SHARP *#-IMPROVING ESTIMATES FOR THE DISCRETE PARABOLOID

SHIVAL DASU, CIPRIAN DEMETER, AND BARTOSZ LANGOWSKI

ABSTRACT. We prove fP-improving estimates for the averaging operator along the discrete pa-
raboloid in the sharp range of p in all dimensions n > 2.

1. INTRODUCTION AND NOTATION

In [6] the authors study averaging operators along a discrete moment curve. More precisely,
they consider

N
. 1
Anf(z1,...,2n) = NZf(xl+k,x2+k2,...,mn+k"), (x1,...,2n) €Z",

and prove (see [6, Theorem 1.14]) for n > 3 and 2 — ﬁ < p < 2 the P-improving estimate
1AN fllew zny S "IN vy

The range of p in their theorem is not sharp. Testing the above estimate with standard examples

suggests that the optimal range should be 2 — —=— <p < 2.

In this paper we use the circle method to prove the optimal bounds for the averaging operator
along a discrete paraboloid. In particular, our main result, Theorem 1.1, gives a sharp estimate
(except for an N€ term at the endpoint) for the averages along the discrete moment curve in
dimension n = 2 (in that case the moment curve and the parabola coincide).

We remark that the P-improving estimates in the discrete setting have been studied extensively
in the recent years, see e.g. [1, 6, 7, §].
To state our result we need to define first the discrete paraboloid

et = {0y b B ) €27 1<k SNyi=1,.n =1},
For f:7Z" — C we consider the averaging operator
f Nn Nn—1 Z Z fxl+k17"'axn71+knflgxn+k% +kn 1)

k1=1 kn—1=1

The main theorem of the paper reads as follows.

Theorem 1.1 (/7 improving for the paraboloid). Let ™3 < p < 2. The following bound holds

n+1
nt1)(2—
(1.1) AN SNl 2y S N™FVETV f o zm).
Moreover, the above result is essentially sharp in two ways. First, the exponent —(n + 1)(7 -1

. . . . . . . +3
cannot be improved when p is in our range. Second, the above inequality is false if p ¢ [Z+1 ,2].

The operator norm bound in this theorem should be compared with the trivial estimate, for
1<p<oo

(1.2) AR fllerzny < || fller(zny-
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This is due to the uniform integrability of the kernel K%, with

Nn Nn-T
Z Z T e R €2
ki1=1 kn_1=1

Interpolating (1.1) with the trivial bounds

AN Flles zmy < N1 Flleos zn)

and

|AN fllezmy < W fllevzmy
shows that the estimate

AN flles@zny SN~ (1) 7_7)”.]0”(1’(21"
holds for all (l, l) inside the triangle in Figure 1.

It is also worth observing that ||AY ||er(zn)ssa(zn) = 00 if ¢ < p. Indeed, if not, then for each
f €4P(Z™) and h € Z", writing fu(z) = f(z) + f(z + h) we have

thﬁm | fullerzm) f21/p|\f||ep(zn)7 thﬁm ||AthH€f1(Z" *21/11”‘4 flleaczry

This would in turn force the existence for each ¢ > 0 of some f € ¢P(Z™) (not the zero function)
and h such that

\»—‘

1_
AN fallea@zny = | fuller@n) AR ler@nyspa(zny — €023 7,

leading to a contradiction.

Our proof of Theorem 1.1 relies on obtaining suitable estimates for the corresponding Fourier
multiplier. For this purpose we use the Hardy-Littlewood circle method and estimates for the
exponential sums from [2].

n+3

In Section 2 we first prove a version of Theorem 1.1 which covers also the endpoint p = =

however with the e-loss in the power of N.

Theorem 1.2. Let Z—i? < p < 2. For any € > 0 the following bound holds

(1.3) AR Fllov @y Se NNTOTDED] ]l )

In Section 3 we adopt Bourgain’s argument from [2] to remove the N€ factor from the estimate
in Theorem 1.2 at the expense of moving away from the endpoint. The interesting question about
the validity of (1.1) for p = ”—"’3 remains open.

There are similarities between the [P improving problem considered here and the discrete re-
striction estimate for the paraboloid, first considered in the landmark paper [2]. This restriction
problem is about proving sharp estimates of the form

(1.4) lg * KXl Lo (rny S N llgll o zn)

for 1 < p < 2. Partial progress on this problem has been made in [2] by combining the circle method
with L' — L* and L? — L? interpolation, similar to what we do in this paper. However, this
method could not yield the full range of estimates (1.4) in any dimension. Instead, the restriction
problem has been solved in [3] (in all dimensions, apart from N€ losses) using ¢? decoupling. This
reduction to decoupling was possible in part because of the TT* method. Indeed, (1.4) is easily
seen to be equivalent with the L? based inequality

1K fll Lo oy S N2 N fllz2zn)-

A similar reduction is not possible for /7 improving, as the operator f + f * K& is not positive,
thus not of the form TT™.
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Notation. Throughout the paper we use standard notation with all symbols referring to the
spaces Z" and T™ := [0,1)™. Further, we write * for the convolution on Z™. We set N = {1,2,...},
D = {2™ : m € Z}. Moreover, we let e(t) = > and use the following notation for the Fourier
transform on Z"

&= fmems),  fezr), ¢eT
mezZ"

While writing estimates, we will use the notation X <Y to indicate that X < C'Y with a positive
constant C' independent of significant quantities. We shall write X ~ Y when simultaneously
X<YandY < X.

2. HARDY-LITTLEWOOD DECOMPOSITION AND THE PROOF OF THEOREM 1.2

For N € Nlet on : Z — [0,1] be a function satisfying 1(_y ny < on < 1(_an2n) and such that
sp =on(k+1) —on(k) is bounded by 1/N and has total variation bounded by 1/N

1
D lskar — il < N
kez

Define
1
Anf(z) = WKN * f(z),
where

Kn(@) =Y > on(k)..on(bn-1)0k,,. ko proirz (@)

n—1
ki1€Z kn_1€Z

Note that if f > 0 then A% f(z) < Ay f(z) for every z € Z", so to prove Theorem 1.2 (and also the
sufficiency part of Theorem 1.1) one can replace AY, with Ax. The technical assumptions imposed
on oy are necessary in order to get a suitable Gauss sum estimate, see (2.1) below.

The Fourier transform of the kernel is given for £ = (&1,...,&,) € T" by

my(§) =EKn©) =3 Y onlkr)...on(kn 1)
ki €Z kn_1€Z
x e(E1ky 4 oo F Eptkn 1 FE KT+ +K2_)))

n—1 n—1
= H <Z on(k)e(&ik +§n/€2)> = H G(&, &),
Z i=1
where
G(t,y) = Z on(k)e(yk + tk?).
kEZ
Recall that the following estimate holds
1 1
(2.1) 1G(t,y)| < —= min{N, —x
Vi VIt —a/ql

uniformly in y € T and |t — a/q| < 10/(¢N), see [2, Lemma 3.18].
We shall partition T into the so called major and minor arcs. For 1 < ¢ < N/10 and a € 4,
with A, ={1<a<g—-1: (a,q) =1}, consider

}

and

Observe that the sets 41(g, N, a) are mutually disjoint for ¢ < N/10.
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Let ¢ € C°(R™) be such that 1(_; 1) <9 < 1(_g9). Then let ¢(t) := ¢ (t) —1)(2t) and g := .
Observe that then for each &, € I(q, N,a)

wo (N*(&n —a/q)) + > ¢ (2'Nq(& —a/q)) =

1<21<N/q

Now let

Maq(&n) = ¢ (2'Nq(&n — a/q)) — ¢ (2'Nq(én — a/q — 3/(Nq))) ,
10.4(&) = @0 (N*(&, — a/q)) — o (N*(&n — a/qg — 3/(Nq))) .

This construction is meant to guarantee the mean zero property

(2.2) /Rm,a,q(t)dt:/D{{ng,q(t)dtzo.

Note that

1
Supp Mi,a,q © {&n €T |6 —a/ql ~ Yu{&, €T &, —a/q| ~ Fq}’

QZN

1
suppﬁg,qC{fneT |€n —a/q| < tu{&, eT: |n—a/q|2m}.

NN2

Moreover, as ¢ ranges from 1 to N/10, a € A, and 1 < 2! < N/Q all the supports above are
mutually disjoint. We will see that the addition of the extra bumps to the functions 7;,q,q and 7; ,
does not harm the contribution from the minor arcs.

For further reference we note that the Fourier transform of 7,4 4, as a function on R, is given
by

(2.3) Mon(t) = 5y (Zqu) [ (;%) iy ((q ‘ q‘j\,) tﬂ  ier

For a dyadic 1 < Q < N/10 and 1 < 2! < N/Q define

mei(€) =mn(€) D D Mmaalén);

Q/2<q<Q acA,

my©) =mn©) Y Y ne ()

Q/2<q<Q aci,

Decompose
my(€) = my™(€) + my™ (€),
where
myt @)= > [ myO+ D meu©)
QeD 1<21<N/Q
1<Q<N/10
and
mE(€) = mp (€) — my(€).
Note that
(2.4) suppmy* C T\ [ | J U I(¢.N,a)

g<N/10 a€A,
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2.1. Major arcs estimates. For k € Z let d(k) denote the number of divisors of k. For k € Z,

Q@ € N let d(k, Q) denote the number of positive divisors of k which are smaller than Q.
We will need the following auxiliary estimate, whose proof can be found in [2].

Lemma 2.1. [2, Lemma 3.33] For any € > 0 we have

(25) > X (%] s @ rana,

Q/2<q<Q |aci,

Since
(2.6) d(k) <. K,
as an immediate consequence of the above result we get the following estimate.
Corollary 2.2. Let Q € N, k € Z\ {0}. Then for any e >0

oY (Zk) <e QQk)".
Q/2<q<Q |a€Aq
The main result of this subsection reads as follows.

Lemma 2.3. For every € > 0 the following estimates hold:

(2.7) [mqllpe(rmy S (N2H)=1/2,
(2.8) [mqiilleszn) Se (N2)HQN)S,
(2.9) Q| Lo rmy S (N2/Q)~D/2,
(2.10) e zny Se (N2/Q)H(QN)".

Proof. Since

suppmq, C U U {€n €T |&n —a/q| =

Q/2<q<Q acAq

1
2!Ngq

}u{fne’ﬂ‘:mn—a/quiq},

the estimate (2.1) implies
G &) S (2'N)Y2,
which gives part (2.7) of the claim, since my(£) = H?;ll G(&n,y &)

To prove (2.8) we begin with writing, for » = (v',r,) € Z" with v’ = (r1,72,...,7_1) € Z" Y

mQ(r) = [ mqu(§)e(—r€)d¢

Tn

[ ¥ e (T

TQ/2<q<QacA, T

G(gn» fz)e(_ﬁfz)d&> e<_7ﬂn£n)d£n

= /T Yo D Mmaalén) (H > on(k)e(k?) / e((k—m)&)d&) e(—rnbn)dén

Q/2<¢<Q a€A, i=1 ke T

/ Z Z M,a,q(&n) (1:[ UN(ri)e(rngn)> e(=rnén)dén

T Q/2<q<qQaca,

on(r) - on(ay) S / Maa(€n)e(([r — r)En)dE,

Q/2<q<Q acA,
on(r)-on(rac) Y D TP = ra).
Q/2<q<QacA,

/‘2

We distinguish two cases. If |r
that g, (r) = 0.

= ry, then the above computation combined with (2.2) shows
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On the other hand, if ||r'|? — r,,| > 1, using the representation (2.3), the Schwartz decay of the
function 77 and Corollary 2.2 we obtain

mgi(r)| < on(r).on(rac) S S Jaa(r' P =)

Q/2<q<Q acA,

Son(ri)...on(rn-1) ! 1+|‘T/‘2_7"n| e Z Ze g(|’"/|2—r)
~UYN\"1)--+-ON\In—1 2lNQ QZNQ q n

Q/2<q<Q |a€A,

1
<e 7= (QN)".

, —100n
In the last estimate above we use the decay of (1 + %]\/_{5"') if '] =7, > N? and
Corollary 2.2 if ’|7"'|2 - rn’ < N3.
The arguments proving (2.9) and (2.10) are analogous.

2.2. Minor arcs estimates.

Lemma 2.4. For every € > 0 the following estimates hold

(2.11) [ | poo (pny Se NTD/2NE,
(2.12) MR e zny Se N©.

Proof. By the Dirichlet’s Principle, for each &, € [0,1) there exists 1 < ¢ < N —1 and a € A, such
that

1
|&n —a/q| < N

If ¢, € suppm®®, then condition (2.4) implies that ¢ > N/10. Therefore, ¢ ~ N and so using
(2.1) we get

|G (&ns &) S NN'2,
thus (2.11) is proved.
To get (2.12), we use (2.8) and (2.10) and write for any ¢ > 0

—

Im e zny <> Im&llee@y + > mgilles@n
QQJGVT/) 1<21<N/Q
<N/10

SeNE D (N2 Q'+ > (v2h™!
QeD 1<21<N/Q
Q<N/10

<. N<.

Combining this with the trivial observation that |[my||sezny = 1, we obtain

—

[0 | e 2y < MU (oo 2y + 1N [l 20y Se N
O

2.3. (P — (7" estimates. We begin with deriving ¢?(Z") — 7' (Z") inequalities which are conse-
quences of the estimates from the previous subsections and linear interpolation. More precisely,
we will use the fact that for each kernel K we have

(2.13) 1K fllz S 1K oo [l ]2

and

(2.14) 1K flloo S I oo 112



Corollary 2.5. Let 1 < p < 2. For every € > 0 the following estimates hold:
(2.15) 1@ * fllw zny Se NE(N2! ) Hf”ev(zw
(2.16) [ # Fllow ey Se NEN2/Q)T M Fllany

Moreover, if ";1 —1>0, then

- e np2ntl o
(2.17) ”mma] * f”ZP’(Z”) SE NE¢N* » ||fHZP(Z")~

Proof. Parts (2.15) and (2.16) follow immediately by interpolating ¢2 + ¢? and ¢! — ¢>° bounds
for the convolution operator, using (2.13), (2.14) and Lemma 2.3.
Summing up the estimates (2.15) and (2.16) we get

||m T fller @) Z HmOQ * f||ep’(zn) + Z Mgy f”ev’(zn)

1<21<N/Q
Q<N/1O
ntl nt1
SeNT DD () > o2y v [ £ller zny
Q€D 1<21<N/Q
Q<N/10

Se NN 72| flov .
provided that ”T"Cl —-1>0. g
Corollary 2.6. Let 1 < p < 2. For any € > 0 the following estimate holds
(2.18) [ 5 £l (@) Se NN 7| Fller 2.
Proof. Interpolate the bounds from Lemma 2.4. O

Now we are ready to prove the main result of this section.

Proof of Theorem 1.2. Observe that

A S = s (ROWD) 7+ RO 7).

where R is the reflection operator Rg(x) = g(—x).

n—1 1 <2(’ﬂ+1)

Therefore, since 2 if and only if p > 2 we can apply Corollaries 2.5 and 2.6

=,
to get
A < -
I NfHep’(zn) e [[fller zn)
— NN~ (n+1)( ||fHZP(Z”)a
for p € [Z—_T_:l”, 2].
O
We note that since "1;1 —(n-1)<—-(n+ 1)(7 —1) when p > Zﬁ, the minor arc contribution

(2.18) is better than the global contribution (1. 1) Because of this, the presence of the N€ term in
(2.18) is not a serious issue and will cause no trouble in the remaining part of the paper. However,
the N€ term in the estimates for the major arcs needs to be addressed carefully. The main sources

of the N€¢ term are Lemma 2.1 and (2.6). In the next section we will still use this lemma, but we
will refine (2.6).
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3. €.REMOVAL TECHNOLOGY AND THE PROOF OF THEOREM 1.1

Note that, same as in Section 2, when proving the sufficiency part of Theorem 1.1 one can
consider Ay instead of A%,. We begin with improving the major arc estimate (2.17). Recall the
definitions from the previous section.

mQ,l(ﬁ) = mN(E) Z Z nl,a,q(gn)a

Q/2<q<Q acA,q

my€) =mn(©) D D 1)

Q/2<q<Q acA,q

my© =Y [ mQ©O+ D meu@],

QED 1<2I<N/Q
1<Q<N/10

mi" (&) = my (€) - my ().

To obtain an improvement of the estimates from the previous section we need some auxiliary
results. The first of them is a version of [2, Lemma 3.47]. This may be seen as a refinement of
(2.6).

Lemma 3.1. Let 7,B > 0. Then the following estimate holds uniformly over Q,N € N and D > 0
(3.1) {1 <k<N:dk,Q)>D} <, 5 DBQ7N.

Remark 3.2. Note that compared to Bourgain’s [2, Lemma 3.47] we do not include the term d(0, Q)
corresponding to k = 0 on the left hand side of the estimate. As it shall soon become apparent, this

term does not appear in our analysis due to the application of the mean zero property (2.2). For
reader’s convenience, we provide the proof below.

Proof. We may assume that B is a positive integer. Write for 1 < ¢ < @

1, if g|k,
Iq(k) :{ |

0, otherwise.

Then, denoting by [q1,-..,q5] € {1,2,...,QP} the least common multiple of qy,...,qp we get
B

N Q
{1<k<N:dkQ) >D}<DBY (Zw))

q=1

x>

—

g
M«Q
Mo

Q
=
Il
_
[~}
W
Il
—

Hl1<Ek<N:|[q,...,qs] divides k}|

Q

N
L lar, - a8

IA

S

®
Me

1 9B

q1

Q" B
< ND—B Z d(q)
q=1 q

< CT,BNDiBQTa
where the last bound follows by (2.6). O
We shall also need the following consequence of Lemma 3.1.

Lemma 3.3. [2, equation (3.72)] Let T, B > 0 be any given constants. Then the following estimate
holds uniformly over K,Q,N € N and D >0

K(ri,...orn) s lreal, ooy |rnm1] S Nyjrp| < K,rnf'rff~ . ~77',2L_1 #£0: d(rnfrff- . -frfl_l,Q) > D}|

(3.2) <,.5 D7PQ" max(K, N*)N""1.
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Proof. We need to observe two things. First, |r, —r? — -+ — r2_;| < max(K, N?). Second, the
equation r,, —r? —--- —r2_| =k has O(N"~!) solutions.
U

The above number theoretic lemmas allow for a more delicate treatment of the expression arising
from computing g ;.

Proposition 3.4. For any B,k > 0 the following bounds hold uniformly over D,N,Q >1,1>0
and f

(3.3) If *mgillez@ny S (N2H)™D/2)| fll2(zny,

(34) IS e Mgl S @ NNRQ) D flew oy + g I s
(3.5) I % mllecany S (N2/Q)VP2)| fllxam,

66) I mBllemm Sp QN ey + 2 Py

Remark 3.5. The novelty of (3.4) and (3.6) compared to their counterparts from Lemma 2.3 is
the lack of the N€ term, which is substituted with the flexible variable D. This comes at the expense
of introducing an extra term involving || f|| g (zn), that will prove to be harmless.

Proof. Estimates (3.3) and (3.5) follow from Lemma 2.3. It remains to prove (3.4), the argument
for (3.6) being analogous. Recall that in the proof of Lemma 2.3 we showed that if r = (v, r,) € Z"
with ' = (r1,7a,...,7,—1) € Z" ! is such that |r'|> = r,,, then g (r) = 0.

Therefore we can assume that ||r/|> — r,| > 1, in which case we can estimate

mQi(r)| <«

1 n2 _ . 71/1{ )
owtrn o (1) 2 IS e(G )|

Q/2<q<Q |a€A,

Let us now fix a large constant C' > 0 and decompose

frmqu(x) = > fla —r)mqu(r) + > flz —rymqa(r) =: I + L.
[71], T —1|<2N [71], T —1|<2N
Irn|<CQFN? |rn|>CQ*N?

H"J|27T1L‘21
To bound the second term we use the trivial bound
> T e(Grr-r) <@
Q/2<4<Q |aca, N1
and the inequality ||r/|> — r,| = Q"N? 2 2! NQ'** to get

< 1 2INQ
~RANQ \2INQIFE

1/k
1
Ia(a) ) @Uslln) = gl

K

Note that clearly ﬁ < %, so the contribution from I is controlled by the right-hand side of
(3.4). Thus I3 can be thought of as an error term.
It remains to deal with I;. Using Lemma 2.1 and then Lemma 3.3 (applied with K = CN2Q")

we get for any z € Z"

1 a
W@ Sgyg X W0l XS e(tr-n)
[r1l,eonlrn1 [<2N Q/224<Q |aca, N1

|7 | <CQRN?
7|2 =rn|>1
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Ql-‘rn )
/
Seong X M@=l =r.Q)
‘Tllv“'ﬁlrnfl‘SQN
lrn| SCQ"N?
I =rn|>1

Q1+n

Soang [P X Ma=nl+ 3 il - Q)
L]l rn—1| 2N [71],eslrn—1|<2N
|7 | SCQN? |rn | <CQ"N?
[|r' > =rn|>1 |7 | ~rp|>1
d(|r'|>=rn,Q)<D d(|r'|*~rn,Q)>D

Q" _

Se.8 5iy (Dllfller ey + D7PQUN" | fllo )

where in the last estimate we used a trivial bound d(|r'|? —r,,, Q) < Q. Therefore (3.4) is proved.
O
Choosing suitably the values of the parameters we get the following corollary.

Corollary 3.6. For any T > 0, B > 0 and for any x > 0, the following estimates hold uniformly
over Q,N,M > 1 andl >0

— n _ _ MQK+

(3.7) I1f % Mm@ illeezn) Swrs N™(2'Q) T M ™P| fllgoo 2y + i I fllerzny,
— e B MQ1+H+T

(3-8) I1f % mQ e zny SwirB NPT M 7P| fllgoo (zn) + T”f”él(zn)-

Proof. Since M > 1, it suffices to assume B > (2 4 2k)/7. Take D = M Q" in (3.4) and (3.6). Tt
suffices to note that
QZ—&-ZHD—B < M—B

Finally, we are in a position to obtain the improvement of (2.17).

Corollary 3.7. Let % <p<2. Then for any M > 1 and B > 0 the following estimate holds

(3.9) Im% % fllow zny SB N" "M 7P| fllg gy + MN I Nl
for any f = 1g, where E C Z™ is an arbitrary finite set.

Proof. Fix any ”+1 <p<2andlet = ;. Then

1 1—-60 0
-1 to
1 6 1-0
y 2 T

and notice that for any characteristic function f we have
11122 zn)
1£1172zn

=0y = 1l -

f”el (zn) — ||f||éP(Z")~

Due to Holder’s inequality, the equality sign in the above relations can be replaced with > for
arbitrary functions. However, in our case the inequality < will be needed, which justifies the use
of characteristic functions.

Interpolating (3.3) and (3.5) with (3.7) and (3.8), respectively, where the latter two are applied
with 7,k > 0 such that (1 — f)(T +r) < n;1 1

||f*@||ep’(2n)
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S+ mQillfa gz LS * MQillp=zny

I\(n—1)/2 Ly—11/—B LQM T e
< (V22 ) (N"<2 Q)M |f||em<2n>+|f||mn)

N2t
(3.10)
So NV MTPQTTQ) T Tl amy + QTT(NZQ) T M ez,
where o —mln{", v o7 2o 474+ k)—1—7—kK}>0.
Similarly, we get with the same o as above,
B1) e mGllor ) S8 N MTEQT f g gy + QTN T M vz
Summing up the estimates (3.10) and (3.11) we get

(812) [Im3 £ iz

< D | ImQ Sl + D ImQi* flle zn

QeD 1<2!<N/Q
Q<N/10
< n—1 —Bn—0o n*"tl —Bny—0o (9l 71.+/17
S > INTIMTEQTT Y N MTPQTORIQ) [Fires:
QeD 1<21<N/Q
Q<N/10
n+l
+ > e “(N?)5 UM > QUIN2Q) Y M | I fllerczn
QeD 1<21<N/Q
Q<N/10

<S5 N M| f o gy + MN2 D fll ),

provided that "p—'tl — 1 > 0. It remains to notice that this condition is equivalent to p > "TH Note

the the condition o > 0 insures that no additional logarithmic terms are introduced.
O

Now we are ready to present the proof of the main result of the paper. The argument relies on
the ideas from [2].

Proof of Theorem 1.1. Note that it suffices to prove that for any 7 "*3 <p<2andanyp<gqg<p
one has
(3.13) IAN flleazny S N™OHDVEPZVD £l 0y
Indeed, interpolating (3.13) with trivial estimate, see (1.2),
IAN flleazny < N flleagznys q € [1,00],
n+3

gives in particular (1.1) for < p <2, see Figure 1 below.

Fix "+3 <p<2,g<q <p andlet f € (P(Z") be positive and such that || f|/s»zn) = 1, which
we clearly can assume without loss of generality. Moreover, for A > 0 define the level set

Ey={meZ": Anf(m)> A}
and let F' = 1g,. Using positivity and then Holder’s inequality we obtain
N""INEN| < N'"HANF, F) = (mn * f, F) = (f, R(N) * F) < |[|R(TN) * F |l 70
where R is the reflection operator Rg(x) = g(—z).
Combining (2.18) with (3.9) we get for each M > 1
AEx < N=O=D|R(mR) * Fll g 20y
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FIGURE 1. Visualization of the interpolation scheme used in the proof of Theorem 1.1.

ﬁ) " N_npl—i-e) |E)\|1/p

S Zles Y o (a0 G
s MfB|E>\|l/p' _’_J\4J\/v—(’n-'r1)(%—i>|Ew>\|1/p7

ntl 1
n+3 p)°

where the last estimate holds provided that € < (n + 3) (

»
3
n+41

It follows that
|Ex| S M—BPA=P ¢ ' N (5 1) -
Let 7 :=p' — ¢ > 0 and take M = NHDZ7 AT . Note that M >1lifand only if A > N~ "» .
Thus letting B = p/ (”,T_T - 1) =1 = 2@1=p) 5 () we have
M—Bpy—P _ Mp’N*(nJrl)(%fl) AP — )\—qle(TH»l)(%fl).
IfA> N™% we get
x| S A N (1),

(3.14)
Note that by Tschebyshev’s inequality and (1.2) we also have for any A > 0
HANfHZ(Zn) <\
AP - '

(3.15) |Ex| <
Finally, applying the layer cake formula and then (3.15) and (3.14) we obtain

an-gl 0o

q*1||ANf||Zq(Zn) :/ )\q71|EA|d/\+/7L+1 XL By [dA
0 N »p
_ntl
N P T o0
5/ A1y 4 N (- )/ L AT
0 NP

~ ]\f_(n"'l)(%_l)7

which gives the desired estimate.

It remains to prove the necessity part of the theorem. Letting
J =112, 2N)x-x{1,2,... 2N} x{1,2,....nN2}»
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we get
1 llew zny = N5
and
N NN\
A o 2 | o X D1 =N
ki=1  kp_1=1k,=1
since

AR f(xy,..,xn) =1, for z;€{l,...,N}, i=1,....,n—1 and z,€{l,...,N?}.
This shows that

P
IANFllerzn) o\ =nt)(E=2) _ y—(rnyz-1).
I fllerzny ™
Next, letting f = §p we get
N N ’ 1/p
||AI]F:;f||Zp’(Zn) S (Zklzl e an,1:1 A]Rff(_klv SRR _kn—la _(k% +eee k’r%—l))p )
I fllerzny 1
1/p’
Ar%nfl)(E:Z;ﬂ...E:ghlzll) -
= =N "»
1
Observe that —”T’l < —(n+ 1)(% —1) if and only if p > %, which concludes the proof of the

necessity part of the theorem.
O
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