International Journal of Parallel Programming (2022) 50:65-88
https://doi.org/10.1007/s10766-021-00722-1

™

Check for
updates

Enhancing the Effectiveness of Inlining in Automatic
Parallelization

Jichi Guo' - Qing Yi' - Kleanthis Psarris>

Received: 24 April 2021/ Accepted: 19 June 2021 /Published online: 6 August 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract

The emergence of multi-core architectures makes it essential for optimizing com-
pilers to automatically extract parallelism for large scientific applications composed
of many subroutines residing in different files. Inlining is a well-known technique
which can be used to erase procedural boundaries and enable more aggressive loop
parallelization. However, conventional inlining cannot be applied to external
libraries where the source code is not available, and when overly applied, it can
degrade the effectiveness of compiler optimizations due to excessive code com-
plexity. This paper highlights some obstacles we encountered while applying con-
ventional inlining combined with automatic loop parallelization using the Polaris
optimizing compiler and presents a new approach, annotation-based inlining, to
effectively overcome these obstacles. Our experimental results show that the
annotation-based inlining approach can eliminate negative impact of conventional
inlining while enhancing the effectiveness of interprocedural parallelization for a
majority of applications from the PERFECT benchmark suite.
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1 Introduction

As multi-core architectures become ubiquitous in modern computing, optimizing
compilers need to automatically extract parallelism for large scale scientific
applications composed of many subroutines. Inlining is a well-known program
transformation which substitutes procedure invocations with their corresponding
implementations to erase artificial procedural boundaries [9]. However, conven-
tional inlining cannot be applied to recursive procedures or subroutines defined in
external libraries where the source code is not available. Further, when excessively
applied, it can cause code size explosion and curtail the compiler’s effectiveness in
applying optimizations (e.g., automatic loop parallelization and register allocation)
due to the increased code complexity resulted from inlining.

This paper investigates techniques that enhance the effectiveness of inlining to
support more aggressive loop parallelization by optimizing compilers. In particular,
after identifying limitations of conventional inlining while using the Polaris
compiler [7] to parallelize a collection of Fortran77 applications from the PERFECT
benchmark suit [6], we present a new inlining approach to overcome these
limitations. Our results show that the new approach can eliminate negative impact
of conventional inlining while enhancing the effectiveness of interprocedural
parallelization for a majority of the PERFECT benchmarks.

Figure 1 shows the workflow of our enhanced inlining approach. In contrast to
conventional inlining, which substitutes a procedure invocation with the complete
implementation of the callee, we use annotations, which summarize the compu-
tational structure and side effects of the callee, to replace the invocation. The inlined
code is then optimized by the Polaris compiler which applies sophisticated loop
dependence analysis to automatically parallelize loops via OpenMP when safe. The
optimized code from Polaris is then piped into a reverse inliner, which reverts the
earlier inlined code back to using the original procedure invocations but leaves the
OpenMP pragma intact. The output from the reverse inliner is essentially the
original input code optimized with automatic parallelization, where the annotations,
currently manually provided by developers, have been used to enable more
aggressive loop optimization by the Polaris compiler in spite of opaque procedure
calls. Our annotation-based inlining approach offers the following advantages over
conventional inlining.

K| Developer/Analyzer H

Parallelized code 1 Input code
without inlining
i Inline annotations
Annotation-based Polaris Annotation-based
Reverse-Inliner Parallelizing Compiler Inliner
Parallelized inlined code Inlined code

Fig. 1 Workflow of our annotation-based inlining approach
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e Inlining can be applied even for subroutines defined in external libraries without
their source code and for recursive subroutines because developers can provide a
high-level summary of the semantics of these subroutines.

e The potential code size explosion problem can be avoided entirely as the inlining
transformations will be reverted back to the original call statements after
optimization.

e The user-supplied annotations do not need to include irrelevant implementation
details of the subroutines of interest. After inlining, the code within the caller is
much easier to analyze compared to when it contains the complete implemen-
tation of the callee.

The rest of this paper is organized as follows. Section 2 summarizes limitations
of conventional inlining when used to support automatic loop parallelization by the
Polaris compiler. Section 3 presents details of our annotation-based inlining
approach. Section 4 presents experimental results. Sections 5 and 6 present related
work and conclusions.

2 Automatic Parallelization Using Polaris

Polaris is a source-to-source Fortran 77 compiler which supports automatic
parallelization of loops based on sophisticated dependence analysis techniques [7].
It uses simple heuristics controlled via command-line options to govern whether
each procedure call is inlined before parallelization analysis [17]. The default
strategy inlines a procedure call only when the procedure contains no I/O and not
many statements (less than 150 by default) and when the invocation is inside a loop
nest.

Polaris includes a number of sophisticated dependence analysis techniques which
are fairly effective when analyzing regular Fortran DO loops operating on array
subscripts that are linear combinations of the surrounding loop index variables.
However, it becomes overly conservative when encountering non-linear array
subscripts, which could be introduced by the inlining transformation applied before
the analysis. The following summarizes the main issues we found to significantly
hinder the effectiveness of Polaris loop parallelization analysis when combined with
conventional procedure inlining.

2.1 Loss of Parallelism Due to Inlining

In languages such as Fortran/C/C++, arrays are treated as pointers into regions of
data, and the same data operated by different subroutines can be declared as arrays
of different shapes. Further, when optimizing Fortran subroutines, compilers can
assume different array parameters are not aliased to each other. When subroutine
invocations are inlined, the abstraction layer is broken, and the inlined implemen-
tations may become harder to analyze due to excessive code complexity introduced
by inlining. As a result, loops that can be automatically parallelized by compilers

@ Springer



68 International Journal of Parallel Programming (2022) 50:65-88

when inside their respective subroutines may become no longer parallelizable after
inlining, as discussed in the following.

2.1.1 Forward Substitution of Non-linear Subscripts

Figures 2 and 3 illustrate a situation where non-linear array subscripts are
introduced by inlining the invocation of subroutine PCINIT at line 3 of Fig. 3
with its implementation in Fig. 2. Here the actual parameters used in the invocation
are indirect references pointing to different regions of a global array 7. When using
these indirect array references to instantiate the formal parameters X2, Y2, and Z2 of
PCINIT in Fig. 2, the array references X2(I), Y2(I), and Z2(1) at lines 8—10 of Fig. 2
become T(UX(7) + I), T(IX(8) + I) and T(IX(9) + I), respectively. Because the
values of IX(7), IX(8), and IX(9) are unknown at compile time, the inlining
transformation has created subscripted subscripts (array subscripts that contain
additional subscripted array references) which are non-linear and considered non-
analyzable by most dependence analysis techniques. As a result, the loops at lines 3
and 6 of Fig. 2 can no longer be automatically parallelized after inlining, although
Polaris dependence analysis can safely parallelize them inside the PCINIT
subroutine before inlining.

2.1.2 Linearization of Array Dimensions

Figures 4 and 5 illustrate a situation where common arrays operated by two different
subroutines are declared with different shapes. In particular, multi-dimensional
arrays PP, PHIT, and TM1 are used at line 5 of Fig. 5 to invoke the subroutine
MATMLT defined in Fig. 4. However, the corresponding formal parameters M1, M2,
and M3 are declared as single-dimensional arrays in Fig. 4. To inline the subroutine
invocation, Polaris reconciles the mismatched array declarations by linearizing PP,
PHIT, and TM1 in Fig. 5 into single dimensional arrays without any explicit shape
information. After inlining, the compiler can no longer precisely recognize the
dependence constraints of the inlined loops. As a result the three loops at lines 22,
23, and 26 of Fig. 4 can no longer be parallelized after inlining.

[

SUBROUTINE PCINIT (X2,Y2,%2,..)
DIMENSION X2 (*),Y2 (*),Z2 (%)

DO 200 N=1,NTYPES

NSP=NSPECI (N)

NS=NSITES (N)

DO 200 J=1,NSP

I=I+1

X2 (I)=FX (I)*TSTEP**2/2.D0/DSUMM (N)
Y2 (I)=FY (I)*TSTEP**2/2.D0/DSUMM (N)
22 (I)=FZ (I)*TSTEP**2/2.D0/DSUMM (N)

Fig. 2 A subroutine with
automatically parallelizable
loops at lines 3 and 6

N

[
O W -1 oUW

200 CONTINUE
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1 DIMENSION T (*),S(*),W(*
2 COMMON/WINDEX/ IX(99)
3 CALL PCINIT (T (IX(7)),T(IX(8)),T(IX(9)),..)

Fig. 3 A call site of the subroutine in Fig. 2 (loops in PCINIT become no longer automatically
parallelizable after inlining)

Fig. 4 A subroutine with 20 SUBROUTINE MATMLT (M1,M2,M3,L,M,N)
automatically parallelizable ;é ggU?ég EP;E_CllimN ML (L*M) , M2 (M*N) , M3 (L*N)
. - ’

loops at lines 22, 23, and 26 23 DO 110 JN=1,N

24 J=JL+Lx* (JN-1)

25 M3 (J)=0.0

26 DO 100 JM=1,M

27 K1=JL+L* (JM-1)

28 K2=JM+M* (JN-1)

29 100 M3 (J)=M3 (J) +M1 (K1) *M2 (K2)
30 110 CONTINUE

31 120 CONTINUE

32 RETURN

33 END

DIMENSION PP (4,4,15),PHIT (4,4),TML (4 4),...

DO 160 Ks=1,15

3

4 KSM=KS-1

5 IF (KS.GT.1) CALL MATMLT (PP (1,1,KSM),PHIT,TM1,4,4,4)
6 ENDIF

11 160 CONTINUE

Fig. 5 A call site which invokes the subroutine in Fig. 4 (loops in MATMLT are no longer automatically
parallelizable after inlining)

2.2 Missed Opportunities

Conventional inlining substitutes a subroutine invocation with the entire imple-
mentation of the callee, where excessive complexity in the callee’s implementation
can force compiler optimizations, e.g., automatic loop parallelization, to be overly
conservative due to the lack of domain-specific knowledge and runtime information.

The following discusses situations where the complexity of subroutine imple-
mentations prevents them from being effectively inlined or optimized.

2.2.1 Opaque Compositional Subroutines

Conventional inlining typically leaves out subroutines that make additional non-
trivial procedure calls, as inlining a chain of subroutine invocations could result in
serious code explosion. For example, the subroutine FSMP in Fig. 6 is excluded
from inlining by Polaris as it invokes a fair number of other subroutines. This
subroutine serves to initialize a single column of five arrays, FE (lines 12-13), SE
(line 18), ME (line 19), MNLE (line 20), and PE (line 23), using a large number of
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1 SUBROUTINE FSMP(ID, IDE)

2 CALL GETCR (ID)

3 IRECT = IEGEOM(ID)

4 ICT = IECURV(ID)

5 K1 = AK1 (ICT)

6 K2 = AK2 (ICT)

7 K12 = AK12(ICT)

8 ISTRES = 0

9 CALL SHAPE1

10 IF (IDEDON (IDE).EQ.0) THEN
11 IDEDON (IDE) = 1

12 CALL FORMF (FE (1, IDE))

13 CALL CHOFAC (FE(1,IDE), NSFE, IERR)
14 IF (IERR.NE.O) THEN

15 WRITE(6,*) ’ F ELEMENT ’,IDE,’ IS SINGULAR '
16 STOP ’ F SINGULAR '
17 ENDIF

18 CALL FORMS (SE (1, IDE))

19 CALL FORMM (ME (1, IDE))
20 CALL FORMNL (MNLE (1, IDE))
21 ENDIF
22 CALL GETLD (ID)
23 CALL FORMP (PE (1, 1D)
24 RETURN
25 END

Fig. 6 A subroutine excluded from inlining by Polaris

global variables, including both scalar variables and arrays, some of which are
modified to hold intermediate results of the internal computation. In spite of the
complexity of computation, distinct columns of the five arrays are modified when
invoking FSMP with different values for /D and IDE. Figure 7 shows an example
loop nest which invokes FSMP with values for ID obtained from a global array
IDBEGS which returns a unique integer for each given value of ISS. After feeding
such information to the Polaris compiler via annotations, the compiler is able to tell
that distinct values of ID and IDE are used at different iterations of the inner K loop
at line 4. As a result, it can automatically parallelize this loop after annotation-based
inlining is applied, discussed in Sect. 3.2.2.

2.2.2 Debugging and Error Checking
In practical applications, debugging and error checking statements are often used

inside subroutines to ensure proper termination of the application when processing
erroneous input data. This situation is illustrated by lines 14—17 of Fig. 6, where the

1cC . LOOP OVER THE SUBSTRUCTURES .

2 DO 35 ISS = 1, NSS

3C . LOOP OVER THE ELEMENTS IN THIS SUBSTRUCTURE .
4 DO 30 K = 1, NEPSS(ISS)

5C . FORM THE ELEMENTAL ARRAYS

6 ID = IDBEGS(ISS) - 1 + K

7 IDE = K

8 CALL FSMP(ID, IDE)

9 30 CONTINUE
10 35 CONTINUE

Fig. 7 A loop nest invoking the subroutine in Fig. 6 (the inner K loop at line 4 can be automatically
parallelized after annotation-based inlining)
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whole program would abort if previous evaluation has resulted in logical errors
(indicated by the global IERR variable). Since debugging and error checking
conditionals typically contain program I/O and early termination of the program,
conservative compilers need to disable optimizations of the surrounding loops.
However, pre-tested input data are often known to not trigger erroneous conditions
at runtime, where the error handling statements are never executed. Even when
errors do occur, replication of error messages is often acceptable. Such application-
specific knowledge can be incorporated in our annotation-based inlining mechanism
to support more aggressive loop parallelization, discussed in Sect. 3.2.3.

2.2.3 Use of Temporary Arrays

Many subroutines use temporary arrays to store intermediate results of computation,
where each temporary array is first modified with new values before being used for
additional computation. When the whole computation is inside a surrounding loop,
compilers can apply array kill analysis to determine whether any value of the array
comes from the previous iterations. If the whole array is killed (reinitialized) at each
iteration, the temporary array can be privatized (duplicated within each thread)
when parallelizing the surrounding loop. However, the array kill analysis may fail
when only a subset of the array elements are modified, and those being used later are
not obviously covered by the modifications. To illustrate such situations, Figs. 8 and
9 provide two subroutine definitions invoked by the FSMP routine in Fig. 6. Here a
global array XY is used as a temporary array which is modified by the GETCR
subroutine in Fig. 8 and then used by the SHAPE! subroutine in Fig. 9. Although
GETCR modifies only a subset of the elements in XY (specifically, it modifies
XY(1:2,1:NNPED), where NNPED < = ZNNPED), only those elements being
modified by GETCR are used in SHAPEI. However, due to the complexity of the
multiple conditionals in Fig. 9, a typical optimizing compiler would fail to discover
the coverage relation even after both subroutines are successfully inlined. We
resolve this issue by declaring that the whole temporary array is reinitialized via
user-supplied annotations, shown in Fig. 13 and discussed in Sect. 3.2.4.

2.2.4 Indirect References in Array Subscripts

Due to the lack of knowledge about runtime values of different arrays, conventional
loop dependence analysis techniques are overly conservative when array references

Fig. 8 Definition of subroutine 1 SUBROUTINE GETCR (K)
G-ETCR invoked by FSMP in 2 COMMON /ECOORD/ XY (2, ZNNPED)
Fig. 6 e
5 100 CONTINUE
6 DO 200 I = 1, NNPED
7 J = ICOND(I,K)
8 XY (1,I) = XYG(1,J)
9 XY (2,I) = XYG(2,J)
10 200 CONTINUE
11 RETURN
24 END
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1 SUBROUTINE SHAPEL

2 COMMON /ECOORD/ XY (2, ZNNPED)
3 IF (NNPED.EQ.9) THEN

4 AX = XY(1,3) - XY(1,1)

5 AY = XY(2,5) - XY(2,3)

6 ELSE IF (NNPED.EQ.4) THEN

7 AX = XY(1,2) - XY(1,1)

8 AY = XY(2,3) - XY(2,2)

9 ELSE IF (NNPED.EQ.16) THEN
10 AX = XY(1,4) - XY(1,1)
11 AY = XY(2,7) - XY(2,4)
12 ELSE
13 CALL ERRORS (/ NNPED NOT IMPLEMENTED IN SHAPE1’)

Fig. 9 Definition of subroutine SHAPE] invoked by FSMP in Fig. 6

1 SUBROUTINE ASSEMR(ID, RHSE, RHSI, RHSB)

2 DO 40 IN = 1, NNPED

3 NODE = ABS (ICOND (IN, ID))

4 IBLOCK = IWHERD (NODE, 1)

5 IREL = IWHERD (NODE, 2)

6 IF (IBLOCK.EQ.NBLOCK) THEN
7 DO 10 I = 1, NDDF

8

RHSB (IREL+I-1) = RHSB(IREL+I-1) + RHSE (I, IN)
9 10 CONTINUE

10 ELSE

11 DO 20 I = 1, NDDF

12 RHSI (IREL+I-1) = RHSI (IREL+I-1) + RHSE (I, IN)

13 20 CONTINUE

14 ENDIF

15 40 CONTINUE
16 RETURN

Fig. 10 A subroutine which contains indirect references in array subscripts

are used inside the subscripts of accessing other arrays. Figure 10 illustrates such an
example, where two global arrays, ICOND and IWHERD, which serve to save one-
to-one relations between data in different arrays, are used to compute the subscripts
of modifying two other arrays RHSH and RHSI. After forward substitution of
variables, the subscripts used to modify RHSB and RHSI at lines 6—13 become
IWHERD(ABS(ICOND(IN,ID), 2) + I—I, which will always yield different values
when given distinct values of IN, ID and I. Therefore, different elements of the
arrays RHIB and RHSI are modified when given distinct values of IN, ID, and
1. However, such application-specific information is not available to the compiler,
which must assume both /ICOND and IWHERD could have arbitrary unknown
values. Consequently the compiler must conservatively assume that arbitrary
elements of RHSH and RHSI could be modified and must refrain from optimizing
any loop that invokes ASSEMR even if the implementation of ASSEMR has been
inlined. Figure 10 illustrates such a call site, where the K loop invokes ASSEMR at
line 6 with the values of ID uniquely determined by the loop index variable K. We
discuss how to enable Polaris to safely parallelize this loop via annotation-based
inlining in Sect. 3.2.5.
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3 Enhancing the Role of Inlining

To improve the effectiveness of automatic parallelization when encountering
situations discussed in Section 2, we seek to enhance the role of inlining so that
higher-level semantics of subroutine invocations can be made readily available to
compilers. In particular, we use the following steps to enhance the effectiveness of
conventional inlining supporting automatic parallelization across procedural
boundaries.

(1) Annotate important subroutines to summarize their side effects and loop
structures required for accurate dependence analysis. Then, substitute
subroutine invocations with the corresponding annotations instead of the
actual detailed implementations.

(2) Use Polaris to apply conventional loop dependence analysis and automatically
parallelize loops when safe by inserting OpenMP directives.

(3) Apply a reverse inlining step which substitutes all the inlined annotations with
appropriate invocations of the original subroutines. After this step, the only
remaining transformation to the original input code is the parallelization of
loops via OpenMP.

The reverse inlining step essentially reverses all the transformations introduced
by annotation-based inlining so that the original input code can benefit from
advanced compiler optimizations without sacrificing its modularity. The correct
application of this step requires all the inlined annotations be recognized and
mapped back to correct invocations of the original subroutines, which can be easily
accomplished when minimal transformations, e.g., insertion of OpenMP directives,
have been made to the inlined code. However, the task is more challenging when
interacting with more drastic program transformations, e.g., loop blocking and
software pipelining. Section 3.3 discusses these issues in more detail.

The following first discusses our annotation language and then illustrates how to
use annotations to summarize the higher-level semantics of subroutines and enable
more effective parallelization after inlining. Section 3.3 presents our algorithm for
enhanced inlining. Section 3.4 discusses the correctness and generality of the overall
approach.

3.1 The Annotation Language

Figure 11 summarizes the syntax of our annotation language, which can be used by
developers to describe the side effects and loop structures of important subroutines.
When these annotations are used to support subroutine inlining, a compiler can
correctly recognize the dependence constraints carried by each subroutine
invocation and subsequently successfully parallelize surrounding loops when safe.

The statements supported by our language include loops, if-conditionals,
assignments, variable declarations, and return statements. They are used to
summarize the control-flow structure and memory side effects of each subroutine.
For implementation details that cannot be expressed using these statements, we
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Fig. 11 The annotation s :{sls2..sn}
language | if (e) s1 [else s2]
| do (id=el:e2[:e3]) s
| var=e;

| vars=unknown(el, €2, ...);
| vars=unique(el, €2, ...);
| type vari,...,vary;

| return e;
var:id | id [’ el ..., en ']
vars : var | (var, ..., var)
s, §], ..., Sp: statements;
e, el, ..., en: expressions;
id : variable name; )
id [ el, ..., ep]: multi-dimensional array
reference;

type vary,...,var, : declaring types of variables;

provide two special operators, unique and unknown, to summarize approximate
relations between variables while omitting details of the computation. In particular,
y=unique(xy, ..., X,,) specifies that the value of y is uniquely computed (determined)
from those of variables x, ..., x,;; that is, if y; is computed from (x;=v;, ..., x,=Vv,),
y’; is computed from (x;=v’y, ..., x,=v’,), and (v;, ..., v,) # (v'}, ..., v',), then y; #
Y

Therefore, if the values of x,, ..., x, are different at distinct iterations of a loop
surrounding y=unique(x, ..., x,,), then the values of y are guaranteed to be similarly
different. In contrast, y=unknown(x, ..., x,,) specifies that the value of variable y is
computed from reading those of variables xy, ..., x,,, but the relationship could be
arbitrary. These special-purpose operators serve to abstract away complex
implementation details which degrade the effectiveness of compiler analysis, while
keeping essential relations among variables visible to the compiler.

Expressions supported by our annotation language include most of the arithmetic
operations in Fortran 77 combined with memory references via scalar and array
variables. The Fortran 90 notation of array regions are supported so that collective
operations can be applied to arrays without requiring explicit loops. The two special
operators, unknown and unique, can also be used directly inside expressions, where
their results do not need to be saved in variables before used.

3.2 Writing Annotations

Our annotation language serves to accurately summarize the side effects and loop
structures of subroutines without exposing their local implementation details that
are irrelevant to the surrounding calling context. In particular, for each subroutine,
the annotations aim to summarize relations between its input parameters and output
values as well as global variables modified by the subroutine while omitting
intermediate results and variables that are local to the subroutine. The goal is to
minimize adverse side effects of conventional inlining which may result in
accidental loss of parallelism in the inlined code. To demonstrate the capacity of
this approach, the following illustrates how to use user-supplied annotations to
overcome inefficiencies of automatic parallelization discussed in Section 2.
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3.2.1 Avoiding Loss of Parallelism

As discussed in Sect. 2.1, when conventional inlining breaks procedural boundaries
by substituting subroutine invocations with detailed implementations, some parallel
loops inside the inlined code may become no longer parallelizable by compilers due
to unexpected interactions between the caller and callee. Our annotation-based
approach resolves this issue by preserving all the original procedural boundaries and
thereby entirely eliminating the adverse side effects of conventional inining. In
particular, after we enable the compiler to perform interprocedural dependence
analysis by substituting subroutine invocations with user-supplied annotations, the
reverse inlining step will replace the inlined annotations with the original subroutine
invocations, thereby preserving the original procedural boundaries as well as their
optimizations.

3.2.2 Summarizing Opaque Subroutines

Since we substitute subroutine invocations with summaries of their semantics
supplied by developers, our approach can be easily applied to opaque subroutines
with arbitrarily complex implementations. As example, Fig. 12 illustrates our
annotations for the FSMP subroutine in Fig. 6, which was excluded from inlining by
Polaris due to its excess code complexity. In particular, these annotations
summarize the regions of global arrays (FE, ME, SE, MNLE, PE) modified by all
the subroutines invoked from FSMP, the temporary global variables (XY, IRECT,
K1, K2, K12, ISTRES, NDX, NDY, WIDET) modified in the process, and the read-
only global variables IEGEOMI, IECURV, among others) used in the computation.
The unknown operator is used extensively to omit local implementation details (e.g.,
intermediate results) of relevant computation, allowing invocations of the

subroutine FSMP (ID,IDE) {

XY=unknown (XYG[:, ICOND[:,ID]],NSYMM) ;

IRECT=IEGEOM[ID];

K1=AK1[IECURV[ID]];

K2=AK2 [IECURV[ID]];

K12=AK12 [IECURV[ID]];

ISTRES=0;

(NDX, NDY, WIDET) =unknown (IRECT, XY, NDXI,NDETA, QDWGHT,

NQOD, NNPED) ;

if (IDEDON[IDE]==0) {
IDEDON[IDE]=1;
FE[:, IDE]=unknown (WIDET, C,NB,NNPES, NQD,NSFE) ;
ME[:, IDE]=unknown (NTDET, N, NSYMM, RHO,NQD, NNPED) ;
SE[:, IDE]=unknown (WIDET, NB, N, NDX,NDY, K1,K2,K12,

NNPES, NQD, NNPED) ;
MNLE [ :, IDE]=unknown (WTDET, NB, NDX, NDY, KNONLN,
NNPES, NQD, NNPED) ;

}

P=unknown (PXYZ[:,ABS (ICOND[:,ID])],NNPED, GX, NSYMM) ;
PE[:,ID]=unknown (P,WTDET,N,NQD,NNPED) ;

}

Fig. 12 Annotations for the opaque subroutine defined in Fig. 6
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subroutine to be more accurately handled by dependence analysis of their
surrounding loops.

3.2.3 Debugging and Error Handling

Many subroutines in large applications contain program output statements used for
debugging and error handling purposes. The presence of these exception handling
statements are typically treated with extreme caution by compilers, where all
reordering transformations of the surrounding loops are subsequently disabled.
However, since these statements are used for debugging/error handling only, they
are not triggered at runtime in most cases, and even when triggered, precise
exception handling is often not required. Using our annotation-based inlining
approach, developers can choose to relax the consistency requirement of exception
handling when parallelizing their program, by omitting these situations in the
subroutine annotations. For example, in Fig. 12, the error checking conditional at
lines 14-17 of Fig. 6 has been omitted in the annotations. Therefore it no longer
prevents loops surrounding invocations of the FSMP subroutine from being safely
parallelized.

3.2.4 Use of Temporary Arrays

Complex subroutines often use temporary arrays to hold intermediate results of the
internal computation. When these arrays are declared as local variables, our
annotations will omit their existence entirely as they do not incur any visible side
effects to the outside. However, sometimes these arrays are declared in the global
scope and used to pass values from one subroutine to another. An example global
array used for this purpose is shown in Fig. 8, where the global array XY is modified
in subroutine GETCR to hold intermediate results and then used in the subroutine
SHAPE] in Fig. 9. It is conceptually a temporary array within the FSMP subroutine
as only those elements defined in GETCR are used in the subsequent calls to
SHAPEI and other subroutines. Similar global temporary arrays in FSMP include
NDX, NDY, WIDET and P, shown in Fig. 12. In our annotations, these arrays are
modified and used as if they are atomic scalar variables. Since modifications to these
variables precede all their uses in the annotations of subroutine FSMP in Fig. 12,
they can be treated as private variables when parallelizing a loop surrounding the
invocation of FSMP, shown in Fig. 7. In particular, when parallelizing the K loop in
Fig. 7, Polaris would peel the last iteration of the loop before parallelizing all the
other iterations by privatizing temporary arrays in those iterations, so all the global
arrays have the same values as their original sequential computation after the entire
loop is finished.

3.2.5 Indirect References in Array Subscripts
Many Fortran applications use global arrays to store dynamic relations between

different data structures. Most of these arrays are initialized only once throughout
the entire program to save a one-to-one unique mapping between the related data.
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An example subroutine using these special-purpose arrays is shown in Fig. 10,
where ICOND and IWHERD are global arrays which contain one-to-one relations
between elements stored in different places. When they are used as subscripts to
access RHSB and RHSI in Fig. 10, the subscript expressions are non-linear, and
compliers have to be overly conservative when parallelizing the surrounding loops.
To overcome these difficulties, in Fig. 13, we use the unique operator to summarize
the values of these arrays in terms of the relevant input parameters and loop index
variables (ID, IN, and I). The declaration of the unique relation comes from domain-
specific knowledge of the developer. When using the annotations in Fig. 13 to
substitute for the invocation of subroutine ASSEMR in Fig. 14, each unique operator
will be replaced with a linear expression which uniquely combines the involved
integer variables ID, IN, and I. As a result the compiler can easily recognize that
unique elements of arrays RHSB and RHSI are modified at each distinct iteration of
the surrounding loop and thereby can safely parallelize the loop in Fig. 14.

3.3 The Enhanced Inlining Algorithm

Figure 15 shows the key steps of our algorithm for applying automatic
parallelization with enhanced inlining support. The algorithm is comprised of three
main phases: annotation-based inlining, automatic parallelization, and reverse
inlining. The following explains each phase in detail.

3.3.1 Annotation-Based Inlining

The implementation of this step is similar to conventional inlining, except that
subroutine invocations are substituted with user-supplied annotations instead of
detailed implementations of the callees. Translating annotations to the underlying
programming language (e.g., Fortran) is trivial, except for the two special purpose
operators, unknown and unique. To translate each unknown operator, we define a new
uninitialized global array, modify the array with all the operands of the unknown
operator, and then replace the unknown invocation with an access to the new array. To
translate each unique operator, we replace it with a linear expression which uniquely
combines all the relevant integer variables. After inlining, a pair of special tags are
placed surrounding the inlined source code to support reverse inlining at a later stage.
Figure 18 shows the result of applying annotation-based inlining to an invocation of
the MATMLT subroutine in Fig. 5, using annotations in Fig. 16.

In our algorithm, only subroutines with annotations are considered for inlining.
Note that although the original implementation of MATMLT in Fig. 4 declares the

Fig. 13 Annotations for the subroutine ASSEMR (ID,RHSE, RHSI, RHSB) ({
subroutine in Fig. 10 do (IN=1:NNPED)
do (I=1:NDDF)
if (unique (ID, IN) == NBLOCK)
RHSB[unique (ID,IN,I)] += RHSE[I,IN];
else

RHSI [unique (ID, IN,I)] += RHSE[I,IN];
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1 DO 10 K = 1, NEPSS(ISS)

2 ID = IDBEGS(ISS) + K - 1

3 IDE = IESMNO (ID)

4 CALL GETEU (ID, XE, X)

5 CALL MATMUL (ME (1,IDE), XE, MXE, NDFE, NDFE, 1)
6 CALL ASSEMR (ID, MXE, MXI, MXB)

7 10 CONTINUE

Fig. 14 A parallelizable loop invoking the subroutine in Fig. 10

Input: program source code and annotations for selected subroutines
Output: optimized source code
Algorithm:

1) Annotation-based inlining: For each call statement within the input program
where annotations are provided for the callee
a) Instantiate the corresponding annotations with actual parameters;
b) Replace the call statement with the instantiated annotations;
¢) insert tags surrounding the instantiated code fragment from inlining.

2) Automatic parallelization: invoke Polaris to optimize the inlined code.
3) Reverse inlining: For each tagged code segment in the optimized source code:

a) Find the corresponding subroutine annotations from looking into the tag;

b) Match the tagged code segment against the corresponding annotations to
compute instantiation parameters;

¢) Replace the tagged code segment with a subroutine call using the instan-
tiation parameters.

Fig. 15 Automatic parallelization with annotation-based inlining

Fig. 16 Annotations for the subroutine MATMLT (M1,M2,M3,L,M,N) {
MATMLT subroutine in Fig. 4 dimension M1([L,M], M2[M,N], M3[L,N];
M3 = 0.0;
do (JN=1:N)
do (JM=1:M)

M3[:,JN] += M1[:,JM] * M2[JM,JN];

array parameters M1,M2,M3 as having single dimensions, our annotations declare
them as two-dimensional matrices. Subsequently our annotation-based inlining can
avoid the unnecessary linearization of array dimensions which may degrade the
precision of compiler analysis, as discussed in Sect. 2.1.

3.3.2 Automatic Parallelization

After applying annotation- based inlining to the input program source, we optimize
the inlined code using the Polaris compiler (with conventional inlining disabled),
which performs advanced dependence analysis of the inlined code and automat-
ically inserts OpenMP directives to parallelize loops when safe and profitable (the
profitability is determined based on simplistic heuristics, e.g., all parallelized loop
needs to exceed a certain number of iterations). Figure 17 shows the result of
applying loop parallelization to our inlined code in Fig. 18. Note that the pair of
special tags surrounding the inlined annotations remain intact after the paralleliza-
tion optimizations.
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Fig. 17 Call site of MATMLT 1 SOMP PARALLEL
in Fig. 18 after parallelization | SOMP+DEFAULT (SHARED)
1SOMP DO
DO KS=1,15
IF(KS.GT.1) THEN
* //@; BEGIN (Code)
* @annot inline MATMLT {
! SOMP PARALLEL
| SOMP+DEFAULT (SHARED)
1SOMP DO
DO JL=1,4,1
DO JN=1,4,1
TM1 (JL, JN)=0.0
DO JM=1,4,1
TM1 (JL, JN) =TM1 (JL, JN)
*+PP (JL, JM, KS-1) *PHIT (JM, JN)
ENDDO
ENDDO
ENDDO
!SOMP END DO NOWAIT
!SOMP END PARALLEL
* @}
ENDIF
ENDDO
!SOMP END DO NOWAIT
!SOMP END PARALLEL

DIMENSION PP (4,4,15),PHIT (4,4),TML (4,4), ...

DO KS=1,15
KSM=KS-1
IF(KS.GT.1l) THEN
*//@; BEGIN (Code)
@annot inline MATMLT {
DO JL=1,4,1
DO JN=1,4,1
TM1 (JL, JN)=0.0
DO JM=1,4,1
TM1 (JL, JN) =TM1 (JL, JN) +
*PP (JL, JM, KSM) *PHIT (JM, JN)
ENDDO
ENDDO
ENDDO
@}
ENDIF

ENDDO
Fig. 18 Call site of MATMLT in Fig. 5 after annotation-based inlining
3.3.3 Reverse-Inlining

After automatic parallelization, the reverse-inlining step is performed to reverse the
annotation-based inlining transformation while keeping the OpenMP directives
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inserted by the Polaris compiler intact. This step is necessary to ensure correctness
of program optimization.

Specifically, while the user-supplied annotations are expected to carry equivalent
side effects and dependence constraints as the real subroutine implementation, they
are typically not semantically equivalent to the original implementation, due to
simplification of internal implementation details and the use of the special-purpose
summary operations, e.g., the unknown and unique operators. Therefore, the inlined
annotations must be reversed back to an equivalent subroutine invocation to
guarantee the correctness of the optimized code.

The reverse inlining transformation is applied to all the tagged code segments
created by the earlier annotation-based inlining transformation. For each tagged
fragment, it first finds the corresponding subroutine annotations and then proceeds
to compute an instantiation value for each formal parameter of the subroutine.
Specifically, when using these parameter values to instantiate the subroutine
annotations, the resulting code must be equivalent to the tagged code segment.
Currently we apply a pattern matching algorithm to compare the tagged code
segment and the inlining annotations node by node, while allowing variable
substitution, expression reordering, and OpenMP directives inside the tagged
segment. Since the only optimization performed by Polaris is the insertion of
OpenMP directives, which are simply ignored in the pattern matching process, a set
of appropriate parameter values are guaranteed to be found for each tagged code
segment. These values are then used as actual parameters to generate a subroutine
invocation so that each tagged code segment is replaced with its original function
call.

Figure 19 shows the resulting code after applying reverse inlining to the
parallelized loop in Fig. 17. Note that while the single optimization applied by
Polaris is the insertion of OpenMP directives, the compiler does perform several
normalization transformations, e.g., reordering of statements, induction variable
substitution, and constant propagation, to the tagged code segments. As a result our
reverse inlining transformation cannot simply replace them with the original
subroutine calls. Our pattern matching algorithm is tolerant of minor modifications
to the inlined annotations and can automatically extract the correct actual
parameters in subroutine invocation in spite of the normalization transformations.

1SOMP PARALLEL
| SOMP+DEFAULT (SHARED)
1SOMP DO
DO KS=1, 15, 1
IF (KS.GT.1) THEN
CALL MATMLT (PP (1,1,KS-1),PHIT(1,1),TM1(1,1),4,4,4)
ENDIF
ENDDO
1SOMP END DO NOWAIT
1SOMP END PARALLEL

Fig. 19 Call site of MATMLT in Fig. 17 after reverse-inlining
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3.4 Correctness, Efficiency, and Generality

The correctness of our enhanced inlining approach depends on the soundness of the
user-supplied annotations. Specifically, if the annotations accurately summarize the
side-effects and dependence constraints of the subroutines, the automatic paral-
lelization optimization is guaranteed to be safe. Currently, such consistency is not
automatically verified, and we use runtime testers to check and verify the
correctness of our optimized code. Future work will develop techniques to
automatically verify the soundness of user-supplied annotations and to automati-
cally generate inlining annotations when possible.

The compile-time overhead of applying annotation-based inlining is similar to
that of conventional inlining except that since user-supplied annotations are
expected to be much shorter than detailed implementations, the cost of applying
annotation-based inlining is lower, and the inlined annotations are expected to be
much easier to analyze by the compiler.

Since all the inlined annotations are reversed back to using the original
subroutine invocations, the modularity of the original program is not affected. The
cost of applying reverse inlining to each tagged code segment is proportional to the
size of the corresponding subroutine annotations, with constant cost associated with
tolerating local modifications of the inlined annotations.

Our enhanced inlining approach can potentially enable general-purpose compil-
ers to better utilize domain-specific knowledge from developers in supporting more
effective interprocedural optimization of large-scale applications. So far we have
used this approach to support only automatic parallelization via OpenMP. When
applying pattern-matching to reverse inlined code segments back to appropriate
subroutine calls, our reverse inlining transformation can tolerate local modifications
to the inlined code such as reordering of expressions, induction variable
substitutions, and insertion of OpenMP directives. However, to extend our approach
to similarly support other optimizations such as loop blocking and unrolling, it may
become much more challenging to reverse the inlined code segments back to
appropriate subroutine calls after dramatic modifications to the tagged segments.
Therefore, to apply this approach more extensively in a general-purpose compiler, a
more systematic approach needs to be developed to compute correct instantiation
parameters after dramatic modifications to the inlined annotations, which is a
subject of future work.

4 Experimental Results

To evaluate the effectiveness of our enhanced inlining approach when used to
enable more aggressive automatic parallelization of loops, we selected 12
applications from the PERFECT benchmark suite [27], summarized in Table 1.
For each benchmark, we applied both conventional inlining and our enhanced
inlining combined with automatic loop parallelization by the Polaris compiler. To
measure the amount of parallelism enabled by and the degree of code explosion
resulted from inlining, we counted the number of loops being parallelized after
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Table 1 Summary of the perfect benchmarks

Applications Descriptions

ADM Pseudospectral air pollution simulation

ARC2D Two-dimensional fluid solver of Euler equations

FLO52Q Transonic inviscid flow past an airfoil

OCEAN Two dimensional ocean simulation

BDNA Molecular dynamic package for the simulation of nucleic acids
MDG Molecular dynamics for the simulation of liquid water
QCD Quantum chromodynamics

TRFD A kernal simulating a two-electron integral transformation
DYFESM Structural dynamics benchmark (finite element)

MG3D Depth migration code

TRACK Missile tracking

optimization and the line numbers of the resulting source code. We then use two
multi-core machines, an Intel Macintosh running MacOS 10.5 with two quad-core
3GHz Intel processors (32KB L1 cache per core) and an AMD Opteron running
Linux with two dual-core 3GHz AMD Opteron processors (128KB L1 cache per
core), to measure the performance of the parallelized code. All benchmarks are
compiled using gfortran 4.2.1 on the Intel Mac and iFort 11.1 on the AMD Opteron,
using the -O3 optimization flag.

4.1 Enhancing Automatic Loop Parallelization

Table 2 compares the number of automatically parallelized loops by the Polaris
compiler using three different inlining configurations: disable inlining of all
subroutines (i.e., no inlining); inline implementations of subroutines with less than
150 lines of source code via conventional inlining (the default inlining strategy
adopted by Polaris); and annotation-based inlining, where our enhanced inlining
approach is used. For each configuration, we counted the number of automatically
parallelized loops (#par-loops) and the overall code size (the number of source code
lines with all comments removed) after optimization by Polaris. Note that when
conventional inlining is applied, Polaris could fail to parallelize some loops which
were parallelizable when no inlining is applied, as discussed in Section 2.1. These
loops are categorized as #par-loss in Table 2. Inlining may also enable additional
loops being parallelized beyond those parallelized using no-inlining, these loops are
categorized as #par-extra in Table 2. If parallelized, each loop in the original
benchmark is counted only once, even when inlining has made multiple copies of
the original loop and all copies are subsequently parallelized.

From Table 2, inlining (including both conventional inlining and annotation-
based inlining) is able to improve the effectiveness of automatic parallelization for 6
out of the 12 PERFECT benchmarks. For the other benchmarks, Polaris was not

@ Springer



83

International Journal of Parallel Programming (2022) 50:65-88

POAOWIAT SJUSUILIOD [[B YIIM SQUI dPOD 0INOS JO Joquinu ) se panduwiod ST 9ZIs apo)

SLS'LOT 0 LE 9ICI 191°911 06 4! 1011 8176901 6L11 1€81 S[eI0L,
OILT 0 0 LT 9¢9 €l 0 i4! €0L1T LT 8¢ addL
Iss¢€ 0 0 6v1 96¢ 0 0 6v1 LYSE 14! SL1 0TsO1d
06CS 0 0 4! 1¢6¥ 34 0 6¢€1 SEY 81 80¢ acouv

816°CC 0 0 1S 001°0¢ 0 0 IS 8L8°TT IS 0ST AcON
LLY 0 9 6¢l ¥L9S ! 4 el clLy €l Lol INSHAAA
1€98 0 0 901 1698 0 0 901 L098 901 el NVdD0
L9 0 S Pel 1L£9 (4 I 8¢l €1L9 6cl 61¢ vNad
Icie 0 I 99 Sore 0 0 ¥S LOTE ¥S L8 SOVIL
601¢ 0 9 (34 6S¥C (4 9 8% 961 LE [43 DAN
YLSE 0 8 011 SoLy 0 0 01 86¥¢ 01 LST 7ano
L6L9E 0 0 0¢ YLLOE 0 0 0¢ YLL'OE 0¢ Lyl NVOV
08¢8 0 I 061 €0L8 6¢ € (391 1928 6L1 89¢ Wav
9z1s 9pod  sso -1edy  enxo -redy sdooj -1ed #  9z1s opod  sso[ -1edy  enxo -red# sdoop -1ed #  9z1s opod  sdooj -1ed #

Sururqu] paseq UONEIOUUY

Surur[u] [eUOTIUSATOD)

Sururuy oN

sdoof jo # [e10],  suoneorddy

sa13a1ens Sururpur juaroyip Sursn sdoof pazia[ered A[eonewony g ajqel

prlnger

Qs



84 International Journal of Parallel Programming (2022) 50:65-88

able to identify additional parallelism from loops which contain subroutine calls.
Note that we have manually annotated a subset of subroutines from the PERFECT
benchmarks based on careful inspection of their implementations. It may be
possible to parallelize more loops by annotating additional subroutines. Future work
will investigate more systematic application of our enhanced inlining approach by
automatically generating annotations. We have verified the correctness of all the
automatically parallelized loops via both manual inspection and runtime testing of
the parallelized code.

When combined with annotation-based inlining, the Polaris compiler is able to
identify 37 additional parallelizable loops in different PERFECT benchmarks when
compared with no-inlining. Most of these loops invoke complex subroutines which
in turn invoke other routines, and the complexity of their implementations would
overwhelm most state-of-the-art program analysis techniques. Since our annotation-
based inlining allows developers to intervene with their application-specific
knowledge, we are able to summarize the intended semantics of these subroutines
to enable more effective parallelization of their surrounding loops. Examples of
such annotations are illustrated in Section 3.2. When applying annotation-based
inlining, the code explosion problem is avoided entirely, as the reverse inlining step
has restored all the original subroutine invocations (the small increase in code size is
mostly due to the extra OpenMP directives inserted to parallelize loops).

In contrast, conventional inlining enabled Polaris to parallelize only a small
subset (12 out of 37) of the extra parallel loops identified by annotation-based
inlining. Additionally, after conventional inlining, Polaris can no longer parallelize
90 loops which were categorized as parallelizable when no inlining is performed,
due to issues discussed in Section 2.1.

After conventional inlining, the code size increased by about 10% even when
only small subroutines were inlined. The increase is likely significantly higher when
more extensive inlining is applied via the conventional approach.

4.2 Performance of Optimized Code

Figure 20 presents the runtime speedups achieved by the automatically parallelized
benchmarks when using different inlining configurations. Note that a majority of the
PERFECT benchmarks do not benefit from loop parallelization due to their small
input data size, which is a known issue for these benchmarks [25]. To avoid
degradation of performance by excessive parallelization of loops, we used empirical
performance tuning to disable a selected set of loops from being parallelized if their
parallelization incurs a slowdown of the overall execution time. As demonstrated in
Figure 20, at most 10% performance improvement is achieved by automatic loop
parallelization combined with different inlining configurations. Annotation-based
inlining is able to achieve the best performance for two benchmarks (ADM and
MDG) and has achieved similar performance as other inlining configurations for the
other benchmarks.
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Fig. 20 Performance of automatically parallelized code
5 Related Work

Inlining is a widely adopted technique which can be used by compilers to erase
procedural boundaries and apply optimizations to larger regions of code
[1, 4, 30, 38]. Ayers et. all [4] shown that aggressive inlining and cloning based
on profiled information can dramatically improve the effectiveness of a large
number of back-end optimizations. However, when excessively applied, inlining
can cause the well-known code-explosion problem [13] and could degrade the
effectiveness of many compiler optimizations as the input code becomes
overwhelmingly large and complex. Previous research has developed a variety of
heuristics, including temperature heuristics [36], demand-driven online transforma-
tion [32], inlining trials [14, 38], and interprocedural flow analysis [3, 23], to
selectively apply inlining so that performance benefits can be gained without
incurring serious problems [2]. Existing research has also explored automatic tuning
of different inlining heuristics [10], e.g., through machine-learning [40, 41]. Other
directions include combining inlining with hot code outlining [37], context-sensitive
trace inlining [39], region-based compilation [21, 24], and whole program
optimization by merging and re-dividing code regions [31].
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This paper proposes an annotation-based inlining approach to overcome the
negative impact of conventional inlining both in terms of code explosion and in
terms of unexpected complications. Our use of developer-supplied annotations to
summarize the semantics of opaque subroutines is similar to the semantic inlining
approach by Wu et al. [34, 35], which allows their compiler to treat user-defined
abstractions as primitive types in Java, and the semantics-preserving inlining work
by Stucki et. al [42], which uses inlining as a meta-programming tool for
developers. The Broadway [18], DyC [16], and Orio [43] compilers used annotation
languages to guide domain-specific optimizations, dynamic compilation of C code,
and empirical performance tuning of scientific workload. Annotations and semantic
specifications have also been used to specify dynamic properties of lower-level
implementations in program verification [11, 15] and to drive various compile-time
and runtime optimization decisions [44, 45]. We focus on using annotations to
substitute for implementations of subroutines in inlining to enable more aggressive
automatic parallelization.

Optimizing compilers have a long history of supporting automatic parallelization
of user applications [8, 12, 19, 20, 26, 29, 33, 46]. This paper focuses on using
inlining to enable interprocedural parallelization without resorting to expensive
inter-procedural program analysis techniques [5, 22, 28, 47]. Our work is orthogonal
to and can be integrated with existing other compiler frameworks for automatic loop
parallelization besides the Polaris compiler.

6 Conclusions and Future Work

This paper presents a study which exposes some serious limitations of conventional
inlining when using the Polaris compiler [7] to parallelize a collection of Fortran
applications from the PERFECT benchmark suite [6]. We then present a new
annotation-based inlining approach to overcome the lim- itations. Our experimental
results show that the new approach can eliminate most of the negative impact of
conventional inlining while significantly enhancing the effectiveness of automatic
loop parallelization across procedural boundaries. Our future work will develop
techniques to automatically derive necessary annotations and to verify the safety of
manually supplied annotations.

Funding Funding was provided by National Science Foundation (Grant Number CCF-1910488).
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