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Abstract— Connected vehicle (CV) applications promise to
revolutionize our transportation systems, improving safety and
traffic capacity while reducing environmental footprint. Many
CV applications have been proposed towards these goals, with
the US Department of Transportation (USDOT) recently initiat-
ing some designated deployment sites to enable experimentation
and validation. While the focus of this initial development
effort is on demonstrating the functionality of a range of
proposed applications, recent attacks have demonstrated their
vulnerability to application level attacks. In these attacks, a
malicious actor operates within the application’s parameters
but providing falsified information. This paper explores a
framework that protects against such application-level attacks.
Then, we analyze the impact of the attacks, showing that an
individual attacker can have substantial effects on the safety and
efficiency of traffic flow even in the presence of message security
standards developed by USDOT, motivating the need for our
defense. Our defense relies on physically modeling the vehicles
and their interaction using dynamic models and state estimation
filters as well as reinforcement learning. It combines these
observations with knowledge of application rules and guidelines
to capture logic deviations. We demonstrate that the resultant
defense, called CVGuard, can accurately and promptly detect
attacks, with low false positive rates over a range of attack
scenarios for different CV applications.

Keywords: Connected Vehicles, Cyber-security, State estimation,
Security credential management system

I. INTRODUCTION

By leveraging the wireless communications, connected
vehicles (CVs)[1] can optimize their operations to act as
a coordinated ensemble rather than individual vehicles.
They may communicate directly with each other (vehicle-
to-vehicle, or V2V), with roadside infrastructure (vehicle-
to-infrastructure, or V2I), and with the “Cloud” (V2C).
The US Department of Transportation (USDOT)[2] has
identified potential benefits of CV applications, including
improved safety, mobility, system efficiency, and reduced
environmental footprints such as energy consumption, mobile
source emissions and noises. Many CV applications start
being prototyped and have reference implementations[3].
The USDOT has been testing applications in three deploy-
ment sites[4]. The focus of developers has been primarily
on performance, and cyber-security is not being considered
deeply. CVs expose a large attack surface as an open system
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with many participants and complex functionalities: attacks
may target application protocols, networking, sensing, and
vehicle control, potentially resulting in accidents, traffic
delays, and other harm to the system. A public key certificate
management standard, the Secure Certificate Management
System (SCMS) [5], has been defined by USDOT. However,
SCMS only ensures the eligibility of those certified cars and
roadside units that may participate in communications [6],
and it is expected that these certificates would be available
widely, thus easily obtained by attackers. As a result, it does
not guarantee that CV applications are risk-free since an
attacker with a certificate can participate in the system and
send malicious messages (e.g., with falsified information).
General security mechanisms to protect CV systems have
been proposed to harden CV ecosystem including leveraging
cryptography[7][8], signature-based detection[9], and mal-
ware detection[10].

Some defenses have been proposed for application level
attacks. Still, they suffer from several limitations, such as
being specific to a single application, and having overheads
incompatible with real-time deployment.

This paper develops the first defense against application
level attacks which can be customized to different applica-
tions under realistic assumptions and practical overheads. In
addition, the proposed defense leverages information from
two domains: in-vehicle and inter-vehicle, to address the
threat model. The first component of the proposed defense
estimates the physical dynamics of the vehicle to provide a
starting point for reasoning about safety within a physical
context. Physics-based models have been proposed as a
defense against sensor tampering attacks[11]: a physics-
based model of the vehicle is used to predict its state and
to detect anomalous sensor readings as a deviation between
measurements and predictions. However, since our threat
model is substantially different (a remote attacker can falsify
information about a state that is not local to the vehicle
and therefore beyond the reach of its physics based model),
we use this estimate in a different way in combination with
other techniques to detect consistency within the region of
operation.

Since the threats relate to other vehicles, the defense also
captures inter-vehicle anomalies. Specifically, we use Rein-
forcement Learning (RL) as an inter-CV security framework
that allows the system to learn the CV behavior to ensure
that vehicles do not collide with each other. Finally, we
use application specific logic detectors to detect protocol
interactions inconsistent with the allowed maneuvers and
policies defined in the application.

Moreover, the implementation is lightweight since it does
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not require keeping a substantial state or history, making the
defense suitable for real-time application. Our results show
that the proposed defense can: a) mitigate different cyber-
physical attacks; (b) detect the attacks promptly; and (c) have
a low false positive rate. As a result, we believe that our
defense can significantly improve the security of CV systems
against both known and emerging application-level attacks.

We evaluate the defense on various application scenarios
for multiple CV applications. We show that it can success-
fully prevent published attacks with low overheads.

In summary, the contributions of this paper include:

e« We introduce CVGuard, a new defense against
application-level attacks on CV systems. The defense
models both vehicle level dynamics and inter-vehicle
interactions to enable the detection of application-level
attacks.

We model a number of application-level attacks and use
them to evaluate CVGuard, showing its effectiveness in
preventing these attacks.

We perform both simulation-based and real-world eval-
uation of CVGuard.

II. THREAT MODEL

We consider a CV environment where attackers can com-
promise a device that is eligible to obtain a certificate
from SCMS and participate in the system. SCMS prevents
an attacker from spoofing other CVs’ identifiers. However,
our concern is with those attacks where malicious actors
participate in CV protocol by replaying valid messages or
sending them with fabricated data. In this study, we do
not consider attacks that target message delays, jamming,
physical attacks on sensors or controllers. We also do not
consider mitigation against attacks that exploit bugs in the
software stack of any existing components running on the
infrastructure or vehicles.

We assume that vehicles communicate through Dedicated
Short Range Communication (DSRC) devices based on IEEE
802.11p[12]. However, the proposed system does not limited
to DSRC. Equipped vehicles with onboard units (OBUs) can
send Basic Safety Messages (BSMs) to other equipped ve-
hicles or infrastructure consisting of two parts: BSMs-Part 1
are transmitted periodically (typically every 100 msec), con-
taining critical data elements such as vehicle size, position,
speed, heading, acceleration, brake system status. BSMs-Part
2 are event-based messages, containing various optional data
elements customized by different manufacturers, e.g., ABS
activated.

On the other hand, Road Side Units (RSUs)are used to
coordinate behaviors across cars or to maintain certain shared
states.

We consider the following types of attacks.

o Fake Message Attack where the adversary starts to
create messages’ fields or parameters such as velocity,
position, and acceleration, with injected biased values,
and then broadcasts the messages to harm the entire
system.
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« Replay Message Attack where the adversary receives
and stores a beacon that is broadcast by the other
vehicle, and replays it at a later time with malicious
intent. The replayed beacon contains old information
that can lead to hazardous effects.

Stealthy Message Attack where the adversary is aware
of the vehicle dynamics and hence employs its parame-
ters to avoid normal detection filters that can easily find
random malicious behaviors. To create the position field
in this attack, we use the following equation:

lthrl =lpt+st*At+at*At2/2

where Ip, s, a, t, and ¢ + 1 are the lane position,
speed, acceleration, recent time step, and next time step,
respectively. This equation calculates position using
speed, acceleration, and the time difference between the
recent and previous times. The vehicle’s speed increases
with a; at each time step until it reaches v,,q,. The
vehicle’s speed cannot exceed the speed limit of the
roadway segment.

III. CV APPLICATIONS

In this section, we highlight some of the CV applications
that are used as case studies in this paper.

In Intelligent Traffic Signals (I-SIG), RSUs host I-SIG
to manage intersections adaptively and intelligently with
goals such as reducing collision, decreasing idle time, and
improving traffic flows. The BSM messages are broadcast
by CVs and captured by a trajectory awareness process that
sustains the latest trajectory for each vehicle linked to its
vehicle ID. The signal planning process monitors the traffic
signal status. Then, it develops a signal plan based on the
incoming real-time trajectory data that are fed into the COP
(Controlled Optimization of Phases) algorithm[13][14]. After
planning, the I-SIG controller sends signal control commands
to the controller. The COP algorithm estimates each vehicle’s
arrival time and uses dynamic programming to calculate the
optimal signal plan with the least (estimated) total delay.

Cooperative Ramp Merging System: In Cooperative Ramp
Merging, the V2I system localizes vehicles on a virtual map
to be used later by different control algorithms to provide
driver assistance to enable safe and smooth merging. The
output of the merging control algorithm contains the recom-
mended speed for any cooperative vehicles in the merging
process. In particular, the reference accelerations are calcu-
lated by a feedforward/feedback control algorithm [15] and
sent to the vehicles, so they can regulate the gaps smoothly
even before reaching the merging point. As a result, rear-end
or sideswipe collisions in the conflict zone are essentially
eliminated. Finally, Cooperative Adaptive Cruise Control
(CACCQ) utilizes V2V communication to form platoons of
vehicles that travel with closer spacing, reducing aerody-
namic drag, and improving roadway capacity[16], [17], [18].
In this implementation, the Platoon Management Protocol
(PMP) [19] controls platoon operations and maneuvers. The
leading vehicle acts as the coordinator and controls platoon
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Fig. 2: The state estimation algorithm

maneuvers such as speed, lane change, and merging with
other platoons.

IV. CVGUARD ARCHITECTURE

Application-level attacks rely on communicating falsified
information to manipulate a car or a group of cars into an
attacker’s desired action. The essential question to defend
against such attacks is how to determine whether or not the
information received from remote CVs is trustworthy. We
break down this problem into three smaller problems: (1) Is
the predicted state of the car consistent with the measured
state? (2) Does acting on the received information potentially
lead to collisions or other dangerous actions? And (3) Are
the received application-level actions consistent with the
application’s logic (e.g., do they reflect valid maneuvers?).
The components of our defense try to answer these ques-
tions, respectively, to detect application-level attacks from
different perspectives: when they deviate from the application
logic; when they cause the measured and predicted states to
diverge; and when they lead to dangerous situations such
as collisions. Figure 1 gives an onboard architecture of
our proposed CVGuard system. It consists of: (1) State
Estimator; (2) Change Detector; (3) Collision Identifier;
and (4) Logic Identifier.

In the State Estimator algorithm, external attacks can be
potentially detected by checking whether the (perceived)
physical states of the vehicle are consistent with its ex-
pected states determined by its dynamics and control. It
is defined by the dynamic system properties and control
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algorithm, mathematically represented by control invariants.
The Change Detector can detect unusual changes in states
based on a cumulative sum of recursive residual statistics.
It allows the system to detect attacks accurately and rapidly,
avoiding false positives due to transient errors. Even though
individual messages seem to be acceptable by the State
Estimator algorithm, they can still lead to collisions. This
could be caused by stealthy attackers who launch attacks
that maximize the damage to the system without being
detected to cause a crash or cause other safety problems. The
Collision Identifier predicts the location of nearby vehicles
to detect potential collisions or other hazards. Finally, the
Logic Identifier ensures that a protocol or maneuver output
does not compromise the safety even under attacks, which
relates to under-specified or incomplete protocol logic. For
example, if an application logic fails to consider corner cases,
such as a large gap between two platoons before merging,
CVGuard considers it a V2V anomaly. The logic identifier
is specific to each application.

A. State Estimator

An accurate state estimator that tracks vehicles with
changing dynamics can be achieved by using multiple filter
models that provide estimates of some variables such as
velocity and acceleration. Our state estimator adopts an
Interacting Multiple Model (IMM) [20] that estimates up-
dated states and state covariances based on the ensemble of
the most common models (e.g., constant velocity, constant
acceleration, constant turn, etc.). Every model is a single
Kalman filter that re-initializes with mixed state estimates
and covariance based on their probabilities of “switching
to” or “mixing with” each other. Thus, constantly correcting
each filter to reduce its residual error, even when it does
not represent the true motion of the object. In this way, an
IMM filter can switch to an individual model based on the
specific vehicle dynamics without waiting for convergence
first. Thus, using these models can adequately predict the
tracked vehicle’s possible motions, which is better than using
only one model over time.

The different models of the IMM, such as constant velocity
or constant acceleration models, follow the same steps of the
extended Kalman filter. However, they differentiate in using
the dynamical equations in the “predict state”.

In general,the algorithm [21] is divided into two main
procedures: prediction and correction. The first component
takes the last estimation Z; and the current input uy, and
generates a prediction Zj.;. However, this prediction is
refined using the received data. Similarly, the covariance
matrix of the estimation error P_ (i.e., the error between
the real states xj and the estimated states Zj) is predicted
using the process covariance matrix () and the state transition
matrix Fj. The second procedure uses the previous predic-
tions £, P,", the observation matrix H}, and the covariance
of the measurement noise V, to compute the Kalman gain
K, which is defined as the uncertainty in a predicted state
divided by the uncertainty in predicted state plus uncertainty
in measurement readings or messages. Therefore, the state

Authorized licensed use limited to: Northwestern University. Downloaded on August 23,2022 at 01:04:53 UTC from IEEE Xplore. Restrictions apply.



prediction is corrected using the measurement and the covari-
ance matrix is updated. The output of this procedure Zj
and P, will feed the next iteration of the algorithm as %,
and P .

The inputs of the EKF can be the position and velocity
in a time step. At the same time, the outputs can be
the estimated position and velocity that the vehicle may
happen in the next time step. The goal of using the EKF
is to combine any instantaneous reading (which could be
maliciously injected values) with the observed dynamics of
the system, allowing us to identify unreasonable/inconsistent
measurements rapidly. The EKF structure is shown in Fig. 2.

Constant propagate state
acceleration KF
Constant propagate state
velocity KF
Constant turn
KF

Fig. 3: Overview of the State Estimator
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B. Change Detector

The change detector is essential to detect errors from
compromised (or noisy) sensors by characterizing the signals
changes and controlling the overall error rate. Thus, we
propose using the Cumulative Sum of Recursive Residual
(CUSUM) [22] change detector that continuously monitors
the error of the regression model. A significant increase
in the error is interpreted as a change in the distribution
that generates the examples over time. When a change is
detected, the actual regression model is deleted, and a new
one is constructed. The CUSUM statistic is described by the
following recurrent equation:

Si(k+1) = Si(k) + |ri(k)| — b; (D

Where 7; is the prediction residual associated with each
sensor and S; is the anomaly score. S;(0) = 0 and b; > 0 are
selected to prevent S;(k) from increasing when there are no
attacks. When S;(t;,) > 7; , an alarm associated with sensor
iis triggered where 7; is the threshold value.

C. Collision Identifier

The state estimator is a lightweight solution that efficiently
detects cyber-physical attacks on an individual CV. However,
we need to identify and avoid potential collisions and other
undesirable conditions. Thus, we use Reinforcement Learn-
ing (RL) [23] to learn the proper maneuver sequence that can
help detect anomalies even if the dynamics of each connected
vehicle appear to be accurate. The Collision Identifier RL
algorithm is based on three components: state, action, and
reward. The state describes the current condition of an agent.
The action is what the agent can do in each time step. Finally,
the reward describes positive or negative feedback from the
environment due to the agent’s action. The overall goal of
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RL is to learn a policy that maximizes the total reward of an
agent through learning from the states and actions when it
interacts with the environment. In our Collision Identifier
algorithm, we use Q-learning [24], [25] because of its
combination of effectiveness and simplicity. Q-learning is a
value-based learning algorithm that updates its value function
based on the Bellman principle. First, we create a Q-table
where the agent can update its item by learning the rewards
associated with all state-action pairs, based on the following
equation at each time step:

Q" (st,a1) = (1—a).Q(s¢, ar)+ax (ri—y.maz,Q(si11,a))

where « is the learning rate (ranging from O to 1) and
represents how much the agent should learn from a new
observation; r; is the acquired reward for any taken action;
« is the discount factor that controls how much each reward
can affect our decision; max,Q(s¢1+1,a)) is the estimated
reward from the next action where the agent selects the
optimal action to maximize the reward; Q(s;, a;)-values are
the estimated values, and they represent how much the agent
expects to get after performing an action. s is the current
state of the vehicle. Since the goal of RL is to maximize the
long-term rewards through maneuvers, we design the state,
action, and reward as follows:

State: We design our states as a set of possible situations
where the vehicle can inhabit during movement. These states
represent also neighbor vehicles around the vehicle of inter-
est (also called ego vehicle) during an action, and its nearby
detected vehicles are called remote vehicles. In our model,
we consider a total possible number of the ego vehicle’s
states or s; of 16 discretizing the different configurations of
nearby vehicles. For example, s; represents an ego vehicle
that has only one vehicle in front of it.

Action: We define the action space A = {action, actions}
to refer to the two possible action patterns of an agent in the
system, reflecting either normal or abnormal behavior. The
action classification is based on Time-to-Collision (TTC)
while observing the CV traffic system; if TTC deviates
outside preset threshold reflecting normal operation, then
we consider the system to be anomalous (i.e., actions);
otherwise, we consider it normal (actionq). The action is
used in the Q-table to define the probability that the agent
takes a normal behavior or not. TTC is a metric [26]
that measures the time taken for a vehicle to collide with
the vehicle in front of it, which is an important metric to
measure how safe CV components are under cyber attacks
quantitatively. TTC of vehicle ¢ at instant ¢ can be calculated
as follows,

D;(t) — D;—1(t) = I;
Vi(t) = Viea(t)
where D;(t) and V;(¢) stand for the position and speed of

vehicle 4, respectively, at instant ¢, and [; is the length of the
vehicle 7.

TTC(t) =

Reward: We design our reward scheme to have a minimal
positive value for safe actions and a large negative value if
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any safety violation occurs. The reward value is determined
by TTC of the agent or ego vehicle, as shown below. The
Threshold value is estimated throughout experiments to be
0.5 seconds.

-

The RL algorithm is shown in Algorithm 1.

1,
—10,

if TTC > Threshold.
otherwise.

2

Algorithm 1 Reinforcement learning training process

1: procedure UPDATE Q AND CALCULATE LOSS FUNC-
TION
Initialize @ and S values
while S; is not terminated do
if A; violates the reward policy then
R, = big negative reward
else
R; = small positive reward

R o

D. Logic Identifier

To ensure that a CV protocol or maneuver does not
compromise the safety of the included CVs under attack,
we have to practice a plausibility check functionality or
safety policies. To achieve this, it is necessary to start
with a systematic study of the main properties of each CV
maneuver since the discovery of such characteristics can
most generally affect the security of their corresponding
implementation instances. In Algorithm 2, we develop a
simplified protocol in which the model updates the timer
according to the event. This event represents all the known
CV events or maneuvers. Every event in FventRange;
triggers the same update on timer[i]. The Retrieve function
reacts with the CV environment to pick different properties if
such a property is available. These properties assure the CV
protocol’s safety and include space gaps, relative locations,
relative velocities, lane consistency, etc. For example, in
the reference CACC implementation, an anomaly can be
generated if the space gap does not reach the value below
the maximum safe threshold. Thus, ensuring the robustness
and safety of the protocol algorithm under the different
application-level attacks.

Algorithm 2 A simplified Logic Identifier Algorithm

1: EventRange = (0--- (N — 1))

2: TimerIndexRange = (0--- (M — 1))
3: Property = (0--- (P — 1))

4: while number of CVs # 0 do

5: for V event € EventRange do
6

7

8

9

timer = [¢ € TimerIndexRange — None]
if timer[i] > 0 then

timer[i] — 1

RETRIEV E(Property)
else

TIMEOUT

> count down

10:

11: > expire
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V. EVALUATION

A. Experimental Setup

To evaluate CVGuard, we used VENTOS (VEhicular
NeTwork OpenSimulator) [27], which is an extension of
Veins simulation [28]. VENTOS enables us to design, test,
and evaluate different traffic scenarios. It integrates a C++
simulator for studying vehicular traffic flows and combines
two widely used simulators, Simulation of Urban Mobility
(SUMO)[29] and OMNET++[30]. SUMO is an open-source
road traffic simulator that uses Traffic Control Interface
(TraCI) to communicate simulation commands.

B. CVGuard Effectiveness

One of the most challenging aspects of using simulator
data is fidelity. Unfortunately, no repository of sufficient real-
world driving data from various driving scenarios is avail-
able. To address this issue, we monitored the vehicles data
over time coming from the road traffic simulator (SUMO)
and compared it with the HighD dataset [31] that provides
trajectory data corresponding to actual vehicles driving on
German highways. We validated that the SUMO data dis-
tribution is consistent with HighD with several metrics. We
carried out the following experiments to demonstrate how
we built and configured the state estimation component of
CVGuard. Different vehicular dynamics characteristics can
be used to create the IMM algorithm. However, using a large
number of models impacts performance negatively. Thus,
we wanted to build an IMM algorithm with the best-suited
and most efficient configurations under different trajectory
segments while driving over time to improve the tracking
accuracy and model switching speed of maneuvering target
tracking. In the simulation, we tested different vehicles and
measured metrics such as velocities and steering behaviors,
as shown in Figures 4a, 4b, and 4c. These three selected
dynamics characteristics show that the vehicle switches
mostly its dynamics between constant velocity, constant
acceleration, and turning right or left to reach its destination.
As a result, three Kalman filter models have been selected to
create and test the IMM algorithm based on the analysis of
the dynamics characteristics evaluation. These models are a
constant velocity (CV), a constant acceleration (CA), and a
three-dimensional turn with a kinematic constraint (TURN)
Kalman filters. Adding additional models to IMM can lead
to overfitting problems and degrade detection performance.

To evaluate this phase, we made the malicious vehi-
cle manipulate its parameters and broadcast its forged or
fake messages to the nearest connected vehicles. These
BSM messages can contain false synthetic variables such
as velocity and acceleration. Thus, the state estimator filter
produces noticeably significant prediction errors. Therefore,
it can accurately predict the surrounding connected vehicles’
states, as shown in Fig. 7. To detect the presence of the
cyber-attacks and filter out the transient errors caused by
physical disturbances (e.g., winds), we use a change detector
component that is based on the non-parametric cumulative
sum (CUSUM) anomaly detector to uncover the false data
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Fig. 4: Tracking velocity, acceleration and change of heading
angle for a vehicle while testing.

injection attacks, as shown in Fig. 8. From Fig. 5, we can
see that tracking a connected vehicle based on the IMM
filter is highly maneuverable while predicting the future
location of the connected vehicle, and it outperforms the
single filter model. The single constant acceleration filter
model has the more significant position and rate errors,
and it is slow to recover non-maneuvering error levels after
the maneuver ends. Even though the IMM tracker in the
state estimator phase has superior performance in detecting
trajectories anomalies than a single model tracker, it cannot
catch all kinds of attacks. For example, two vehicles in an
intersection can enter the same lane or road and collide if
they have replayed trajectories messages or produced stealthy
attack messages, thus fooling the IMM tracker since the RMS
errors will be minor. Therefore, the collision identifier phase
uses Time-to-Collision(TTC) metric as an action that can
assist in detecting such scenarios, as shown in Fig. 6.

To build an efficient collision identifier, we generated all
possible scenarios that an ego vehicle can interact with other
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Fig. 5: Improved tracking performance by IMM tracker
(with three dynamic models — CV, CA, kinematic constraint
(TURN)) compared to single model based tracker
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Fig. 6: Two vehicles entering same lane at intersection.
Vehicles start on the right hand side of the figure and follow
the track towards the left hand side.

remote CVs, which are defined as different RL states as
described in Section IV. These RL states were utilized in
the learning process to update and finalize the reinforcement
learning Q-table in the collision identifier so that CVGuard
uses collision identifier at each time step to detect Replay or
Stealthy attacks. Stealthy attack is challenging to be detected
since it is based on the physics of the vehicular system,
and it is used to maximize the damage to the system while
avoiding detection. Thus, we consider the worst-case sce-
nario for CVGuard in which an attacker is undetected while
injecting falsified information into the system continuously.
For example, Fig. 9 shows that the next state estimator filter
failed to detect any malicious activity due to the normal
values of the measured position prediction errors. However,
the collision identifier was able to detect this attack through
observing the low values of ”Q-value” of the RL algorithm,
which represent the action outputs of a connected vehicle’s
states during this attack, as shown in Fig. 10.

Moreover, we tested CVGuard against application-level
attacks presented in [32]. These attacks include: 1) merging
over large distances attack where the attacker is located
between two platoons such that it can communicate with
both platoons simultaneously and deceive ranging sensor
by pretending that it is a member of the front platoon;
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2) merging across different lanes attack where a malicious
vehicle is in front of the rear platoon and sends messages
pretending to be a part of the other platoon (in another
lane); 3) platoon takeover attack where an attacker transmits
fake messages of a fake platoon so that the rear platoon
merges with the attacker. Thus, this platoon becomes under
the attackers’ control and can be manipulated dangerously.
As shown in Fig. 11, the space gap values are too large
during the attack so that the logic identifier component in
CVGuard is able to detect such attacks.

Finally, we conducted a series of experiments to compare
our CVGuard accuracy with the other anomaly detector such
as in [33] in terms of false positive and true positive rates.
In general, the accuracy of the classifier is critical to make a
security-based decision since the longer we wait, the less
valuable an anomaly alert will be. The anomaly detector
in [33] targets CVs’ security only in CACC applications,
and it is based on machine learning. Fig. 12 shows that
the Receiver Operating Characteristic (ROC) curve for our
CVGuard detection system outperforms the other scheme
by 3%. In particular, CVGuard can detect attacks with a
probability close to 1 while having a low false alarm rate
(less than 3%). In practice, we can lower the false positive
rate by requiring multiple anomalous detection before raising
an alarm, although this could delay detection.
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Fig. 9: Measured position residuals (stealthy attack).
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Fig. 10: The Q-value of the reinforcement learning algorithm
used in the collision detector component.

VI. CONCLUDING REMARKS

Connected Vehicles (CVs) are an emerging field in trans-
portation that brings new opportunities to improve safety,
mobility/efficiency, and sustainability. However, many appli-
cations are still not considering their security vulnerabilities.
The attacks that exploit the vulnerabilities of these commu-
nication protocols may lead to a complete reversal of the
benefits promised by CVs. Toward this end, the deployment
of CV applications has a long way to go before they are
reliably safe from attacks. This paper presented a new com-
prehensive framework for detecting different attacks against
CVs, based on state estimation, maneuvers monitoring, and
reinforcement learning techniques. Our evaluation of the
mitigation framework showed that our mitigation can mit-
igate the introduced attacks, making it a promising approach
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Fig. 11: Examples of attacks against CVs applications.
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Fig. 12: ROC curve for detection strategy.

to support the system resilience of CV applications. We
will extend our defense framework to multi-agent connected
drones in the future. Moreover, we will investigate designing
a secure recovery mechanism or technique to maintain the
targeted vehicles against such attacks.
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