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• Symmetric conflicts arise extremely frequently in MAPF.

• A symmetric conflict can produce an exponential explosion in the space
of possible collision resolutions, leading to unacceptable runtimes for
current state-of-the-art (bounded-sub)optimal MAPF algorithms.
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Abstract

Multi-Agent Path Finding (MAPF) is a challenging combinatorial problem
that asks us to plan collision-free paths for a team of cooperative agents.
In this work, we show that one of the reasons why MAPF is so hard to
solve is due to a phenomenon called pairwise symmetry, which occurs when
two agents have many different paths to their target locations, all of which
appear promising, but every combination of them results in a collision. We
identify several classes of pairwise symmetries and show that each one arises
commonly in practice and can produce an exponential explosion in the space
of possible collision resolutions, leading to unacceptable runtimes for cur-
rent state-of-the-art (bounded-sub)optimal MAPF algorithms. We propose
a variety of reasoning techniques that detect the symmetries efficiently as
they arise and resolve them by using specialized constraints to eliminate
all permutations of pairwise colliding paths in a single branching step. We
implement these ideas in the context of a leading optimal MAPF algorithm
CBS and show that the addition of the symmetry reasoning techniques can
have a dramatic positive effect on its performance — we report a reduction
in the number of node expansions by up to four orders of magnitude and an
increase in scalability by up to thirty times. These gains allow us to solve to
optimality a variety of challenging MAPF instances previously considered
out of reach for CBS.
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it can be derived from any other path by simply changing the order of the
individual RIGHT and DOWN moves. All shortest paths for the two agents
collide somewhere inside the yellow rectangular area. The optimal strategy
here is for one agent to wait for the other. To find such a solution, however,
optimal MAPF algorithms must first prove that every combination of wait-
free paths leads to collisions. Yet the number of possible combinations of
wait-free paths grows exponentially with the size of the yellow rectangular
area, i.e., the larger the area, the harder the optimality proof.

In this work, we consider three challenging situations, each commonly
found in popular MAPF domains and involving pairs of colliding agents:

1. rectangle symmetry, which arises when two agents repeatedly collide
along many different shortest paths.

2. target symmetry, which arises when a moving agent repeatedly collides
with another stopped agent along many different paths of increasing
lengths.

3. corridor symmetry, which arises when two agents moving in opposite
directions repeatedly collide inside a narrow passage along many dif-
ferent paths of increasing lengths.

For each type of symmetry, we propose new algorithmic reasoning tech-
niques that can identify the situation at hand and resolve it in a single
branching step by the addition of symmetry-breaking constraints. We ex-
plore these ideas in the context of a leading and popular optimal MAPF
algorithm CBS [16] (or, more precisely, its advanced variant CBSH [17]).
On the one hand, we give a rigorous theoretical analysis which shows that
our symmetry reasoning techniques preserve the completeness and optimal-
ity of CBS. On the other hand, we evaluate the impact of these symmetry
reasoning techniques in a wide range of empirical comparisons, showing that
the symmetry reasoning techniques can lead to an exponential reduction in
CBS node expansions. In one headline result, we show that our resulting
algorithm CBSH-RTC resolves the majority of two-agent collisions in just
a single branching step. In another headline result, we report substantial
improvement of the symmetry reasoning techniques on CBSH and its im-
proved variants CBSH2 [18] and Mutex Propagation [19] in terms of both
runtime and percentage of instances solved within the runtime limit.

Preliminary versions of this work appeared in AAAI 2019 [20] and ICAPS
2020 [21]. Compared to those versions, this paper provides a more com-
prehensive description and discussion of pairwise symmetries, new general-
ized versions of rectangle and corridor reasoning techniques (see Sections 6
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and 9), and an extended empirical evaluation, including comparison with
CBSH2 and mutex propagation (see Section 11). Although we demonstrate
our symmetry reasoning techniques only in the context of solving classic
MAPF problems with the optimal MAPF algorithm CBS in this paper, they
can be applied and, indeed, based on our preliminary work, have already
been applied to other variants of MAPF problems [22] and other optimal
and bounded-suboptimal MAPF algorithms [14, 15, 23].

2. Problem Definition

MAPF has many variants. In this paper, we focus on the classic variant
defined in [1] that (1) considers vertex and swapping conflicts, (2) uses the
“stay at target” assumption, and (3) optimizes the sum of costs.

Formally, we define MAPF by a graph G = (V,E) and a set of m agents
{a1, . . . , am}. Each agent ai has a start vertex si ∈ V and a target vertex
gi ∈ V . Time is discretized into timesteps. At each timestep, every agent
can either move to an adjacent vertex or wait at its current vertex. A
path pi for agent ai is a sequence of vertices which are adjacent or identical
(indicating a wait action), starting at vertex si and ending at vertex gi.
That is, pi = [v0, v1, . . . , vl], where v0 = si, vl = gi, and for all 0 ≤ t < vl,
(vt, vt+1) ∈ E or vt = vt+1 ∈ V . We refer to l as the path length of pi.
Agents remain at their target vertices after they complete their paths.

Definition 1 (Conflict). A conflict is either a vertex conflict 〈ai, aj , v, t〉,
which arises when agents ai and aj are at the same vertex v ∈ V at the same
timestep t, or an edge conflict 〈ai, aj , u, v, t〉, which arises when agents ai
and aj traverse the same edge (u, v) ∈ E in opposite directions at the same
timestep t (or, more precisely, from timestep t− 1 to timestep t).

To reason about symmetries, we further classify and group some vertex
and edge conflicts into symmetric conflicts. For example, the three vertex
conflicts shown in Figure 1 correspond to the same rectangle conflict. More
details about symmetric conflicts are introduced in later sections. A solution
is a set of conflict-free paths, one for each agent. Our task is to find a solution
with the minimum sum of costs (i.e., sum of the path lengths)1.

In the examples and experiments of this paper, graph G is always a 4-
neighbor grid whose vertices are unblocked cells and whose edges connect

1Another popular optimization criterion for MAPF is makespan (i.e., the maximum
length of the paths). The symmetry reasoning techniques introduced in this article can
be applied to optimizing makepsan as well, although the speedup may vary.
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vertices corresponding to adjacent unblocked cells in the four main compass
directions. We use this assumption because 4-neighbor grids are arguably
the most common way of representing the environment for MAPF, and
MAPF on 4-neighbor grids has many real-world applications, such as video
games [24] and warehouse robots [3]. Nevertheless, most of our symmetry
reasoning techniques can be directly applied to general graphs, and we will
provide more details when we introduce these techniques.

3. Background: CBS and Its Variants

In this section, we introduce CBS and many improvements to it.

3.1. Vanilla CBS

Conflict-Based Search (CBS) [16] is a two-level search algorithm for solv-
ing MAPF optimally. At the low level, CBS invokes space-time A* [6] (i.e.,
A* that searches in the space whose states are vertex-timestep pairs) to find
a shortest path for a single agent that satisfies the constraints added by
the high level, breaking ties in favor of the path that has the fewest con-
flicts with the (already planned) paths of other agents. A constraint is a
spatio-temporal restriction introduced by the high level to resolve conflicts.
Specifically, a vertex constraint 〈ai, v, t〉 prohibits agent ai from being at ver-
tex v ∈ V at timestep t. Similarly, an edge constraint 〈ai, u, v, t〉 prohibits
agent ai from traversing edge (u, v) ∈ E at timestep t (or more precisely,
from timestep t − 1 to timestep t). We say that a constraint blocks a path
if the path does not satisfy the constraint.

At the high level, CBS performs a best-first search on a binary constraint
tree (CT). Each CT node contains a set of constraints and a plan, i.e., a
set of shortest paths, one for each agent, that satisfy the constraints but are
not necessarily conflict-free. The cost of a CT node is the sum of costs of
its plan. The root CT node contains an empty set of constraints (and thus
a set of shortest paths for all agents). CBS always expands the CT node
with the smallest cost, breaking ties in favor of the CT node that has the
fewest conflicts in its plan, and terminates when the plan of the CT node for
expansion is conflict-free, which corresponds to an optimal solution. When
expanding a CT node, CBS checks for conflicts in its plan. It chooses one
of the conflicts (by default, arbitrarily) and resolves it by branching, i.e.,
by splitting the CT node into two child CT nodes. In each child CT node,
one agent from the conflict is prohibited from using the conflicting vertex
or edge at the conflicting timestep by way of an additional constraint. The
path of this agent does not satisfy the new constraint and is replanned by
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the low-level search. All other paths remain unchanged. If the low-level
search cannot find any path, this child CT node does not have any solution
and therefore is pruned.

3.1.1. Theoretical Analysis

CBS guarantees its completeness by exploring both ways of resolving
each conflict. In other words, when expanding a CT node, any conflict-free
paths that satisfy the constraints of the CT node must satisfy the constraints
of at least one of its child CT nodes. So branching only excludes conflict-
ing paths but does not lose any solutions. CBS guarantees optimality by
performing best-first searches at both its high and low levels. Please refer
to [16] for detailed proof.

Since we will introduce new types of constraints to resolve symmetric
conflicts in this paper, we here provide the principle of designing constraints
for CBS without losing its completeness or optimality guarantees.

Definition 2 (Mutually Disjunctive). Two constraints for two agents ai
and aj are mutually disjunctive iff any pair of conflict-free paths of ai and
aj satisfies at least one of the two constraints, i.e., there does not exist a pair
of conflict-free paths that violates both constraints. Moreover, two sets of
constraints are mutually disjunctive iff each constraint in one set is mutually
disjunctive with each constraint in the other set.

Li et al. [25] prove that using two sets of mutually disjunctive constraints
to split a CT node preserves the completeness and optimality of CBS. The
key idea of their proof is to show that any solution that satisfies the con-
straints of a CT node also satisfies the constraints of at least one of its child
CT nodes, as stated in Lemma 1. See their paper for detailed proof.

Lemma 1. For a given CT node N with constraint set C, if two constraint
sets C1 and C2 are mutually disjunctive, any set of conflict-free paths that
satisfies C also satisfies at least one of the constraint sets C∪C1 and C∪C2.

Proof. This is true because, otherwise, there would exist a pair of conflict-
free paths that does not satisfy all the constraints in C1 and does not satisfy
all the constraints in C2. That is, one of the paths violates a constraint
c1 ∈ C1 and one of the paths violates a constraint c2 ∈ C2. Then, c1 and c2
are not mutually disjunctive, contradicting the assumption.

Theorem 2. Using two sets of mutually disjunctive constraints to split a
CT node preserves the completeness and optimality of CBS.
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Hence, the principle of designing constraints for CBS without losing its
completeness or optimality guarantees is to ensure that the two constraints
(or constraint sets) we use to split a CT node are mutually disjunctive.

3.2. Advanced Variants of CBS

We introduce CBSH, an improved variant of CBS, that is used as the
baseline algorithm in our experiments, and CBSH2, a further improved vari-
ant of CBS, that we also compare against experimentally in Section 11.2.

3.2.1. CBSH

CBSH [17] improves CBS from two aspects. It first uses the technique
of prioritizing conflicts from [26] to determine which conflict to resolve first.
It classifies conflicts into three types, and, here, we provide the generalized
definitions that are applicable also to the symmetric conflicts.

Definition 3 (Cardinal, Semi-Cardinal, and Non-Cardinal Conflicts). A
conflict is cardinal iff replanning for any agent involved in the conflict (with
the corresponding constraint) increases the sum of costs. A conflict is semi-
cardinal iff replanning for one agent involved in the conflict increases the sum
of costs while replanning for the other agent does not. Finally, a conflict is
non-cardinal iff replanning for any agent involved in the conflict does not
increases the sum of costs.

Boyarski et al. [26] show that CBS can significantly improve its efficiency
by resolving cardinal conflicts first, then semi-cardinal conflicts, and last
non-cardinal conflicts, because generating child CT nodes with larger costs
first can improve the lower bound of the CT (i.e., the minimum cost of the
leaf CT nodes) faster and thus produce smaller CTs.

Following [26], CBSH builds MDDs to classify conflicts. A Multi-Valued
Decision Diagram (MDD) [27] MDDi for agent ai at a CT node is a directed
acyclic graph that consists of all shortest paths of agent ai that satisfy the
constraints of the CT node. The MDD nodes at depth t inMDDi correspond
to all locations at timestep t in these paths. If MDDi has only one MDD
node (v, t) at depth t, we call this node a singleton, and all shortest paths
of agent ai are at vertex v at timestep t. So a vertex conflict 〈ai, aj , v, t〉 is
cardinal iff the MDDs of both agents have singletons at depth t, and an edge
conflict 〈ai, aj , u, v, t〉 is cardinal iff the MDDs of both agents have singletons
at both depth t − 1 and depth t. Semi-/non-cardinal vertex/edge conflicts
can be identified analogously.

The high level of CBS consists of a best-first search that prioritizes the
CT node with the smallest cost for expansion. The second improvement of

6



CBSH over CBS is to add admissible heuristics to the high-level search. It
builds a cardinal conflict graph for every CT node, whose vertices represent
agents and edges represent cardinal conflicts in the plan of the CT node,
and uses the size of the minimum vertex cover of the cardinal conflict graph
as an admissible and consistent heuristic. Felner et al. [17] show that the
addition of heuristics to the high-level search often produces smaller CTs
and decreases the runtime of CBS by a large factor.

3.2.2. CBSH2

Recently, Li et al. [18] introduce a more informed heuristic for the high
level of CBS by using CBSH to solve a two-agent MAPF instance for ev-
ery pair of conflicting agents in every CT node. The suggested algorithm,
CBSH2, proceeds by building a weighted pairwise dependency graph, whose
vertices represent agents and edge weights represent the sum of costs of the
optimal conflict-free paths for the two agents (with respect to the constraints
of the CT node) minus the sum of costs of their paths in the plan of the
CT node. It then solves an edge-weighted minimum vertex cover, which is
an assignment of non-negative integers, one for each vertex, that minimizes
the sum of the integers subject to the constraints that, for every edge, the
sum of the two corresponding integers is no smaller than the edge weight.
They show that the sum of the integers is an admissible h-value and no
smaller than the h-value used in CBSH. With the help of some runtime re-
duction techniques, CBSH2 runs faster than CBSH on all maps tested in
their experiments.

4. Related Work

We review existing algorithms for solving MAPF optimally, existing
methods that can eliminate (some) symmetries in MAPF, and existing sym-
metry reasoning work for other problems.

4.1. Optimal MAPF Algorithms

Optimal MAPF algorithms include search-based algorithms that either
search in the joint-state space or are variants of CBS and compilation-based
algorithms that reduce MAPF to other well-studied problems like ILP, SAT,
and CP. Algorithms that directly search in the joint-state space are usually
not scalable, so the leading variants of various optimal MAPF algorithms
(e.g., CBSH2, BCP, SMT-CBS, and lazy-CBS) all use the idea of planning
paths independently first by ignoring other agents and resolving conflicts
afterwards. Thus, they all suffer from the pairwise symmetries. In this
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work, we demonstrate and develop symmetry reasoning techniques on CBS
variants, but similar ideas can be, or have already been, applied to others.

4.1.1. Search-Based Algorithms that Search in the Joint-State Space

A*. A straightforward way of solving MAPF is to use A* in the joint-state
space, where the joint-states are different ways to place all the agents into
k out of |V | vertices, one agent per vertex, and the operators between joint-
states are non-conflicting combinations of actions that the agents can take.
Since the size of the joint-state space grows exponentially with the number of
agents, numerous techniques have been developed to improve the efficiency
of A*, such as independence detection [28], operator decomposition [28],
partial expansion [29], and subdimensional expansion [30].

ICTS. Increasing Cost Tree Search (ICTS) [27] is a two-level algorithm that
is conceptually different from A* but still searches in the joint-state space.
Its high level searches the increasing cost tree where each node corresponds
to a set of costs, one for each agent, and a child node differs from its parent
node by increasing the cost of one of the agents by one. When expanding
a node, its low level searches in the joint-state space to determine whether
there exists a solution such that the cost of each agent is equal to the cor-
responding cost in the high-level node.

Summary. Empirically, although many of the A* and ICTS variants are
competitive with vanilla CBS [31], they are shown to be worse than CBSH
with the symmetry reasoning technique for rectangle conflicts in our ICAPS
2019 paper [20]. This is not surprising because, as the number of agents
increases, the effectiveness of the speedup techniques mentioned in the pre-
vious two paragraphs is limited, and thus they all suffer from the explosion
of the joint-state space.

4.1.2. Compilation-Based Algorithms

MAPF can be reduced to other well-studied NP-hard problems, relying
on off-the-shelf solvers to find optimal solutions.

ILP. MAPF can be encoded as an integer multi-commodity flow prob-
lem [32] and thus solved by an Integer Linear Programming (ILP) solver.
It is shown that such methods are competitive or sometimes even outper-
form search-based algorithms on small maps. However, they do not scale
well on large maps because the ILP encoding requires a Boolean variable for
each agent being at each vertex at each timestep. BCP [23, 14] is a more
efficient ILP-based algorithm based on branch and cut and price and one
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of the current leading algorithms for solving MAPF optimally. Similar to
CBS, BCP is a two-level algorithm whose low level solves a series of single-
agent pathfinding problems and whose high level uses ILP to assign paths
to agents and resolve conflicts. It is shown that BCP can be substantially
sped up by making use of symmetry-breaking cuts (similar to our reasoning
techniques) in their fractional solutions. The rectangle and target reasoning
techniques used in BCP are based on our earlier work [20, 21], while BCP
was the first approach to notice pseudo-corridor symmetries (introduced in
Section 9.1). BCP also introduces many other symmetries, but they are
caused by the fractional solutions and do not occur in CBS.

SAT. MAPF can also be encoded as a Boolean satisfiability problem
(SAT) [33]. Like the basic ILP encoding, the basic SAT encoding requires a
Boolean variable for each agent being at each vertex at each timestep, and
thus its efficiency drops as the size of the problem grows. SMT-CBS [13]
is a more efficient SAT-based algorithm based on satisfiability modulo the-
ories. Like CBS, it ignores all conflicts in the beginning and adds conflict-
resolving constraints only when necessary. SMT-CBS outperforms the basic
SAT-based algorithms, and there is already evidence that its efficiency can
be further improved by adding the symmetry reasoning techniques [34].

CP. Like the basic ILP and SAT encodings, MAPF can also be directly
encoded as a constraint satisfaction problem and solved by an off-the-shelf
Constraint-Programming (CP) solver. But, again, there is a more efficient
CP-based algorithm, called lazy-CBS [12], that deploys the CBS framework.
It uses the same constraint tree as CBS but traverses it using lazy clause
generation instead of best-first search. Lazy-CBS is one of the leading al-
gorithms for solving MAPF optimally, and there is already evidence that
its efficiency can be further improved by adding the symmetry reasoning
techniques [14].

4.2. Existing Approaches to Eliminating Symmetries in MAPF

In pathfinding problems, symmetries have so far been studied only for
single agents, e.g., by exploiting grid symmetries [35]. There is some prior
work that is able to eliminate some symmetries in MAPF (but loses opti-
mality and/or completeness guarantees) by preprocessing the input graphs.
We introduce two of them below. We then introduce a recent technique that
uses mutex propagation to detect and resolve some symmetries in MAPF.
We further give an empirical comparison with this technique in Section 11.1.
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Graph decomposition. Ryan [36, 37] proposes several graph decomposition
approaches for solving MAPF. Like our work, he detects special graph struc-
tures, including stacks, cliques and halls. Unlike our work, he builds an ab-
stract graph by replacing such sub-graphs with meta-vertices during prepro-
cessing in order to reduce the search space. His work preserves completeness
but not optimality. Our work, by comparison, focuses on exploiting the sub-
graphs to break symmetries without preprocessing or sacrificing optimality.

Highways. Cohen et al. [38] propose highways to reduce the number of corri-
dor conflicts (defined in Section 8). They assign directions to some corridor
vertices (resulting in one or more highways) and make moving against high-
ways more expensive than other movements. They show that highways can
speed up ECBS [39], a bounded-suboptimal variant of CBS. However, the
utility of highways for optimal CBS is limited because they can then only be
used to break ties among multiple shortest paths and are not guaranteed to
resolve all corridor conflicts. Similar ideas of introducing directions to the
graph edges are also explored in flow annotation replanning [40], direction
maps [41], and optimized directed roadmap graphs [42], all of which do not
guarantee optimality.

Mutex propagation. There is also recent work that identifies and resolves
pairwise symmetries using mutex propagation [19, 34]. MDDs essentially
capture the reachability information for single agents, which resemble plan-
ning graphs in classical planning. Therefore, this work adds mutex propa-
gation on top of MDDs to capture the reachability information for pairwise
agents. Two MDD nodes for two agents are mutex iff any pair of their
paths that uses the two MDD nodes are in conflict. So two agents have a
cardinal (symmetric) conflict iff the goal nodes of their MDDs are mutex.
Given two agents with a cardinal (symmetric) conflict, it finds two MDD
node sets, each consisting of the MDD nodes of one agent that are mutex
with the goal MDD node of the other agent, and uses them to generate
two constraint sets for branching in CBS. Therefore, the mutex propagation
technique is able to automatically identify all cardinal symmetric conflicts
and resolve them. However, as we show in Section 11.1, our handcrafted
symmetry reasoning techniques substantially outperform the mutex prop-
agation technique in practice because (1) we can also identify semi- and
non-cardinal symmetric conflicts, (2) we induce smaller runtime overhead,
and (3) our symmetry-breaking constraints are more effective in some cases.
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4.3. Symmetry Reasoning in Other Areas of AI

Symmetry is a widely-used concept that has been studied in many AI
communities.

Symmetry reasoning has been shown to be a successful technique in
planning [43, 44, 45, 46, 47, 48, 49, 50, 51]. Here, symmetries usually refer
to state symmetries [45], which are defined as the automorphisms2 of the
state transition graph, i.e., a directed multigraph, where the set of vertices
contains a vertex for every state, and the set of edges contains a directed
edge from state s to state s′ for every operator that is enabled at s and leads
to s′. However, the state transition graph is usually too large to be given
explicitly, existing work usually infers (subsets of) state symmetries from a
compact description such as a semantic description of the planning task [45]
or a factored representation of the planning task [48]. State symmetries take
the form of symmetry groups across states. If several states from a group
are encountered, only one of them is explored. In addition, information
obtained during the search at different symmetric states can also improve
heuristics [47].

Symmetry reasoning has been shown to a successful technique also in
constraint programming [52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62]. Cohen
et al. [60] propose a microstructure for a constraint satisfaction problem,
i.e., a hypergraph, where the set of vertices contains a vertex for every lit-
eral (i.e., variable-value pair), and the set of edges contains a (hyper-)edge
among a set of literals that corresponds to either an assignment allowed
by a specific constraint or an assignment allowed because there is no con-
straint between the associated variables. Then, they define a constraint
symmetry as an automorphism of the microstructure, which is conceptu-
ally similar to the automorphism of the state transition graph in planning.
Like detecting symmetries in planning, for the sake of computational effi-
ciency, existing work in constraint programming usually infers (subsets of)
constraint symmetries from, for example, variable symmetries [59], i.e., the
variables are interchangeable, or value symmetries [59, 61], i.e., the values
are interchangeable. The detected symmetries can then be eliminated by
adding symmetry-breaking constraints [55] or performing symmetry break-
ing during search [54].

Similar symmetries have also been studied in propositional satisfiability
problems [63, 64], model checking [65, 66], and path and motion planning

2An automorphism of a graph is a bijection on the vertices that preserves the edges
(and hence also preserves the non-edges).

11







path (or agent) visits node (v, t) iff it visits vertex v at timestep t. We say
two paths (or agents) conflict at node (v, t) iff they conflict at vertex v at
timestep t, and the node is referred to as the conflicting node. We focus on
4-neighbor grids in this section, as required by the two symmetry reasoning
techniques. In particular, for a space-time node S, we use (S.x, S.y) to
denote its cell and S.t to denote its timestep.

5.1. Rectangle Reasoning Technique I: For Entire Paths

We now introduce the rectangle reasoning technique I. Consider two
agents a1 and a2. Let nodes S1, S2, G1 and G2 be their start and target
nodes. For now, we assume that the start node is at the start vertex at
timestep 0 and the target node is at the target vertex at the timestep when
the agent completes its path. Below are the formal definitions of the yellow
rectangular area and the rectangle conflicts with some examples shown in
Figure 3.

Definition 4 (Conflicting Area). Given start and target nodes S1, S2, G1,
and G2 for agents a1 and a2, we define the conflicting area as the inter-
section cells of the rectangular area with diagonal corners (S1.x, S1.y) and
(G1.x,G1.y) and the rectangular area with diagonal corners (S2.x, S2.y) and
(G2.x,G2.y).

Definition 5 (Rectangle Conflict). Two agents are involved in a rectangle
conflict iff

1. they have at least one vertex conflict along their paths (or path seg-
ments, which will be discussed in Section 5.2),

2. both paths (or path segments) are Manhattan-optimal, i.e., for each
agent, the length of its path (or path segment) is equal to the Man-
hattan distance between its start and target nodes, and

3. both paths (or path segments) move in the same direction in both x
and y axes.

Suppose the vertex conflict is 〈a1, a2, v, t〉. Conditions 1 and 2 ensure
that the distance between s1 and v is equal to the distance between s2 and
v. Together with Condition 3 and a simple geometric analysis, we know
that, for every cell x inside the conflicting area, the distance between s1 and
x is equal to the distance between s2 and x.

Property 1. Given a rectangle conflict between two agents, the distances
from the cells of the start nodes of the agents to any cell inside the conflicting
area are equal.
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From Property 1, we know that, if two agents have a rectangle conflict,
all their paths (or path segments) from their start to target nodes reach
the same cell inside the conflicting area at the same timestep. We therefore
define the rectangle, which is a set of nodes located inside the conflicting
area, for a rectangle conflict as follows.

Definition 6 (Rectangle). Given start and target nodes S1, S2, G1, and G2

for agents a1 and a2 with a rectangle conflict, we define the rectangle as a set
of nodes whose cells are the cells in the conflicting area and whose timesteps
are the timesteps when a shortest path of agent a1 or agent a2 reaches the
cell of the node. The four corner nodes of the rectangle are referred to as
Rs, Rg, R1, and R2, where Rs and Rg are the corner nodes whose cells are
closest to the cells of the start and target nodes, respectively, and R1 and
R2 are the other corner nodes whose cells are on the opposite borders of the
cells of S1 and S2, respectively. The border from R1 to Rg and the border
from R2 to Rg (or, more precisely, the nodes in the rectangle whose cells are
on the straight line segment from the cell of R1 to the cell of Rg and from
the cell of R2 to the cell of Rg), are called the exit borders of agents a1 and
a2 and denoted by R1Rg and R2Rg, respectively.

In the following three subsections, we present in detail how to efficiently
identify, classify and resolve the rectangle conflicts.

5.1.1. Identifying Rectangle Conflicts

Rectangle conflicts occur only when two agents have one or more vertex
conflicts. Assume that agents a1 and a2 have a semi-/non-cardinal vertex
conflict. Here, we do not consider cardinal vertex conflicts because a car-
dinal vertex conflict can be resolved in a single branching step by vertex
constraints. They have a rectangle conflict iff

|S1.x−G1.x|+ |S1.y −G1.y| = G1.t− S1.t > 0 (1)

|S2.x−G2.x|+ |S2.y −G2.y| = G2.t− S2.t > 0 (2)

(S1.x−G1.x)(S2.x−G2.x) ≥ 0 (3)

(S1.y −G1.y)(S2.y −G2.y) ≥ 0. (4)

Equations (1) and (2) guarantee Condition 2 in Definition 5. Equations (3)
and (4) guarantee Condition 3 in Definition 5.

5.1.2. Resolving Rectangle Conflicts

Let us look at Figure 3. For cardinal rectangle conflicts, all combi-
nations of the shortest paths are in conflict. For semi- and non-cardinal
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rectangle conflicts, although agents have shortest paths that are conflict-
free, all combinations of the shortest paths that visit the corresponding
exit borders of the agents are in conflict. We therefore propose to re-
solve a rectangle conflict by forcing one of the agents to leave its exit bor-
der later or take a detour. Formally, we introduce the barrier constraint
B(ai, Ri, Rg) = {〈ai, (x, y), t〉 | ((x, y), t) ∈ RiRg} (i = 1, 2), which is a set
of vertex constraints that prohibits agent ai from occupying any node along
its exit border RiRg. When resolving a rectangle conflict, we generate two
child CT nodes and add B(a1, R1, Rg) to one of them and B(a2, R2, Rg)
to the other one. For instance, for the example in Figure 3(a), the two
barrier constraints are B(a1, R1, Rg) = {〈a1, (4, 2 + n), 3 + n〉 | n = 0, 1}
and B(a2, R2, Rg) = {〈a2, (2 + n, 3), 2 + n〉 | n = 0, 1, 2}. Adding barrier
constraint B(ai, Ri, Rg) (i = 1, 2) blocks all shortest paths for agent ai that
reach its target node Gi via the rectangle. Thus, agent ai is replanned with
a longer path that does not conflict with the other agent. The rectangle
conflict is thus resolved in a single branching step.

5.1.3. Classifying Rectangle Conflicts

To classify a rectangle conflict, we need to know whether the path
length of agent ai (i = 1, 2) would increase after adding barrier constraint
B(ai, Ri, Rg). Because of the Condition 2 in Definition 5, all shortest paths
between the start and target nodes for agent ai are within the Si-Gi rect-
angle. We thus only need to compare the length and width of the rectangle
with those of the S1-G1 and S2-G2 rectangles. Consider the two equations

Ri.x−Rg.x = Si.x−Gi.x (5)

Ri.y −Rg.y = Si.y −Gi.y. (6)

Equation (5) holds when the length of the rectangle is equal to the length
of the Si-Gi rectangle (i = 1, 2), and Equation (6) holds when the width of
the rectangle is equal to the width of the Si-Gi rectangle (i = 1, 2). Also,
since the rectangle is the intersection of the S1-G1 and S2-G2 rectangles, its
length and width cannot be larger than the lengths and widths of the S1-G1

and S2-G2 rectangles. Therefore, if one of Equations (5) and (6) holds for
i = 1 and the other one holds for i = 2, the rectangle conflict is cardinal; if
only one of them holds for i = 1 or i = 2, it is semi-cardinal; otherwise, it is
non-cardinal. For example, in Figure 3(a), R2.x−Rg.x = S2.x−G2.x = −2
and R1.y −Rg.y = S1.y −G1.y = −1, so the conflict is cardinal.
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5.1.4. Theoretical Analysis

Now, we present a sequence of properties of the rectangle reasoning tech-
nique I and prove its completeness and optimality.

Property 2. For agents a1 and a2 with a rectangle conflict found by the
rectangle reasoning technique I, all paths for agent a1 that visit a node on its
exit border R1Rg must visit a node on its entry border RsR2, and all paths
for agent a2 that visit a node on its exit border R2Rg must visit a node on
its entry border RsR1.

Property 2 is straightforward to prove but lengthy. We thus include the
formal proof only in Appendix A.

Property 3. For all combinations of paths of agents a1 and a2 with a
rectangle conflict found by the rectangle reasoning technique I, if one path
violates barrier constraint B(a1, R1, Rg) and the other path violates barrier
constraint B(a2, R2, Rg), then the two paths have one or more vertex con-
flicts within the rectangle.

Proof. According to Property 2, any path that violates B(a1, R1, Rg) must
visit a node on border RsR2 and a node on border R1Rg, and any path
that violates B(a1, R1, Rg) must visit a node on border RsR1 and a node
on border R2Rg. Since RsR2 and RsR1 are the opposite sides of R1Rg and
R2Rg of the conflicting area, respectively, such two paths must cross each
other, i.e., they visit a common cell within the conflicting area. According
to Property 1, they must visit this cell at the same timestep. Therefore, the
property holds.

Property 3 tells us that barrier constraints B(a1, R1, Rg) and
B(a2, R2, Rg) are mutually disjunctive (recall Definition 2). According to
Theorem 2, using them to split a CT node preserves the completeness and
optimality of CBS.

Theorem 3. Using the rectangle reasoning technique I preserves the com-
pleteness and optimality of CBS.

Note that we add barrier constraints on the exit borders of the agents
instead of their entry borders because there might be an optimal solution
that violates both “entry-border” barrier constraints. For instance, given
the rectangle conflict shown in Figure 3(a), if we use “entry-border” bar-
rier constraints B(a1, Rs, R2) = {〈a1, (2, 2 + n), 1 + n〉 | n = 0, 1} and
B(a2, Rs, R1) = {〈a2, (2 + n, 2), 1 + n〉 | n = 0, 1, 2}, then the pair of paths,
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Example 3. When running Algorithm 1 for the vertex conflict
〈a1, a2, (3, 2), 2〉 shown in Figure 5, Line 4 assigns two singletons G2 =
((5, 5), 7) and G′

2 = ((3, 3), 3) to NG
2 . Therefore, Lines 7-10 in Algorithm 1

find two rectangle conflicts, namely a cardinal rectangle conflict with the
conflicting area highlighted in yellow (i.e., the rectangular area with corner
cells (2, 2) and (5, 4)) and a semi-cardinal rectangle conflict with the con-
flicting area highlighted in yellow with shadows (i.e., the rectangular area
with corner cells (2, 2) and (3, 3)). Line 11 in Algorithm 1 prefers the
cardinal rectangle conflict.

Example 4. Consider the MAPF instance shown in Figure 3(b) and assume
that the paths for agent a1 and a2 are [(1, 2), (2, 2), (3, 2), (4, 2), (4, 3)] and
[(2, 1), (3, 1), (4, 1), (4, 2), (5, 2), (5, 3), (5, 4)], respectively. Algorithm 1
(before Line 16) identifies the vertex conflict 〈a1, a2, (4, 2), 3〉 as a rectangle
conflict with the conflicting area highlighted in yellow. The cells of the
four corner nodes are shown in the figure. However, the resulting barrier
constraint B2 = B(a2, R2, Rg) does not block the path of agent a2. So
Algorithm 1 eventually discards this rectangle conflict.

5.2.1. Identifying Rectangle Conflicts

The start and target nodes of a rectangle conflict have to satisfy not only
Equations (1) to (4) but also

(S1.x− S2.x)(S1.y − S2.y)(S1.x−G1.x)(S1.y −G1.y) ≤ 0. (7)

This guarantees that the start nodes are on different sides of the rectangle
since, otherwise, adding barrier constraints might disallow a pair of paths
that move both agents to the constrained border without waiting, such as
in the example of Figure 4(c).3 We also require that S1 6= S2 because,
otherwise, the two agents have a cardinal vertex conflict at node S1 (recall
that S1 and S2 are singletons) that can be resolved by vertex constraints in
a single branching step.

5.2.2. Resolving Rectangle Conflicts

When reasoning about entire paths, all paths of agent a1 visit its start
node S1 as node S1 is at its start vertex at timestep 0. However, when
reasoning about path segments, only the shortest paths of agent a1 are

3We do not check Equation (7) in the rectangle reasoning technique I because, when
the start nodes are at the same timestep, situations like Figure 4(c) would never occur.
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{〈ai, (x, y), t〉 | ((x, y), t) ∈ RiRg ∩ MDDi} (i = 1, 2).4 When resolving a
rectangle conflict for path segments, we generate two child CT nodes and
add B(a1, R1, Rg) to one of them and B(a2, R2, Rg) to the other one.

5.2.3. Classifying Rectangle Conflicts

We reuse the method in Section 5.1.3 to classify rectangle conflicts.

5.2.4. Theoretical Analysis

We first present a property of MDDs.

Property 4. Given an MDD MDDi for agent ai and an MDD node (v, t) ∈
MDDi , for any path p for agent ai that visits node (v, t), all the nodes that
path p visits before timestep t are also in MDDi .

Proof. We prove the property by contradiction. Assume that there is a path
p for agent ai that visits node (v, t) ∈ MDDi and node (u, τ) /∈ MDDi with
τ < t. Since (v, t) ∈ MDDi , there exists a sub-path p′ that moves agent ai
from node (v, t) to node (gi, l), where l is the length of the shortest path
for agent ai. So a path that first follows path p from node (si, 0) to node
(v, t) via node (u, τ) and then follows sub-path p′ to node (gi, l) is a shortest
path for agent ai. So all nodes visited by this path are in MDDi , which is
contradicted to the assumption that (u, τ) /∈ MDDi . Therefore, the property
holds.

We then present three properties of barrier constraints.

Property 5. If agents a1 and a2 have a rectangle conflict found by the
rectangle reasoning technique II, any path of agent ai (i = 1, 2) that visits a
node constrained by B(ai, Ri, Rg) also visits its start node Si.

Proof. Let (v, t) be a node constrained by B(ai, Ri, Rg). Thus node (v, t) is
in MDDi . Since node Si is a singleton of MDDi and the timestep of Si is no
larger than t, from Property 4, any path for agent ai that visits node (v, t)
also visits its start node Si.

Property 6. For agents a1 and a2 with a rectangle conflict found by the
rectangle reasoning technique II, all paths for agent a1 that visit a node
constrained by B(a1, R1, Rg) must visit a node on the entry border RsR2,
and all paths for agent a2 that visit a node constrained by B(a2, R2, Rg)
must visit a node on the entry border RsR1.

4In our implementation, a barrier constraint is encoded as a set of vertex constraints.
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Property 6 is straightforward to prove by reusing the proof for Prop-
erty 2. Thus, we provide the formal proof only in Appendix A.

Property 7. For all combinations of paths of agents a1 and a2 with a
rectangle conflict found by the rectangle reasoning technique II, if one path
violates B(a1, R1, Rg) and the other path violates B(a2, R2, Rg), then the
two paths have one or more vertex conflicts within the rectangle.

Proof. The proof for Property 3 can be applied here by replacing Property 2
with Property 6.

Property 7 tells us that barrier constraints B(a1, R1, Rg) and
B(a2, R2, Rg) are mutually disjunctive, and thus, based on Theorem 2, using
them to split a CT node preserves the completeness and optimality of CBS.

Theorem 4. Using the rectangle reasoning technique II preserves the com-
pleteness and optimality of CBS.

6. Generalized Rectangle Symmetry

Let us first look at two examples.

Example 6. Figure 7(a) shows a MAPF sub-instance on a 32 × 32 empty
map. The distance between cells s1 and g1 is 32 while the distance between
cells s2 and g2 is 34. Agent a1 has no constraints, and thus all of its shortest
paths are Manhattan-optimal and of length 32. Agent a2 has a barrier
constraint B2 that forces the agent to first take a wait action at one of the
cells in the top yellow row and then follow its Manhattan-optimal path to
its target cell. Its shortest paths are thus of length 35. Due to this wait
action, both agents reach every purple cell at the same timestep and thus
have a conflict there if they both visit the same purple cell following their
shortest paths. Since the two agents need to cross each other to reach their
target cells, there is no way for them to reach their target cells without
visiting some common purple cell via their shortest paths. Therefore, the
optimal resolution is either for agent a1 to wait for one timestep (resulting
in a path of length 33) or for agent a2 to wait for two timesteps or take a
detour (resulting in a path of length 36).

This looks like a cardinal rectangle conflict as defined in Section 5. How-
ever, the only two singletons in MDD2 are (s2, 0) and (g2, 35), which do not
satisfy Equations (1) and (2). Therefore, the rectangle reasoning techniques
in Section 5 fail to identify it as a rectangle conflict, and, as a result, CBS
needs to spend exponential time to solve it.
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6.1. High-Level Idea

Let us consider the conflict in Figure 7(b). Figure 8(a) shows an abstract
illustration of it. Agent a1 enters the purple area from (one of) the blue solid
lines and leaves it from (one of) the blue dotted lines. Similarly, agent a2
enters the purple area from one of the yellow solid lines and leaves it from
one of the yellow dotted lines. If we scan the border of the purple area
anticlockwise, we find the pattern of “blue solid lines → yellow dotted lines
→ blue dotted lines → yellow solid lines”. So, from geometry, any line that
connects a point on one of the blue solid lines with a point on one of the
blue dotted lines without going outside the purple area must intersect with
any line that connects a point on one of the yellow solid lines with a point
on one of the yellow dotted lines without going outside the purple area. If
the two agents follow such two lines, then they must have a vertex conflict
at the intersection point. Therefore, any path for agent a1 that visits the
blue dotted lines must conflict with any path for agent a1 that visits the
yellow dotted lines. Following the idea in Section 5, we generate two barrier
constraints B(a1, R1, Rg) and B(a2, R2, Rg), where the vertices of R1, R2

and Rg are marked in Figure 8(a), and B(ai, Ri, Rg) (i = 1, 2) is a set of
vertex constraints that prohibits agent ai from occupying all vertices along
the border from Ri to Rg at the timestep when ai would optimally reach
the vertex. This pair of barrier constraints gives one of the agents priority
within the purple area and forces the other agent to leave it later or take a
detour.

Figure 8(b) shows a slightly different example where agent a1 can leave
the purple area also from the blue dotted line on the right. Therefore, the
two agents can traverse the purple area without conflicts, for instance, by
following the dotted arrows. But, just like Example 2, CBS is not guar-
anteed to find such a pair of conflict-free paths efficiently. And, in fact,
this example is a semi-cardinal generalized rectangle conflict as we can use
barrier constraints B(a1, R1, Rg) and B(a2, R2, Rg) to resolve it. This is so
because, for the child CT node with constraint B(a1, R1, Rg), agent a1 will
find a path that does not increase the length, such as the path indicated by
the dotted blue line, while, for the other child CT node, all shortest paths
are blocked by B(a2, R2, Rg), and thus agent a2 will find a path that does
increase the length.

Figure 8(c) draws another example where agent a1 can enter the purple
area also from the blue dotted line on the right. This time, however, we
cannot use barrier constraints B(a1, R1, Rg) and B(a2, R2, Rg) because there
is a pair of conflict-free paths that violates both barrier constraints, indicated
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by the two arrows in the figure. Therefore, we do not recognize this example
as a generalized rectangle conflict.

To sum up, how the solid lines of different colors distribute determines
whether the conflict is a generalized rectangle conflict, and how the dot-
ted lines of different colors distribute only affects the type of the conflict.
Therefore, when we identify generalized rectangle conflicts, we only focus
on the solid lines, see Figure 8(d). We denote the nodes on the border with
the smallest and largest timesteps as Rs and Rg, respectively. Rs and Rg

divide the border into two segments. If all blue solid lines are on only one
of the segments and all yellow solid lines are on only the other segment,
then the conflict is a generalized rectangle conflict. We denote the node
on the blue and yellow solid lines that are furthest from Rs (i.e., closest
to Rg) as R2 and R1, respectively. Then, we can prove that using barrier
constraints B(a1, R1, Rg) and B(a2, R2, Rg) to resolve this conflict preserves
the completeness and optimality of CBS.

Now, let us consider the case where the purple area has holes. The
holes can be caused by either obstacles or constraints. The key point is
to exclude the cases where the lines can cross each other within the hole
because, otherwise, the agents might cross the intersection point in the hole
at different timesteps and thus have conflict-free paths. Therefore, we also
draw blue and yellow solid lines on the border of each hole to indicate where
the agents can enter the purple area from the hole. If every hole inside the
purple area has solid lines of at most one color, such as Figure 8(e), then
this is still a generalized rectangle conflict. Otherwise, as in the example of
Figure 8(f), such a conflict is not a generalized rectangle conflict.

As for classifying conflicts, we simply check whether barrier constraint
B(ai, Ri, Rg) (i = 1, 2) blocks all shortest paths of agent ai by looking at
MDDi . The conflict is cardinal iff both barrier constraints block all shortest
paths; it is semi-cardinal iff only one of them blocks all shortest paths; it is
non-cardinal iff neither of them blocks all shortest paths.

6.2. Algorithm

Now, we provide the detailed methodology for identifying, classifying,
and resolving generalized rectangle conflicts. There are five key steps:

1. finding the generalized rectangle (i.e., the purple area in Figure 8);

2. scanning the border;

3. checking the holes;

4. generating the constraints; and

5. classifying the conflict,
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which correspond to the following five subsections, respectively. Given a
semi- or non-cardinal vertex conflict between two agents, the generalized
rectangle reasoning algorithm returns either a pair of barrier constraints or
“Not-Rectangle”.

6.2.1. Step 1: Finding the Generalized Rectangle

Definition 7 (Generalized Rectangle). Given two agents a1 and a2 with a
vertex conflict at node (v, t), the generalized rectangle is a connected directed
acyclic graph G = (V, E) such that (1) G ⊆ MDD1 ∩MDD2 , (2) (v, t) ∈ V,
and (3), for every node (u, tu) ∈ V, any shortest path of either agent that
visits vertex u visits it only at timestep tu. We use the term conflicting
area to denote the vertices (e.g., cells in 4-neighbor grids) of the nodes in V,
which represent a connected area on the plane to which graph G is mapped.

Condition (3) is important because it guarantees that, if the shortest
paths of agents a1 and a2 visit a common vertex in the conflicting area,
they must have a vertex conflict. From conditions (1) and (3), we know
that (u, tu) ∈ V only if, for both i = 1 and i = 2, (u, tu) ∈ MDDi and
(u, t′u) /∈ MDDi , ∀t

′

u 6= tu. Formally, to find a generalized rectangle, we first
project the MDD nodes of the MDDs of both agents to the vertices in V . Let
Mi (i = 1, 2) be such a mapping, where Mi[u], u ∈ V is a list of MDD nodes
in MDDi whose vertices are u. Then, we run a search starting from the
conflicting vertex v to generate G whose nodes (u, t) satisfy the constraint
that both M1[u] and M2[u] contain only one MDD node (u, t). If V is empty
or contains only one node, we terminate and report “Not-Rectangle”.

During the search, we also collect the entry edges E1 and E2 for the
conflicting area (corresponding to the blue and yellow solid lines in Figure 8).

Definition 8 (Entry Edge). The set of entry edges Ei (i = 1, 2) is a set
of directed MDD edges of MDDi whose “from” node is not in V and whose
“to” node is in V.

Since the start nodes (s1, 0) and (s2, 0) of agents a1 and a2 are different,
they must be located outside of the conflicting area, and, thus, both E1 and
E2 contain at least one entry edge.

6.2.2. Step 2: Scanning the Border

Let Rs and Rg denote the nodes with the smallest and largest timesteps
on the border, respectively. Scan the border from Rs to Rg on both sides
and check whether the entry edges of one agent are all on one side of RsRg
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and the entry edges of the other agent are all on the other side of RsRg. If
not, we terminate and report “Not-Rectangle”.

Recall that the underlying graph is a planar graph. So we embed the
graph into a plane and then scan the border clockwise and counterclockwise
from Rs to Rg. During the scanning, we mark the “to” nodes of the last-seen
entry edges of E1 and E2 as R2 and R1, respectively. We also remove every
visited entry edge from E1 or E2 so that all remaining edges in E1 and E2

are entry edges on the borders of the holes, which will be used in the next
step. For clarification, we use Eb

i to denote the removed edges from Ei and
Eh

i = Ei \ E
b
i to denote the remaining edges in Ei (i = 1, 2).

6.2.3. Step 3: Checking the Holes

For each entry edge in Eh
1 , we scan the border of its corresponding hole

and check whether the “to” node of any edge in Eh
2 is on the border. If

so, then this hole contains entry edges of both agents, so we terminate
and report “Not-Rectangle”. If we succeed in examining every edge in Eh

1

without terminating, then there are no holes in the conflicting area that
contain an entry edge of both agents. We thus move to the next step.

6.2.4. Step 4: Generating the Constraints

We generate barrier constraints B(a1, R1, Rg) and B(a2, R2, Rg), where
B(ai, Ri, Rg) (i = 1, 2) is a set of vertex constraints that prohibits agent ai
from occupying all nodes along the border from Ri to Rg. All prohibited
nodes are on the MDDs of the agents, so we do not need to worry about
situations like Example 5 where the two agents might have conflict-free paths
that traverse the prohibited nodes. Like Line 16 in Algorithm 1, we check
whether the generated barrier constraints block the current paths of both
agents. If not, we terminate and report “Not-Rectangle”.

6.2.5. Step 5: Classifying the Conflict

From Figures 8(a) and 8(b), it seems that we can classify conflicts by
checking whether the border segment RiRg covers all dotted lines of the
color corresponding to agent ai. However, this is not correct because the
agent might have a shortest path that does not visit the purple area at all.
Therefore, we run a search on the MDD of each agent and check whether the
barrier constraint B(ai, Ri, Rg) (i = 1, 2) blocks all paths on MDDi from its
start node to its target node, i.e., the nodes constrained by the barrier con-
straint form a cut of the MDD. The generalized rectangle conflict is cardinal
iff both barrier constraints block all paths on the corresponding MDD; it is
semi-cardinal iff only one of the barrier constraints blocks all paths on the
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corresponding MDD; it is non-cardinal iff neither barrier constraint blocks
all paths on the corresponding MDD.

6.3. Theoretical Analysis

Property 8. For all combinations of paths of agents a1 and a2 with a
generalized rectangle conflict, if one path violates B(a1, R1, Rg) and the other
path violates B(a2, R2, Rg), then the two paths have one or more vertex
conflicts within the generalized rectangle G.

Proof Sketch. We show a proof sketch here and a formal proof in Appendix
B:

1. All paths for agent ai (i = 1, 2) that visit a node constrained by
B(ai, Ri, Rg) must traverse an entry edge in Eb

i .

2. Any sub-path from an entry edge in Eb
1 to a node constrained by

B(a1, R1, Rg) must visit at least one common vertex with any sub-
path from an entry edge in Eb

2 to a node constrained by B(a2, R2, Rg).

3. The common vertex must be inside the conflicting area, i.e., not inside
one of the holes.

4. Following the two sub-paths, agents a1 and a2 must conflict at the
common vertex in the conflicting area.

Property 8 tells us that barrier constraints B(a1, R1, Rg) and
B(a2, R2, Rg) are mutually disjunctive, and thus, based on Theorem 2, using
them to split a CT node preserves the completeness and optimality of CBS.

Theorem 5. Using the generalized rectangle reasoning technique preserves
the completeness and optimality of CBS.

6.4. Empirical Evaluation on Rectangle Reasoning

In this and future sections, we evaluate the algorithms on eight maps
of different sizes and structures from the MAPF benchmark suite [1]. We
test six different numbers of agents per map. We use the “random” scenar-
ios from the benchmark suite in which the start and target vertices were
generated randomly, yielding 25 instances for each map and each number
of agents. The details of the benchmark instances are shown in Table 1,
and a visualization of the maps is shown in Figure 9. The algorithms are
implemented in C++, and the experiments are conducted on Ubuntu 20.04
LTS on an Intel Xeon 8260 CPU with a memory limit of 16 GB and a time
limit of 1 minute.

In this subsection, we compare CBSH (denoted None), CBSH with rect-
angle reasoning for entire paths (denotedR), CBSH with rectangle reasoning
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Definition 9 (Target Conflict). Two agents are involved in a target conflict
iff they have a vertex conflict that happens after one agent has arrived at
its target vertex and stays there forever.

Example 8. In Figure 10, agent a2 arrives at its target vertex D2 at
timestep 1, but an unavoidable vertex conflict occurs with agent a1 at the
target vertex D2 at timestep 3. When CBS branches to resolve this vertex
conflict, it generates two child CT nodes. In the left child CT node, CBS
adds a vertex constraint for agent a2 that prohibits it from being at vertex
D2 at timestep 3. The low-level search finds a new path [C2, C3, C3, C2,
D2] for agent a2, which does not conflict with agent a1. The cost of this CT
node is three larger than the cost of the root CT node. In the right child
CT node, CBS adds a vertex constraint for agent a1 that prohibits it from
being at vertex D2 at timestep 3. Thus, agent a1 can arrive at vertex D2 at
timestep 4, and the cost of this CT node is one larger than the cost of the
root CT node. There are several alternative paths for agent a1 where it waits
at different vertices for the requisite timestep, e.g., path [A2, A2, B2, C2,
D2, E2]. However, each of these paths produces a further conflict with agent
a2 at vertex D2 at timestep 4. Although the left child CT node contains
conflict-free paths, CBS has to split the right child CT nodes repeatedly to
constrain agent a1 (because it performs a best-first search) before eventually
proving that the solution of the left child CT node is optimal.

Target symmetry has the same pernicious characteristics as rectangle
symmetry since, if undetected, it can explode the size of the CT and lead to
unacceptable runtimes. Table 2 shows how many CT nodes CBS expands
to resolve a target conflict of the type shown in Figure 10 for different
distances between vertices s1 and g2. While the increase in CT nodes is
linear in the distance, which may not seem too problematic, only one of the
leaf CT nodes actually resolves the conflict (the paths in the other CT nodes
still contain conflicts between the two agents). Later, when other conflicts
occur, each of the leaf CT nodes might be further fruitlessly expanded. With
two copies of the problem (resulting in 4-agent instances), Table 2 shows a
quadratic increase in the number of CT nodes. For m-agent instances, the
increases become exponential in m. Hence, we propose a target reasoning
technique that can efficiently detect and resolve all target symmetries on
general graphs. We introduce this technique in detail in the following four
subsections and present its empirical performance in Section 7.5.
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7.1. Identifying Target Conflicts

The detection of target conflicts is straightforward. For every vertex
conflict, we compare the conflicting timestep with the agents’ path lengths.

7.2. Resolving Target Conflicts

The key to resolving target conflicts is to reason about the path length of
an agent. Suppose that agent a2 arrives at its target vertex g2 at timestep t′

and stays there forever. Agent a1 then visits vertex g2 at timestep t (t ≥ t′).
We resolve this target conflict by branching on the path length l2 of agent
a2 using the following two length constraints, one for each child CT node:

• l2 > t, i.e., agent a2 can complete its path only after timestep t, or

• l2 ≤ t, i.e., agent a2 must arrive at vertex g2 and stay there forever
before or at timestep t, which also requires that any other agent cannot
visit vertex g2 at or after timestep t.

The first constraint l2 > t affects only the path of agent a2, while the second
constraint l2 ≤ t could affect the paths of all agents.

The advantage of this branching method is immediate. In the first case,
agent a2 cannot finish until timestep t+1, so its path length increases from
its current value t′ to at least t+1. In the second case, agent a1 is prohibited
from being at vertex g2 at or after timestep t. If agent a1 has no alternate
path to its target vertex, the CT node with this constraint has no solution
and is thus pruned. If agent a1 has alternate paths that do not use vertex
g2 at or after timestep t and the shortest one among them is longer than its
current path, then its path length increases. We do not need to replan for
agent a2 since its current path is no longer than t. Nevertheless, we have to
replan the paths for all other agents that visit vertex g2 at or after timestep
t. This is a very strong constraint as vertex g2 can be viewed as an obstacle
after timestep t for all agents except agent a2.

In order to handle the length constraints, we need the low-level search to
take into account bounds on the path length. This is fairly straightforward
for given bounds e ≤ l2 ≤ u on the path length l2 of agent a2: If the low-level
search reaches target vertex g2 before timestep e, then it cannot terminate
but must continue searching; if it reaches the target vertex between timesteps
e and u (and the agent was not at the target vertex at the previous timestep),
then it terminates and returns the corresponding path; if it reaches the target
vertex after timestep u, then it terminates, the corresponding CT node has
no solution, and the CT node is thus pruned. We require the agent to not be
at the target vertex at the previous timestep because, otherwise, the agent
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could simply take its current path to the target vertex and wait there until
timestep e is reached, which does not help to resolve the conflict.

For example, to resolve the target conflict in Figure 10, we split the root
CT node and add the length constraints l2 > 3 and l2 ≤ 3. In the left child
CT node, we replan the path of agent a2 and find a new path [C2, C3, C3,
C2, D2], which does not conflict with agent a1. In the right child CT node,
agent a1 cannot occupy vertex D2 at or after timestep 3. We thus fail to
find a path for it and prune the right child CT node. Therefore, the target
symmetry is resolved in a single branching step.

7.3. Classifying Target Conflicts

Target conflicts are classified based on the vertex conflict at the target
vertex: A target conflict is cardinal iff the corresponding vertex conflict is
cardinal; and it is semi-cardinal iff the corresponding vertex conflict is semi-
cardinal. It can never be non-cardinal because the cost of the child CT node
with the additional length constraint l2 > t is always larger than the cost
of the parent CT node. This is an approximate way of classifying target
conflicts since it is possible that, when we branch on a semi-cardinal target
conflict, the costs of both child CT nodes increase.

7.4. Theoretical Analysis

Showing the completeness and optimality of CBS when using length
constraints for target conflicts is straightforward. Therefore, we omit the
proof of the following theorem.

Theorem 6. Resolving target conflicts with length constraints preserves the
completeness and optimality of CBS.

7.5. Empirical Evaluation on Target Reasoning

In this subsection, we compare CBSH (denoted None) with CBSH with
target reasoning (denoted T). As shown in Figure 11, on all maps except
for Maze, target reasoning speeds up CBSH, and the improvement is usu-
ally larger on denser maps. The performance on Maze is an exception due
to the low-level space-time A* search for replanning an extremely long or
non-existing path. On the one hand, the length constraint li > t can sub-
stantially increase the path length of agent ai, but finding a long path is
time-consuming for space-time A*. On the other hand, the length con-
straint li ≤ t prohibits all agents other than agent ai from being at vertex
gi for all timesteps at and after timestep t, which might make it impossi-
ble for an agent to reach its target vertex. However, to realize that such a
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at timestep t2(e2) + k must conflict with any paths of agent a2 that reach
e2 before or at timestep t1(e1) + k.

Now we consider bypasses (see Figure 13(b)). Assume that agent a1 has
bypasses to reach e1 without traversing corridor C and the earliest timestep
when it can reach e1 using a bypass is t′1(e1). Similarly, assume that agent a2
also has bypasses to reach e2 without traversing corridor C and the earliest
timestep when it can reach e2 using a bypass is t′2(e2). If we prioritize agent
a1, then agent a2 can either wait or use a bypass, then the earliest timestep
when agent a2 can reach e2 is min(t′2(e2), t1(e1) + 1 + k). Similarly, if we
prioritize agent a2, then the earliest timestep when agent a1 can reach e1 is
min(t′1(e1), t2(e2) + 1 + k). Therefore, any paths of agent a1 that reach e1
before or at timestep min(t′1(e1)−1, t2(e2)+k) must conflict with any paths
of agent a2 that reach e2 before or at timestep min(t′2(e2) − 1, t1(e1) + k).
In other words, the following two constraints are mutually disjunctive:

• 〈a1, e1, [0,min(t′1(e1)− 1, t2(e2) + k)]〉 and

• 〈a2, e2, [0,min(t′2(e2)− 1, t1(e1) + k)]〉,

where 〈ai, v, [tmin, tmax]〉 is a range constraint [69] that prohibits agent ai
from being at vertex v at any timestep between timesteps tmin and tmax.
Thus, to resolve a corridor conflict, we split the CT node with two range con-
straints. We use state-time A* to compute t1(e1), t

′

1(e1), t2(e2), and t′2(e2).
We cannot simply use the timesteps when the current paths of the agents
traverse e1 and e2 as t1(e1) and t2(e2) because these paths minimize only the
timesteps to reach the target vertices and thus do not necessarily minimize
the timesteps to reach e1 and e2.

For example, for the corridor conflict in Figure 12, we calculate t1(D3) =
t2(A3) = 4, t′1(D3) = t′2(A3) = +∞ and k = 3. Hence, to resolve this con-
flict, we split the root CT node and add the range constraints 〈a1,D3, [0, 7]〉
and 〈a2,A3, [0, 7]〉. In the right (left) child CT node, we replan the path
of agent a1 (a2) and find a new path [A4, A4, A4, A4, A4, A3, B3, C3,
D3, D4] ([D2, D2, D2, D2, D2, D3, C3, B3, A3, A2]), that waits at its start
vertex for 4 timesteps before moving to its target vertex. It waits at its start
vertex rather than any vertex inside the corridor because CBS breaks ties
by preferring the path that has the fewest conflicts with the paths of other
agents. Hence, the paths in both child CT nodes are conflict-free, and the
corridor symmetry is resolved in a single branching step.

Like the rectangle reasoning techniques, we use this branching method
only when the paths of both agents in the current CT node violate their

39



corresponding range constraints because this guarantees that the paths in
both child CT nodes are different from the paths in the current CT node.

8.3. Classifying Corridor Conflicts

Similarly to target conflicts, we classify corridor conflicts based on the
type of the vertex/edge conflict inside the corridor. A corridor conflict is
cardinal iff the corresponding vertex/edge conflict is cardinal; it is semi-
cardinal iff the corresponding vertex/edge conflict is semi-cardinal; and it is
non-cardinal iff the corresponding vertex/edge conflict is non-cardinal. This
is an approximate way of classifying corridor conflicts. We use Figure 12 to
show an example where, after branching on a non-cardinal corridor conflict
in a CT node N , the costs of both resulting child CT nodes are larger than
the cost of N . Assume that N has two constraints, each of which prohibits
one of the agents from being at its target vertex at timestep 5, so both
agents have to wait for one timestep and thus have paths of length 6. If
agent a1 waits at vertex D3 at timestep 5 and agent a2 waits at vertex A3
at timestep 5, then they have a non-cardinal edge conflict 〈a1, a2,B3,C3, 3〉.
As a result, the corridor conflict is classified as a non-cardinal conflict. How-
ever, as we saw above, when we use the range constraints 〈a1,D3, [0, 7]〉 and
〈a2,A3, [0, 7]〉 to resolve the corridor conflict, the costs of both child CT
nodes are larger than the cost of N .

8.4. Theoretical Analysis

Property 9. For all combinations of paths of agents a1 and a2 with a
corridor conflict, if one path violates 〈a1, e1, [0,min(t′1(e1) − 1, t2(e2) + k)]〉
and the other path violates 〈a2, e2, [0,min(t′2(e2) − 1, t1(e1) + k)]〉, then the
two paths have one or more vertex or edge conflicts inside the corridor.

Since we already intuitively prove Property 9 when we introduce range
constraints, we move the formal proof to Appendix C. Property 9 tells
us that range constraints are mutually disjunctive, and thus, according to
Theorem 2, using them to split a CT node preserves the completeness and
optimality of CBS.

Theorem 7. Resolving corridor conflicts with range constraints preserves
the completeness and optimality of CBS.

Note that we add range constraints at the exit endpoints of the agents
instead of their entry endpoints because there might be an optimal solution
that violates both “entry-endpoint” range constraints. For instance, given
the corridor conflict shown in Figure 12(left), if we use “entry-endpoint”
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they all involve one wait action and differ only in where the wait action is
taken. However, each of these single-wait paths remains in conflict with the
path of the other agent. CBS has to branch again to find conflict-free paths
in such a situation. Figure 14(right) shows the corresponding CT. Only the
left-most and right-most leaf CT nodes contain optimal solutions.

Like corridor conflicts, a pseudo-corridor conflict occurs when (1) two
agents move in opposite directions, (2) they have a vertex or edge conflict,
and (3) adding one wait action to one of the agents before the timestep of
the vertex or edge conflict, no matter where, must lead to another edge or
vertex conflict. In fact, a pseudo-corridor conflict can be viewed as a corridor
conflict whose corridor is of length 1, i.e., consists of only two endpoints.
Although, compared to corridor conflicts, a pseudo-corridor conflict seems
to be less problematic as the size of the CT does not grow exponentially,
it could occur more frequently as it is not restricted to maps that have
corridors.

We reuse the corridor reasoning technique to resolve pseudo-corridor
conflicts. That is, when we find a corridor conflict of length k = 1, we
generate two range constraints c1 = 〈a1, e1, [0,min(t′1(e1) − 1, t2(e2) + 1)]〉
and c2 = 〈a2, e2, [0,min(t′2(e2)− 1, t1(e1) + 1)]〉, where ti(ei) (i = 1, 2) is the
earliest timestep for agent ai to reach endpoint ei and t′i(ei) (i = 1, 2) is
the earliest timestep for agent ai to reach endpoint ei without using edge
(e1, e2). All properties listed in Section 8.4 hold here. By reusing their proofs
without changes, we can show that resolving a pseudo-corridor conflict with
constraints c1 and c2 preserves the completeness and optimality of CBS.

In practice, we only use range constraints c1 and c2 to resolve the conflict
if the path of agent a1 violates range constraint c1 and the path of agent a2
violates range constraint c2, and we are only interested in cardinal pseudo-
corridor conflicts because semi-/non-cardinal pseudo-corridor conflicts are
easy to resolve. A necessary but insufficient condition to ensure this is that,
if the conflict between the two agents is a vertex conflict at timestep t, then
the MDD of both agents have only one MDD node at timesteps t− 1, t and
t+1, and the MDD node of one agent at timestep t−1 is identical to the MDD
node of the other agent at timestep t+1; or if the conflict is an edge conflict
at timestep t, then the MDD of both agents have only one MDD node at
timesteps t−1 and t. Therefore, before we generate range constraints c1 and
c2, we check the MDDs of both agents to eliminate some non-pseudo-corridor
conflicts, as checking MDDs is substantially computationally cheaper than
computing ti(ei) and t′i(ei) for generating range constraints. Algorithm 2
summarizes the pseudo-code for the pseudo-corridor reasoning technique.
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described in Section 8.1, we find a corridor C = {B3,C3,D3} of length 2
and generate a pair of range constraints 〈a1,D3, [0, 5]〉 and 〈a2,B3, [0, 4]〉.
However, when we generate the left child CT node with the first constraint,
we cannot find a shortest path for agent a1 that does not conflict with agent
a2. In fact, the shortest path for agent a1 that does not conflict with agent
a2 is to first move to A4, wait there until agent a2 reaches A3, then traverse
the corridor and reach its target vertex.

This example shows that the previous corridor reasoning technique can-
not resolve the corridor conflict in a single branch, because it stops detecting
the corridor after it finds a start vertex. Therefore, in this subsection, we
modify the corridor reasoning technique by allowing start vertices to be
inside the corridor. Below are the details of the modification.

Identifying corridor conflicts. For every vertex and edge conflict, we first
find the corridor on-the-fly by checking whether the conflicting vertex (or
an endpoint of the conflicting edge) is of degree 2. To find the endpoints of
the corridor, we check the degree of each of the two adjacent vertices and
repeat the procedure until we find either a vertex whose degree is not 2 or
the target vertex of one of the two agents. Then, we say the two agents are
involved in a corridor conflict iff they (1) leave the corridor from different
endpoints and (2) have to cross each other inside the corridor. The second
condition is to avoid cases like Figure 15(c). Although the paths for the two
agents shown in Figure 15(c) do not conflict, when considering constraints
in the CT node, it is possible that the shortest paths of the two agents are
longer than the paths shown in the figure and conflict inside the corridor.
But we should not view it as a corridor conflict.

Resolving and classifying corridor conflicts. It is the same as the original
technique shown in Sections 8.2 and 8.3.

Theoretical analysis. All properties listed in Section 8.4 hold here. We can
reuse their proofs without changes. Therefore, this modified technique pre-
serves the completeness and optimality of CBS.

9.3. Corridor-Target Conflicts

Another interesting case occurs when the target vertex of an agent is
inside the corridor.

Example 12. Figure 16(a) shows the same example as in Figure 12(left)
except that the target vertex of agent a1 is inside the corridor. If the two
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the corridor from endpoint e2, then it has to let agent a2 traverse through
the corridor first. So the earliest timestep for it to enter the corridor from
endpoint e2 is max{t1(e2), t2(e2) + 1}, and, therefore, the earliest timestep
for it to reach its target vertex g1 is max{t1(e2), t2(e2)+1}+dist(e2, g1). (2)
If agent a1 enters the corridor from endpoint e1, then the earliest timestep
for it to reach its target vertex g1 is max{t1(e1), t2(e1) + 1} + dist(e1, g1).
In other words, if agent a1 reaches its target vertex at or before timestep
l = mini=1,2{max{t1(ei) − 1, t2(ei)} + dist(ei, g1)}, then agent a2 cannot
traverse through the corridor without conflicting with a1, i.e., the earliest
timestep for it to reach endpoint e2 is t′2(e2) (i.e., using a bypass that does
not traverse the corridor). Therefore, to resolve this corridor-target con-
flict, we generate two child CT nodes, each with one of the constraint sets
C1 = {l1 > l} and C2 = {l1 ≤ l, 〈a2, e2, [0, t

′

2(e2)− 1]〉}.

Case 2: both target vertices are inside the corridor. The reasoning is similar
to Case 1. Let us use Figure 16(b) as a running example. Agent a2 has
to enter the corridor to reach its target vertex g2, and it can enter from
either endpoint e1 (i.e., cell D3 in Figure 16(b)) or endpoint e2 (i.e, cell A3
in Figure 16(b)). If agent a2 enters the corridor from endpoint e1, then it
has to traverse vertex g1 before agent a1 eventually reaches its target vertex
g1 and waits at vertex g1 forever. (1) If agent a1 enters the corridor from
endpoint e2, then it has to let agent a2 traverse through the corridor first.
So the earliest timestep for agent a1 to enter the corridor from endpoint e2
is max{t1(e2), t2(e2) + 1}, and, therefore, the earliest timestep for agent a1
to reach its target vertex g1 is max{t1(e2), t2(e2) + 1} + dist(e2, g1). (2) If
agent a1 enters the corridor from endpoint e1, then the earliest timestep for
it to reach its target vertex g1 is max{t1(e1), t2(e1) + 1} + dist(e1, g1). In
other words, if agent a1 reaches its target vertex g1 at or before timestep
l = mini=1,2{max{t1(ei) − 1, t2(ei)} + dist(ei, g1)}, then agent a2 cannot
traverse through vertex g1 without conflicting with agent a1, i.e., the earliest
timestep for agent a2 to reach its target vertex g2 is t′2(g2), which represents
the earliest timestep for agent a2 to reach its target vertex g2 via a bypass,
i.e., a path that enters the corridor from vertex e2. Therefore, to resolve
this corridor-target conflict, we generate two child CT nodes, each with one
of the constraint sets C1 = {l1 > l} and C2 = {l1 ≤ l, l2 > t′2(g2)− 1}.

9.3.3. Classifying Corridor-Target Conflicts

We reuse the method in Section 8.3 to classify corridor-target conflicts.
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9.3.4. Theoretical Analysis

Property 10. For all combinations of paths of agents a1 and a2 with a
corridor-target conflict, if one path violates constraint set C1 and the other
path violates constraint set C2, then the two paths have one or more vertex
or edge conflicts inside the corridor.

Since we already intuitively prove Property 10 when we introduce con-
straint sets C1 and C2 in Section 9.3.2, we move the formal proof to Ap-
pendix D. Property 10 tells us that constraint sets C1 and C2 are mutually
disjunctive, and thus, according to Theorem 2, using them to split a CT
node preserves the completeness and optimality of CBS.

9.4. Summary

Algorithm 3: Generalized Corridor Reasoning

Input: Vertex conflict c = 〈a1, a2, v, t〉 or edge conflict c = 〈a1, a2, v, u, t〉.

1 Construct the corridor C from vertex v or edge (v, u);
2 if C is of length 1 then

3 return PseudoCorridorReasoning(c);

4 if MustCross(ai, aj , C) returns False then

5 return “Not Corridor”;

6 if g1 and g2 are inside the corridor then

7 l← mini=1,2{max{t1(ei)− 1, t2(ei)}+ dist(ei, g1)};
8 C1 ← {l1 > l};
9 C2 ← {l1 ≤ l, l2 > t′

2
(g2)− 1};

10 else if g1 or g2 is inside the corridor then

11 WLOG, let a1 be the agent whose target vertex is inside the corridor;
12 l← mini=1,2{max{t1(ei)− 1, t2(ei)}+ dist(es, g1)};
13 C1 ← {l1 > l};
14 C2 ← {l1 ≤ l, 〈a2, e2, [0, t

′

2
(e2)− 1]〉};

15 else

16 C1 ← {〈a1, e1, [0,min{t′
1
(e1)− 1, t2(e1) + dist(e1, e2)}]〉};

17 C2 ← {〈a2, e2, [0,min{t′
2
(e2)− 1, t1(e2) + dist(e2, e1)}]〉};

18 if The path of a1 violates C1 and the path of a2 violates C2 then

19 return C1 and C2;
20 else

21 return “Not Corridor”;

Up to now, we have discussed all types of generalized corridor conflicts,
namely standard corridor conflicts (including the cases when start vertices
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slow down CBSH either. Maps Game1, City, and Game2 rarely have corri-
dors, but they all have obstacles of various shapes, where pseudo-corridor
reasoning can be useful. As a result, although C and STC do not improve
the performance of CBSH, PC and GC do. Maps Random, Warehouse, Room,
and Maze all have many corridors, and as a result, all corridor techniques
speed up CBSH. Among all maps, the improvements on map Maze are the
largest. Among all corridor reasoning techniques, GC is always the best.

10. Symmetry Reasoning Framework

Until now, we have described and empirically evaluated each symmetry
reasoning technique independently. In this section, we present the complete
framework of our pairwise symmetry reasoning technique, namely how to
identify different classes of symmetry conflicts and, when multiple conflicts
exist, which conflict to choose to resolve first. We then show some empirical
results for combining all symmetry reasoning techniques together.

10.1. Framework

Algorithm 4: Symmetry Reasoning

Input: Vertex conflict c = 〈a1, a2, v, t〉 or edge conflict c = 〈a1, a2, v, u, t〉.

1 {C1, C2} ← GeneralizedCorridorReasoning(c);
2 if {C1, C2} 6= “Not Corridor” then

3 return “Corridor Conflict” and constraint sets {C1, C2};

4 if t is larger than the length of the path of agent a1 or a2 then

5 {C1, C2} ← TargetReasoning(c);
6 return “Target Conflict” and the constraint sets {C1, C2};

7 if c is a semi-/non-cardinal vertex conflict then

8 {C1, C2} ← GeneralizedRectangleReasoning(c);
9 if {C1, C2} 6= “Not Rectangle” then

10 return “Rectangle Conflict” and the constraint sets {C1, C2};

11 {C1, C2} ← StandardCBSSplitting(c);
12 return “Vertex/Edge Conflict” and the constraint sets {C1, C2};

During the expansion of a CT node, we run symmetry reasoning for each
vertex and edge conflict. Algorithm 4 shows the pseudo-code. We first run
generalized corridor reasoning by calling Algorithm 3 (Line 1). If the input
conflict c turns out not to be a corridor conflict, we then check whether
it is a target conflict by comparing the path length of the agents with the
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conflicting timestep t (Line 4). If, say, agent a1’s path length is smaller than
or equal to t, then it is a target conflict, and we generate the constraint
sets {C1 = {l1 > t}, C2 = {l1 ≤ t}} by function TargetReasoning(c)
(Line 5). If conflict c is not a target conflict but a semi- or non-cardinal
vertex conflict, we then run generalized rectangle reasoning by calling the
algorithm described in Section 6.2 (Line 8). If conflict c turns out not to be
any class of symmetric conflicts, we use the standard CBS splitting method
to generate constraints (Line 11).

When choosing conflicts for expansion, we prioritize conflicts by resolving
cardinal conflicts first, then semi-cardinal conflicts, and last non-cardinal
conflicts. The cardinality of symmetric conflicts are determined during the
symmetry reasoning procedure, although we do not show it explicitly in
Algorithm 4. When there are multiple conflicts of the same cardinality, we
break ties using the same motivation described in Section 3.2.1, i.e., in favor
of conflicts that can increase the costs of the child CT nodes more. To be
specific, we give target conflicts the highest priority because, when resolving
a target conflict, the cost of at least one child CT node is larger than the cost
of the current CT node by at least one and often by much more. Corridor
conflicts have the second highest priority because, when resolving a corridor
conflict, the costs of the child CT nodes can be more than one larger than
the cost of the parent CT node. Rectangle conflicts have the third highest
priority because, when resolving a rectangle conflict, the costs of the child
CT nodes are typically at most one larger. Vertex and edge conflicts have
the lowest priority because we prefer to resolve all symmetric conflicts first,
and also, when resolving a vertex or edge conflict, the costs of the child CT
nodes are typically at most one larger.

10.2. Empirical Evaluation

In this subsection, we compare CBSH (denoted None), CBSH with the
best variant of each of the reasoning technique, namely generalized rectangle
reasoning (denoted GR), target reasoning (denoted T), and generalized cor-
ridor reasoning (denoted GC), and CBSH with their combination (denoted
GRTGC, or RTC for short).

Runtimes and Success Rates. Figure 19 presents the runtimes, and Figure 20
presents the success rates, i.e., the percentage of instances solved within the
time limit of one minute. As expected, all of GR, T, and GC are able
to speed up CBSH, and the significance of their speedup depends on the
structure of the maps. The combination of them, i.e., RTC, is always the
best. In Figure 20, we notice an interesting behavior on many maps, such
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Table 4: Percentages of runtime of RTC spent on rectangle reasoning (denoted “Rect”)
and corridor reasoning (denoted “Corr”). The runtime overhead of target reasoning is
negligible, and thus is not reported here.

Map Rect Corr Map Rect Corr Map Rect Corr Map Rect Corr
Random 3.62% 10.86% Empty 5.79% 0.30% Warehouse 1.26% 5.69% Game1 1.73% 1.80%
Room 2.42% 30.12% Maze 0.14% 0.57% City 1.12% 0.98% Game2 6.32% 8.52%

Table 5: Conflict distribution for RTC. “Nodes” represents the number of expanded CT
nodes within the time limit. “Rectangle”, “Target” , “Corridor”, and “Vertex/Edge” rep-
resent the percentage of CT nodes expanded by generalized rectangle, target, generalized
corridor reasoning, and standard CBS splitting, respectively.

Map Nodes Rectangle Target Corridor Vertex/Edge
Random 25,840 6.528% 54.391% 10.812% 28.269%
Empty 17,946 9.016% 61.856% 0.016% 29.112%

Warehouse 959 4.745% 55.579% 10.337% 29.339%
Game1 535 7.776% 50.851% 10.901% 30.472%
Room 8,848 3.443% 10.135% 55.036% 31.386%
Maze 30 0.000% 2.556% 44.315% 53.129%
City 401 6.183% 48.422% 5.364% 40.031%
Game2 345 2.400% 11.768% 67.998% 17.834%

and, as a result, the overall runtime overhead of rectangle reasoning is man-
ageable, i.e., always less than 7% in Table 4. The runtime overhead of
corridor conflicts mainly comes from calculating ti(x) and t′i(x), as each
of them, in our implementation, is a state-time A* search. We see that,
on most maps, this overhead is small. But there are some maps, such as
Random and Room, where the overhead is more than 10%. Overall, thanks
to the effectiveness of the symmetry-breaking constraints for reducing the
sizes of CTs, the overhead pays off in Figures 19 and 20.

Conflict Distribution. Table 5 reports how often RTC uses each reasoning
technique to expand CT nodes, which also indicates how often different con-
flicts occur on different maps. Clearly, rectangle conflicts are more frequent
on maps with more open space. An extreme case is on map Maze, where
RTC does not branch on any rectangle conflicts as there is no open space on
this map. Target conflicts are highly frequent on all maps for two reasons:
one is that we always choose to resolve target conflicts first, and the other
is that the likelihood of a target conflict happening is high given the high
density of the agents in our instances and regardless of the structures of the
maps. The only exception is map Maze, because there most target conflicts
are classified as corridor-target conflicts by generalized corridor reasoning.
Corridor conflicts are detected on all maps and frequent on maps with obsta-
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Table 6: Numbers of expanded CT nodes for None and RTC to resolve a two-agent MAPF
instance. Numbers in column > n represent the percentage of instances that are solved
by expanding more than n CT nodes.

Map Agents Algorithm > 1 > 2 > 9 > 99 > 999

Random 100
None 13.577% 5.852% 0.754% 0.215% 0.055%
RTC 1.748% 0.806% 0.428% 0.031% 0.014%

Empty 200
None 8.997% 8.262% 6.892% 5.583% 4.689%
RTC 2.808% 0.588% 0.006% 0.001% 0.000%

Warehouse 200
None 20.896% 14.237% 1.049% 0.484% 0.297%
RTC 0.948% 0.187% 0.029% 0.011% 0.011%

Game1 300
None 18.952% 4.477% 3.159% 2.926% 2.813%
RTC 10.150% 0.502% 0.060% 0.050% 0.000%

Room 100
None 49.291% 28.169% 4.031% 0.007% 0.000%
RTC 14.517% 3.283% 0.123% 0.003% 0.000%

Maze 20
None 96.886% 93.426% 69.550% 46.713% 16.609%
RTC 6.484% 6.180% 1.418% 1.216% 0.405%

City 400
None 18.732% 7.338% 5.146% 3.531% 3.203%
RTC 5.756% 0.189% 0.029% 0.029% 0.029%

Game2 150
None 38.282% 6.180% 0.116% 0.097% 0.093%
RTC 18.930% 2.422% 0.024% 0.024% 0.000%

cles. Thanks to pseudo-corridor reasoning, we find many corridor conflicts
not only on maps with many corridors, such as Random, Warehouse, Room,
and Maze, but also maps with few or even zero corridors, such as Empty,
Game1, City, and Game2. Rectangle, target, and corridor conflicts together
account for approximately 70% of conflicts that are used to expand CT
nodes on many of the maps. Together with the efficiency of our reasoning
techniques and the effectiveness of our symmetry-breaking constraints, this
high frequency results in the gains that we see in Figures 19 to 21.

Two-Agent Analysis. An interesting question to our reasoning techniques is
that: do rectangle, target, and corridor reasoning find all pairwise symme-
tries in MAPF? To answer this question, we design a two-agent experiment.
Recall that CBSH2 (introduced in Section 3.2.2) calls CBSH to solve a 2-
agent sub-MAPF instance for each pair of conflicting agents at each CT
node to compute heuristics.6 Here, we record the number of CT nodes to
solve such 2-agent instances by None and RTC, respectively, and report the
results in Table 6. Compared to None, RTC requires substantially fewer
nodes to resolve 2-agent instances. And impressively, RTC is able to solve

6In practice, CBSH2 does not do so for all pairs, as it uses a memoization technique
to avoid solving the same 2-agent sub-MAPF instance (at different CT nodes) twice.
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Table 7: Numbers of solved instances by rRCT and RTC within one minute. The total
number of instances for each map is 25× 6 = 150.

Map rRTC RTC Map rRTC RTC Map rRTC RTC Map rRTC RTC
Random 97 113 Empty 116 126 Warehouse 90 118 Game1 114 119
Room 90 111 Maze 46 49 City 128 133 Game2 106 118

up to 99% of 2-agent instances by expanding only one CT node. Even in the
worst case, it solves 81%. Except for map Maze, there are less than 0.5% of
instances that RCT expands more than 10 CT nodes to resolve. As for map
Maze, the percentage is less than 1.5%. Therefore, we conclude that RTC is
able to identify most of the pairwise symmetries in MAPF.

Conflict Prioritization. In order to show the effectiveness of our proposed
conflict prioritization strategy (i.e., for conflicts of the same cardinality,
we first choose target conflicts, then corridor conflicts, rectangle conflicts,
and last vertex and edge conflicts), we create a strawman algorithm rRTC
that chooses conflicts of the same cardinality randomly and compare its
performance with RTC in Table 7. On all maps, RTC solves 3.9%-31.1%
more instances than rRTC, which clearly shows that our fine-grained conflict
prioritization strategy that sorts conflicts according to their cardinality and
then breaks ties according to their symmetry types is better than the existing
conflict prioritization strategy [70] that sorts the conflicts according to their
cardinality only.

11. Empirical Comparison with Existing Algorithms

In this section, we compare our reasoning techniques with existing related
algorithms, namely mutex propagation and CBSH2.

11.1. Comparison with Mutex Propagation

As we introduced in Section 4.2, mutex propagation is a symmetry rea-
soning technique that can identify all cardinal symmetric conflicts and re-
solve them with a pair of vertex constraint sets. To provide a extensive com-
parison of RTC and mutex propagation, we test four versions of CBSH: (1)
CBSH with mutex propagation only (denoted M); (2) CBSH with RTC only
(denotedRTC); (3) CBSH with both techniques where, for each vertex/edge
conflict, we always perform mutex propagation first and then perform RTC
only if mutex propagation fails to identify this conflict as a symmetric con-
flict (denoted M+RTC); and (4) CBSH with both techniques where, for
each vertex/edge conflict, we always perform RTC first and then perform
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In addition, we add the bypassing strategy [70] to CBSH2 which can greedily
resolve some semi- and non-cardinal conflicts without branching.

Figure 23 shows the runtime distribution of CBSH and CBSH2 with
and without RTC. In particular, CBSH2 with RTC uses RTC both in the
main CBSH2 and in the two-agent sub-MAPF solver CBSH. As expected,
both CBSH with RTC and CBSH2 outperform CBSH in most cases. In
particular, RTC always performs better than CBSH2, which indicates that,
although RTC and the heuristics used in CBSH2 both reasons about pairs
of agents, RTC using symmetry-breaking constraints to resolve symmetries
directly is more effective than CBSH2 relying on the heuristics to eliminate
symmetries. Not surprisingly, CBSH2 with RTC performs the best as it
makes use of both symmetry-breaking constraints and informed heuristics.

In order to show that the gain of RTC over CBSH2 is not just because
it speeds up CBSH to solve the two-agent instances, we plot the number of
CT nodes expanded by CBSH2 with and without RTC in Figure 24. We
see that RTC can reduce the size of CTs of CBSH2 by up to three orders of
magnitude. Among the 961 instances that are solved by at least one of the
algorithms, CBSH2 with RTC performs worse than CBSH2 only on 44 (=
5% of) instances and beats it on 676 (= 70% of) instances.

12. Summary and Future Work

Researchers have made significant progress on scaling up MAPF algo-
rithms in the past decade. Most previous work focuses on developing ad-
vanced techniques for particular MAPF algorithms, like partial expansion
for A*, node pruning for ICTS, and conflict selection for CBS. Here, we try
to improve our understanding of what makes MAPF hard. The symme-
try issues we identify must be eventually resolved by every optimal MAPF
algorithm although the encodings are algorithm specific. We give instanti-
ations for classic MAPF with optimal CBS. Other recent work has applied
these ideas in other optimal MAPF algorithms like BCP [23, 14], bounded-
suboptimal MAPF algorithms like EECBS [15], and other MAPF variants
like k-robust MAPF [22].

We showed that symmetric conflicts arise extremely frequently in MAPF.
Rectangle conflicts occur when two agents must cross paths and have many
equivalent ways to do so. The generalized rectangle reasoning applies to any
planar graphs, which represents almost all the real-world circumstances for
MAPF problems in 2D scenarios. Generalized corridor and target reasoning
concentrate on spatial and temporal reasoning where we try to avoid sym-
metries resulting from multiple waiting actions. Both of them are applicable
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to any graphs and critical problems for one of the main commercial uses of
MAPF, namely routing robots in automated warehouses. We showed that
our reasoning techniques scaled up CBSH by up to thirty times and reduced
its node expansion by up to four orders of magnitude. They significantly
outperformed mutex propagation and significantly improved CBSH2.

There remain many open questions. As Table 6 indicates, although our
reasoning techniques resolve most pairwise symmetries in a single branching
step, there remain some undetected pairwise symmetries. Also, complex
interactions between more than two agents can arise in congested settings.
Our work can also be extended to more complex MAPF problems. For
example, in k-robust MAPF [69], agents need to keep safety time between
each other. So, agents being at the same vertex at different timesteps can
conflict with each other, which introduces more types of symmetric conflicts.
The rectangle, target and corridor reasoning techniques have been shown to
be effective there [22]. Similarly, in large-agent MAPF [20], agents are of
different sizes. So, agents at different vertices/edges can conflict with each
other, which also introduces more types of symmetric conflicts. In addition,
if we allow agents to have different speeds, then a chasing symmetry arises
when a fast agent tries to overtake a slow agent.
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Appendix A. Proof for Rectangle Reasoning Techniques

Property 2. For agents a1 and a2 with a rectangle conflict found by the
rectangle reasoning technique I, all paths for agent a1 that visit a node on
the exit border R1Rg must visit a node on the entry border RsR2, and all
paths for agent a2 that visit a node on the exit border R2Rg must visit a
node on the entry border RsR1.

Proof. We assume that the vertex conflict between agents a1 and a2 is at
node C. We then assume S1.x ≤ G1.x and S1.y ≤ G2.y without loss of gen-
erality (because MAPF is invariant under rotations of axes). From Equa-
tions (3) and (4), we know S2.x ≤ G2.x and S2.y ≤ G2.y.

7 Since Equa-
tions (1) and (2) ensure that the paths for the two agents from their start to
target nodes are within the conflicting area, we know that the cell of node
C is also within the conflicting area, i.e.,

max{S1.x, S2.x} ≤ C.x ≤ min{G1.x,G2.x} (A.1)

max{S1.y, S2.y} ≤ C.y ≤ min{G1.y, G2.y} (A.2)

Then, since the two agents reach cell (C.x,C.y) at the same time via their
Manhattan-optimal paths, we know

(C.x− S1.x) + (C.y − S1.y) = (C.x− S2.x) + (C.y − S2.y), (A.3)

which can be simplified to

S1.x+ S1.y = S2.x+ S2.y. (A.4)

We assume that S1.x ≤ S2.x without loss of generality (because MAPF is
invariant under swaps of the indexes of agents), which implies S1.y ≥ S2.y.
According to the definition of the four corners of the rectangle in Definition 6,
we have Rs.x = S2.x, Rs.y = S1.y, Rg.x = min{G1.x,G2.x} ≥ S2.x, Rg.y =

7Note that, when S1.x = G1.x, it is possible that S2.x > G2.x by Equation (3). In this
case, we flip the x axis so that S1.x ≤ G1.x and S2.x ≤ G2.x both hold. Same for the y

axis.
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min{G1.y, G2.y} ≥ S1.y, R1.x = Rg.x, R1.y = S1.y, R2.x = S2.x and
R2.y = Rg.y. Thus,

S1.x ≤ S2.x = Rs.x = R2.x ≤ Rg.x = R1.x (A.5)

S2.y ≤ S1.y = Rs.y = R1.y ≤ Rg.y = R2.y. (A.6)

Consequently, the relative locations of the start, target and rectangle corner
nodes are exactly the same as given in Figure 3. Since the S1-Rg rectangle
and the Rs-Rg rectangle are of the same length (i.e., |S1.x−Rg.x| = |Rs.x−
Rg.x| = |R1.x − Rg.x|) and any sub-path p1 from node S1 to a node on
border R1Rg must be Manhattan-optimal, sub-path p1 must visit a node on
border RsR2. Similarly, since the S2-Rg rectangle and the Rs-Rg rectangle
are of the same width (i.e., |S2.y−Rg.y| = |Rs.y−Rg.y| = |R2.y−Rg.y|) and
any sub-path from node S2 to a node on border R2Rg must be Manhattan-
optimal, sub-path p2 must visit a node on border RsR1. Therefore, the
property holds.

Property 6. For agents a1 and a2 with a rectangle conflict found by the
rectangle reasoning technique II, all paths for agent a1 that visit a node
constrained by B(a1, R1, Rg) must visit a node on the entry border RsR2,
and all paths for agent a2 that visit a node constrained by B(a2, R2, Rg)
must visit a node on the entry border RsR1.

Proof. By Property 5, we need to prove that any path for agent a1 from its
start node S1 to one of the nodes constrained by B(a1, R1, Rg) must visit
a node on the entry border RsR2 and any path of agent a2 from its start
node S2 to one of the nodes constrained by B(a2, R2, Rg) must visit a node
on the entry border RsR1. This holds by applying the proof for Property 2
after replacing Equation (A.4) by Equation (7).

Appendix B. Proof for the Generalized Rectangle Reasoning

Technique

For a given generalized rectangle G = (V, E), we use V ′ = {u|(u, t) ∈ V}
to denote the vertices in the conflicting area.

Lemma 9. Any path for agent ai (i = 1, 2) that visits a node in the gener-
alized rectangle V must visit an entry edge in Ei.

Proof. Consider an arbitrary path p for agent ai that visits a node in V.
Let edge e = ((u, t), (w, t + 1)) be the edge on path p such that (u, t) /∈ V
and (w, t + 1) ∈ V. Since (w, t + 1) ∈ V, node (w, t + 1) is in MDDi . By
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Property 4, node (u, t) is also in MDDi . By the definition of the entry edges
in Definition 8, edge e ∈ Ei. Therefore, any path for agent ai that visits a
node in V must visit one of the entry edges in Ei.

Lemma 10. Any path for agent ai (i = 1, 2) that visits a node in V must
visit one of the entry edges in Eb

i .

Proof. According to Lemma 9 and the fact that Ei = Eb
i ∪E

h
i , we only need

to prove that any path for agent ai that visits an edge in Eh
i also visits an

edge in Eb
i . Consider an arbitrary path p for agent ai that visits an edge

e = ((u, t), (w, t + 1)) in Eh
i . In geometry, since vertex si is outside the

conflicting area while vertex u is in a hole, path p must visit at least one
vertex in V ′. We use u′ to denote the first vertex in V ′ visited by path p,
u′′ to denote the vertex visited by path p right before vertex u′, and (u′, tu′)
to denote the corresponding node in V. By Definition 7, node (u′, tu′) is the
only MDD node in MDDi at vertex u′. By Property 4 and the fact that node
(w, t+1) is in MDDi , all nodes before timestep t+1 on path p, including the
node whose vertex is u′, are in MDDi . So path p visits vertex u′ at timestep
tu′ and vertex u′′ at timestep tu′ − 1. So (u′′, tu′ − 1) /∈ V, (u′, tu′) ∈ V,
and both node (u′′, tu′ − 1) and node (u′, tu′) are in MDDi . Therefore, edge
e′ = ((u′′, tu′ − 1), (u′, tu′)) is an entry edge in Eb

i . Therefore, the lemma
holds.

Property 8. For all combinations of paths of agents a1 and a2 with a
generalized rectangle conflict, if one path violates B(a1, R1, Rg) and the
other path violates B(a2, R2, Rg), then the two paths have one or more
vertex conflicts within the conflicting area G.

Proof. Since all nodes prohibited by B(ai, Ri, Rg) (i = 1, 2) are in V, from
Lemma 10, any path for agent ai (i = 1, 2) that visits a node prohibited
by B(ai, Ri, Rg) must visit one of the entry edges in Eb

i . The four nodes
Rs, Rg, R1 and R2 cut the border of the generalized rectangle G into four
segments RsR2, R2Rg, RgR1 and R1Rs, denoted Seg1, Seg2, Seg3 and Seg4,
respectively. The “to” nodes of all entry edges in Eb

1 are on Seg1, and
the “to” nodes of all entry edges in Eb

2 are on segment Seg4. The nodes
prohibited by B(a1, R1, Rg) are on segment Seg3, and the nodes prohibited
by B(a2, R2, Rg) are on segment Seg2. Therefore, we only need to prove
that any path p1 for agent a1 that visits a node on Seg1 and a node on
segment Seg3 must conflict with any path p2 for agent a2 that visits a node
on Seg4 and a node on segment Seg2. By the geometric property, paths p1
and p2 must cross each other, i.e., must visits at least one common vertex u.
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According to Section 6.2.3, vertex u is not in one of the holes, i.e., u ∈ V ′.
Let node (u, tu) be the corresponding node in V. Then both path p1 and
path p2 must visit node (u, tu), i.e., they conflict at vertex u at timestep tu.
Therefore, the property holds.

Appendix C. Proof for the Corridor Reasoning Technique

Property 9. For all combinations of paths of agents a1 and a2 with a
corridor conflict, if one path violates 〈a1, e1, [0,min(t′1(e1) − 1, t2(e2) + k)]〉
and the other path violates 〈a2, e2, [0,min(t′2(e2)− 1, t1(e1) + k)]〉, then the
two paths have one or more vertex or edge conflicts inside the corridor.

Proof. Let path p1 be an arbitrary path of agent a1 that visits vertex e1 at
timestep τ1 ∈ [0,min(t′1(e1)−1, t2(e2)+k)] and path p2 be an arbitrary path
of agent a2 that visits vertex e2 at timestep τ2 ∈ [0,min(t′2(e2)−1, t1(e1)+k)].
We need to prove that paths p1 and p2 have one or more vertex or edge
conflicts inside the corridor.

Since τ1 ≤ min(t′1(e1)− 1, t2(e2) + k) ≤ t′1(e1)− 1 < t′1(e1) (where t′1(e1)
is the earliest timestep when agent a1 can reach vertex e1 without using
the corridor between vertices e1 and e2), path p1 must traverse the corridor.
Similarly, path p2 must traverse the corridor as well.

Since τ1 ≤ min(t′1(e1)−1, t2(e2)+k) ≤ t2(e2)+k (where k is the distance
between vertices e1 and e2), the latest timestep when path p1 visits vertex
e2 is no larger than timestep t2(e2). t2(e2) is the earliest timestep when path
p2 can visit vertex e2, so path p1 visits vertex e2 before path p2. Similarly,
path p2 visits vertex e1 before path p1. Therefore, paths p1 and p2 must
have a conflict in the corridor between vertices e1 and e2. Therefore, the
property holds.

Appendix D. Proof for the Corridor-Target Reasoning Technique

Property 10. For all combinations of paths of agents a1 and a2 with a
corridor-target conflict, if one path violates constraint set C1 and the other
path violates constraint set C2, then the two paths have one or more vertex
or edge conflicts inside the corridor.

Proof. Since a path of agent a1 cannot violate the length constraints l1 > l
and l1 ≤ l simultaneously, we only need to consider the case where a path of
agent a1 violates l1 > l and a path of agent a2 violates 〈a2, e2, [0, t

′

2(e2)−1]〉
or l2 > t′2(g2).
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Case 1. Let us first consider the case where the target vertex of agent a2 is
not inside the corridor. Let path p1 be an arbitrary path of agent a1 that
is of length no larger than l and path p2 be an arbitrary path of agent a2
that visits vertex e2 at timestep τ2 ∈ [0, t′2(e2)− 1]. We need to prove that
paths p1 and p2 have one or more vertex or edge conflicts inside the corridor.
Since τ2 ≤ t′2(e2) − 1 < t′2(e2) (where t′2(e2) is the earliest timestep when
agent a2 can reach vertex e2 without using the corridor between vertices e1
and e2), path p2 must traverse the corridor. Since the target vertex of a1 is
inside the corridor, eventually path p1 must enter the corridor via endpoints
e1 or e2 without leaving again. Assume that path p1 enters the corridor via
endpoint ei (i = 1, 2) at timestep τ1 (without leaving again), then

τ1 ≤ |p1| − dist(ei, g1)

≤ l − dist(ei, g1)

= min
i=1,2
{max{t1(ei)− 1, t2(ei)}+ dist(ei, g1)} − dist(ei, g1)

≤ (max{t1(ei)− 1, t2(ei)}+ dist(ei, g1))− dist(ei, g1)

= max{t1(ei)− 1, t2(ei)}

≤ max{τ1 − 1, t2(ei)}

= t2(ei), (D.1)

where |p1| represents the length of path p1. This equation indicates that
path p1 enters the corridor via endpoint ei at or before path p2 without
leaving again. Therefore, paths p1 and p2 must have one or more vertex or
edge conflicts inside the corridor.

Case 2. Now let us consider the case where the target vertices of both agents
are inside the corridor. Let path p1 be an arbitrary path of agent a1 that
is of length no larger than l and path p2 be an arbitrary path of agent a2
that is of length no larger than t′2(g2)− 1. We need to prove that paths p1
and p2 have one or more vertex or edge conflicts inside the corridor. Since
|p2| ≤ t′2(g2) − 1 < t′2(g2) (where t′2(g2) is the earliest timestep when agent
a2 can reach its target vertex g2 via vertex e2), path p2 must reach its target
vertex g2 via vertex e1, i.e., path p2 reaches its target vertex g2 via vertex g1.
Since the target vertex of a1 is inside the corridor, eventually path p1 must
enter the corridor via endpoints e1 or e2 without leaving again. If path p1
enters the corridor via endpoint e2, then path p1 reaches its target vertex g2
via vertex g1. So paths p1 and p2 have one or more vertex or edge conflicts
inside the corridor. If path p1 enters the corridor via endpoint e1, say at
timestep τ1, then according to Equation (D.1), we know τ1 ≤ t2(e1), which
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indicates that path p1 enters the corridor via endpoint e1 at or before path
p2 without leaving again. Therefore, paths p1 and p2 must have one or more
vertex or edge conflicts inside the corridor.

Therefore, the property holds.
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