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Abstract
The emergence of multi-core architectures makes it essential for optimizing com-

pilers to automatically extract parallelism for large scientific applications composed

of many subroutines residing in different files. Inlining is a well-known technique

which can be used to erase procedural boundaries and enable more aggressive loop

parallelization. However, conventional inlining cannot be applied to external

libraries where the source code is not available, and when overly applied, it can

degrade the effectiveness of compiler optimizations due to excessive code com-

plexity. This paper highlights some obstacles we encountered while applying con-

ventional inlining combined with automatic loop parallelization using the Polaris

optimizing compiler and presents a new approach, annotation-based inlining, to

effectively overcome these obstacles. Our experimental results show that the

annotation-based inlining approach can eliminate negative impact of conventional

inlining while enhancing the effectiveness of interprocedural parallelization for a

majority of applications from the PERFECT benchmark suite.
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1 Introduction

As multi-core architectures become ubiquitous in modern computing, optimizing

compilers need to automatically extract parallelism for large scale scientific

applications composed of many subroutines. Inlining is a well-known program

transformation which substitutes procedure invocations with their corresponding

implementations to erase artificial procedural boundaries [9]. However, conven-

tional inlining cannot be applied to recursive procedures or subroutines defined in

external libraries where the source code is not available. Further, when excessively

applied, it can cause code size explosion and curtail the compiler’s effectiveness in

applying optimizations (e.g., automatic loop parallelization and register allocation)

due to the increased code complexity resulted from inlining.

This paper investigates techniques that enhance the effectiveness of inlining to

support more aggressive loop parallelization by optimizing compilers. In particular,

after identifying limitations of conventional inlining while using the Polaris

compiler [7] to parallelize a collection of Fortran77 applications from the PERFECT

benchmark suit [6], we present a new inlining approach to overcome these

limitations. Our results show that the new approach can eliminate negative impact

of conventional inlining while enhancing the effectiveness of interprocedural

parallelization for a majority of the PERFECT benchmarks.

Figure 1 shows the workflow of our enhanced inlining approach. In contrast to

conventional inlining, which substitutes a procedure invocation with the complete

implementation of the callee, we use annotations, which summarize the compu-

tational structure and side effects of the callee, to replace the invocation. The inlined

code is then optimized by the Polaris compiler which applies sophisticated loop

dependence analysis to automatically parallelize loops via OpenMP when safe. The

optimized code from Polaris is then piped into a reverse inliner, which reverts the

earlier inlined code back to using the original procedure invocations but leaves the

OpenMP pragma intact. The output from the reverse inliner is essentially the

original input code optimized with automatic parallelization, where the annotations,

currently manually provided by developers, have been used to enable more

aggressive loop optimization by the Polaris compiler in spite of opaque procedure

calls. Our annotation-based inlining approach offers the following advantages over

conventional inlining.

Parallelized inlined code Inlined code 

Parallelized code Input code 
without inlining 

Inline annotations 

Annotation-based  
Inliner

Polaris 
Parallelizing Compiler 

Annotation-based  
Reverse-Inliner

Developer/Analyzer

Fig. 1 Workflow of our annotation-based inlining approach
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• Inlining can be applied even for subroutines defined in external libraries without

their source code and for recursive subroutines because developers can provide a

high-level summary of the semantics of these subroutines.

• The potential code size explosion problem can be avoided entirely as the inlining

transformations will be reverted back to the original call statements after

optimization.

• The user-supplied annotations do not need to include irrelevant implementation

details of the subroutines of interest. After inlining, the code within the caller is

much easier to analyze compared to when it contains the complete implemen-

tation of the callee.

The rest of this paper is organized as follows. Section 2 summarizes limitations

of conventional inlining when used to support automatic loop parallelization by the

Polaris compiler. Section 3 presents details of our annotation-based inlining

approach. Section 4 presents experimental results. Sections 5 and 6 present related

work and conclusions.

2 Automatic Parallelization Using Polaris

Polaris is a source-to-source Fortran 77 compiler which supports automatic

parallelization of loops based on sophisticated dependence analysis techniques [7].

It uses simple heuristics controlled via command-line options to govern whether

each procedure call is inlined before parallelization analysis [17]. The default

strategy inlines a procedure call only when the procedure contains no I/O and not

many statements (less than 150 by default) and when the invocation is inside a loop

nest.

Polaris includes a number of sophisticated dependence analysis techniques which

are fairly effective when analyzing regular Fortran DO loops operating on array

subscripts that are linear combinations of the surrounding loop index variables.

However, it becomes overly conservative when encountering non-linear array

subscripts, which could be introduced by the inlining transformation applied before

the analysis. The following summarizes the main issues we found to significantly

hinder the effectiveness of Polaris loop parallelization analysis when combined with

conventional procedure inlining.

2.1 Loss of Parallelism Due to Inlining

In languages such as Fortran/C/C??, arrays are treated as pointers into regions of

data, and the same data operated by different subroutines can be declared as arrays

of different shapes. Further, when optimizing Fortran subroutines, compilers can

assume different array parameters are not aliased to each other. When subroutine

invocations are inlined, the abstraction layer is broken, and the inlined implemen-

tations may become harder to analyze due to excessive code complexity introduced

by inlining. As a result, loops that can be automatically parallelized by compilers
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when inside their respective subroutines may become no longer parallelizable after

inlining, as discussed in the following.

2.1.1 Forward Substitution of Non-linear Subscripts

Figures 2 and 3 illustrate a situation where non-linear array subscripts are

introduced by inlining the invocation of subroutine PCINIT at line 3 of Fig. 3

with its implementation in Fig. 2. Here the actual parameters used in the invocation

are indirect references pointing to different regions of a global array T. When using

these indirect array references to instantiate the formal parameters X2, Y2, and Z2 of

PCINIT in Fig. 2, the array references X2(I), Y2(I), and Z2(I) at lines 8–10 of Fig. 2

become T(IX(7) ? I), T(IX(8) ? I) and T(IX(9) ? I), respectively. Because the

values of IX(7), IX(8), and IX(9) are unknown at compile time, the inlining

transformation has created subscripted subscripts (array subscripts that contain

additional subscripted array references) which are non-linear and considered non-

analyzable by most dependence analysis techniques. As a result, the loops at lines 3

and 6 of Fig. 2 can no longer be automatically parallelized after inlining, although

Polaris dependence analysis can safely parallelize them inside the PCINIT
subroutine before inlining.

2.1.2 Linearization of Array Dimensions

Figures 4 and 5 illustrate a situation where common arrays operated by two different

subroutines are declared with different shapes. In particular, multi-dimensional

arrays PP, PHIT, and TM1 are used at line 5 of Fig. 5 to invoke the subroutine

MATMLT defined in Fig. 4. However, the corresponding formal parametersM1,M2,

and M3 are declared as single-dimensional arrays in Fig. 4. To inline the subroutine

invocation, Polaris reconciles the mismatched array declarations by linearizing PP,
PHIT, and TM1 in Fig. 5 into single dimensional arrays without any explicit shape

information. After inlining, the compiler can no longer precisely recognize the

dependence constraints of the inlined loops. As a result the three loops at lines 22,

23, and 26 of Fig. 4 can no longer be parallelized after inlining.

Fig. 2 A subroutine with
automatically parallelizable
loops at lines 3 and 6
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2.2 Missed Opportunities

Conventional inlining substitutes a subroutine invocation with the entire imple-

mentation of the callee, where excessive complexity in the callee’s implementation

can force compiler optimizations, e.g., automatic loop parallelization, to be overly

conservative due to the lack of domain-specific knowledge and runtime information.

The following discusses situations where the complexity of subroutine imple-

mentations prevents them from being effectively inlined or optimized.

2.2.1 Opaque Compositional Subroutines

Conventional inlining typically leaves out subroutines that make additional non-

trivial procedure calls, as inlining a chain of subroutine invocations could result in

serious code explosion. For example, the subroutine FSMP in Fig. 6 is excluded

from inlining by Polaris as it invokes a fair number of other subroutines. This

subroutine serves to initialize a single column of five arrays, FE (lines 12–13), SE

(line 18), ME (line 19), MNLE (line 20), and PE (line 23), using a large number of

Fig. 3 A call site of the subroutine in Fig. 2 (loops in PCINIT become no longer automatically
parallelizable after inlining)

Fig. 4 A subroutine with
automatically parallelizable
loops at lines 22, 23, and 26

Fig. 5 A call site which invokes the subroutine in Fig. 4 (loops in MATMLT are no longer automatically
parallelizable after inlining)

123

International Journal of Parallel Programming (2022) 50:65–88 69



global variables, including both scalar variables and arrays, some of which are

modified to hold intermediate results of the internal computation. In spite of the

complexity of computation, distinct columns of the five arrays are modified when

invoking FSMP with different values for ID and IDE. Figure 7 shows an example

loop nest which invokes FSMP with values for ID obtained from a global array

IDBEGS which returns a unique integer for each given value of ISS. After feeding
such information to the Polaris compiler via annotations, the compiler is able to tell

that distinct values of ID and IDE are used at different iterations of the inner K loop

at line 4. As a result, it can automatically parallelize this loop after annotation-based

inlining is applied, discussed in Sect. 3.2.2.

2.2.2 Debugging and Error Checking

In practical applications, debugging and error checking statements are often used

inside subroutines to ensure proper termination of the application when processing

erroneous input data. This situation is illustrated by lines 14–17 of Fig. 6, where the

Fig. 6 A subroutine excluded from inlining by Polaris

Fig. 7 A loop nest invoking the subroutine in Fig. 6 (the inner K loop at line 4 can be automatically
parallelized after annotation-based inlining)
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whole program would abort if previous evaluation has resulted in logical errors

(indicated by the global IERR variable). Since debugging and error checking

conditionals typically contain program I/O and early termination of the program,

conservative compilers need to disable optimizations of the surrounding loops.

However, pre-tested input data are often known to not trigger erroneous conditions

at runtime, where the error handling statements are never executed. Even when

errors do occur, replication of error messages is often acceptable. Such application-

specific knowledge can be incorporated in our annotation-based inlining mechanism

to support more aggressive loop parallelization, discussed in Sect. 3.2.3.

2.2.3 Use of Temporary Arrays

Many subroutines use temporary arrays to store intermediate results of computation,

where each temporary array is first modified with new values before being used for

additional computation. When the whole computation is inside a surrounding loop,

compilers can apply array kill analysis to determine whether any value of the array

comes from the previous iterations. If the whole array is killed (reinitialized) at each

iteration, the temporary array can be privatized (duplicated within each thread)

when parallelizing the surrounding loop. However, the array kill analysis may fail

when only a subset of the array elements are modified, and those being used later are

not obviously covered by the modifications. To illustrate such situations, Figs. 8 and

9 provide two subroutine definitions invoked by the FSMP routine in Fig. 6. Here a

global array XY is used as a temporary array which is modified by the GETCR
subroutine in Fig. 8 and then used by the SHAPE1 subroutine in Fig. 9. Although

GETCR modifies only a subset of the elements in XY (specifically, it modifies

XY(1:2,1:NNPED), where NNPED\ = ZNNPED), only those elements being

modified by GETCR are used in SHAPE1. However, due to the complexity of the

multiple conditionals in Fig. 9, a typical optimizing compiler would fail to discover

the coverage relation even after both subroutines are successfully inlined. We

resolve this issue by declaring that the whole temporary array is reinitialized via

user-supplied annotations, shown in Fig. 13 and discussed in Sect. 3.2.4.

2.2.4 Indirect References in Array Subscripts

Due to the lack of knowledge about runtime values of different arrays, conventional

loop dependence analysis techniques are overly conservative when array references

Fig. 8 Definition of subroutine
GETCR invoked by FSMP in
Fig. 6
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are used inside the subscripts of accessing other arrays. Figure 10 illustrates such an

example, where two global arrays, ICOND and IWHERD, which serve to save one-

to-one relations between data in different arrays, are used to compute the subscripts

of modifying two other arrays RHSH and RHSI. After forward substitution of

variables, the subscripts used to modify RHSB and RHSI at lines 6–13 become

IWHERD(ABS(ICOND(IN,ID), 2) ? I—1, which will always yield different values

when given distinct values of IN, ID and I. Therefore, different elements of the

arrays RHIB and RHSI are modified when given distinct values of IN, ID, and
I. However, such application-specific information is not available to the compiler,

which must assume both ICOND and IWHERD could have arbitrary unknown

values. Consequently the compiler must conservatively assume that arbitrary

elements of RHSH and RHSI could be modified and must refrain from optimizing

any loop that invokes ASSEMR even if the implementation of ASSEMR has been

inlined. Figure 10 illustrates such a call site, where the K loop invokes ASSEMR at

line 6 with the values of ID uniquely determined by the loop index variable K. We

discuss how to enable Polaris to safely parallelize this loop via annotation-based

inlining in Sect. 3.2.5.

Fig. 9 Definition of subroutine SHAPE1 invoked by FSMP in Fig. 6

Fig. 10 A subroutine which contains indirect references in array subscripts

123

72 International Journal of Parallel Programming (2022) 50:65–88



3 Enhancing the Role of Inlining

To improve the effectiveness of automatic parallelization when encountering

situations discussed in Section 2, we seek to enhance the role of inlining so that

higher-level semantics of subroutine invocations can be made readily available to

compilers. In particular, we use the following steps to enhance the effectiveness of

conventional inlining supporting automatic parallelization across procedural

boundaries.

(1) Annotate important subroutines to summarize their side effects and loop

structures required for accurate dependence analysis. Then, substitute

subroutine invocations with the corresponding annotations instead of the

actual detailed implementations.

(2) Use Polaris to apply conventional loop dependence analysis and automatically

parallelize loops when safe by inserting OpenMP directives.

(3) Apply a reverse inlining step which substitutes all the inlined annotations with
appropriate invocations of the original subroutines. After this step, the only

remaining transformation to the original input code is the parallelization of

loops via OpenMP.

The reverse inlining step essentially reverses all the transformations introduced

by annotation-based inlining so that the original input code can benefit from

advanced compiler optimizations without sacrificing its modularity. The correct

application of this step requires all the inlined annotations be recognized and

mapped back to correct invocations of the original subroutines, which can be easily

accomplished when minimal transformations, e.g., insertion of OpenMP directives,

have been made to the inlined code. However, the task is more challenging when

interacting with more drastic program transformations, e.g., loop blocking and

software pipelining. Section 3.3 discusses these issues in more detail.

The following first discusses our annotation language and then illustrates how to

use annotations to summarize the higher-level semantics of subroutines and enable

more effective parallelization after inlining. Section 3.3 presents our algorithm for

enhanced inlining. Section 3.4 discusses the correctness and generality of the overall

approach.

3.1 The Annotation Language

Figure 11 summarizes the syntax of our annotation language, which can be used by

developers to describe the side effects and loop structures of important subroutines.

When these annotations are used to support subroutine inlining, a compiler can

correctly recognize the dependence constraints carried by each subroutine

invocation and subsequently successfully parallelize surrounding loops when safe.

The statements supported by our language include loops, if-conditionals,

assignments, variable declarations, and return statements. They are used to

summarize the control-flow structure and memory side effects of each subroutine.

For implementation details that cannot be expressed using these statements, we
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provide two special operators, unique and unknown, to summarize approximate

relations between variables while omitting details of the computation. In particular,

y=unique(x1, ..., xn) specifies that the value of y is uniquely computed (determined)

from those of variables x1, ..., xn; that is, if y1 is computed from (x1=v1, ..., xn=vn),
y’1 is computed from (x1=v’1, ..., xn=v’n), and (v1, ..., vn) = (v’1, ..., v’n), then y1 =
y’1.

Therefore, if the values of x1, ..., xn are different at distinct iterations of a loop

surrounding y=unique(x1, ..., xn), then the values of y are guaranteed to be similarly

different. In contrast, y=unknown(x1, ..., xn) specifies that the value of variable y is

computed from reading those of variables x1, ..., xn, but the relationship could be

arbitrary. These special-purpose operators serve to abstract away complex

implementation details which degrade the effectiveness of compiler analysis, while

keeping essential relations among variables visible to the compiler.

Expressions supported by our annotation language include most of the arithmetic

operations in Fortran 77 combined with memory references via scalar and array

variables. The Fortran 90 notation of array regions are supported so that collective

operations can be applied to arrays without requiring explicit loops. The two special

operators, unknown and unique, can also be used directly inside expressions, where

their results do not need to be saved in variables before used.

3.2 Writing Annotations

Our annotation language serves to accurately summarize the side effects and loop

structures of subroutines without exposing their local implementation details that

are irrelevant to the surrounding calling context. In particular, for each subroutine,

the annotations aim to summarize relations between its input parameters and output

values as well as global variables modified by the subroutine while omitting

intermediate results and variables that are local to the subroutine. The goal is to

minimize adverse side effects of conventional inlining which may result in

accidental loss of parallelism in the inlined code. To demonstrate the capacity of

this approach, the following illustrates how to use user-supplied annotations to

overcome inefficiencies of automatic parallelization discussed in Section 2.

Fig. 11 The annotation
language
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3.2.1 Avoiding Loss of Parallelism

As discussed in Sect. 2.1, when conventional inlining breaks procedural boundaries

by substituting subroutine invocations with detailed implementations, some parallel

loops inside the inlined code may become no longer parallelizable by compilers due

to unexpected interactions between the caller and callee. Our annotation-based

approach resolves this issue by preserving all the original procedural boundaries and

thereby entirely eliminating the adverse side effects of conventional inining. In

particular, after we enable the compiler to perform interprocedural dependence

analysis by substituting subroutine invocations with user-supplied annotations, the

reverse inlining step will replace the inlined annotations with the original subroutine

invocations, thereby preserving the original procedural boundaries as well as their

optimizations.

3.2.2 Summarizing Opaque Subroutines

Since we substitute subroutine invocations with summaries of their semantics

supplied by developers, our approach can be easily applied to opaque subroutines

with arbitrarily complex implementations. As example, Fig. 12 illustrates our

annotations for the FSMP subroutine in Fig. 6, which was excluded from inlining by

Polaris due to its excess code complexity. In particular, these annotations

summarize the regions of global arrays (FE, ME, SE, MNLE, PE) modified by all

the subroutines invoked from FSMP, the temporary global variables (XY, IRECT,
K1, K2, K12, ISTRES, NDX, NDY, WTDET) modified in the process, and the read-

only global variables (IEGEOMI, IECURV, among others) used in the computation.

The unknown operator is used extensively to omit local implementation details (e.g.,

intermediate results) of relevant computation, allowing invocations of the

Fig. 12 Annotations for the opaque subroutine defined in Fig. 6
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subroutine to be more accurately handled by dependence analysis of their

surrounding loops.

3.2.3 Debugging and Error Handling

Many subroutines in large applications contain program output statements used for

debugging and error handling purposes. The presence of these exception handling
statements are typically treated with extreme caution by compilers, where all

reordering transformations of the surrounding loops are subsequently disabled.

However, since these statements are used for debugging/error handling only, they

are not triggered at runtime in most cases, and even when triggered, precise

exception handling is often not required. Using our annotation-based inlining

approach, developers can choose to relax the consistency requirement of exception

handling when parallelizing their program, by omitting these situations in the

subroutine annotations. For example, in Fig. 12, the error checking conditional at

lines 14–17 of Fig. 6 has been omitted in the annotations. Therefore it no longer

prevents loops surrounding invocations of the FSMP subroutine from being safely

parallelized.

3.2.4 Use of Temporary Arrays

Complex subroutines often use temporary arrays to hold intermediate results of the

internal computation. When these arrays are declared as local variables, our

annotations will omit their existence entirely as they do not incur any visible side

effects to the outside. However, sometimes these arrays are declared in the global

scope and used to pass values from one subroutine to another. An example global

array used for this purpose is shown in Fig. 8, where the global array XY is modified

in subroutine GETCR to hold intermediate results and then used in the subroutine

SHAPE1 in Fig. 9. It is conceptually a temporary array within the FSMP subroutine

as only those elements defined in GETCR are used in the subsequent calls to

SHAPE1 and other subroutines. Similar global temporary arrays in FSMP include

NDX, NDY, WTDET and P, shown in Fig. 12. In our annotations, these arrays are

modified and used as if they are atomic scalar variables. Since modifications to these

variables precede all their uses in the annotations of subroutine FSMP in Fig. 12,

they can be treated as private variables when parallelizing a loop surrounding the

invocation of FSMP, shown in Fig. 7. In particular, when parallelizing the K loop in

Fig. 7, Polaris would peel the last iteration of the loop before parallelizing all the

other iterations by privatizing temporary arrays in those iterations, so all the global

arrays have the same values as their original sequential computation after the entire

loop is finished.

3.2.5 Indirect References in Array Subscripts

Many Fortran applications use global arrays to store dynamic relations between

different data structures. Most of these arrays are initialized only once throughout

the entire program to save a one-to-one unique mapping between the related data.
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An example subroutine using these special-purpose arrays is shown in Fig. 10,

where ICOND and IWHERD are global arrays which contain one-to-one relations

between elements stored in different places. When they are used as subscripts to

access RHSB and RHSI in Fig. 10, the subscript expressions are non-linear, and

compliers have to be overly conservative when parallelizing the surrounding loops.

To overcome these difficulties, in Fig. 13, we use the unique operator to summarize

the values of these arrays in terms of the relevant input parameters and loop index

variables (ID, IN, and I). The declaration of the unique relation comes from domain-

specific knowledge of the developer. When using the annotations in Fig. 13 to

substitute for the invocation of subroutine ASSEMR in Fig. 14, each unique operator

will be replaced with a linear expression which uniquely combines the involved

integer variables ID, IN, and I. As a result the compiler can easily recognize that

unique elements of arrays RHSB and RHSI are modified at each distinct iteration of

the surrounding loop and thereby can safely parallelize the loop in Fig. 14.

3.3 The Enhanced Inlining Algorithm

Figure 15 shows the key steps of our algorithm for applying automatic

parallelization with enhanced inlining support. The algorithm is comprised of three

main phases: annotation-based inlining, automatic parallelization, and reverse

inlining. The following explains each phase in detail.

3.3.1 Annotation-Based Inlining

The implementation of this step is similar to conventional inlining, except that

subroutine invocations are substituted with user-supplied annotations instead of

detailed implementations of the callees. Translating annotations to the underlying

programming language (e.g., Fortran) is trivial, except for the two special purpose

operators, unknown and unique. To translate each unknown operator, we define a new
uninitialized global array, modify the array with all the operands of the unknown
operator, and then replace the unknown invocation with an access to the new array. To

translate each unique operator, we replace it with a linear expression which uniquely
combines all the relevant integer variables. After inlining, a pair of special tags are

placed surrounding the inlined source code to support reverse inlining at a later stage.

Figure 18 shows the result of applying annotation-based inlining to an invocation of

the MATMLT subroutine in Fig. 5, using annotations in Fig. 16.

In our algorithm, only subroutines with annotations are considered for inlining.

Note that although the original implementation of MATMLT in Fig. 4 declares the

Fig. 13 Annotations for the
subroutine in Fig. 10
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array parameters M1,M2,M3 as having single dimensions, our annotations declare

them as two-dimensional matrices. Subsequently our annotation-based inlining can

avoid the unnecessary linearization of array dimensions which may degrade the

precision of compiler analysis, as discussed in Sect. 2.1.

3.3.2 Automatic Parallelization

After applying annotation- based inlining to the input program source, we optimize

the inlined code using the Polaris compiler (with conventional inlining disabled),

which performs advanced dependence analysis of the inlined code and automat-

ically inserts OpenMP directives to parallelize loops when safe and profitable (the

profitability is determined based on simplistic heuristics, e.g., all parallelized loop

needs to exceed a certain number of iterations). Figure 17 shows the result of

applying loop parallelization to our inlined code in Fig. 18. Note that the pair of

special tags surrounding the inlined annotations remain intact after the paralleliza-

tion optimizations.

Fig. 14 A parallelizable loop invoking the subroutine in Fig. 10

Fig. 15 Automatic parallelization with annotation-based inlining

Fig. 16 Annotations for the
MATMLT subroutine in Fig. 4
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3.3.3 Reverse-Inlining

After automatic parallelization, the reverse-inlining step is performed to reverse the

annotation-based inlining transformation while keeping the OpenMP directives

Fig. 17 Call site of MATMLT
in Fig. 18 after parallelization

Fig. 18 Call site of MATMLT in Fig. 5 after annotation-based inlining
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inserted by the Polaris compiler intact. This step is necessary to ensure correctness

of program optimization.

Specifically, while the user-supplied annotations are expected to carry equivalent

side effects and dependence constraints as the real subroutine implementation, they

are typically not semantically equivalent to the original implementation, due to

simplification of internal implementation details and the use of the special-purpose

summary operations, e.g., the unknown and unique operators. Therefore, the inlined
annotations must be reversed back to an equivalent subroutine invocation to

guarantee the correctness of the optimized code.

The reverse inlining transformation is applied to all the tagged code segments

created by the earlier annotation-based inlining transformation. For each tagged

fragment, it first finds the corresponding subroutine annotations and then proceeds

to compute an instantiation value for each formal parameter of the subroutine.

Specifically, when using these parameter values to instantiate the subroutine

annotations, the resulting code must be equivalent to the tagged code segment.

Currently we apply a pattern matching algorithm to compare the tagged code

segment and the inlining annotations node by node, while allowing variable

substitution, expression reordering, and OpenMP directives inside the tagged

segment. Since the only optimization performed by Polaris is the insertion of

OpenMP directives, which are simply ignored in the pattern matching process, a set

of appropriate parameter values are guaranteed to be found for each tagged code

segment. These values are then used as actual parameters to generate a subroutine

invocation so that each tagged code segment is replaced with its original function

call.

Figure 19 shows the resulting code after applying reverse inlining to the

parallelized loop in Fig. 17. Note that while the single optimization applied by

Polaris is the insertion of OpenMP directives, the compiler does perform several

normalization transformations, e.g., reordering of statements, induction variable

substitution, and constant propagation, to the tagged code segments. As a result our

reverse inlining transformation cannot simply replace them with the original

subroutine calls. Our pattern matching algorithm is tolerant of minor modifications

to the inlined annotations and can automatically extract the correct actual

parameters in subroutine invocation in spite of the normalization transformations.

Fig. 19 Call site of MATMLT in Fig. 17 after reverse-inlining
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3.4 Correctness, Efficiency, and Generality

The correctness of our enhanced inlining approach depends on the soundness of the

user-supplied annotations. Specifically, if the annotations accurately summarize the

side-effects and dependence constraints of the subroutines, the automatic paral-

lelization optimization is guaranteed to be safe. Currently, such consistency is not

automatically verified, and we use runtime testers to check and verify the

correctness of our optimized code. Future work will develop techniques to

automatically verify the soundness of user-supplied annotations and to automati-

cally generate inlining annotations when possible.

The compile-time overhead of applying annotation-based inlining is similar to

that of conventional inlining except that since user-supplied annotations are

expected to be much shorter than detailed implementations, the cost of applying

annotation-based inlining is lower, and the inlined annotations are expected to be

much easier to analyze by the compiler.

Since all the inlined annotations are reversed back to using the original

subroutine invocations, the modularity of the original program is not affected. The

cost of applying reverse inlining to each tagged code segment is proportional to the

size of the corresponding subroutine annotations, with constant cost associated with

tolerating local modifications of the inlined annotations.

Our enhanced inlining approach can potentially enable general-purpose compil-

ers to better utilize domain-specific knowledge from developers in supporting more

effective interprocedural optimization of large-scale applications. So far we have

used this approach to support only automatic parallelization via OpenMP. When

applying pattern-matching to reverse inlined code segments back to appropriate

subroutine calls, our reverse inlining transformation can tolerate local modifications

to the inlined code such as reordering of expressions, induction variable

substitutions, and insertion of OpenMP directives. However, to extend our approach

to similarly support other optimizations such as loop blocking and unrolling, it may

become much more challenging to reverse the inlined code segments back to

appropriate subroutine calls after dramatic modifications to the tagged segments.

Therefore, to apply this approach more extensively in a general-purpose compiler, a

more systematic approach needs to be developed to compute correct instantiation

parameters after dramatic modifications to the inlined annotations, which is a

subject of future work.

4 Experimental Results

To evaluate the effectiveness of our enhanced inlining approach when used to

enable more aggressive automatic parallelization of loops, we selected 12

applications from the PERFECT benchmark suite [27], summarized in Table 1.

For each benchmark, we applied both conventional inlining and our enhanced

inlining combined with automatic loop parallelization by the Polaris compiler. To

measure the amount of parallelism enabled by and the degree of code explosion

resulted from inlining, we counted the number of loops being parallelized after
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optimization and the line numbers of the resulting source code. We then use two

multi-core machines, an Intel Macintosh running MacOS 10.5 with two quad-core

3GHz Intel processors (32KB L1 cache per core) and an AMD Opteron running

Linux with two dual-core 3GHz AMD Opteron processors (128KB L1 cache per

core), to measure the performance of the parallelized code. All benchmarks are

compiled using gfortran 4.2.1 on the Intel Mac and iFort 11.1 on the AMD Opteron,

using the -O3 optimization flag.

4.1 Enhancing Automatic Loop Parallelization

Table 2 compares the number of automatically parallelized loops by the Polaris

compiler using three different inlining configurations: disable inlining of all

subroutines (i.e., no inlining); inline implementations of subroutines with less than

150 lines of source code via conventional inlining (the default inlining strategy

adopted by Polaris); and annotation-based inlining, where our enhanced inlining

approach is used. For each configuration, we counted the number of automatically

parallelized loops (#par-loops) and the overall code size (the number of source code

lines with all comments removed) after optimization by Polaris. Note that when

conventional inlining is applied, Polaris could fail to parallelize some loops which

were parallelizable when no inlining is applied, as discussed in Section 2.1. These

loops are categorized as #par-loss in Table 2. Inlining may also enable additional

loops being parallelized beyond those parallelized using no-inlining, these loops are

categorized as #par-extra in Table 2. If parallelized, each loop in the original

benchmark is counted only once, even when inlining has made multiple copies of

the original loop and all copies are subsequently parallelized.

From Table 2, inlining (including both conventional inlining and annotation-

based inlining) is able to improve the effectiveness of automatic parallelization for 6

out of the 12 PERFECT benchmarks. For the other benchmarks, Polaris was not

Table 1 Summary of the perfect benchmarks

Applications Descriptions

ADM Pseudospectral air pollution simulation

ARC2D Two-dimensional fluid solver of Euler equations

FLO52Q Transonic inviscid flow past an airfoil

OCEAN Two dimensional ocean simulation

BDNA Molecular dynamic package for the simulation of nucleic acids

MDG Molecular dynamics for the simulation of liquid water

QCD Quantum chromodynamics

TRFD A kernal simulating a two-electron integral transformation

DYFESM Structural dynamics benchmark (finite element)

MG3D Depth migration code

TRACK Missile tracking
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able to identify additional parallelism from loops which contain subroutine calls.

Note that we have manually annotated a subset of subroutines from the PERFECT

benchmarks based on careful inspection of their implementations. It may be

possible to parallelize more loops by annotating additional subroutines. Future work

will investigate more systematic application of our enhanced inlining approach by

automatically generating annotations. We have verified the correctness of all the

automatically parallelized loops via both manual inspection and runtime testing of

the parallelized code.

When combined with annotation-based inlining, the Polaris compiler is able to

identify 37 additional parallelizable loops in different PERFECT benchmarks when

compared with no-inlining. Most of these loops invoke complex subroutines which

in turn invoke other routines, and the complexity of their implementations would

overwhelm most state-of-the-art program analysis techniques. Since our annotation-

based inlining allows developers to intervene with their application-specific

knowledge, we are able to summarize the intended semantics of these subroutines

to enable more effective parallelization of their surrounding loops. Examples of

such annotations are illustrated in Section 3.2. When applying annotation-based

inlining, the code explosion problem is avoided entirely, as the reverse inlining step

has restored all the original subroutine invocations (the small increase in code size is

mostly due to the extra OpenMP directives inserted to parallelize loops).

In contrast, conventional inlining enabled Polaris to parallelize only a small

subset (12 out of 37) of the extra parallel loops identified by annotation-based

inlining. Additionally, after conventional inlining, Polaris can no longer parallelize

90 loops which were categorized as parallelizable when no inlining is performed,

due to issues discussed in Section 2.1.

After conventional inlining, the code size increased by about 10% even when

only small subroutines were inlined. The increase is likely significantly higher when

more extensive inlining is applied via the conventional approach.

4.2 Performance of Optimized Code

Figure 20 presents the runtime speedups achieved by the automatically parallelized

benchmarks when using different inlining configurations. Note that a majority of the

PERFECT benchmarks do not benefit from loop parallelization due to their small

input data size, which is a known issue for these benchmarks [25]. To avoid

degradation of performance by excessive parallelization of loops, we used empirical

performance tuning to disable a selected set of loops from being parallelized if their

parallelization incurs a slowdown of the overall execution time. As demonstrated in

Figure 20, at most 10% performance improvement is achieved by automatic loop

parallelization combined with different inlining configurations. Annotation-based

inlining is able to achieve the best performance for two benchmarks (ADM and

MDG) and has achieved similar performance as other inlining configurations for the

other benchmarks.
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5 Related Work

Inlining is a widely adopted technique which can be used by compilers to erase

procedural boundaries and apply optimizations to larger regions of code

[1, 4, 30, 38]. Ayers et. all [4] shown that aggressive inlining and cloning based

on profiled information can dramatically improve the effectiveness of a large

number of back-end optimizations. However, when excessively applied, inlining

can cause the well-known code-explosion problem [13] and could degrade the

effectiveness of many compiler optimizations as the input code becomes

overwhelmingly large and complex. Previous research has developed a variety of

heuristics, including temperature heuristics [36], demand-driven online transforma-

tion [32], inlining trials [14, 38], and interprocedural flow analysis [3, 23], to

selectively apply inlining so that performance benefits can be gained without

incurring serious problems [2]. Existing research has also explored automatic tuning

of different inlining heuristics [10], e.g., through machine-learning [40, 41]. Other

directions include combining inlining with hot code outlining [37], context-sensitive

trace inlining [39], region-based compilation [21, 24], and whole program

optimization by merging and re-dividing code regions [31].

* Baseline: performance of the original benchmarks with no optimization;
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This paper proposes an annotation-based inlining approach to overcome the

negative impact of conventional inlining both in terms of code explosion and in

terms of unexpected complications. Our use of developer-supplied annotations to

summarize the semantics of opaque subroutines is similar to the semantic inlining

approach by Wu et al. [34, 35], which allows their compiler to treat user-defined

abstractions as primitive types in Java, and the semantics-preserving inlining work

by Stucki et. al [42], which uses inlining as a meta-programming tool for

developers. The Broadway [18], DyC [16], and Orio [43] compilers used annotation

languages to guide domain-specific optimizations, dynamic compilation of C code,

and empirical performance tuning of scientific workload. Annotations and semantic

specifications have also been used to specify dynamic properties of lower-level

implementations in program verification [11, 15] and to drive various compile-time

and runtime optimization decisions [44, 45]. We focus on using annotations to

substitute for implementations of subroutines in inlining to enable more aggressive

automatic parallelization.

Optimizing compilers have a long history of supporting automatic parallelization

of user applications [8, 12, 19, 20, 26, 29, 33, 46]. This paper focuses on using

inlining to enable interprocedural parallelization without resorting to expensive

inter-procedural program analysis techniques [5, 22, 28, 47]. Our work is orthogonal

to and can be integrated with existing other compiler frameworks for automatic loop

parallelization besides the Polaris compiler.

6 Conclusions and Future Work

This paper presents a study which exposes some serious limitations of conventional

inlining when using the Polaris compiler [7] to parallelize a collection of Fortran

applications from the PERFECT benchmark suite [6]. We then present a new

annotation-based inlining approach to overcome the lim- itations. Our experimental

results show that the new approach can eliminate most of the negative impact of

conventional inlining while significantly enhancing the effectiveness of automatic

loop parallelization across procedural boundaries. Our future work will develop

techniques to automatically derive necessary annotations and to verify the safety of

manually supplied annotations.

Funding Funding was provided by National Science Foundation (Grant Number CCF-1910488).
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