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Abstract

Deep learning (DL) algorithms have achieved significantly high performance
in object detection tasks. At the same time, augmented reality (AR) tech-
niques are transforming the ways that we work and connect with people.
With the increasing popularity of online and hybrid learning, we propose a
new framework for improving students’ learning experiences with electrical
engineering lab equipment by incorporating the abovementioned technolo-
gies. The DL powered automatic object detection component integrated
into the AR application is designed to recognize equipment such as multime-
ter, oscilloscope, wave generator, and power supply. A deep neural network
model, namely MobileNet-SSD v2, is implemented for equipment detection
using TensorFlow’s object detection API. When a piece of equipment is de-
tected, the corresponding AR-based tutorial will be displayed on the screen.
The mean average precision (mAP) of the developed equipment detection
model is 81.4%, while the average recall of the model is 85.3%. Furthermore,
to demonstrate practical application of the proposed framework, we develop
a multimeter tutorial where virtual models are superimposed on real multi-
meters. The tutorial includes images and web links as well to help users learn
more effectively. The Unity3D game engine is used as the primary develop-
ment tool for this tutorial to integrate DL and AR frameworks and create
immersive scenarios. The proposed framework can be a useful foundation for
AR and machine-learning-based frameworks for industrial and educational
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training.
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1. Introduction1

It is important for electrical engineers to understand how to use electrical2

equipment correctly. However, learning how to use equipment in a few cases3

has been a challenge for freshman electrical engineering students as many4

lab equipment are complex with several functionalities that are difficult to5

understand at the freshman level (Mej́ıas Borrero and Andújar Márquez,6

2012). Following lab or user manuals and watching video tutorials are tra-7

ditional approaches to learn how to use equipment. However, they do not8

guarantee that students will retain all the information. With recent tech-9

nological advancements, new teaching strategies that create immersive and10

hands-on experiences are being researched to increase students’ interest and11

knowledge (Singh et al., 2019).12

In this paper, we describe the design and development of a smartphone13

app that uses deep learning (DL) and augmented reality (AR) to create a14

learning platform for teaching students how to use electrical lab equipment.15

These new technologies with their integration into tools and applications used16

for day-to-day tasks have made life easier not only for students, but also for17

people in different roles. They also benefit manufacturing industries, gaming,18

education, health, farming, and a variety of other fields that require process19

automation (Ray, 2019). Artificial intelligence (AI) is used to complete com-20

plex tasks in the same way that humans do (Xue and Zhu, 2009). Extended21

reality (XR), a concept referring to virtual worlds and human–machine in-22

teractions, was developed to supplement the features that computers and23

mobile devices normally provide (Gong et al., 2021). Both AI and XR have24

the potential to be powerful workplace tools. For example, teams at various25

locations could work together in a virtual environment using AI and XR tech-26

nologies to create new products and prototypes seamlessly. The applications27

of AI and XR are crossing many fields, ranging from workflow optimization in28

various healthcare processes and industrial training procedures to interactive29

educational systems (Nisiotis and Alboul, 2021). Augmented reality (AR) is30

one of the XR realities that is commonly used in mobile/tablet devices.31
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Deep learning (DL), a sub-field of machine learning (ML), embraces arti-32

ficial neural networks (ANN), which are algorithms inspired by the structure33

and function of the human brain. ML has made significant advances in34

recent years because of the need for increased automation and intelligence35

(Khomh et al., 2018). XR refers to immersive technology that encompasses36

three distinct realities: AR, mixed reality (MR), and virtual reality (VR).37

AR superimposes three-dimensional objects on the physical world, requiring38

the use of mobile devices to create interactions. MR is a technology that39

combines the physical and digital worlds to create immersive physical expe-40

riences. Users interact with both the physical and digital worlds by using41

their five senses. VR is a fully digitized world in which users can completely42

immerse themselves in the computer-generated world by using virtual reality43

devices (Hu et al., 2020).44

Many AR apps have recently been developed. AUREL (Ang and Lim,45

2019) is an interactive application that aids in the understanding of specific46

STEM topics. It enhances the learning experience by projecting 3D models47

onto physical 2D textures that are part of the AR system, drawing virtual ob-48

jects using the mobile display, and placing them onto a specific image tracked49

for the camera. The image detection for the ML system uses the camera as50

input data to detect specific images based on a trained dataset. Nonetheless,51

its application is limited to flat image recognition, allowing them to research52

and extend their idea for object recognition. An AR application (Thiwanka53

et al., 2018) was implemented to detect a breadboard and instruct students54

on how to build a circuit. Their system scans a circuit diagram for circuit55

symbols and their connections. These components are then arranged by a56

neural network. The AR system provides a 3D visualization of the scanned57

circuit diagram which students can use as a guided tutorial to build real cir-58

cuitry. Another study (Sandoval Pérez et al., 2022) was to create and test an59

augmented reality application to teach power electronics to beginners. Two60

AR applications for RLC circuits and Buck–Boost converters were created,61

and the experimental results showed that they had a positive effect on stu-62

dents when compared to traditional teaching methods. The results of the63

experiment indicated improved cognitive performance. Despite the fact that64

augmented reality has made its way into STEM education, there is no gen-65

eral non-linear framework that can guide the development of an AR-based66

tutorial to our knowledge. Furthermore, the presented study goes in the di-67

rection of facilitating a smooth transition from real-time object recognition68

using deep learning methods to interactive tutorials using AR technologies,69

3



a particular step of the process where there is potential for improvement.70

In this paper, we discuss the design and implementation of an AR- and71

DL-based smartphone app to assist students in learning how to use electrical72

lab equipment such as multimeters. A similar framework can be applied to73

develop AR- and DL-based apps for other equipment in the future. The paper74

is structured as follows. Section 2 provides an overview of the DL and AR75

techniques suitable for this type of application. Section 3 illustrates the76

design and implementation of the smartphone app using different AR and77

DL frameworks. The experimental results are discussed in Section 4. Finally,78

the paper ends with a conclusion and future works in Section 5.79

2. Overview of Deep Learning and Augmented Reality80

This work explores the idea of using equipment recognition and an AR-81

based tutorial to enhance student learning experiences with electrical equip-82

ment in their engineering laboratories. Our long-term goal is to develop83

interactive smartphones apps for lab equipment such as multimeters, oscil-84

loscopes, wave generators, and power supplies. Object detection using DL85

methods fits our goal because the app can detect specific electrical equipment86

in the lab with high precision in real-time using state-of-art DL algorithms.87

AR technology enables us to create virtual scenarios and integrate 3D mod-88

els, animations, images, and videos embedded into teaching methods. In the89

developed app, the interactive visualization was created using the Unity3D90

game engine (Technologies, 2005). The object detection process of the app91

employs a deep neural network architecture trained with TensorFlow API92

(Yu et al., 2020).93

2.1. Deep Learning94

Innovative DL techniques for performing specific tasks have emerged95

rapidly in recent years due to significant advances in hardware development96

and data availability. For big data predictive analytics and multi-modal97

learning, DL algorithms are quite suitable, while traditional ML algorithms98

face several limitations. Studies in (Chen and Lin, 2014; Alom et al., 2019)99

point out that these DL methods are constructed with hierarchical layers100

and use complex neural networks to improve their performances iteratively.101

Machines equipped with DL models can perform specialized tasks such as102

driving a car, identifying weeds in a field, diagnosing diseases, evaluating103

machinery for errors, and even recognizing objects in real-time. They are104

4



used in a wide range of computer science domains including computer vi-105

sion (Alom et al., 2019), natural language processing (Deng and Liu, 2018),106

and speech recognition (Deng et al., 2013). In this work, we are using a deep107

neural network to detect objects. Object detection is primarily used in com-108

puter vision and has gained popularity in a variety of applications over the109

last decade, including autonomous vehicles, intelligent video, and surveillance110

systems (Nishani and Çiço, 2017).111

For object detection, a type of deep neural network called a convolu-112

tional neural network (CNN) (LeCun et al., 1998) has been widely used.113

CNN is a well-known DL algorithm that employs backpropagation in a feed-114

forward neural network with a collection of neurons arranged in hierarchical115

layers. It also exhibits typical neural network characteristics such as multi-116

ple interconnected hidden layers (Pandiya et al., 2020; Arora et al., 2020).117

CNN for object detection is trained on large labeled datasets and neural118

network architectures that learn features directly from data without explicit119

feature engineering. In recent years, object detection methods such as the120

region-based convolutional neural network (RCNN) (Girshick et al., 2015),121

you only look once (YOLO) (Redmon et al., 2016), and single shot detec-122

tor (SSD) (Liu et al., 2016) have been proposed. The rapid development of123

neural networks improves the accuracy and real-time performance of object124

identification tasks significantly (Ryu and Kim, 2018). In this paper, we com-125

pared RCNN and MobileNet-SSD v2 (Chiu et al., 2020) and observed that126

MobileNet-SSD v2 has better performance for real-time applications in terms127

of speed when implemented on mobile devices. It is important to note that128

MobileNet-SSD v2 is a lightweight deep neural network architecture designed129

specifically for mobile devices with high recognition accuracy. Therefore, we130

employed MobileNet-SSD v2 in this work.131

2.2. Augmented Reality132

The relationship between the real and virtual worlds, as mentioned in133

Section 1, is what distinguishes the various XR technologies. In AR, users134

perceive virtual objects as real-world extensions, whereas MR users combine135

and interact in both the real and digital world, and VR users immerse them-136

selves entirely in a virtual world (Heirman et al., 2020; Andrade et al., 2020).137

This paper focuses on the development of AR applications that allow us to138

create experiences by utilizing additional digital data about our surround-139

ings. We can receive digital information in real-time through devices such140

as webcams, mobile phones, and tablets. In other words, AR allows us to141
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overlay layers of visual information in the physical world, allowing humans142

to interact with virtual 3D objects as well as physical objects around us143

(Dandachi et al., 2015). This feature has revolutionized the ways humans144

learn and comprehend (Sendari et al., 2020). AR development necessitates145

three key components: a physical object that serves as a model for the vir-146

tual object’s interpretation and production; intelligence devices with access147

to a camera that project an image of a targeted object; and software that148

interprets the signal sent by the camera (Mahurkar, 2018).149

There are diverse types of AR suitable for different applications despite150

the fact that they all have similar capabilities (El Filali and Krit, 2019;151

Poetker, 2018). Figure 1 depicts the two primary types of AR: marker-based152

AR and marker-less AR.153

2.2.1. Marker-Based AR154

Marker-based AR works when it is triggered by pre-defined markers. It155

allows the user to choose where to place the virtual object. Barcodes and QR156

codes are commonly used as images or photo symbols to be placed on flat157

surfaces. The program recognizes the marker when the mobile device focuses158

the target image. The virtual information will be projected by the AR onto159

the marker that will be displayed on the device. There are many levels160

of complexity in marker-based AR (Gao et al., 2016). For example, a few161

display virtual information when the device is focused on the marker, while162

others save that virtual information and allow users to view it again when163

the device is focused on a different section. The marker-based AR technology164

leverages images from the actual world or QR codes to extract points, lines,165

corners, textures, and other properties (Sendari et al., 2020). These images166

are used to superimpose and create AR experiences by referencing track167

points in the physical world.168

2.2.2. Marker-Less AR169

Marker-less AR is more versatile than marker-based AR. It interacts with170

the real object without the need for pre-defined markers but leaves the free-171

dom to the user. This allows the user, for example, to position a virtual object172

anywhere on a real object. Users can experiment with different styles and173

locations digitally without having to move anything in their immediate sur-174

roundings (Vidya et al., 2014). Marker-less AR collects data from the device175

hardware such as a camera, a GPS, a digital compass, and an accelerometer176

for the AR program to function. Marker-less AR applications rely on com-177
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puter vision algorithms to distinguish objects, and they can function in the178

real world without specific markers (Beier et al., 2003; Pooja et al., 2020).179

There are four types of marker-less AR discussed as follows:180

(a) Location-based AR: In this type of AR, simultaneous localization and181

mapping (SLAM) technology is used to track the user’s location as the182

map is generated and updated on the user’s mobile device (Batuwan-183

thudawa and Jayasena, 2020). To display AR content in the physical184

environment, the user must detect a surface with a mobile device (Unal185

et al., 2018; Argotti et al., 2002). As an example, the world-famous186

AR-based game app, Pokemon Go, uses SLAM technology that allows187

its users to battle, navigate, and search for 3D interactive objects based188

on their geographical locations (Ketchell et al., 2019).189

(b) Superimposition-based AR: Superimposition-based AR applications can190

provide an additional view along with the original view of the ob-191

ject. Object recognition is required to determine the type of object192

to partially or completely replace an object in the user’s environment193

with a digital image (Knopp et al., 2019; Soulami et al., 2019). Using194

HoloLens glasses, surgeons can superimpose images previously gathered195

through scanners or X-rays on the patient’s body during the operation.196

They can anticipate potential problems using this approach.197

(c) Projection-based AR: Projection-based AR (also known as projection198

mapping and augmented spatial reality) is a technique that does not199

require the use of head-mounted or hand-held devices. This method200

allows augmented information to be viewed immediately from a natural201

perspective. Using projection mapping, projection-based AR turns an202

uneven surface into a projection screen. This method allows for the203

creation of optical illusions (Lee et al., 2018).204

(d) Outlining-based AR: This type of AR employs image recognition to205

create contours or forms and highlight components of the real world206

using special cameras. It is used by human eyes to designate specific207

items with lines to make situations easier. Vuforia’s Model Target is208

an example of outlining-based AR. Vuforia is a platform that enables209

developers to quickly incorporate AR technology into their applications.210

Model Targets allow apps to recognize and track real-world objects211

based on their shape (Vuforia Developer Library, 2021).212

In our project, we built a superimposition-based AR app. We built user213

interfaces on top of lab equipment, allowing step-by-step instructions to be214
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incorporated into the application for users to understand and learn how to use215

specific equipment. Using AR technology, immersive experiences are created216

in a variety of ways. It does, however, have some limitations such as the217

inability to recognize multiple objects at once. On the other hand, DL models218

show high performances in recognizing multiple objects at the same time.219

Integrating AR apps with DL models will help trigger specific AR scenarios220

based on objects being aimed at with a camera and allow an AR scenario to221

perform a single tracking without decreasing mobile device performance.222

3. Design and Implementation of the AR App223

This section describes the design and development of the AR app that224

integrates two independent frameworks for object detection and augmented225

reality as shown in Figure 2. Unity 3D combines the output of these sys-226

tems by inferring the object detection model with OpenCV and using an227

AR dataset target with a Vuforia Engine. Furthermore, Unity 3D enables228

the development of interactive user interfaces. Users can first use their mo-229

bile device to infer the object detection model to detect the lab equipment.230

The inference will classify and localize lab equipment that has been targeted231

with the mobile camera. When an object is detected, a user interface (UI)232

button appears, indicating that an AR-guided tutorial is available for the233

object. Then, an AR scenario will be loaded, allowing students to use their234

mobile camera to aim at a specific target. Following that, a 3D object will235

superimpose on top of the physical object, activating UI panels with instruc-236

tions on how to use the equipment.237

The app development process consists of integrating a number of different238

independent systems with their frameworks. In the interactive tutorial devel-239

opment framework, Unity3D was used as the primary development software240

for generating specific UI instructions and creating immersive interactions241

between the mobile app and the user. The development framework was inte-242

grated with a MobileNet-SSD DL model and a marker-less superimposition243

AR that activates immersive modules containing 2D/3D objects. The de-244

tailed framework integration is discussed below.245

3.1. Object Detection Framework246

MobileNet-SSDv2 (Chiu et al., 2020) architecture was used to build a247

deep neural network model to detect electrical lab equipment. The archi-248

tecture comprised MobileNet-v2 as the backbone network,an SSD detector,249
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Figure 1: Types of augmented reality.

Figure 2: Design framework of AR-based smartphone app for lab equipment training.
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and feature pyramid network (FPN). MobileNet, as the name implies, is250

intended for embedded applications on mobile devices to improve accuracy251

while effectively considering constrained resources. A loss function method252

was calculated using the predicted and labeled values of the classes and off-253

sets to evaluate how the algorithm models the data. The confidence loss254

(Lconfidence) occurs when attempting to predict a class, which is softmax loss255

over multiple classes confidences. Localization loss (Llocalization) is defined as256

a mismatch between the ground truth and the intended boundary boxes (Liu257

et al., 2016; Zhang et al., 2020), where α is the weight coefficient, expressed258

as:259

Lloss = Lconfidence + α× Llocalization (1)260

MobileNet is a low-latency and low-power model that can be tailored to261

meet the resource constraints of various use cases. For multi-scale object262

detection, MobileNetv2 provides a number of feature maps with different263

dimensions for the backbone detection network to the SSD convolutional264

layer that uses small convolutional filters to predict scores and class offsets265

for a fixed set of the standard bounding boxes. MobileNet-SSDv2 extracts266

features from images, which are then processed through SSD predictor layers267

that reduce image size to recognize objects at various scales (Chiu et al., 2020;268

Rios et al., 2021) as shown in Figure 3. Mobilenet-SSDv2 detector improves269

the SSD detector by combining MobileNetv2 and FPN while maintaining270

memory efficiency.271

3.2. TensorFlow Object Detection API272

TensorFlow (TF) API, developed by Google Brain, is a framework for273

creating a DL network (Yu et al., 2020). It is a powerful tool that can be274

used to create a robust object detection framework with a set of standard275

functions, eliminating the need for users to write code from scratch. It also276

provides a list of pre-trained models, which are useful not only for inference277

but also for building models with new data. Model Zoo is a collection of278

models that have been previously trained using the common objects in con-279

text (COCO) dataset (Phadnis et al., 2018). A workflow for training a DL280

model using the TF API is shown in Figure 4 and can be described through281

the following steps:282

(a) Image Dataset : The model was given input of 643 images collected283

from various perspective views and in different lighting settings. Each284

image is of 4032 × 3024 pixels in size. It is necessary to annotate these285
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images before using them to train the model. A software, LabelImg286

(Tzutalin, 2015), is used in the annotation process that allows users287

to draw a rectangle in a specific area of the image. During training,288

the annotation will help the model precisely locate the object in the289

image. The outlining will generate and save coordinate points in an290

XML file.291

(b) TensorFlow Dataset : To make the computation of the DL framework292

efficient, TF records use a binary file format. Furthermore, TF records293

enable the dataset to be stored as a sequence of binary strings that294

improves the model’s performance while using less disk space. We295

converted the XML files generated by LabelImg into TF binary records296

using a Python script. The last step in configuring the TF dataset is to297

create a .pbtxt file containing all of the categorical label classes that298

will be stored in a TF record file.299

(c) Configuration File: Multiple pre-trained models based on the com-300

mon objects in context (COCO) dataset are available in TF. These301

models can be used to set up DL models prior to training on a new302

dataset. Table 1 lists several popular architectures with pre-trained303

models. For instance, ssd MobileNet v1 coco is the SSD with a Mo-304

bileNet v1 configuration, ssd inception v2 coco represents an SSD with305

an Inception v2 configuration, and faster rcnn resnet101 coco stands306

for Faster R-CNN with a Resnet-101 (v1) configuration. All these con-307

figurations have been derived for the COCO dataset. From Table 1, it308

can be observed that ssd MobileNet v1 coco reaches the fastest infer-309

ence speed of 30 ms but with the lowest mean average precision (mAP).310

In contrast, faster rcnn resnet101 coco has the slowest inference speed311

but the highest mAP of 32.312

We tested both MobileNet SSD v2 and faster RCNN (Ren et al., 2015)313

and concluded that MobileNet SSD v2 performs faster inference in314

mobile devices than the faster-RCNN model in our study. Using a pre-315

trained model saves time and computing resources. A configuration file,316

in addition to the pre-trained model, is also required. It must match317

the same architecture of the pre-trained model. It is recommended to318

fine-tune the model to maximize the prediction outcome. The process319

of fine-tuning is divided into two steps: restoring weights and updating320

weights. After we completed the requirements, we ran the python code321

provided for TF API to start the training job. Following training,322

the API will generate a file serving as a training checkpoint in a specific323
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format named .ckpt. This file is a binary file containing all of the324

weights, biases, and other variables’ values.325

(d) Inference: After training the model, the last step is to put it into326

production and feed the model with live data to calculate the predicted327

output. Before testing, we can evaluate the model’s accuracy using328

mAP. In Section 4, the evaluation result is described in detail. We also329

need a lightweight version of the model to perform inference, so we330

choose an OpenCV library.331

In addition, there is a frozen trained model, a ready-to-use inference332

model that can generate an output based on the live data input, and the333

frozen process file is stored in Protobuf (.pb) file. The Protobuf model con-334

tains graph definition and trained parameters in a binary format. The text335

graph representation of the frozen process file is in a human-readable format336

required by the OpenCV library and is kept in a .pbtxt format. After creat-337

ing the corresponding file, it is time to examine and test the trained model.338

We use a function called VideoCapture from OpenCV to test the model,339

which loads the input video using the PC webcam and then predicts the340

relevant labels and object location with an enclosed rectangle indicating its341

pixel location within the input image. Finally, with the Protobuf and the342

configuration file, we can now use the Unity3D game engine and OpenCV to343

create our application by triggering AR scenarios based on the detection of344

electrical lab equipment performed by the DL model during its inference.345

3.3. Augmented Reality Framework346

Vuforia is a framework that enables the creation, recognition, and tracking347

of virtual and physical objects in the real world using an electronic device.348

To test the prototype of our tutorial that integrates both object recognition349

and interactive augmented reality, we developed a tutorial on how to use a350

multimeter in the lab. A scene (a live video) captured by the camera will be351

saved to a mobile device. The Vuforia SDK creates a frame (a single image352

within a series of photos) of the captured scene. It improves the quality353

of the image captured by the camera so that an AR tracker component354

can correctly treat it. It uses the latter to analyze the image and search355

the database for matches, which may include one or more targets. Finally,356

the program renders virtual material such as photographs, videos, models,357

and animations on the device screen, creating a hybrid image of what we358

perceive as holographs. The process of generating AR targets is depicted in359

Figure 5 and can be described in the following steps:360
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Figure 3: MobileNet SSD deep neural network architecture.

Table 1: Comparison Pre-Trained Model Zoo based on COCO Dataset Yu et al. (2020).
ssd MobileNet v1 coco and ssd MobileNet v2 coco are the SSD with MobileNet v1 and
v2 configurations, respectively. ssd inception v2 coco represents SSD with Inception v2
configuration, and faster rcnn resnet101 coco stands for Faster R-CNN with Resnet-101
(v1) configuration. All these configurations are for the COCO dataset.

Model name Speed (ms) COCO (mAP) Output
ssd mobilenet v1 coco 30 21 Boxes
ssd mobilenet v2 coco 31 22 Boxes
ssd inception v2 coco 42 24 Boxes
faster rcnn resnet101 coco 106 32 Boxes

Note: Speed (ms) relates to the network’s inference speed, or how long it takes to

produce an output based on the input. The mAP calculates a score by comparing the

ground-truth bounding box to the detected box. The higher the score, the better the

model’s detection accuracy is.
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Figure 4: Object detection workflow using TensorFlow API.
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(a) Object Scanning : It is the primary tool for generating an object data361

file, which is required for generating an object target in the target362

manager on the Vuforia webpage. This app is available on the Vuforia363

developer website, which users can access after creating a developer ac-364

count. The ObjectScanner (Park and Chin, 2019) app is used, and the365

scanning environment is configured. The Vuforia developer portal pro-366

vides a printable target image that defines the target position and ori-367

entation relative to the local coordinate space to scan the object and368

collect data points. It also distinguishes and removes undesirable areas.369

This printable target image is used in conjunction with an Android ap-370

plication, which is available for free download from the Vuforia official371

website. During scanning, the printable target image must be placed372

under the object to be scanned. Using the Vuforia scanning mobile373

application, the user can start collecting data points from the object.374

To achieve the best scanning quality, it is recommended to work in a375

noise-free environment with moderately bright and diffuse lighting. It376

is also recommended to avoid objects with reflective surfaces. In this377

work, a multimeter met all of the requirements, and a successful scan-378

ning was achieved.379

(b) Data File: Following the scanning, an object data file is created. The mo-380

bile app will also show how many scanning points the object has.381

The completed scanning area is evidenced by a square grid that changes382

color from gray to green. The object data file contains all the object’s383

information. There is a test scenario to determine whether the scanned384

object has sufficient data for augmentation. In this scenario, a green385

rectangular prism will be drawn in one of the object corners relative to386

the target image coordinate space.387

(c) Target Management System: Vuforia has a framework that allows de-388

velopers to choose from various target types, such as picture targets,389

stimuli targets, cylinder targets, object targets, and VuMarks. The sys-390

tem will process and manage the data for visual examination. A devel-391

oper license is required to fully utilize the Vuforia manager web-based392

tool, which includes access to a target manager panel where a database393

can be uploaded, and targets can be added to the management system.394

The 3D object option must be selected when selecting the target type,395

and the object data file must be uploaded.396

(d) Export Target Dataset Following the web-tool processing the informa-397

tion, the database can be downloaded by choosing the desired platform.398
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The platform can be converted into a package that can be used in the399

primary development process as well as to create AR experiences in400

Unity.401

3.4. Lab Training Application Framework402

With the help of AR and DL, the equipment learning application focuses403

on teaching and improving the student’s learning experience on how to prop-404

erly use electrical equipment. Unity3D will provide libraries that allow these405

technologies to be combined on top of assets, animations, and 3D models406

to create training scenarios that will engage students in learning through407

experience. The development procedure is shown in Figure 6 and can be408

described in the following steps:409

(a) Setup Environment : The setup starts with the creation of a new project410

using a Unity hub. After creating and opening the project, it is essen-411

tial to switch to a different build platform because Unity allows us to412

create once and deploy anywhere. In other words, we can select a plat-413

form from the list of available platforms in Unity, such as Windows,414

WebGL, Android, iOS, or any gaming console. We chose Android as415

the deployed platform for this project. The platform can be changed416

in the build settings windows, which can be accessed via the file bar.417

Additionally, the rendering, scripting, and project configuration must418

be modified.419

(b) Libraries and Assets:420

(1) OpenCV Library: OpenCV For Unity (Enoxsoftware, 2016) is a421

program that uses AI algorithms to analyze and interpret images422

on computers or mobile devices. This Unity asset store prod-423

uct allows users to test AI pre-trained models that can be used424

to run algorithms and executable applications on mobile devices.425

The model employs a script that requires a binary file of a DL426

model with trained weights (weights of deep neural networks are427

not modified in this stage), and a file model network configuration.428

This script is granted access to the device resource, specifically the429

camera, so that the script can pass input to the model and start430

object detection inference, which will generate bounding boxes431

and labels around the object detected.432
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Figure 5: Vuforia object tracking framework.
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Figure 6: Lab training application framework.
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(2) Vuforia Engine: This library allows Unity to create AR experi-433

ences for mobile devices. It is a collection of scripts and pre-made434

components for developing Vuforia apps in Unity. It includes API435

libraries written in the C# language that expose the Vuforia APIs.436

This library supports all traceable functions as well as high-level437

access to device hardware such as the device camera.438

(3) Assets: They are graphical representations of any items that could439

be used in the project. It is made up of user interface sprites, 3D440

models, images, materials, and sounds, all with their own design441

and functionality. Photoshop is used to create art sprites, such as442

images for a virtual manual and blender. A 3D modeler software443

is used to create 3D models.444

(c) Scenarios creation445

(1) Main menu: The application includes a menu scenario, as shown in446

Figure 7, that will allow the user to select various modes based on447

their preferences. It includes a tutorial that teaches students how448

to use the application. There is a training mode to help students449

learn more about lab equipment or electrical components.450

(2) Object detection: In this case, the DL model is used in conjunc-451

tion with the OpenCV library in Unity. The application has access452

to the device’s camera from which it will infer the object detection453

model provided by the object detection framework. Furthermore,454

depending on the object that is being targeted, the application au-455

tomatically generates bounding boxes around the desired object456

with its respective label and confidence. When the user points to457

the desired equipment, a bottom panel will appear with the option458

to load the AR experience or continue looking for other lab equip-459

ment. The OpenCV library allows us to specify the desired confi-460

dence value threshold during the model inference. During model461

inference, we can specify the desired confidence value threshold462

using the OpenCV library. The model draws a green rectangle463

around the detected equipment. The detection threshold confi-464

dence value is set to 90%, which means that the confidence must465

be greater than or equal to 90% to indicate a detection with a rect-466

angular bounding box. This percentage was chosen because the467

lab equipment is quite different. The score of 90% would ensure468

that the lab equipment detected had a high confidence level.469

(3) Learning scenarios: A 3D visual aid is provided in this scenario to470

19



understand the essential functions of the equipment selected dur-471

ing the detection scenario. Figure 8 shows how users will be able472

to access an interactive 3D model representation of the equipment473

or view the equipment from various perspectives. In other words,474

it is a virtual manual introductory guide.475

(4) AR training scenario: When the application detects an object476

that has previously been configured in Unity, a 3D model will be477

superimposed on top of the physical object in the mobile app.478

It will also include a UI for the user to interact with, allowing479

them to understand and explore the physical object, while the480

mobile application provides additional information in the form of481

holograms, as shown in Figure 9.482

(d) Deployment : The final step of the framework is to build the project for483

the desired end platform, which can be Android or iPhone. The sce-484

narios in Unity must be selected and linked together. Unity will launch485

and generate a platform associated file that can be directly installed486

on mobile devices.487
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Figure 7: Main menu interface.

Figure 8: Learning interactive scenario.
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Figure 9: AR training scenario: object tracking and superimposition of a 3D object

.
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4. Experimental Results488

In this section, performance for DL and AR frameworks are discussed.489

4.1. Object Detection490

The dataset used in this study is a collection of 643 images with anno-491

tations. The dataset is divided into four classes: multimeter, oscilloscope,492

power supply, and wave generator. The collected samples were randomly split493

into training and test sets with the ratio of 70% and 30%, respectively. We494

employ commonly used evaluation metrics such as precision, recall, and mAP495

to evaluate the model performance in the application.496

4.2. Evaluation Metrics497

• Precision: The percentage of positive detections that were correct is498

referred to as precision. If a model produces no false positives, it has a499

precision of 1.0. Equation (2) describes precision as the True Positive500

divided by the sum of the True Positive (TP) and False Positive (FP).501

TP is defined as a correct prediction of the positive class, whereas FP502

is an incorrect prediction of negative class as the positive class.503

Precision =
TP

TP + FP
(2)504

• Recall: The percentage of true positives that were correctly identified505

by the model. A model with a recall of 1.0 produces zero false negatives.506

Recall can be computed as a ratio of True Positives predictions and the507

sum of TP and False Negatives (FN), as shown in Equation (3). FN is508

defined as an incorrect prediction of the positive class as the negative509

class.510

Recall =
TP

TP + FN
(3)511

• Intersection over Union (IoU): It is also known as the Jaccard index512

used for measuring the similarity and diversity of sample sets. In an513

object detection task, it describes the similarity between the predicted514

bounding box and the ground truth bounding box. Equation (4) ex-515

presses IoU in terms of area of the prediction and ground truth bound-516

ing boxes.517

IoU =
Area of Overlap

Area of Union
(4)518
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It is important to define a threshold to define what is the correctness519

of the prediction for IoU.520

T← Threshold

IoU ≥ T→ Correct

IoU < T→ Incorrect

(5)521

• mean Average Precision (mAP): It takes under consideration both pre-522

cision and recall. It is also the area beneath the precision–recall curve.523

The mAP can be computed by524

mAP =

∑n
k=1 APk

n
(6)525

where APk is the average precision of class k, and n is the number526

of classes.527

Figure 10 shows our model during inference when the new dataset was fed528

to the model. It demonstrates the correct detection of four types of lab equip-529

ment in a single shot when the confidence threshold value (i.e., the threshold530

related to the confidence score to determine whether the detection is an ob-531

ject of interest or not. Confidence scores of the predicted bounding boxes532

above the threshold value are considered as positive boxes, or vice versa) is533

greater or equal to 90%. The experimental results shown in Table 2 support534

that our model has a high mAP. In practice, the DL model can recognize all535

of the electrical lab equipment that has been pre-selected.536

Table 2: Mean Average Precision with Different IoU score of the Trained MobileNet-SSD
V2 model.

Description IoU mAP
Average Precision 0.50 : 0.95 0.814

0.50 0.976
0.75 0.954

Table 2 shows the average precision and average recall for a given IoU537

score and mAP. The IoU is a range between 0.50 and 0.95. Using 193 test-538

ing images, the average precision of our proposed model achieved a mAP of539

81.4% and an average recall of 85.3%. Some failure cases were due to the low540
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ambient lighting and a lack of training datasets with varying lighting condi-541

tions.542

The DL model deployed on a mobile device uses CPU resources of the543

device to infer and predict objects. We ran the DL model on two different544

mobile devices to evaluate performances of devices for real-time prediction.545

We used the frame per second (FPS) unit, which measures the number of546

images that the mobile device screen displays every second.547

According to Table 3, Samsung has a performance of 8.5 FPS, and One548

plus has a performance of 5.5 FPS, indicating that the device hardware re-549

sources are required to accelerate the inference performance.550

4.3. Augmented Reality551

Detecting a multimeter in real-time is a good way to test the accuracy552

and precision of AR-based object detection. Figure 11 shows two mobile553

devices with three different luminous intensities of 25 lux, 150 lux, and 350554

lux. In addition, we included various distances between the mobile camera555

and the multimeter in our evaluation to understand how good our scanning556

process was when collecting data points from the multimeter. This evaluation557

enables us to determine the optimal room lighting configuration for good AR-558

based object detection.559

We included a toggle button in the test AR scenario during the eval-560

uation to indicate whether the application keeps detecting the multimeter.561

Table 4 shows the results of the AR-based detection experiments. Due to the562

camera’s lack of focus, we discovered that our camera was not tracking the563

multimeter during our preliminary results. We included a script in our Unity564

engine project that allowed us to focus on the mobile camera. The evaluation565

table includes focus parameters that will help us decide whether to include566

this feature in the AR experience. We chose 50 cm and 100 cm for our eval-567

uation because these are the typical distances between the lab equipment568

and the students. The final column contains the result in True/False format,569

indicating whether the multimeter was detected. We concluded that Vuforia570

can detect objects even in low light conditions. However, the distance will571

have an impact on the detection results. According to our table evaluation,572

the focus parameter increases the likelihood of detecting a multimeter in573

different light intensities, but it also depends on the camera resolution.574
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Figure 10: Example of automatic equipment detection by the DL model. The number
above each green bounding box indicates confidence score of the model, which is the
probability that a bounding box contains an object of interest, for the detection.

Table 3: Mobile Device Hardware Specification and FPS during Inference.

Mobile Device CPU RAM FPS
Samsung S21 Ultra Samsung Exynos 2100 12 GB 8.5
One Plus 6T Octa-core Kryo 385 6 GB 5.5

Figure 11: Image reference of Samsung s21 camera with a light intensity of 350 lux (Left)
and 25 lux (Right).
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Table 4: AR-based object detection experiments using different devices, luminous inten-
sities, distances between mobile camera and multimeter, and camera’s focus.

Device luminous
inten-
sities

Distance (cm) Focus Detection
Status

1 25 50 No Yes
1 25 100 No No
1 25 50 Yes Yes
1 25 100 Yes Yes
1 150 50 No Yes
1 150 100 No No
1 150 50 Yes Yes
1 150 100 Yes Yes
1 350 50 No Yes
1 350 100 No Yes
1 350 50 Yes Yes
1 350 100 Yes Yes
2 25 50 No Yes
2 25 100 No No
2 25 50 Yes Yes
2 25 100 Yes No
2 150 50 No Yes
2 150 100 No No
2 150 50 Yes Yes
2 150 100 Yes No
2 350 50 No Yes
2 350 100 No No
2 350 50 Yes Yes
2 350 100 Yes Yes
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5. Conclusions and Future Work575

In this study, we developed an interactive multimeter tutorial using deep576

learning and augmented reality. We integrated a deep learning model, namely577

MobileNet-SSD v2, and an AR target database into a game engine to detect578

objects automatically. Unity3D was used to create the augmented tutorial,579

which includes a mobile game infrastructure. The tutorial functions as a580

virtual manual for the equipment, which provides an immersive experience581

by projecting holograms on objects recognized by the app via a mobile cam-582

era. In the future, we will create tutorials for additional lab equipment. One583

application will be the addition of a 3D interactive breadboard in the app584

to help students understand electrical circuits. Another potential enhance-585

ment of the proposed AR- and AI-based education tool would be to support586

remote learning, in which students can learn lab equipment through the AR587

streaming on their mobile devices or personal computers.588
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Nishani, E.; Çiço, B. Computer vision approaches based on deep learning659

and neural networks: Deep neural networks for video analysis of human660

pose estimation. In Proceedings of the 2017 6th Mediterranean Conference661

on Embedded Computing (MECO), Bar, Montenegro, 11–15 June 2017;662

pp. 1–4.663

LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning664

applied to document recognition. Proc. IEEE 1998, 86, 2278–2324.665

Pandiya, M.; Dassani, S.; Mangalraj, P. Analysis of Deep Learning Architec-666

tures for Object Detection-A Critical Review. In Proceedings of the 2020667

IEEE-HYDCON, Hyderabad, India, 11–12 September 2020; pp. 1–6.668

Arora, D.; Garg, M.; Gupta, M. Diving deep in deep convolutional neu-669

ral network. In Proceedings of the 2020 2nd International Conference on670

30

https://unity.com/
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md/
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md/
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md/


Advances in Computing, Communication Control and Networking (ICAC-671

CCN), Greater Noida, India, 18–19 December 2020; pp. 749–751.672

Girshick, R., Donahue, J., Darrell, T., Malik, J. Region-based convolu-673

tional networks for accurate object detection and segmentation. IEEE674

transactions on pattern analysis and machine intelligence 2015, 38, 142–675

158.676

Redmon, J., Divvala, S., Girshick, R., Farhadi, A. You only look once:677

Unified, real-time object detection. In Proceedings of the IEEE conference678

on computer vision and pattern recognition, Las Vegas, NV, USA, 27–30679

June 2016; pp. 779–788.680

Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg,681

A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the Eu-682

ropean Conference on Computer Vision, Amsterdam, The Netherlands,683

11–14 October 2016; pp. 21–37.684

Ryu, J.; Kim, S. Chinese character detection using modified single shot multi-685

box detector. In Proceedings of the 2018 18th International Conference on686

Control, Automation and Systems (ICCAS), PyeongChang, Korea, 17–20687

October 2018; pp. 1313–1315.688

Chiu, Y.C.; Tsai, C.Y.; Ruan, M.D.; Shen, G.Y.; Lee, T.T. Mobilenet-689

SSDv2: An improved object detection model for embedded systems. In690

Proceedings of the 2020 International conference on system science and691

engineering (ICSSE), Kagawa, Japan, 31 August–3 September 2020; pp.692

1–5.693

Heirman, J.; Selleri, S.; De Vleeschauwer, T.; Hamesse, C.; Bellemans, M.;694

Schoofs, E.; Haelterman, R. Exploring the possibilities of Extended Reality695

in the world of firefighting. In Proceedings of the 2020 IEEE international696

conference on artificial intelligence and virtual reality (AIVR), Utrecht,697

The Netherlands, 14–18 December 2020; pp. 266–273.698

Andrade, T.M.; Smith-Creasey, M.; Roscoe, J.F. Discerning User Activity699

in Extended Reality Through Side-Channel Accelerometer Observations.700

In Proceedings of the 2020 IEEE International Conference on Intelligence701

and Security Informatics (ISI), Arlington, VA, USA, 9–10 November 2020;702

pp. 1–3.703

31



Dandachi, G.; Assoum, A.; Elhassan, B.; Dornaika, F. Machine learning704

schemes in augmented reality for features detection. In Proceedings of the705

2015 Fifth International Conference on Digital Information and Commu-706

nication Technology and its Applications (DICTAP), Beirut, Lebanon, 29707

April–1 May 2015; pp. 101–105.708

Sendari, S.; Anggreani, D.; Jiono, M.; Nurhandayani, A.; Suardi, C.709

Augmented reality performance in detecting hardware components using710

marker based tracking method. In Proceedings of the 2020 4th Inter-711

national Conference on Vocational Education and Training (ICOVET),712

Malang, Indonesia, 19 September 2020; pp. 1–5.713

Mahurkar, S. Integrating YOLO Object Detection with Augmented Real-714

ity for iOS Apps. In Proceedings of the 2018 9th IEEE Annual Ubiqui-715

tous Computing, Electronics & Mobile Communication Conference (UEM-716

CON), New York, NY, USA, 8–10 November 2018; pp. 585–589.717

El Filali, Y.; Krit, S.D. Augmented reality types and popular use cases. Int.718

J. Eng. Sci. Math. 2019, 8, 91–97.719

Poetker, B. What Is Augmented Reality? (+Most Common Types of AR720

Used Today). 2018. Available online: https://www.g2.com/articles/721

augmented-reality (accessed on 8 April 2022).722

Gao, Y.F.; Wang, H.Y.; Bian, X.N. Marker tracking for video-based aug-723

mented reality. In Proceedings of the 2016 International Conference on724

Machine Learning and Cybernetics (ICMLC), Jeju Island, Korea, 10–13725

July 2016; Volume 2, pp. 928–932.726

Sendari, S.; Firmansah, A.; Aripriharta. Performance analysis of augmented727

reality based on vuforia using 3d marker detection. In Proceedings of the728

2020 4th International Conference on Vocational Education and Training729

(ICOVET), Malang, Indonesia, 19 September 2020; pp. 294–298.730

Vidya, K.; Deryl, R.; Dinesh, K.; Rajabommannan, S.; Sujitha, G. Enhanc-731

ing hand interaction patterns for virtual objects in mobile augmented re-732

ality using marker-less tracking. In Proceedings of the 2014 International733

Conference on Computing for Sustainable Global Development (INDIA-734

Com), New Delhi, India, 5–7 March 2014; pp. 705–709.735

32

https://www.g2.com/articles/augmented-reality
https://www.g2.com/articles/augmented-reality
https://www.g2.com/articles/augmented-reality


Beier, D.; Billert, R.; Bruderlin, B.; Stichling, D.; Kleinjohann, B. Marker-736

less vision based tracking for mobile augmented reality. In Proceedings of737

the The Second IEEE and ACM International Symposium on Mixed and738

Augmented Reality, Tokyo, Japan, 7–10 October 2003; pp. 258–259.739

Pooja, J.; Vinay, M.; Pai, V.G.; Anuradha, M. Comparative analysis of740

marker and marker-less augmented reality in education. In Proceedings741

of the 2020 IEEE International Conference for Innovation in Technology742

(INOCON), Bangalore, India, 6–8 November 2020; pp. 1–4.743

Batuwanthudawa, B.; Jayasena, K. Real-Time Location based Augmented744

Reality Advertising Platform. In Proceedings of the 2020 2nd International745

Conference on Advancements in Computing (ICAC), Malabe, Sri Lanka,746

10–11 December 2020; Volume 1, pp. 174–179.747

Unal, M.; Bostanci, E.; Sertalp, E.; Guzel, M.S.; Kanwal, N. Geo-location748

based augmented reality application for cultural heritage using drones.749

In Proceedings of the 2018 2nd International Symposium on Multidisci-750

plinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey,751

19–21 October 2018; pp. 1–4.752

Argotti, Y.; Davis, L.; Outters, V.; Rolland, J.P. Dynamic superimposition753

of synthetic objects on rigid and simple-deformable real objects. Comput.754

Graph. 2002, 26, 919–930.755

Ketchell, S.; Chinthammit, W.; Engelke, U. Situated storytelling with SLAM756

enabled augmented reality. In Proceedings of the The 17th International757

Conference on Virtual-Reality Continuum and its Applications in Industry,758

Brisbane, QLD, Australia, 14–16 November 2019; pp. 1–9.759

Knopp, S.; Klimant, P.; Schaffrath, R.; Voigt, E.; Fritzsche, R.; Allmacher, C.760

Hololens ar-using vuforia-based marker tracking together with text recogni-761

tion in an assembly scenario. In Proceedings of the 2019 IEEE International762

Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct),763

Beijing, China, 10–18 October 2019; pp. 63–64.764

Soulami, K.B.; Ghribi, E.; Labyed, Y.; Saidi, M.N.; Tamtaoui, A.; Kaabouch,765

N. Mixed-reality aided system for glioblastoma resection surgery using766

microsoft HoloLens. In Proceedings of the 2019 IEEE International Con-767

ference on Electro Information Technology (EIT), Brookings, SD, USA,768

20-22 May 2019; pp. 79–84.769

33



Lee, J.D.; Wu, H.K.; Wu, C.T. A projection-based AR system to display770

brain angiography via stereo vision. In Proceedings of the 2018 IEEE 7th771

Global Conference on Consumer Electronics (GCCE), Nara, Japan, 9–12772

October 2018; pp. 130–131.773

Vuforia Developer Library. Introduction to Model Targets. 2021.774

Available online: https://library.vuforia.com/articles/Solution/775

introduction-model-targets-unity.html (accessed on 8 April 2022).776

Zhang, S.; Tian, J.; Zhai, X.; Ji, Z. Detection of Porcine Huddling Behaviour777

Based on Improved Multi-view SSD. In Proceedings of the 2020 Chinese778

Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp.779

5494–5499.780

Rios, A.C.; dos Reis, D.H.; da Silva, R.M.; Cuadros, M.A.d.S.L.; Gamarra,781

D.F.T. Comparison of the YOLOv3 and SSD MobileNet v2 Algorithms782

for Identifying Objects in Images from an Indoor Robotics Dataset. In783

Proceedings of the 2021 14th IEEE International Conference on Industry784

Applications (INDUSCON), Sao Paulo, Brazil, 15–18 August 2021; pp.785

96–101.786

Phadnis, R.; Mishra, J.; Bendale, S. Objects talk-object detection and pat-787

tern tracking using tensorflow. In Proceedings of the 2018 Second In-788

ternational Conference on Inventive Communication and Computational789

Technologies (ICICCT), Coimbatore, India, 20–21 April 2018, pp. 1216–790

1219.791

Kilic, I.; Aydin, G. Traffic sign detection and recognition using tensorflow’s792

object detection API with a new benchmark dataset. [-45] In Proceedings793

of the 2020 International Conference on Electrical Engineering (ICEE),794

Istanbul, Turkey, 25–27 September 2020; pp. 1–5.795

Lin, T. LabelImg, 2015. https://github.com/tzutalin/labelImg (ac-796

cessed on 8 April 2022)797

Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object798

detection with region proposal networks. In Proceedings of 28th Annual799

Conference on Neural Information Processing Systems, Montreal, Canada,800

7–12 December 2015; pp. 91–99.801

34

https://library.vuforia.com/articles/Solution/introduction-model-targets-unity.html
https://library.vuforia.com/articles/Solution/introduction-model-targets-unity.html
https://library.vuforia.com/articles/Solution/introduction-model-targets-unity.html
https://github. com/tzutalin/labelImg


Park, Y.; Chin, S. An Efficient Method of Scanning and Tracking for AR.802

Int. J. Adv. Cult. Technol. 2019, 7, 302–307.803

Enoxsoftware. About OpenCV for Unity. 2016. https://804

enoxsoftware.com/opencvforunity/documentation/about-opencv-805

for-unity (accessed on 8 April 2022).806

35

https://enoxsoftware.com/opencvforunity/documentation/about-opencv-for-unity
https://enoxsoftware.com/opencvforunity/documentation/about-opencv-for-unity
https://enoxsoftware.com/opencvforunity/documentation/about-opencv-for-unity
https://enoxsoftware.com/opencvforunity/documentation/about-opencv-for-unity
https://enoxsoftware.com/opencvforunity/documentation/about-opencv-for-unity

	Introduction
	Overview of Deep Learning and Augmented Reality
	Deep Learning
	Augmented Reality
	Marker-Based AR
	Marker-Less AR


	Design and Implementation of the AR App
	Object Detection Framework
	TensorFlow Object Detection API
	Augmented Reality Framework
	Lab Training Application Framework

	Experimental Results
	Object Detection
	Evaluation Metrics
	Augmented Reality

	Conclusions and Future Work

