(O), which is the critical regularity in 5 dimensions, by an

argument similar to Theorem 1.5 we conclude it is locally smooth in a suitable gauge, and
thus globally smooth in a suitable gauge.

In Case (i), e is simply the Euclidean metric. In Case (ii), e takes the form

e = dρ2 + ρ2dy2

in the hyperbolic polar coordinates (ρ, y) on C ⊂ R1+4 (see Section 1.4), where dy2 denotes
the standard metric on the hyperbolic space H4 with sectional curvature −1. The one
difference is that our elliptic problems now have variable coefficients.

For a more detailed analysis, we implement the ideas above in three steps:

Step 1: Local Coulomb gauge with respect to e. Let x ∈ O′. Our aim is to place the
equations in a local Coulomb gauge with respect to the metric e,

∇αAα = 0,

in a sufficiently small ball B in O centered at x via a gauge transformation O with regularity

O;α ∈ L5(B), ∇O;α ∈ L2H
1
2 (B). (5.4)

Here and in the sequel, ∇ is the Levi-Civita connection associated with the Riemannian
metric e as in (5.3), and we raise and lower greek (spacetime) indices using e.
Let ēαβ = eαβ(x). We take the ball B centered at x to be small enough so that

∥∇A∥
L2H

1
2
B

+ ∥A∥L5(B), ∥eαβ − ēαβ∥C2(2B)

are sufficiently small (here, 2B is the double enlargement of B). Then we may find extensions
of A and e from B to R5 such that e − ē is supported in 2B and ∥∇A∥

L2Ḣ
1
2
+ ∥e − ē∥C2

is small. We look for a global gauge transformation O into the Coulomb gauge; note that
Ωα = O−1∂αO must solve {︃ ∇αΩα = ∇αAα + [Ωα, Aα],

∇αΩβ −∇βΩα = −[Ωα,Ωβ].
(5.5)

By Proposition A.7 and the smallness properties of A, e − ē (as well an extra iteration
procedure to include the term [Ωα, Aα]), we may find a unique solution Ω to (5.5) such that

Ω ∈ L5 and ∇Ω ∈ L2Ḣ
1
2 . Integrating the system of ODEs O−1∂αO = Ω, for which the curl

condition serves as the compatibility condition needed for integrability13, we find a gauge
transformation O in B with regularity

O−1∂αO ∈ L5(B), ∇(O−1∂αO) ∈ L2H
1
2 (B), (5.6)

such that Ã = G(O)A obeys the Coulomb condition in B. Note that O;α = Ad(O)(O−1∂αO)
has the regularity (5.6) as well.

13To make this procedure rigorous, one first approximate A by smooth 1-forms, so that the corresponding
Ω’s are smooth, then take the limit by compactness using the bounds on Ω.
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Step 2: Elliptic regularity. Here we examine the output connection Ã, which a-priori has
the same regularity as O;α, i.e.,

Ã ∈ L5(B), ∇Ã ∈ L2L
8
3 (B),

solves the harmonic Yang–Mills equation

D̃
α
F̃αβ = 0,

where D̃ = ∇+ ad(Ã), and satisfies the Coulomb gauge condition

∇αÃα = 0.

Together these form an elliptic system for Ãα of the form

∆ÃÃα −Ric[e]αβÃ
β
= [Ã

β
, D̃αÃβ],

where ∆Ã = D̃
β
D̃β and Ric[e] is the Ricci curvature of (B, e). Since a-priori Ã ∈ L5(B),

which is critical regularity, by (perturbative) elliptic theory it follows that the solutions are
smooth in any smaller ball B′ ⊂ B′ ⊂ B; for simplicity, we shrink the ball B so that Ã is
smooth on B.

Step 3: The regularity of the gauge. So far, we have shown that at each point x ∈ O′,
there exists a ball B ∋ x in O and a gauge transform O with regularity (5.6) on B such that
Ã = G(O)A is smooth. Here the goal is to use (5.1) to boost this regularity to

∇O;α ∈ ℓ1L2H
1
2 (B). (5.7)

By localization of the global-in-spacetime bound

∥u∥
ℓ1L∞Ḣ

1 ≲ ∥∇u∥
ℓ1L2Ḣ

1
2
, (5.8)

which follows by applying the trace theorem to each Pku and summing up in k, it would
follow that O;α ∈ ℓ1L∞H1(B). By Lemma A.4, we would have O ∈ C0(B) as well, as desired.

By (5.1) (as well as Aα ∈ L∞H1
loc(O)), (5.6), smoothness of Ã and the formula

O;α = Ad(O)Aα − Ãα, (5.9)

it follows that

O;α ∈ L∞H1(B), ∇O;α ∈ L2H
1
2 (B). (5.10)

To exploit the additional regularity ∇A ∈ ℓ1L2H
1
2 (B) from (5.1), we note that the following

global-in-spacetime bounds hold:

∥uv∥
ℓ1L2Ḣ

1
2
≲ ∥∇u∥

L2Ḣ
1
2
∥∇v∥

L2Ḣ
1
2

∥Ad(O)u∥
ℓ1L2Ḣ

1
2
≲∥O∥L∞ ,∥O−1∥L∞ ∥u∥

ℓ1L2Ḣ
1
2
+ ∥∇O;x∥

L2Ḣ
1
2
∥u∥

L2Ḣ
1
2
.

Both estimates are straightforward to establish by standard Littlewood–Paley trichotomy,
so we omit the proof. Localization of the above estimates, combined with (5.1) and (5.10),
imply the desired estimate (5.7). □
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Proof of Proposition 5.2. Solving the nonlinear transport equation V α∂αO = OιVA on O
(with arbitrary smooth data), we find a smooth gauge transformation O on O such that
Ã = G(O)A obeys ιV Ã = 0. By Cartan’s formula, note that

LV Ã = ιV dÃ+ dιV Ã = ιV F̃ − 1

2
ιV [Ã ∧ Ã] + dιV Ã = 0,

where in the last equality, we used (5.2) for the first term and ιV Ã = 0 for the others. Thus
the extension of Ã to

⋃︁
s∈R

(V )Φs(O) by solving LV Ã = 0, which amounts to solving an ODE

along each integral curve of V , is well-defined. That the extension satisfies ιV Ã = 0 is clear,
whereas (5.2) follows by reversing the preceding computation. By Cartan’s formula applied
to LV F , it also follows that LV F = 0.

It remains to show that the extension still solves the Yang–Mills equation. First, note
that (1.1) may be rewritten in the form

d̃(⋆F ) = 0,

where d̃ is the covariant exterior derivative associated with Ã14 and ⋆ is the Hodge star
operator associated with m. By [d,LV ] = 0 and LV Ã = 0, it follows that [LV , d̃] = 0.
Moreover, since LVm = 0 in Case (i) and LVm = 2m in Case (ii), it follows that [LV , ⋆]F =
c ⋆ F , where c = 0 in Case (i) and c = 1 (i.e., the spacetime dimension minus 4) in Case (ii).

In conclusion, LV (d̃(⋆F )) = cd̃(⋆F ), from which the desired conclusion follows. □

6. No finite energy self-similar solutions

One of the main enemies in proving the bubbling-off result is given by self-similar solutions.
Here we prove that no nontrivial finite energy self-similar Yang–Mills connections exist:

Theorem 6.1. There are no smooth nontrivial self-similar solutions to the hyperbolic Yang–
Mills equation (i.e., ιSF = 0) defined on the whole forward light cone C which have finite
energy.

In our application, smoothness of the self-similar solution in C (the open forward light
cone) follows from the results in Section 5, but the only information a-priori available near
the boundary is the finite energy condition. The main issue in the proof of Theorem 6.1 is
indeed the analysis near the boundary.

Proof. We proceed in several steps.

Step 1. We first recast the problem in hyperbolic polar coordinates, parametrizing the
forward light cone C as

C = {ρy ∈ R1+4 : ρ ∈ (0,∞), y ∈ H4},
where we remind the reader that ρ =

√︁
t2 − |x|2 and H4 = {(t, x) ∈ C : ρ = 1} (see

Section 1.4). The Minkowski metric becomes

ds2 = −dρ2 + ρ2dy2,

where dy2 denotes the induced metric on H4; as is well-known, it is the standard metric on
the hyperbolic space H4 with sectional curvature −1.

14This operator is characterized by linearity and d̃(u⊗ω) = D̃u∧ω+udω, where u is a g-valued function
and ω is a k-form.
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Inside the light cone C, the self-similarity condition ιSF = 0 becomes ι∂ρF = 0. By
Proposition 5.2, we may make a smooth gauge transformation to make Aρ = ι∂ρA = 0.
Then our connection is still smooth, and also independent of ρ in the sense that L∂ρA = 0
(see the proof of Proposition 5.2). We may furthermore check that the pullback of A to
H4 = {ρ = 1}, which we still denote by A, is a solution to the harmonic Yang–Mills equation
in H4.

Using the stereographic projection, we represent H4 as the unit disc D4 in R4 with metric

ds2 = Ω2dx2, Ω =
2

1− |x|2
.

By conformal invariance of the harmonic Yang–Mills equation in dimension 4, the conformal
factor drops out, and we obtain the elliptic Yang–Mills system in D4

DiFij = 0.

with respect to the Euclidean metric ds2 = dx2.
We now move the finite energy condition in hyperbolic polar coordinates, then translate

it to D4. This computation is equivalent to that in [35, Section 7.2], and yields∫︂
D4

1 + r2

1− r2
|F |2dx < ∞, (6.1)

where r = |x|. At this point we know that the connection is smooth inside D4, but nothing
about its behavior at the boundary. Let A( 1

2
,1) = {x ∈ D4 : 1

2
< |x| < 1}. We claim that

there exists a gauge such that A ∈ H1(A( 1
2
,1)) and∫︂

A
( 12 ,1)

1

1− r2
|∇A|2 + 1

(1− r2)3
|A|2 dx < ∞. (6.2)

Assuming the claim, the proof of the theorem may be completed as follows. By (6.2), it
follows that A|∂D4 vanishes. Thus its zero extension Ā outside the ball is also in H1, and its
curvature F̄ is the zero extension of F . We conclude that the zero extension of A ∈ H1(D4)
satisfying (6.2) still solves the harmonic Yang–Mills system

D̄
i
F̄ ij = 0.

By the classical elliptic regularity results of Uhlenbeck (Theorem 1.5), the connection Ā is
gauge equivalent to a smooth connection Ã in R4. To continue we write elliptic equations
for F̃ ,

∆ÃF̃ = [F̃ , F̃ ]

Since F̃ has compact support and Ã is smooth (thus bounded in the support of F̃ ), it follows
from the classical elliptic unique continuation result15 due to Aronszajn [1] that F̃ = 0. Thus
the connection A is trivial.
It remains to prove our claim, and show that a representation satisfying (6.2) exists.

Step 2. For 0 < d < 1
6
, k ≥ 0 and 2 ≤ p ≤ ∞, we claim that

∥D(k)F∥Lp(A(1−2d,1−d)) ≲ d−α+ 1
2∥d−

1
2F∥L2(A

(1−4d,1− d
2 )
), α = k + 2− 4

p
. (6.3)

15For further references on unique continuation for second order elliptic PDEs, see, for instance, [25]
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This is proved by applying Uhlenbeck’s lemma (Theorem A.9) in balls of size proportional
to their distance to the boundary, and using the fact that the harmonic Yang–Mills equa-
tion becomes strictly elliptic in the Coulomb gauge, which allows us to use interior elliptic
regularity.

Step 3. In the remainder of this proof, we work in the polar coordinates x = rΘ on D4\{0}.
As stated in Section 1.4, we write AΘ(r, ·) for the pullback of a 1-form A to each constant
r-sphere, which we then view as a 1-form on the unit sphere (S3, ̸g). Alternatively, one may
think of the whole analysis in the rest of this proof as taking place on (0, 1)r × S3

Θ equipped
with the metric ds2 = dr2 + dΘ2.

Roughly speaking, the idea is to fix the gauge by specifying the conditions

Ar = 0 in A( 1
2
,1), A(r, ·) → 0 and ∇̸ΘAΘ(r, ·) → 0 as r → 1, (6.4)

which is possible, at least heuristically, by the decay of F as r → 1 and Uhlenbeck’s lemma.
For technical reasons, however, we proceed slightly differently and work with a sequence of
gauges approximately satisfying (6.4).

We start with the connection A(0) in the exponential gauge at the origin (i.e., A
(0)
r = 0 in

D4 and A(0)(0) = 0). Observe that A(0) is smooth. By (6.1), we may find a sequence rn → 1

such that ∥(1− rn)
− 1

2F (rn, ·)∥L2
Θ
→ 0. Viewing A

(0)
Θ (rn, ·) as a connection 1-form on the unit

sphere Θ ∈ S3 and applying Uhlenbeck’s lemma on S3 (Proposition A.11), we find gauge
transformations O(n) = O(n)(Θ) on S3 such that the following property holds: Viewing O(n)

as defined on D4 \ {0} by O(n)(r,Θ) = O(n)(Θ), the representation A(n) = G(O(n))A(0) obeys

∇̸ΘA
(n)
Θ (rn, ·) = 0, ∦∇ΘA

(n)
Θ (rn, ·)∥L2

Θ
≲ ∥F (rn, ·)∥L2

Θ
, (6.5)

as well as

A(n)
r (r, ·) = 0 for 0 < r < 1, (6.6)

simply due to A
(0)
r = 0 and the r-independence of O(n). Thanks to smoothness of A(0) and

(6.3) (elliptic regularity for F ), note that On ∈ C∞(S3).

Step 4. Let

D2 =

∫︂
A

( 13 ,1)

1

1− r
|F |2 dx, ϵ2n =

1

1− rn

∫︂
S3
|F |2(rn,Θ)dΘ,

where A( 1
3
,1) = {x ∈ D4 : 1

3
< |x| < 1}. By (6.1), D2 < ∞, and by construction, ϵn → 0.

From now on, we work in the gauge constructed in the previous step. Without loss of
generality, we may assume that rn > 1

2
. Note that on the annulus A( 1

2
,rn)

= {x ∈ D4 : 1
2
<

r < rn}, we have the equivalence ∥g∥Lp(A
( 12 ,rn)

) ∼ ∥g∥Lp
rL

p
Θ(( 1

2
,rn)×S3) for any 1 ≤ p ≤ ∞,

where the constant is independent of n.

As A
(n)
r = 0 and ∂rA

(n)
Θ = F

(n)
rΘ , we immediately have∫︂ rn

1/2

∫︂
1

1− r
|∂rA(n)|2 drdΘ ≲ D2. (6.7)
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To proceed, recall the following elementary inequality (essentially one-dimensional Hardy’s
inequality): For 1 ≤ p ≤ ∞ and 0 < r ≤ rn, we have∫︂ rn

r

(︁
(1− r′)β−1|g|

)︁p
dr′ ≲β,p

∫︂ rn

r

(︁
(1− r′)β|∂rg|

)︁p
dr′ +

(︂
(1− rn)

β− p−1
p |g|

)︂p

(rn) (6.8)

provided that β < p−1
p
.

In our gauge, (6.8) implies∫︂ r0

1/2

∫︂
1

(1− r)3
|A(n)|2 drdΘ ≲ D2 +

1

(1− r0)2

∫︂
|A(n)|2(r0,Θ)dΘ, (6.9)

for any 1/2 < r0 ≤ rn.

Step 5. To complete the proof, in view of (6.7) and (6.9), it remains to establish

lim sup
n→∞

∫︂ rn

1/2

∫︂
1

1− r2
|̸∇ΘA

(n)|2 drdΘ ≲D 1. (6.10)

Once (6.10) is proved, then it is a routine matter to extract a limit O(n) ⇀ O in H2(D4)
such that A = Ad(O)A(0) −O;x obeys the desired vanishing condition (6.2).

As a first attempt to prove (6.10), note that we have control of ∂r∂ΘA
(n)
Θ = D

(n)
Θ F

(n)
rΘ +

O(A
(n)
Θ , F

(n)
rΘ ) by (6.3). However, if we naively use the L2 bound in (6.3), we encounter a

logarithmic divergence. To rectify this, we use an additional cancellation from the harmonic
Yang–Mills equation.

The idea is to compute the div-curl system on S3 satisfied by An
Θ(r, ·). First, note that

D̸ΘFrΘ = r2Dj(ι∂rF )j = rxj
(︁
DiFij

)︁
, (6.11)

where the last term is zero if the harmonic Yang–Mills equation holds. Therefore, we have

∂r̸∇ΘA
(n)
Θ = ∇̸ΘF

(n)
rΘ = (̸D(n))ΘF

(n)
rΘ − ad(A(n)Θ)F

(n)
rΘ ) = −ad(A(n)Θ)F

(n)
rΘ .

We furthermore note that∫︂ rn

1/2

∫︂
1

(1− r)2
|A(n)|4 drdΘ ≲ D4 +

1

1− rn

∫︂
|A(n)|4(rn,Θ)dΘ ≲ D4 + (1− rn)ϵ

4
n (6.12)

by (6.3) with (k, p) = (0, 4), (6.8) with p = 4 and (6.5). Then thanks to (6.3) and (6.12), we
have

lim sup
n→∞

∥∂r̸∇ΘA
(n)
Θ ∥L2

rL
2
Θ((1/2,rn)×S3) ≲ D2.

Recall from (6.5) that ∇̸ΘA
(n)
Θ (rn,Θ) = 0. By (6.8), it follows that

lim sup
n→∞

∥(1− r)−1∇̸ΘA
(n)
Θ ∥L2

rL
2
Θ((1/2,rn)×S3) ≲ D2.

On the other hand, by the schematic relation

(dA)ΘΘ = FΘΘ − [AΘ, AΘ]

and the bound (6.12), we have

lim sup
n→∞

∥(1− r)−
1
2 (dA(n))ΘΘ∥L2

rL
2
Θ((1/2,rn)×S3) ≲ D +D2.
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By the div-curl estimate on S3, we obtain

lim sup
n→∞

∥(1− r)−
1
2∇̸ΘA

(n)
Θ ∥L2

rL
2
Θ((1/2,rn)×S3) ≲ D +D2,

which implies the desired bound (6.10). □

7. The bubbling-off result

In this section we prove the bubbling off result in Theorem 1.7. Much of the argument
is similar to that in [35, Sections 8.3–8.6] (see also [46, Sections 6.5–6.8]), from which we
borrow many results.

Throughout this section, we assume that A is a finite energy Yang–Mills connection satis-
fying the hypothesis of either Theorem 1.7.a) (finite time blow-up at (T,X)) or b) (infinite
time blow-up). We write E = E(A) and E1 = lim supt↗T ECγ∩St(A), where T = ∞ in the
infinite time blow-up case. Moreover, in the finite time blow-up case, we translate the point
(T,X) to (0, 0), and reverse the time direction so that the blow up occurs inside C backward
in time towards (0, 0).

Our first goal is to prove that from the connection A we can extract a sequence of smooth
connections A(n) in increasing cone sections and with decreasing fluxes:

Lemma 7.1. There exists a sequence of smooth hyperbolic Yang–Mills connections A(n) in
cone sections C[εn,1] with εn → 0 which satisfy the following properties:

(1) Closeness to A. There exists a sequence Ã
(n)

of rescaled and translated copies of A
so that

lim
n→∞

sup
t∈[εn,1]

∥A(n) − Ã
(n)∥

Ḣ
1∩L4(St)

= 0 (7.1)

(2) Bounded energy in the cone.

ESt(A
(n)) ≤ E + o(1) for every t ∈ [εn, 1], (7.2)

(3) Decaying flux on ∂C.

F[εn,1](A
(n)) ≤ ε

1
2
nE, (7.3)

(4) Time-like energy concentration at t = 1.

ECγ∩S1(A
(n)) ≥ E1 > 0 (7.4)

with some γ < 1.

Proof. To clarify the ideas we assume at first that A is smooth in the closure of C. We start
from the flux-energy relation (3.8), which shows that the flux decays toward the tip of the
cone in the blow-up case,

lim
t↘0

F(0,t](A) = 0.

respectively toward infinity in the non-scattering case,

lim
t↗∞

F[t,∞)(A) = 0.

Using these properties, it easily follows in both cases that we can find a sequence of connec-
tions A(n) which are obtained from A simply by rescaling.

Suppose now that A is a finite energy solution inside the cone. Then its energies on each
time slice ESt(A) are still well defined and nondecreasing in t. Thus its fluxes are at least
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formally defined via the energy flux relation (3.8), therefore we obtain the sequence Ã
(n)

of rescaled copies of A which satisfies the properties (2)–(4). We now consider a smooth

approximation Ã
(n)

δ of Ã
(n)

so that

sup
t∈[εn+δ,1−δ]

∥Ã(n)

δ − Ã
(n)∥

Ḣ
1∩L4(Sδ

t )
≤ 1

n
.

Then the desired smooth connections A(n) are obtained by slightly (by O(δ) to be precise)

translating and rescaling Ã
(n)

δ provided that δ is small enough, depending on n. □

At this point, we may apply Proposition 3.3 to A(n) and obtain∫︂∫︂
C[εn,1]

2

ρεn
|ιXεn

F (n)|2dtdx ≲ E. (7.5)

This property implies a decay of F (n) towards the tip of the cone C for large n, which is the
key ingredient of the proof (see Lemma 7.3.(4) below).

Next, we show that the energy concentration at time t = 1 persists in time:

Lemma 7.2. Let A(n) be the sequence of smooth Yang–Mills connections in the previous
lemma. Then there exist E2 > 0 and γ2 ∈ (0, 1) such that∫︂

Cγ2∩St

(X0)P0(A
(n)) dx ≥ E2 for every t ∈ [ε

1
2
n , ε

1
4
n ]. (7.6)

This is a gauge independent property, which follows from the localized monotonicity for-
mulas as in the (MKG) case, via Proposition 3.4; see [35, Proof of Lemma 8.10] for details.

At this point, we can freely replace (X0)P in (7.6) by (T )P (i.e., the energy density) at the
expense of adjusting E2 as we are away from the cone. Now a final rescaling leads us to

Lemma 7.3. There exists a sequence of smooth Yang–Mills connections A(n) on [1, Tn]×R4

with Tn → ∞ satisfying the following properties:

(1) Closeness to A. There exists a sequence Ã
(n)

of rescaled and translated copies of A
so that

lim
n→∞

sup
t∈[1,Tn]

∥A(n) − Ã
(n)∥

Ḣ
1∩L4(St)

= 0 (7.7)

(2) Bounded energy in the cone,

ESt(A
(n)) ≤ E + o(1), for every t ∈ [1, Tn], (7.8)

(3) Nontrivial energy in a time-like region,

ECγ2∩St(A
(n)) ≥ E2 for every t ∈ [1, Tn], (7.9)

(4) Asymptotic self-similarity,∫︂∫︂
K

|ιX0F
(n)|2dtdx → 0 as n → ∞ (7.10)

for every compact subset K of the interior of C[1,∞).
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Here, E2 is the constant from Lemma 7.2, after making an adjustment mentioned before
Lemma 7.3. This lemma is essentially rescaling and pigeonhole principle; see [35, Proof of
Lemma 8.11]. Note that Property (4) follows from (7.5), which in turn was a consequence
of the monotonicity formula (Proposition 3.3).

To proceed, we introduce few definitions. For each j = 1, 2, . . ., let

Cj ={(t, x) ∈ C1
[1,∞) : 2

j ≤ t < 2j+1},

C̃j ={(t, x) ∈ C
1/2
[1/2,∞) : 2

j ≤ t < 2j+1}.

Note that Cj, respectively C̃j, is simply the set of points in the truncated cone C[2j ,2j+1) at
distance ≥ 1, respectively ≥ 1

2
, from the lateral boundary ∂C.

We have the following lemma, which is basically [35, Lemma 8.12], for understanding
concentration scales:

Lemma 7.4. Let A(n) be a sequence of hyperbolic Yang–Mills connections as in the previ-
ous lemma. Let E0 be sufficiently small. Then for each j = 1, 2, · · · , after passing to a
subsequence, one of the following alternatives holds:

(1) Concentration of energy: There exist points (tn, xn) ∈ ˜︁Cj, scales rn → 0 and 0 < r =
r(j) < 1/4 such that the following bounds hold:

E{tn}×Brn (xn)(A
(n)) = ϵ0, (7.11)

sup
x∈Br(xn)

E{tn}×Brn (x)(A
(n)) ≤ ϵ0, (7.12)

1

4rn

∫︂ tn+2rn

tn−2rn

∫︂
Br(xn)

|ιX0F
(n)|2 dtdx → 0 as n → ∞. (7.13)

(2) Uniform non-concentration of energy: There exists 0 < r = r(j) < 1/4 such that the
following bounds hold:

ECγ∩St(A
(n)) ≥ E2 for t ∈ [2j, 2j+1), (7.14)

sup
(t,x)∈Cj

E{t}×Br(x)(A
(n)) ≤ ϵ0, (7.15)∫︂∫︂

˜︁Cj

|ιX0F
(n)|2 dtdx → 0 as n → ∞. (7.16)

In applying this lemma there are two scenarios we need to consider. Either

(i) Property (1) holds for some j, or
(ii) Property (2) holds for all j.

(i) Concentration scenario. Now we need to run a compactness argument. On a subse-
quence we can assume that

lim
n→∞

xn

t
= v, |v| < 1.

We denote V = (1, v), which is a future pointing time-like vector.
We restrict the connections A(n) to the regions [tn−rn, tn+rn]×Br(xn), with fixed r ≪ 1.

Then we rescale to unit time and translate to center them at (0, 0). We obtain a sequence
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of Yang–Mills connections A(n) in the time interval [−1, 1] with the properties that

E{0}×B1(0)(A
(n)) = E0, (7.17)

sup
x∈BRn (0)

E{0}×B1(x)(A
(n)) ≤ E0, (7.18)∫︂ 1

−1

∫︂
BRn (0)

|ιV F (n)|2 dtdx → 0 as n → ∞, (7.19)

where Rn = r−1
n r → ∞. In (7.19), we replaced X0 by V =

√︁
1− |v|2X0|(1,v) by the conver-

gence xn

t
→ v, the decay rn → 0 and 0-homogeneity of X0.

Our next aim is to find a sequence of admissible gauge transformations such that, after
passing to a subsequence and for some A on [−1/2, 1/2]× R4 such that

A ∈ ℓ1H
3
2
loc, A0 ∈ ℓ1H

1, 1
2

loc ,

we have

G(O(n))A(n) → A in H1
loc([−1/2, 1/2]× R4),

and in addition

ιV F = 0 in [−1/2, 1/2]× R4.

So far, we have only used energy considerations, which are gauge independent. For the
next step, however, we need better regularity information, so for each R = 1, 2, . . ., we place
the above solutions in a “good gauge” AR(n), as provided by Theorem 2.20 on [−1, 1]×B2R

for n sufficiently large r/rn ≫ R (the theorem is stated on a truncated cone C[t1,t2], but
the domain [−1, 1] × B2R is essentially the same). We apply the compactness result in
Theorem 4.1 to conclude that on a subsequence we have local convergence to a finite energy
Yang–Mills connection AR in [−1/2, 1/2]×BR. Moreover, for R′ < R, note that AR′(n) and
AR(n) are connected by a gauge transformation ORR′(n) in B2R′ such that

∇O
RR′(n)
;t,x ∈ ℓ1L2H

1
2
loc([−1, 1]×B2R′),

with uniform bounds on compact subsets (indeed, for O;t, we use the regularity ∇A0 ∈
ℓ1L2H

1
2 , whereas for ∂O;x we use ∂kAk ∈ ℓ1L2Ḣ

1
2 and Lemma A.3. Finally, for ∂tO;x we use

∂tO;j = ∂jO;t+[O;j, O;t]). Then, passing to a subsequence, we obtain a gauge transformation

ORR′
;t,x ∈ ℓ1L2H

1
2
loc([−1/2, 1/2] × BR′), which is admissible, such that AR = G(ORR′

)AR′
. By

patching together AR for R = 1, 2, . . . (see, for instance, [40, Section 3.5, Scenario (3)]), we
obtain a global solution A on [−1/2, 1/2]× R4, as desired.
By the regularity result in Proposition 5.1, the connection A is gauge equivalent to a

smooth connection in the domain (−1/4, 1/4)×R4, which we still denote be A, that moreover
satisfies

(i) Nontriviality, E(A) > 0;
(ii) Finite energy, E(A) ≤ E;
(iii) Stationarity, ιV F = 0.
Applying Proposition 5.2, we may place A in the gauge ιVA = 0, and extend it to the

whole spacetime R1+4. Then A is a Lorentz transform of a nontrivial harmonic Yang–Mills
connection Q, namely A = LvQ. The theorem is proved in this case.
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(ii) Non-concentration scenario. The argument is similar here. By Theorem 2.20 we can
use gauge-equivalent representations of the connections A(n) which are in a “good gauge”
as provided by Theorem 2.20, and thus are bounded in the sense of (2.15), uniformly on
compact subsets of C1

[1,T ) for each T = 2, 3, . . .. There applying the compactness result in

Theorem 4.1 for each T , and patching together the resulting limits as in Case (i), we obtain

a global nontrivial self-similar, finite energy connection A in C
3
2

[ 3
2
,∞)

. Applying the regularity

result in Proposition 5.1, and then Proposition 5.2 with O′ = C2
[2,∞), we obtain a smooth

global self-similar solution with finite energy inside the light cone C. The nontrivial energy
of A(n) inside the cone (7.14) insures that this limiting connection is nontrivial. But such a
connection does not exist by Theorem 6.1.

8. No null concentration

A key step in the transition from Theorem 1.7 to Theorems 1.8 and 1.11 is to deal with the
possibility that the energy stays concentrated near the boundary of the light cone. Whereas it
is not implausible that the energy near the cone must necessarily decay to zero (in particular,
see [10] for the small data wave maps problem), at this point we are not able to prove this.
Instead, here we prove a weaker statement which asserts that if almost all energy stays near
the cone, then our connection admits an energy dispersed caloric representation:

Theorem 8.1. Let A be a finite energy Yang–Mills connection on {1} × R4. Suppose that

ESγ
1
(A) + E{1}×R4\S1

(A) ≤ ϵ1, (8.1)

and

ES1(A) +

∫︂
S1

(Xε)P0(A) dx ≤ E3. (8.2)

Given any ϵ, E3 > 0, for sufficiently small ϵ1, ε and γ close enough to 1 (depending only on
ϵ, E3), there exists a caloric gauge representation of the connection Ax(1) so that

∥Ax(1)∥Ḣ1 ≲E3 1, Q(Ax(1)) ≲E3 1,

whereas
∥Ax(1)∥L4 + ∥F (1)∥

Ẇ
−1,4 ≲E3 ϵ.

We emphasize that the term ∥F (1)∥
Ẇ

−1,4 contains both spatial and temporal components
Fjk and F0j, respectively, of F . In our application, control of the second term on the LHS
of (8.2) will come from the monotonicity formula (Proposition 3.3).

As an immediate consequence of the last bound, we obtain the smallness of the fixed-time
energy dispersion in the caloric gauge:

Corollary 8.2. The caloric connection A(1) provided by the above theorem satisfies

sup
k

2−2k∥PkF (1)∥L∞ ≲ ϵ. (8.3)

The hypothesis of the theorem involves the full connection A at time t = 1, which includes
both information about Ax, A0 and the corresponding curvature components Fij and F0j.
Our first task is to peel off the nonessential parts A0 and F0j and to reduce the problem to
a statement about only the spatial part of the connection. To state the result, we introduce
an orthonormal frame (er, e1, e2, e3) at every point of R4 \ {0}, where er = ∂r in the polar
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coordinates (r,Θ) and {ea}a=1,2,3 is an orthonormal frame at x tangent to the sphere ∂Br(0)
(with r = |x|). We also fix a small constant 0 < δ0 ≪ 1

100
.

Proposition 8.3. Let A be an Ḣ
1
connection in R4 with energy at most E3, which satisfy

the following properties:
i) Fab = F (ea, eb) (a, b = 1, 2, 3) is small in L2,

∥Fab∥L2 ≤ ϵ. (8.4)

ii) Fra = F (er, ea) (a = 1, 2, 3) is small outside an annulus,

∥Fra∥L2({ 7
8
≤|x|≤1}c) ≤ ϵ.

iii) DaFra (i.e., the covariant angular divergence) is small in Ḣ
−1

A ,

∥DaFra∥Ḣ−1
A

≤ ϵ. (8.5)

Assume that ϵ is sufficiently small,

ϵ ≪E3 1.

Then there exists a caloric gauge representation of the connection A so that

∥A∥
Ḣ

1 ≲E3 1, Q(A) ≲E3 1, (8.6)

whereas16

∥A∥L4 ≲E3 ϵ
3
8
(1−δ0). (8.7)

We remark that the assumptions in the proposition are all formulated in a gauge invariant

fashion. Most notably, assumption (iii) involves the space Ḣ
−1

A , which is the dual of the

space Ḣ
1

A with norm
∥B∥2

Ḣ
1
A

= ∥DAB∥2L2 .

In particular, nothing is assumed about the Ḣ
1
size of A and its various components. This

turns out to be a problem in the proof, where it would be very convenient to have as a
starting point a connection A with some good bounds. To address this difficulty, the key
ingredient of the proof of the proposition is the following lemma, which we now state in the
polar coordinates x = rΘ:

Lemma 8.4. Let A be a connection which satisfies the hypotheses of Proposition 8.3. Then
there exists a gauge-equivalent connection B which has the following properties:

(1) B is bounded in Ḣ
1
,

∥B∥
Ḣ

1 ≲E3 1.

(2) B is small away from the unit sphere,

∥B∥
Ḣ

1
({ 3

4
≤|x|≤1}c) ≲E3 ϵ.

(3) Br is small in A( 2
3
, 4
3
),

∥Br∥Ḣ1
(A

( 23 , 43 )
)
≲E3 ϵ

1−δ0 .

16The factor 3
8 can be improved to 3

4 by using further techniques in [38], but for our purposes it is

unnecessary.
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(4) BΘ has small angular derivatives in A( 2
3
, 4
3
),

∦∇ΘBΘ∥L2(A
( 23 , 43 )

) + ∥r−1BΘ∥L2(A
( 23 , 43 )

) ≲E3 ϵ
1−δ0 .

We remark that the connection B provided by the above lemma has the property that it
is small in L4. This is explained in what follows.
From properties (2)–(4) and Hardy’s inequality, it follows that each component Bj in the

rectangular coordinates obeys
∥r−1Bj∥L2 ≲E3 ϵ

1−δ0 .

Thus we may localize Bj via a smooth cutoff outside the annulus {3
4
≤ |x| ≤ 1}, and show

that the L4 norm of this portion is small using property (2). To bound the L4 norm of the
localized remainder, the following variant of the Sobolev (or Bernstein) inequality applies:

Lemma 8.5. Let u be supported in an annulus A(r0,r1). Then

∥u∥L4 ≲r0,r1 ∥u∥
1
4

Ḣ
1

(︁
∦∇Θu∥L2 + ∥r−1u∥L2

)︁ 3
4 .

Proof. In what follows, we suppress the dependence of constants on r0, r1. Using a smooth
partition of unity in the angular variables, we may assume that u is supported in an angular
sector Γ = {rΘ ∈ A(r0,r1) : Θ ∈ κ}, where κ is a spherical cap in S3. Then we may use a
diffeomorphism from κ to a ball B ⊂ R3 to map Γ to [−1, 1]×B ⊂ R4.
We are left to prove

∥u∥L4 ≲ ∥u∥
1
4

H1∥u∥
3
4

L2H1 (8.8)

for a function u supported on the cylinder [−1, 1] × B ⊂ R4; here, the mixed norms are
defined with respect to x1 and x′ = x2, x3, x4. By the Littlewood–Paley inequality, it suffices
to verify this inequality for a single piece Pku. We also introduce the Littlewood–Paley
projections P ′

j associated with x′. Then by Bernstein’s inequality,

∥PkP
′
ju∥L4 ≲ 2

1
4
k2

3
4
j min{2−j∥u∥L2H1 , 2−k∥u∥H1},

and the LHS vanishes for j ≥ k+O(1). Now summing up in j, the desired bound follows. □

It follows that
∥B∥L4 ≲E3 ϵ

3
4
(1−δ0),

which in turn shows that in this gauge, B is energy dispersed (i.e., 2−k∥PkB∥L∞ ≲E3 ϵ
3
4
(1−δ0)).

One minor downside of Lemma 8.4 is that the polar coordinates are not so convenient to
use near zero and near infinity. However, both near zero and near infinity we have small L2

curvature, so we may directly apply Uhlenbeck’s lemmas; see Theorems A.9 and A.10 in the
appendix. Thus, after standard partitioning and regluing operations, the problem reduces
to the simpler case when we work in an annulus:

Lemma 8.6. Let A ∈ Ḣ
1
be a connection in the annulus A(1,2) with energy at most E3,

which has the following properties (all norms are implicitly defined on A(1,2) by restriction):
i) Small tangential curvature,

∥FΘΘ∥L2 ≤ ϵ.

ii) Small angular covariant divergence of the transversal curvature,

∥ D̸ΘFΘr∥Ḣ−1
A

≤ ϵ. (8.9)
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If ϵ ≪E3 1 then there is a gauge equivalent connection B in the Coulomb gauge17 with the
following properties:

a) Bounded size,
∥B∥

Ḣ
1 ≲E3 1.

b) Small components:

∥Br∥Ḣ1 + ∦∇ΘBΘ∥L2 + ∥r−1BΘ∥L2 ≲E3 ϵ
1−δ0 .

Remark 8.7. As a corollary of Lemma 8.5 and Properties (a)–(b) in Lemma 8.6, we have

∥Br∥L4 ≲E3 ϵ
1−δ0 , ∥BΘ∥L4 ≲E3 ϵ

3
4
(1−δ0). (8.10)

Indeed, the bound for Br is simply the Sobolev embedding. To apply Lemma 8.5 to BΘ, we

need to find an Ḣ
1
-extension B̄Θ of BΘ outside A(1,2) that is supported in (say) A( 1

2
, 5
2
) and

∥∂rB̄Θ∥L2 ≲E3 1, ∥∇ΘB̄Θ∥L2 + ∥r−1B̄Θ∥L2 ≲E3 ϵ
1−δ0 .

For this purpose, we take an even reflection of BΘ across the boundaries of ∂A(1,2) (see
Lemma A.2) and apply a radial cutoff that equals one on A(1,2) and supported in A( 1

2
, 5
2
).

Conversely, if such a bound holds then the Ḣ
1
type bounds follow by solving linear elliptic

systems; see the proof of Lemma 8.6 below.

We now successively prove the above results in reverse order:

Proof of Lemma 8.6. We seek the connection B, which is gauge-equivalent to A, so that it
satisfies the Coulomb gauge condition ∇kBk = 0 with respect to the metric

e = dr2 + dΘ2,

and with the boundary condition

Br = 0 on ∂A(1,2).

We claim that such a connection exists, and satisfies the conclusion of the lemma.
We use an elliptic bootstrap (i.e., a continuity) argument. Suppose that we have a con-

tinuous one parameter family of connections

A(h) ∈ (Ḣ
1 ∩ L4)(A(1,2)), h ∈ [0, 1], A(0) = 0, A(1) = A

so that the hypotheses of the lemma hold uniformly in h ∈ [0, 1]. Then the Coulomb
connection B(0) = 0 is the obvious solution when h = 0, and we seek to extend this property
by continuity up to h = 1. For this we consider the following bootstrap assumption:

The connection A(h) admits a Coulomb gauge representation B(h) as above, and which
satisfies the additional property

∥B(h)∥H1 ≤ C0, ∥B(h)∥L4 ≤ ϵ
3
4
(1−δ0). (8.11)

We will establish that, if C0 is large enough and ϵ is sufficiently small (depending on E3

and chosen in this order), the set

H = {h ∈ [0, 1] : (8.11) holds},
17Here we reserve the right to choose the metric favorably.

46



which trivially contains 0, is both open and closed, and thus contain h = 1.

Fractional Sobolev spaces and elliptic operators on S3 and A(1,2). In what follows,
we will employ fractional Sobolev spaces on S3 and A(1,2), where we will distinguish between
tangential and tranversal regularities in the latter case (for more details, see below). We
start with the case of the unit sphere S3. Denote by X a finite set of smooth vector fields
X on S3 that spans the tangent space at each point (e.g., the set of rotations Ωjk in the
xjxk-plane for j, k = 1, . . . , 4 would do). The L2-Sobolev space of k-forms on S3 of order
m ∈ N is defined by the norm

∥ω∥2Hm(S3;Λk) =
m∑︂

m′=0

sup
X1,...Xm′∈X
X′

1,...,X
′
k∈X

∥X1 · · ·Xm′(ω(X ′
1, . . . , X

′
k))∥2L2(S3).

Clearly, any different choice of X gives rise to an equivalent norm. As usual, these spaces are
extended to negative orders by duality, and to fractional orders by complex interpolation.

A basic operator in this setting is the Hodge Laplacian on k-forms, which we denote by
̸∆k. It is a second order elliptic operator that is nonpositive on L2. Thus, for any α > 0
and γ ∈ R, (−̸∆k + 1)α : Hγ+α(S3; Λk) → Hγ(S3; Λk) has a well-defined inverse, which we
denote by (−̸∆k + 1)−α. Moreover, the first and second de Rham cohomology groups of S3

are trivial, so ̸∆1 and ̸∆2 have trivial kernel by the Hodge theorem. Thus, for k = 1, 2, the
preceding discussion holds with −̸∆k + 1 replaced by −̸∆k.
Next, we consider the domain A(1,2). For the moment, we view it as an open submanifold

(1, 2)× S3 of the compact manifold M = (R/4Z)r × S3
Θ, equipped with the product metric

e = dr2 + dΘ2. We say that a vector field X (resp. a k-form) on M is tangential (to
the constant-r spheres) if dr(X) = 0 (resp. ι∂rω = 0). A general k-form ω on M may be
decomposed into its tangential part, which may be identified with the pullback ωΘ...Θ, and
its transversal part ι∂rω, which is a tangential (k − 1)-form.
Let Xtan be a finite set of smooth tangential vector fields on A(1,2) that spans the tangent

space of {r = const} at every point. For σ ∈ R and m ∈ N, we define the anisotropic
L2-Sobolev norm of order (σ,m) for a tangential k-form ω by

∥ω∥2Hσ,m(M;Λk
tan)

=
m∑︂

m′=0

sup
X1,...Xm′∈Xtan

X′
1,...,X

′
k∈Xtan

∥X1 · · ·Xm′(ω(X ′
1, . . . , X

′
k))∥2Hσ(M).

Again, any other choice of Xtan gives rise to an equivalent norm. This definition is extended
to negative m by duality, and to fractional orders by complex interpolation (while keeping
σ fixed). Then the norm Hσ,γ((1, 2)× S3,Λk

tan) is defined by restriction (cf. Section 1.4).
The Hodge Laplacian ̸∆k acts on a tangential k-form ω by viewing each ω(r,Θ) as a k-

form on the unit sphere S3
Θ. It is not difficult to verify (via induction on γ ∈ N, duality for

γ < 0 and interpolation for γ ∈ R \Z) that (−̸∆k +1)α : Hσ,γ+α(M,Λk
tan) → Hσ,γ(M,Λk

tan)
is invertible for any α > 0, σ, γ ∈ R; the same property holds on (1, 2)× S3, too. Moreover,
it is clear that Hσ,γ(M; Λk

tan) admits the following useful spectral characterization in terms
of the commuting self-adjoint operators −L2

∂r
+ 1 and −̸∆k + 1 on L2(M; Λk

tan):

∥ω∥Hσ,γ(M;Λk
tan)

∼ ∥(−L2
∂r − ̸∆k + 2)σ(−̸∆k + 1)γω∥L2(M;Λk

tan)
. (8.12)

The same conclusions hold with −̸∆k + 1 replaced by −̸∆k if k = 1, 2.
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Finally, to connect back to the original setting, we note that for each σ ∈ R and m ∈ N,
we have the equivalence

∥ω∥Hσ,m((1,2)×S3,Λk
tan)

∼
m∑︂

m′=0

sup
X1,...Xm′∈Xtan

X′
1,...,X

′
k∈Xtan

∥X1 · · ·Xm′(ω(X ′
1, . . . , X

′
k))∥2Hσ(A(1,2))

where the norm Hσ(A(1,2)) on the RHS is defined with respect to the Euclidean metric
on R4. Note also the equivalences ∥ · ∥Hσ((1,2)×S3) = ∥ · ∥Hσ,0((1,2)×S3) ∼ ∥ · ∥Hσ(A(1,2)) and

∥ · ∥Lp
rL

p
Θ((1,2)×S3) ∼ ∥ · ∥Lp(A(1,2)). Accordingly, in what follows we will refer to these norms

simply by Hσ and Lp, respectively, without any possibility of confusion.

A-priori estimates for B(h). We now begin our proof in earnest. First, we establish some
a-priori bounds for B(h), which improve the bootstrap assumption (8.11) and also imply the
desired bounds stated in the lemma.

In what follows, we suppress h and just write B = B(h). We also abuse the notation a bit
and write F for the curvature 2-form associated to B. We omit the dependence of constants
on E3 and write c for a small positive constant that may vary from line to line. We use the
roman indices a, b, . . . for coordinates on S3 and use the metric dΘ2 to raise and lower these
indices. We also suppress Λk

tan in the norms when the degree of the differential form is clear
from the context.

Note that (ι∂rF ) = FrΘ, viewed as a tangential 1-form, satisfies the following div-curl
system on each sphere:{︃ ∇̸aFar ≠D

aFar − [Ba, Far],

∂aFbr − ∂bFar = −∂rFab − [Br, Fab]− [Ba, Frb] + [Bb, Fra].

Thus
̸∆1Far + ∂a[B

b, Fbr] +∇̸b([Bb, Fra]− [Ba, Frb]) = G, (8.13)

where
G = ∂a(̸D

bFbr − [Bb, Fbr])−∇̸b(∂rFba + [Br, Fba]). (8.14)

We claim that

∥[Ba, Far]∥H−1+δ0,−δ0 ((1,2)×S3) ≲C0 ϵ
c∥FΘr∥H−1+δ0,1−δ0 ((1,2)×S3). (8.15)

We defer the proof until later, but remark that this estimate (barely) fails when δ0 = 0; this
failure is the reason why we introduce δ0 > 0 and the fractional anisotropic Sobolev spaces.
Combined with the bound ∥FΘr∥H−1+δ0,1−δ0 ((1,2)×S3) ≲ ∥F∥L2(A) ≲ 1, which is obvious from
(8.12), it follows that the terms involving Ba on the LHS may be absorbed into the main
term. Therefore,

∥FΘr∥H−1+δ0,1−δ0 ((1,2)×S3) ≲ ∥G∥H−1+δ0,−1−δ0 ((1,2)×S3).

On the one hand, by (8.14) and the assumptions, G is O(ϵ) in H−1,−1((1, 2) × S3). On the
other hand, by (8.13) and the estimate

∥∂a[Bb, Fbr] +∇̸b([Bb, Fra]− [Ba, Frb]))∥H0,−2((1,2)×S3) ≲C0 ϵ
c∥F∥L2((1,2)×S3), (8.16)

whose proof we also defer until later, it follows that G is O(1) +OC0(ϵ
c) in H0,2((1, 2)× S3).

By interpolation, which is obvious from (8.12), we then have

∥FΘr∥H−1+δ0,1−δ0 ((1,2)×S3) ≲ ϵ1−δ0 ,
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provided that ϵ is small enough depending on C0.
Next, we can write an elliptic equation for Br in (1, 2)× S3,

(∂2
r + ̸∆0)Br +∇̸a[Ba, Br] ≠D

aFar − [Ba, Far],

with the Dirichlet boundary condition Br = 0 on ∂((1, 2) × S3). Here the RHS has size
O(ϵ) + OC0(ϵ

cϵ1−δ0) in H−1((1, 2) × S3) because of the hypothesis, (8.15) and the simple
embedding (see (8.12))

H−1+δ0,−δ0((1, 2)× S3) ↪→ H−1((1, 2)× S3).

Also the coefficient Ba on the left is small in L4. Hence the elliptic problem is uniquely
solvable, and the solution Br satisfies

∥Br∥H1 ≲ ϵ+ CC0ϵ
cϵ1−δ0 .

Finally, for BΘ we have the following div-curl system on each sphere:{︃ ∇̸aBa = −∂rBr,

∂aBb − ∂bBa = Fab − [Ba, Bb].

The first RHS is O(ϵ) +OC0(ϵ
cϵ1−δ0) in L2, whereas the second RHS is O(ϵ). It follows that

∥∇ΘBΘ∥L2 + ∥BΘ∥L2 ≲ ϵ+ CC0ϵ
cϵ1−δ0 .

On the other hand we can use FrΘ to bound

∥∇rBΘ∥L2 ≤ ∥FrΘ∥L2 + ϵ+ CC0ϵ
cϵ1−δ0 ≲ 1,

if ϵ is sufficiently small depending on C0. Thus, we have proved that the conclusion of the
lemma holds for h ∈ H. Furthermore, we have

∥B∥H1 ≲ 1, ∥B∥L4 ≲ (ϵ+ CC0ϵ
cϵ1−δ0)

3
4 , (8.17)

where we used Remark 8.7 for the second estimate. Once we choose C0 large enough and ϵ
sufficiently small, the bootstrap assumption for B is improved.

Proof of (8.15) and (8.16). To conclude the proof of the a-priori estimates, it remains
to establish (8.15) and (8.16). In both cases, the idea is to reduce the problem to global-
in-spacetime estimates via localization and change of variables (cf. proof of Lemma 8.5).
The key ingredient in the reduction are the invariance of the anisotropic Sobolev spaces on
(1, 2)× S3 under multiplication by smooth functions and pullback by diffeomorphisms, both
of which are straightforward to verify.

First, we extend BΘ and FΘr by an even reflection across the boundaries of (1, 2) × S3

and apply a smooth cutoff that equals 1 on (1, 2) × S3 and is supported in (1
2
, 5
2
) × S3.

Using a partition of unity on S3, it suffices to consider BΘ and FΘr that are supported in
(1
2
, 5
2
) × κ, where κ is a spherical cap in S3. Finally, we use the invariance under pullback

by diffeomorphisms to straighten κ to a unit ball B′ in R3, and also the invariance under
multiplication by smooth functions to strip away the (variable coefficient) metric e and the
volume form.
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As a result, estimates (8.15) and (8.16) are reduced, respectively, to the following estimates
for functions u, v on R4:

∥(−∆+ 1)−
1−δ0

2 (uv)∥L2H−δ0 ≲ ϵc∥(−∆+ 1)−
1−δ0

2 v∥L2H1−δ0 , (8.18)

∥uv∥L2H−1 ≲ ϵc∥v∥L2 , (8.19)

where the mixed norms are defined with respect to x1 and x′ = (x2, x3, x4), and u obeys

∥u∥H1 ≲ 1, ∥u∥L4 ≲ ϵ
3
4
(1−δ0). (8.20)

Before we turn to the proof of (8.18) and (8.19), we first deduce from (8.20)

∥u∥L∞L3 ≲ ϵc. (8.21)

We introduce the inhomogeneous Littlewood–Paley projections {P̃ j}j≥0 on R4 (i.e., P̃ 0 =

P≤0 and P̃ j = Pj for j ≥ 1), as well as their analogues {P̃ ′
j}j≥0 defined with respect to

x′ = (x2, x3, x4). In view of the refined Sobolev embedding [3, Theorem 1.43]18 on R3,

∥u∥3L∞L3 ≲ ∥u∥2
L∞H

1
2
sup
j

∥P̃ ′
ju∥L∞ ,

it suffices to show that ∥u∥
L∞H

1
2
≲ 1 and supj ∥P̃

′
ju∥L∞ ≲ ϵc. The former assertion follows

from (8.20) and the trace theorem. For the latter assertion, we introduce a parameter m > 1
and estimate

2−j∥P̃ ′
ju∥L∞ ≲ 2−j∥P̃ ′

jP̃≤j+mu∥L∞ + 2−j∥P̃ ′
jP̃>j+mu∥L∞

≲
∑︂

k≤j+m

2k∥P̃ ku∥L4 +
∑︂

k>j−m

2
1
2
j∥P̃ ku∥L∞L2

≲ 2m∥u∥L4 + 2−
1
2
m∥u∥H1 .

Then using (8.20) and optimizing the choice of m, the desired estimate follows.

Next, we establish (8.18). We normalize v so that ∥(−∆ + 1)−
1−δ0

2 v∥L2H1−δ0 ≤ 1. We
decompose uv =

∑︁
j,k,ℓ≥0 P̃ j(P̃ kuP̃ ℓv) and divide the proof into the following (overlapping)

cases:

(1) Low-High interaction, |j − ℓ| < 3, k < j + 5. We introduce the exponents 2− and
6− defined by the relations 1

2− = 1
2
+ δ0

3
and 1

6− = 1
6
+ δ0

3
. We estimate

2(−1+δ0)j∥P̃ j(P̃<j+5uP̃ ℓv)∥L2H−δ0 ≲ 2(−1+δ0)j∥P̃ j(P̃<j+5uP̃ ℓv)∥L2L2−

≲ 2(−1+δ0)j∥P̃<j+5u∥L∞L3∥P̃ ℓv∥L2L6−

≲ ∥u∥L∞L32(−1+δ0)ℓ∥P̃ ℓv∥L2H1−δ0 ,

which is acceptable thanks to (8.21).
(2) High-Low interaction, |j − k| < 3, ℓ < j + 5. This case can be handled similarly as

in the Low-High interaction case; we even get an additional gain of 2(−1+δ0)(j−ℓ).

18To be precise, [3, Theorem 1.43] is formulated in terms of homogeneous spaces, but the inhomogeneous
version stated here follows immediately.
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(3) High-High interaction, |k − ℓ| < 3, j < min{k, ℓ} − 3. Let m > 1 be a parameter to
be fixed later, and let (3

2
−)−1 = 2

3
+ δ0

3
. For ℓ > j +m, we estimate

2(−1+δ0)j∥P̃ j(P̃ kuP̃ ℓv)∥L2H−δ0 ≲ 2(−1+δ0)j∥P̃ j(P̃ kuP̃ ℓv)∥L2L2−

≲ 2δ0j∥P̃ j(P̃ kuP̃ ℓv)∥L1L
3
2−

≲ 2−δ0(ℓ−j)2k∥P̃ ku∥L2 2(−1+δ0)ℓ∥P̃ ℓv∥L2L6− .

After summation, the contribution of these terms is O(2−δ0m). On the other hand,
for ℓ ≤ j +m, we estimate

2(−1+δ0)j∥P̃ j(P̃ kuP̃ ℓv)∥L2H−δ0 ≲ 2(1−δ0)(ℓ−j)∥P̃ ku∥L∞L32(−1+δ0)ℓ∥P̃ ℓv∥L2L6− ,

which contributes O(2(1−δ0)m∥u∥L∞L3) after summation. Using (8.21) and optimizing
the choice of m, the desired estimate follows.

Finally, we prove (8.19). By the Sobolev embeddings on R3, we have

∥uv∥L2H−1 ≲ ∥uv∥
L2L

6
5
≲ ∥u∥L∞L3∥v∥L2 ,

which implies (8.19) in view of (8.21).

Completion of the continuity argument. Next, we consider a perturbative problem,

and prove that if B is Coulomb, Ḣ
1
and small in L4 as above, then all connections Ã which

are sufficiently close to A in Ḣ
1
admit a similar Coulomb representation.

Abusing the notation a bit, we write A instead of B and redefine Ã by applying the same
gauge transformation that takes A to B. Hence, ∂kÃk is small. Applying a further gauge
transformation (see Lemma A.1), we may assume that Ãr = 0 on ∂A(1,2) as well. Then to

find a gauge transformation O which takes Ã into the Coulomb gauge, we end up having to
solve for Ωk = O;k the system19{︄

∂kΩk = ∂k(Ad(O)Ãk) = Ad(O)∂kÃk + [O;k, Ad(O)Ã
k
],

∂jΩk − ∂kΩj = −[Ωj,Ωk],
(8.22)

with the boundary condition Ωr = 0 on ∂A(1,2). To solve this system, we start with O(0) = Id

and construct Ω(n) by applying Proposition A.8 with B = Ad(O(n−1))A. Then O(n) is

constructed by integrating the system of ODEs O
(n)
;j = ∂jO

(n)(O(n))−1 = Ω(n), which is

possible thanks to the curl condition for Ω(n). By smallness of ∥∂kÃk∥L2 and ∥Ã∥L4 , this

iteration procedures goes through and we obtain a uniform bound ∥O(n)
;x ∥H1 ≲ ∥∂kÃk∥L2 .

Taking the limit (along a suitable subsequence), we obtain a desired gauge transformation
O that also satisfies ∥O;x∥H1 ≪ 1.

The a-priori bound shows that if h ∈ H then the stronger bound (8.17) holds. Then
the perturbative argument shows that for h ∈ H there exists a fixed size neighborhood
[h − c, h + c] which is in H. We conclude that H = [0, 1], which completes the continuity
argument.

19An alternative idea would have been to work with O−1∂kO as in Section 5, which has the advantage that
no O appears in the div-curl system; see (5.5). However, for the boundary value problem on the annulus,
the cokernel (and also the kernel) of the associated Neumann problem is nontrivial. The system (8.22) has
the virtue of having a cokernel independent of O, while it depends on O for (5.5).
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Existence of a continuous path A(h). The remaining issue is that of constructing a
continuous path from A to 0. In effect it suffices to show that there exists an extension of
A inside the full unit ball which still satisfies the assumptions of the lemma and so that A
vanishes near x = 0. Then we can obtain the desired family by scaling20,

A(h)(x) = hA(hx), h ∈ [0, 1].

This can be done as follows:

(1) In a suitable gauge set Ar = 0 on the boundary; see Lemma A.1.
(2) Double the annulus inside, and extend the connection as odd for Ar and even for

Aθ. This extension is still H1, and the smallness hypothesis still holds in the double
annulus; see Lemma A.2.

(3) Choose a sphere S within the extended part on which FΘΘ is small in L2. Using
Uhlenbeck’s lemma on the 3-sphere (Proposition A.11), we may set ∥AΘ∥H1(S) small
in a suitable gauge. In addition, again using Lemma A.1, we may set Ar = 0 on S.

(4) Choose an extension of A inside S which is small in H1. More precisely, since the
trace of Ar vanishes on S, it follows that the extension of Ar by zero inside of S
is in H1. Similar considerations apply to AΘ after subtracting an extension of the
boundary values, which can be made to have a small H1 norm. Overall, the H1 norm
of the extension is small inside S, so that the assumptions of the lemma are kept.
Finally, by smallness we may harmlessly cutoff AΘ near 0 as well, as desired. □

Lemma 8.6 =⇒ Lemma 8.4. In accordance with the choice of metric in Lemma 8.6, we
endow R4 with a smooth Riemannian metric that coincides with dr2 + dΘ2 in A(1,2) and
with the Euclidean metric dr2 + r2dΘ2 outside A( 1

2
, 5
2
). We formulate the Coulomb gauge

conditions in the proof with respect to this metric. As already noted in [57], Uhlenbeck’s
lemmas work just as well on Riemannian manifolds if we take ϵ0 small enough; so does
Lemma A.3, which is an interior elliptic regularity result .

By Uhlenbeck’s lemma (Theorem A.9) we obtain a gauge-equivalent connection Ain in B 3
4

which is ϵ- small in H1. Next, by Uhlenbeck’s lemma in the exterior of a ball (Theorem A.10,

we obtain a gauge-equivalent connection Aout in R4\B1, which is ϵ- small in Ḣ
1∩L4(R4\B1).

Now note that (8.5) is equivalent to (8.9), since

DaFar = r−2 D̸ΘFΘr.

Thus by Lemma 8.6 we obtain a gauge-equivalent connection Amid in the annulus A( 2
3
, 4
3
).

The L4 smallness allows us to patch the three connections cleanly (without any topological
obstructions). More precisely, the Coulomb gauge conditions imply that the transition maps
O in the intersections obey a favorable div-curl system. The L4 bounds on Ain, Amid and
Aout imply that O;x (defined in each intersection) is small in L4. Then, by the div-curl system

we may upgrade this bound to smallness in Ḣ
1
, and then via Lemma A.3 to smallness in

ℓ1Ḣ
1
(where we shrink the domain at each step). Thus each O is uniformly closed to a

constant (Lemma A.4), and a standard patching argument (see, e.g., [57, Proposition 3.2])
now works. □

20As in the original proof of Uhlenbeck’s lemma in [57].
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Lemma 8.4 =⇒ Proposition 8.3. We start with a continuity argument. Using the equiv-
alent connection A given by the lemma, we produce a continuous family of connections
Ah = hA with h ∈ [0, 1] so that A0 = 0 and A1 = A, and which satisfies uniformly the
hypotheses of the proposition.

We consider the subset H of h ∈ [0, 1] for which the following property holds:

The Yang–Mills heat flow of A is global and satisfies the bound

∥F∥L3
x,s

≤ 1.

Clearly 0 ∈ H. Also by the continuity properties of the Yang–Mills heat flow, H is closed.
It remains to show that H is open, which would imply that H = [0, 1]. For this it suffices to
take the above bound as a bootstrap assumption, and show that we can improve it.

Under this assumption, it follows immediately from Proposition 2.7 that we have a gauge
transformation O with

∥O;x∥Ḣ1 ≲E3 1,

which transforms A into its caloric representation Ã. In turn Ã must also satisfy

∥Ã∥
Ḣ

1 ≲E3 1.

Further, since A was small in L4, it curvature is small in Ẇ
−1,4

,

∥F∥
Ẇ

−1,4 ≲E3 ϵ
3
4
(1−δ0).

By this and the bound for O;x, the curvature of Ã, namely F̃ = OFO−1, must also be small,

∥F̃∥
Ẇ

−1,4 ≲E3 ϵ
3
4
(1−δ0).

Propagating this bound along the caloric flow [38, Proposition 8.9; Eq. (8.44)], we obtain

∥PkF̃ (s)∥
Ẇ

−1,4 ≲E3 ϵ
3
4
(1−δ0)(1 + 22ks)−100,

On the other hand, by the bootstrap assumption and [38, Proposition 7.13; Eq. (7.20)], we
also have

∥PkF̃ (s)∥L2 ≲E3 ck(1 + 22ks)−100,

where ∥ck∥ℓ2 ≲E3 1. By Bernstein (for the second bound) and interpolation, we have

∥PkF̃ (s)∥L3 ≲E3 c
2
3
k ϵ

1
4
(1−δ0)2

2
3
k(1 + 22ks)−100.

Then by Schur’s test, we obtain

∥F̃∥L3
s,x

≲E3 ϵ
1
4
(1−δ0)∥c

2
3
k ∥ℓ3 ≲E3 ϵ

1
4
(1−δ0),

which improves the bootstrap assumption. Moreover, by Bernstein and [38, Proposition 8.9;

Eq. (8.45)], it follows that ∥Ã∥
ℓ∞Ẇ

−1,∞ ≲ ∥Ã∥ℓ∞L4 ≲ ϵ
3
4
(1−δ0). Then by the bound ∥Ã∥

Ḣ
1 ≲E3

1 and the improved Sobolev inequality [3, Theorem 1.43], (8.7) follows. This completes the
proof of the proposition. □
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Proposition 8.3 =⇒ Theorem 8.1. We express the curvature components in the null frame.
By (8.1) and (8.2), as well as (3.16) and (3.17) for the expression of (Xε)P0(A) =

1
2
((Xε)PL(A)+

(Xε)PL(A)), the null components α, ϱ and σ are already small in L2 provided that ϵ1, ε and
1− γ are sufficiently small. We now use the constraint equation to express

DaFar = Da(Fa0 + FaL) = −r−3Dr(r
3Fr0) +Daαa = −r−3Dr(r

3ϱ) +Daαa, (8.23)

which implies the desired smallness of DaFar in the gauge-invariant space H−1
A . Thus, we

have established that the spatial part of the connection Ax satisfies the hypotheses of Propo-
sition 8.3.

Suppose now that Ax is in the caloric gauge and satisfies the bounds in Proposition 8.3.
It remains to consider the temporal components of F . For F0a we write

F0a = FLa + Fra = αa + Fra,

and the Ẇ
−1,4

smallness follows. For F0r we simply have

F0r =
1

2
FLL = ϱ,

which is small even in L2. □

9. Proof of the Threshold Theorem and the Dichotomy Theorem

In this section, we finally prove the Threshold and Dichotomy Theorems (i.e., Theorems 1.8
and 1.11, respectively).

For both theorems, we argue by contradiction. Suppose that the conclusion of the Di-
chotomy Theorem (Theorem 1.11) is false, i.e., there exists a solution A for which both
alternatives a) and b) are false. Then we are in one of the following two scenarios:

(i) The solution blows up in finite time, and the hypothesis of Theorem 1.7 is false near
the tip of the cone C.

(ii) The solution is global but the hypothesis of Theorem 1.7 is false near the infinite end
of the cone C.

On the other hand, assume now that the conclusion of the Threshold Theorem (Theo-
rem 1.8) is false. We seek to show that the conclusion of Theorem 1.7 is false, and therefore
we are again in one of the two scenarios above. To achieve this, we need to use the energy
assumption E(A) < 2EGS along with vanishing of the characteristic number χ = 0 (as a

consequence of topological triviality A ∈ Ḣ
1
). Our argument is similar to [32] (see also [38,

Section 6.2]).
If the conclusion of Theorem 1.7 were true, this would imply that a sequence of translated,

rescaled and gauge transformed copies A(n) of A converges (modulo gauge transformations)
in H1

loc to a Lorentz transform of a nontrivial harmonic Yang–Mills connection LvQ. This
implies (spacetime) L2

loc convergence of curvature tensors F (n), and thus for almost every
t ∈ (−1/2, 1/2) (and possibly passing to a subsequence)

E{t}×BR
(A(n)) =

1

2

∫︂
BR

⟨F (n), F (n)⟩(t) → E{t}×BR
(LvQ) for any R > 0,

which in turn implies

E(Q) ≤ E(A) < 2EGS.
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By Theorem 1.6, the only possibility for Q is that |χ(Q)| = Ee(Q). Moreover, since Lorentz
transform preserves the topological class, we have χ(Lv(Q)) = χ(Q). From here on, we
assume that χ(Q) > 0; the alternative case is similar.

Fix a large number R ≫ 1 and t ∈ (−1/2, 1/2). By topological triviality of A(n)(t), we
have

0 = χ(A(n)(t)) =

∫︂
BR

−⟨F (n) ∧ F (n)⟩(t) +
∫︂
R4\BR

−⟨F (n) ∧ F (n)⟩(t).

Again by the (spacetime) L2
loc convergence of F (n), there exists a subsequence such that∫︂

R4\BR

⟨F (n) ∧ F (n)⟩(t) =
∫︂
BR

−⟨F (n) ∧ F (n)⟩(t) →
∫︂
BR

−⟨F [LvQ] ∧ F [LvQ]⟩.

By (1.5), we have

E(A) ≥ lim sup
n→∞

(︂1
2

∫︂
BR

⟨F (n), F (n)⟩(t) + |
∫︂
R4\BR

⟨F (n) ∧ F (n)⟩(t)|
)︂

≥E{t}×BR
(LvQ) + |

∫︂
BR

−⟨F [LvQ] ∧ F [LvQ]⟩|.

Sending R → ∞, the RHS tends to E(LvQ) + χ(LvQ) ≥ 2E(Q) ≥ 2EGS, which is a contra-
diction.

It follows that the conclusion of Theorem 1.7 is false, and thus its hypothesis is false.
Hence we have reduced the problem again to the above alternative (i)–(ii). From here on,
the proofs of the two theorems are identical. The analysis is largely similar in the two cases
(i) and (ii), but there are still some differences so we consider them separately.

Remark 9.1. A difference in the properties of the solutions is that in the subthreshold case
we can work globally in the caloric gauge, whereas otherwise we need the local solutions
given by Theorem 2.11. However this makes no essential differences in the proofs below.

(i) The blow-up scenario. Let E = E(A). If [0, T ) is a maximal existence time, then
the temporal gauge local well-posedness result (Theorem 2.19) implies that there exists a
point X ∈ R4 so that the energy does not decay to zero in the backward cone of (X,T ).
By translation invariance we will set (X,T ) = (0, 0) and, reversing time, denote its forward
cone by C. Thus we now have a Yang–Mills connection A with the property that

lim
t↘0

ESt(A) > ϵ0, (9.1)

where ϵ0 is a universal positive constant corresponding to the small data result.
We also know that the hypothesis of Theorem 1.7 is false, which gives

lim
t↘0

ESγ
t
(A) = 0, 0 < γ < 1. (9.2)

We would like to use these two properties in order to show that the connection A admits a
caloric representation near the tip of the cone, which is also energy dispersed. Then we could
directly apply the energy dispersed result in Theorem 2.13 to conclude that the solution can
be extended beyond the blow-up time T = 0, which is a contradiction. However, this strategy
cannot work unless the energy of A is very small also outside the cone, which is not at all
guaranteed a-priori. To resolve this difficulty, we first truncate the solution outside the cone
in order to insure that the outer energy stays small:
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Lemma 9.2. For each ε > 0 there exists a tε > 0 and a finite energy Yang–Mills solution
Ã in (0, tε] with the following properties:

(1) Gauge equivalence: Ã is gauge equivalent to A in C(0,tε].
(2) Small energy outside the cone

E({t}×R4)\St
(Ã) ≤ ε8E for every t ∈ (0, tε], (9.3)

(3) Small flux on ∂C

F(0,tε](Ã) ≤ ε9E. (9.4)

Proof. The flux energy relation (3.8) implies that the flux decays to zero near the tip of the
cone,

lim
t→0

F(0,t](A) = 0.

so we first choose tε small enough so that the last condition is satisfied for A. We then choose
δ > 0 so that the energy of A in a δ-annulus around the cone is small,

E{tε}×{tε<|x|<tε+3δ}(A) ≤ ε9E.

Again by the flux energy relation, this propagates to all smaller times,

E{t}×{t<|x|<t+3δ}(A) ≤ 2ε9E, 0 < t < tε.

We now reset tε to a smaller value,

tε → min{tε, δ}.
For this new choice we have

E{tε}×{tε<|x|<4tε}(A) ≤ 2ε9E.

By (a rescaled form of) Proposition 2.14, we can truncate the data (a, e)(tε) for A at time
tε. We obtain a new data set (ã, ẽ)(tε) which agrees with (a, e)(tε) inside the cone, but is
small outside,

E{tε}×{tε<|x|<4tε}(Ã) ≲ ε9E.

Now we consider the solution Ã generated by the truncated data (ã, ẽ)(tε) below time tε.
For as long as it exists it is gauge equivalent with A inside the cone, since they are gauge
equivalent initially, see Theorem 2.19. This shows that it cannot blow-up inside the cone.
On the other hand outside the cone it satisfies the second condition in the lemma by the
flux-energy relation, so it does not have enough energy blow up there either. It follows that
Ã persists as a finite energy solution and satisfies the conditions in the lemma up to time
t = 0. □

From here on, we work with the connection Ã which satisfies the properties (9.1), (9.2)
and (9.3) where for the latter we choose

ε ≪E 1.

Since the flux decays to zero at the tip of the cone, Proposition 3.3 applied in the interval
[εt, t] also implies that for small enough t we have∫︂

St

(Xεt)P0(Ã) dx ≲ E. (9.5)
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The bounds (9.1), (9.2) and (9.3) together with (9.5) with small enough ε guarantee that
the hypothesis of Theorem 8.1 is satisfied for Ã all small enough t. This shows that the
connection Ã admits a caloric representation in [0, t], which is also energy dispersed. Thus
we can apply the energy dispersed result in Theorem 2.13 to conclude that the solution can
be extended beyond the blow-up time T = 0, which is a contradiction.

(ii) The non-scattering scenario. This is similar but simpler, as we no longer need to
truncate the data for A and instead we may work directly with A. For this we choose R
large enough so that the outer energy of A is small,

E{0}×{|x|>R}(A) ≤ ε9E,

and then work with the translated connection A(t − R, x). This satisfies the conditions
(2),(3) in Lemma 9.2 for t ∈ [R,∞). From this point on, the bound (9.5) must hold for
all large enough t. Hence the hypothesis of Theorem 8.1 is satisfied for Ã all large enough
t. This shows that the connection A admits a caloric representation in [t,∞], which is also
energy dispersed (in the case of Theorem 1.8, we have smallness of the energy dispersion in
the original gauge, thanks to the uniqueness of the caloric gauge). Thus we can apply the
energy dispersed result in Theorem 2.13 in [t,∞) and conclude that A ∈ S1([t,∞)), i.e., the
desired scattering result.

Appendix A. Tools for analysis of gauge transformations

In this appendix, we collect various technical results, mostly concerning gauge transfor-
mations, that are used in the main text.

A.1. Results from [40]. We recall some useful results that were proved in [40]. The first
result is essentially an extension to the critical regularity of a well-known result (see, for
instance, [57, Lemma 2.6]).

Lemma A.1 ([40, Lemma 3.5]). Let B be a g-valued function in H
1
2 (S3). There exists

O ∈ L∞ ∩H2(B1), which depends continuously on B, such that

(O,O;r) ↾{r=1}= (Id,B),

where O;r =
xj

|x|O;j. A similar construction can be done in the exterior region R4 \B1.

The next result works in tandem with Lemma A.1, and provides an simple way to extend
a H1 connection 1-form through a sphere.

Lemma A.2 ([40, Lemma 3.18]). Let A ∈ H1(BR) with Ar = 0 on ∂BR. Extend A outside
BR by

Ār

(︃
R2

r
,Θ

)︃
= −Ar(r,Θ), ĀΘ

(︃
R2

r
,Θ

)︃
= AΘ(r,Θ).

Then the curvature 2-form F̄ of the extension obeys

F̄

(︃
R2

r
,Θ

)︃
= F (r,Θ) for r < R.

A similar construction can be done starting from the exterior region R4 \BR.

The following results are useful tools for proving continuity of a gauge transformation in
the critical regularity setting.
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Lemma A.3 ([40, Lemma 3.16]). Let O;j ∈ Ẇ
1, d

2 (B2R) be a solution to the div-curl system

∂jO;k − ∂kO;j =[O;j, O;k]

∂ℓO;ℓ =H.
(A.1)

If H ∈ ℓ1L
d
2 (B2R), then O;x ∈ ℓ1Ẇ

1, d
2 (BR) with the bound

∥O;x∥
ℓ1Ẇ

1, d2 (BR)
≲ ∥H∥

ℓ1L
d
2 (B2R)

+ ∥O;x∥2
Ẇ

1, d2 (B2R)
.

We note that, even though the divergence ∂ℓO;ℓ is formulated in terms of the Euclidean
metric, the lemma works with ekℓ∇kO;ℓ defined with respect to any smooth metric on BR

with suitable adjustment of the constants.

Lemma A.4 ([40, Lemma 3.17]). If O;x ∈ ℓ1W 1, d
2 (B), then O is continuous on B.

A.2. Solvability of div-curl systems. Our aim in this subsection is to provide solvability
results for the nonlinear div-curl system{︄

∇ℓΩℓ = ∇ℓBℓ

∇jΩk −∇kΩj = −[Ωj,Ωk]
in O, (A.2)

either with O = R5 but with respect to a variable metric e, or with O = A(R′,R) ⊂ R4 (with
respect to the Euclidean metric) and with suitable boundary conditions on ∂A(R′,R); these
problems arise in Sections 5 and 8, respectively. To begin with, we solve in each case the
easier linear system (see Section 1.4 for the notation){︃

δω =f

dω =g
in O, (A.3)

where we remind the reader that δω = −∇ℓωℓ for a 1-form ω.

Lemma A.5 (Linear div-curl system in R5). Consider the div-curl system (A.3) in (R5, e),
where eαβ is a smooth metric such that ∥eαβ − ēαβ∥

L∞∩Ḣ
5
2
< ϵe for some constant positive

definite matrix ēαβ. Suppose that f, g are in L2Ḣ
1
2 and obey the compatibility condition

dg = 0.

Then for ϵe sufficiently small, there exists a unique solution ω to this problem such that

ω ∈ L5 and ∇ω ∈ L2Ḣ
1
2 , which obeys

∥∇ω∥
L2Ḣ

1
2
≲ ∥f∥

L2Ḣ
1
2
+ ∥g∥

L2Ḣ
1
2
.

Note that if ω ∈ L5 and ∇ω ∈ L2Ḣ
1
2 , then

∥ω∥L5 ≲ ∥ω∥
L2Ḣ

3
2
+ ∥ω∥

L∞Ḣ
1 ≲ ∥∇ω∥

L2Ḣ
1
2
. (A.4)

Indeed, the first inequality is simply the 4-dimensional Sobolev inequality and interpolation,
and the second inequality follows from applying the trace theorem to each Pkω and square
summing in k.
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Proof. First, we treat the case eαβ = ēαβ, in which case (A.3) has constant coefficients. Let

f̃ = (−∆)−1f, g̃αβ = (−∆)−1gαβ,

and define

ω = df̃ + δg̃.

By the compatibility condition dg = 0, as well as the relations d2 = 0 and δ2 = 0, it is easy
to check that ω solves (A.3). Any other solution differs from ω by a harmonic 1-form in L5,
which must be zero; thus the uniqueness assertion follows. The desired estimate is then clear
by Fourier transform.

In the general case, we use a simple perturbation argument. Note that (A.3) may be
written as {︃

δω = f + Erreω,

dω = g,

where δ denotes the constant coefficient divergence with respect to ē and

Erreω = (ēαβ − eαβ)∂αωβ −
1√
det e

∂α(e
αβ
√
det e)ωβ.

By the standard Moser estimates in L∞ ∩ Ḣ
5
2 , which is an algebra, it is straightforward to

establish (for ϵe < 1)

∥ēαβ − eαβ∥
L∞∩Ḣ

5
2
≲ ϵe, ∥ 1√

det e
∂α(e

αβ
√
det e)∥

Ḣ
3
2
≲ ϵe.

Combined with the embeddings Ḣ
3
2 ·L2Ḣ

3
2 ↪→ L2Ḣ

1
2 and (L∞ ∩ Ḣ

5
2 ) ·L2Ḣ

1
2 ↪→ L2Ḣ

1
2 , both

of which follow from the standard Littlewood–Paley trichotomy with respect to x1, . . . , x4,
we have

∥Erreω∥
L2Ḣ

1
2
≲ ϵe∥∇ω∥

L2Ḣ
1
2
.

Thus, for ϵe sufficiently small, (A.3) is solvable with ∇ω ∈ L2Ḣ
1
2 , as desired. □

Next we consider the case A(R′,R). We denote by ν the outward unit normal of A(R′,R) on
∂A(R′,R).

Lemma A.6 (Linear div-curl system in a 4-dimensional annulus). Consider the div-curl
system (A.3) in A(R′,R) ⊂ R4 with the boundary condition

ινω = 0 on ∂A(R′,R).

Suppose that f, g are in L2(A(R′,R)) and obey the compatibility conditions∫︂
A(R′,R)

f = 0, dg = 0.

Then there exists a unique solution ω ∈ H1(A(R′,R)) to this boundary value problem, which
obeys

∥ω∥H1(A(R′,R))
≲R′,R ∥f∥L2(A(R′,R))

+ ∥g∥L2(A(R′,R))
.
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Proof. For simplicity, we write A = A(R′,R) and omit the dependence of constants on R′ and
R. As in Lemma A.5, we start by solving the following boundary value problem for g̃:{︃ −∆g̃ = g in A,

(ινdg̃, ιν g̃) = 0 on ∂A.

Here −∆ = δd+dδ denotes the Hodge Laplacian. By the solvability of the absolute boundary
value problem for 2-forms, we may find a unique solution g̃ ∈ H2(A) to these problems; see,
for instance, [56, Proposition 9.8]. We remark that for uniqueness, we use the Hodge theorem
and the fact that the second de Rham cohomology group of A is trivial. We also note that

dδdg̃ = d(−∆)g̃ = dg = 0.

Testing dg̃ against the above equation, integrating d by parts and using ινdg̃ = 0 to make
the boundary terms vanish, it follows that δdg̃ = 0.
Next, we solve the following Neumann boundary value problem for f̃ :⎧⎪⎪⎪⎨⎪⎪⎪⎩

−∆f̃ = f in A,

ινdf̃ = −ινδg̃ on ∂A,∫︂
A
f̃ = 0.

To solve this problem with f̃ ∈ H2(A), we need to verify the following the compatibility

condition (which arises from integrating −∆f̃ = f over A, integrating the LHS by parts and

using the conditions on f and ινdf̃ |∂A):

0 =

∫︂
∂A

ινδg̃ dVol∂A.

Since ιν ⋆1 is precisely the induced volume form dVol∂A, for any sufficiently regular 3-form η
defined in a neighborhood of ∂A we have ιν ⋆ η dVol∂A = i∗∂Aη, where i∂A is the embedding
∂A ↪→ A. It follows that

ινδg̃ dVol∂A = d(i∗∂A ⋆ g̃),

so that the compatibility condition holds by the Stokes theorem.
In conclusion, ω = df̃ + δg̃ gives a desired H1(A) solution to the div-curl system (A.3)

with ινω|∂A = 0; uniqueness follows from the Hodge theorem and the fact that the first de
Rham cohomology group of A is trivial. □

We are now ready to state and prove the perturbative solvability results for the nonlinear
div-curl system (A.2).

Proposition A.7 (Nonlinear div-curl system in R5). Consider the nonlinear div-curl system
(A.2) in (R5, e), where eαβ is a smooth metric such that ∥eαβ − ēαβ∥

L∞∩Ḣ
5
2
< ϵe for some

constant positive definite matrix ēαβ and A obeys A ∈ L5, ∇A ∈ L2Ḣ
1
2 and ∥∇αAα∥

L2Ḣ
1
2
<

ϵA. Then for ϵe, ϵA sufficiently small, there exists a unique solution Ω to this problem such

that Ω ∈ L5 and ∇Ω ∈ L2Ḣ
1
2 , which obeys

∥∇Ω∥
L2Ḣ

1
2
≲ ∥∇αAα∥

L2Ḣ
1
2
.
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Proof. We aim to solve (A.2) by iteration; however, the RHS of the dΩ equation may not
satisfy the compatibility condition during the iteration procedure. To rectify this issue,
we use a Leray-type projection operator. For a 2-form g defined in R5, we introduce the
operators

Pdfg = δ(−∆)−1dg, Pcf = g − Pdfg.

where δ and (−∆)−1 are defined with respect to the constant metric ē; such a simple choice
is allowed since the condition we need to ensure (d(·) = 0) is independent of the metric.

Now we set up an iteration scheme by starting with Ω(0) = 0, and defining Ω(n) by solving
the following system: ⎧⎨⎩∇αΩ(n)

α = ∇αBα,

dΩ(n) =
1

2
Pcf [Ω(n−1) ∧ Ω(n−1)].

Using Lemma A.5, it is straightforward to show that Ω(n) has a limit Ω such that ∥∇Ω∥
L2Ḣ

1
2
≲

∥∇αBα∥
L2Ḣ

1
2
and solves ⎧⎨⎩

∇αΩα = ∇αBα,

dΩ =
1

2
Pcf [Ω ∧ Ω] =

1

2
[Ω ∧ Ω]− Z,

where

Z =
1

2
Pdf [Ω ∧ Ω].

It remains to show that Z = 0. As a preparation, note that for any 1-form ω,

[[ω ∧ ω] ∧ ω] = 0,

which follows from the Jacobi identity for the Lie bracket. Thus, Z obeys the identity

Z =
1

2
δ(−∆)−1d[Ω ∧ Ω]

=
1

2
δ(−∆)−1[[Ω ∧ Ω] ∧ Ω]− 1

2
δ(−∆)−1[Pdf [Ω ∧ Ω] ∧ Ω]

= −δ(−∆)−1[Z ∧ Ω].

But then since Z ∈ L2Ḣ
1
2 and

∥Z∥
L2Ḣ

1
2
≲ ∥Ω∥L5∥Z∥

L2Ḣ
1
2
,

we have Z = 0 provided that ϵA is small enough, as desired. □

Proposition A.8 (Nonlinear div-curl system in a 4-dimensional annulus). Consider the
nonlinear div-curl system (A.2) in A(R′,R) ⊂ R4 with the boundary condition

ινω = 0 on ∂A(R′,R).

Suppose that A is in H1(A(R′,R)) and obeys ∥∂ℓAℓ∥L2(A(R′,R))
< ϵA. Then for ϵA sufficiently

small (depending on R′, R), there exists a unique solution Ω ∈ H1(A(R′,R)) to this boundary
value problem, which obeys

∥Ω∥H1(A(R′,R))
≲R′,R ∥∂ℓAℓ∥L2(A(R′,R))

.
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Proof. Again, for simplicity, we write A = A(R′,R) and omit the dependence of constants
on R′, R. As in the proof of Proposition A.7, the crucial step is to construct a suitable
projection that enforces the compatibility condition. For sufficiently smooth g (g ∈ H2(A)
is enough), solve the boundary value problem⎧⎪⎨⎪⎩

−∆u = dg in A,

(ινdu, ινu) = 0 on ∂A,

u ⊥ H3
A(A),

where H3
A(A) is the space of harmonic 3-forms η satisfying ινη = 0; see, for instance,

[56, Proposition 9.8]. Note that the solvability condition dg ⊥ H3
A is clearly satisfied.

Furthermore, observe that dδdu = d2g = 0; thus testing by du and using the boundary
condition ινdu = 0, it follows that δdu = 0. Thus, if we define

Pdfg = δu, Pcf = g − Pdfg,

then dPdfg = dg and dPcfg = 0. Moreover, by the H1 estimate for the Hodge Laplacian,

∥Pdfg∥L2(A) ≲ ∥u∥H1(A) ≲ ∥g∥L2(A),

by which we may extend Pdf to any g ∈ L2(A).
As in Proposition A.7, we now solve the system⎧⎨⎩

δΩ = δB,

dΩ =
1

2
Pcf [Ω ∧ Ω],

with the boundary condition ινΩ = 0 by iteration. Note that ινB = 0 on ∂A ensures the
compatibility condition

∫︁
A δB = 0. Then to finish the proof, it suffices to show that

Z =
1

2
Pdf [Ω ∧ Ω],

which is a-priori in L2, must vanish. Since Pdfg is defined from dg, we may perform a similar
computation as in Proposition A.7 and conclude that Z obeys a self-improving relation if ϵA
is sufficiently small; thus Z = 0 as desired. □

A.3. Uhlenbeck’s lemmas. Here, we record various lemmas that allows us to pass to the
Coulomb gauge under a suitable gauge-independent smallness condition. We begin with the
classical results proved by Uhlenbeck. In what follows, ν denotes the outward unit normal
to BR on ∂BR.

Theorem A.9. Let A be a connection in a ball BR ⊂ R4 that satisfies A ∈ H1(BR) and
∥F∥L2(BR) < ϵ0. If ϵ0 is sufficiently small, then there exists an admissible gauge transfor-

mation O, unique up to multiplication by a constant element of G, such that Ã = G(O)A
obeys

∂ℓÃℓ = 0 in BR, νℓÃℓ = 0 on ∂BR

and

∥Ã∥
Ḣ

1
(BR)

≲ ∥F∥L2(BR).
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Theorem A.10. Let A be a connection in R4 \ BR that satisfies A ∈ Ḣ
1 ∩ L4(R4 \ BR)

and ∥F∥L2(R4\BR) < ϵ0. If ϵ0 is sufficiently small, then there exists an admissible gauge

transformation O, unique up to multiplication by a constant element of G, such that Ã =
G(O)A obeys

∂ℓÃℓ = 0 in R4 \BR, νℓÃℓ = 0 on ∂BR

and
∥Ã∥

Ḣ
1
(R4\BR)

≲ ∥F∥L2(R4\BR).

The first result is essentially [57, Theorem 1.3]; see [40, Theorem 3.11] for the uniqueness
assertion at the critical regularity. The second result is the combination of [59, Theorem 4.5],
which is formulated on a punctured disk, and a conformal inversion procedures, which is also
in [59]. See, also, Theorem 3.12 and the proof of Theorem 1.5 in [40].

We end with a result that concerns a connection on the unit 3-sphere S3 whose curvature
is small in L2; note that this is a subcritical assumption.

Proposition A.11 (Subcritical Uhlenbeck on S3). Let A be a connection in S3 that satisfies
A ∈ H1

Θ(S3) and ∥F∥L2
Θ(S3) < ϵ0. If ϵ0 is sufficiently small, then there exists a H2

Θ gauge

transformation O, unique up to multiplication by a constant element of G, such that Ã =
G(O)A obeys ∇ΘAΘ = 0 and

∥Ã∥H1
Θ(S3) ≲ ∥F∥L2

Θ(S3)

This proposition is a slight strengthening of [58, Theorem 2.5]; we include a sketch of the
proof for completeness.

Proof. We cover S3 by two capsON andOS centered at the north and the south poles, respec-
tively, and apply the usual Uhlenbeck’s lemma (Theorem A.9) to each; we denote the result-
ing representations by A(N) and A(S), respectively. In the intersection, A(N) = G(O(NS))A(S)

for some gauge transformation O(NS) ∈ H2
Θ(ON ∩ OS). By the Sobolev embedding, taking

ϵ0 small enough, the image of O(NS) is contained in a small ball near a constant element.
Hence we may patch together A(N) and A(S) to obtain a global representation Ā such that
∥Ā∥H1

Θ
≲ ϵ0. Finally, applying a subcritical perturbative argument (see, for instance, [58,

Proof of Theorem 2.5]), we find a gauge transformation from Ā into the Coulomb gauge.
The uniqueness assertion follows also from the same perturbative argument. □
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[29] J. Krieger and J. Sterbenz, Global regularity for the Yang-Mills equations on high dimensional Minkowski
space, Mem. Amer. Math. Soc. 223 (2013), no. 1047, vi+99, doi.

[30] J. Krieger, J. Sterbenz, and D. Tataru, Global well-posedness for the Maxwell-Klein-Gordon equation in
4 + 1 dimensions: small energy, Duke Math. J. 164 (2015), no. 6, 973–1040, doi.

[31] J. Krieger and D. Tataru, Global well-posedness for the Yang-Mills equation in 4+1 dimensions. Small
energy, Ann. of Math. (2) 185 (2017), no. 3, 831–893.

[32] A. Lawrie and S.-J. Oh, A refined threshold theorem for (1 + 2)-dimensional wave maps into surfaces,
Comm. Math. Phys. 342 (2016), no. 3, 989–999, doi.

64

http://dx.doi.org/10.1090/coll/046
http://dx.doi.org/10.1007/s00208-013-0898-1
http://arxiv.org/abs/1612.04927
http://projecteuclid.org/euclid.cmp/1103920800
http://projecteuclid.org/euclid.cmp/1103920801
http://arxiv.org/abs/1610.03581
http://arxiv.org/abs/1604.07900
http://dx.doi.org/10.1090/conm/263/04192
http://dx.doi.org/10.1007/s00220-016-2766-9
http://arxiv.org/abs/1708.01157
http://dx.doi.org/10.1353/ajm.2019.0002
http://arxiv.org/abs/1706.00089
http://dx.doi.org/10.1007/s11511-008-0031-6
http://dx.doi.org/10.1002/cpa.3160460902
http://dx.doi.org/10.1215/S0012-7094-94-07402-4
http://dx.doi.org/10.2307/2118611
http://dx.doi.org/10.1090/S0894-0347-99-00282-9
http://dx.doi.org/10.1002/1097-0312(200103)54:3<339::AID-CPA3>3.0.CO;2-D
http://dx.doi.org/10.1016/j.aim.2009.02.017
http://dx.doi.org/10.4171/106
http://dx.doi.org/10.1090/S0065-9266-2012-00566-1
http://dx.doi.org/10.1215/00127094-2885982
http://dx.doi.org/10.1007/s00220-015-2513-7


[33] S.-J. Oh, Gauge choice for the Yang-Mills equations using the Yang-Mills heat flow and local well-
posedness in H1, J. Hyperbolic Differ. Equ. 11 (2014), no. 1, 1–108, doi.

[34] , Finite energy global well-posedness of the Yang-Mills equations on R1+3: an approach using the
Yang-Mills heat flow, Duke Math. J. 164 (2015), no. 9, 1669–1732, doi.

[35] S.-J. Oh and D. Tataru, Global well-posedness and scattering of the (4+1)-dimensional Maxwell-Klein-
Gordon equation, Invent. Math. 205 (2016), no. 3, 781–877, arXiv:1503.01562, doi.

[36] , Local well-posedness of the (4 + 1)-dimensional Maxwell-Klein-Gordon equation at energy reg-
ularity, Ann. PDE 2 (2016), no. 1, Art. 2, 70, arXiv:1503.01560, doi.

[37] , Energy dispersed solutions for the (4+1)-dimensional Maxwell-Klein-Gordon equation, Amer.
J. Math. (2017), arXiv:1503.01561.

[38] , The Yang-Mills heat flow and the caloric gauge, preprint (2017), arXiv:1709.08599.
[39] , The hyperbolic Yang-Mills equation in the caloric gauge. Local well-posedness and control of

energy dispersed solutions, preprint (2017), arXiv:1709.09332.
[40] , The hyperbolic Yang-Mills equation for connections in an arbitrary topological class, preprint

(2017), arXiv:1709.08604.
[41] , The Threshold Theorem for the (4 + 1)-dimensional Yang-Mills equation: An overview of the

proof, preprint (2017), arXiv:1709.09088.
[42] M. Petrache and T. Rivière, Global gauges and global extensions in optimal spaces, Anal. PDE 7 (2014),

no. 8, 1851–1899, doi.
[43] P. Raphaël and I. Rodnianski, Stable blow up dynamics for the critical co-rotational wave maps and

equivariant Yang-Mills problems, Publ. Math. Inst. Hautes Études Sci. 115 (2012), 1–122, doi.
[44] I. Rodnianski and T. Tao, Global regularity for the Maxwell-Klein-Gordon equation with small critical

Sobolev norm in high dimensions, Comm. Math. Phys. 251 (2004), no. 2, 377–426, doi.
[45] J. Sterbenz and D. Tataru, Energy dispersed large data wave maps in 2 + 1 dimensions, Comm. Math.

Phys. 298 (2010), no. 1, 139–230, doi.
[46] , Regularity of wave-maps in dimension 2 + 1, Comm. Math. Phys. 298 (2010), no. 1, 231–264,

doi.
[47] T. Tao, Global regularity of wave maps. II. Small energy in two dimensions, Comm. Math. Phys. 224

(2001), no. 2, 443–544, doi.

[48] , Geometric renormalization of large energy wave maps, Journées “Équations aux Dérivées Par-
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