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Abstract

Recent deep clustering algorithms take advantage
of self-supervised learning and self-training tech-
niques to map the original data into a latent space,
where the data embedding and clustering assign-
ment can be jointly optimized. However, as many
recent datasets are enormous and noisy, getting a
clear boundary between different clusters is chal-
lenging with existing methods that mainly focus on
contracting similar samples together and overlook-
ing samples near boundary of clusters in the latent
space. In this regard, we propose an end-to-end
deep clustering algorithm, i.e., Locally Normalized
Soft Contrastive Clustering (LNSCC). It takes ad-
vantage of similarities among each sample’s local
neighborhood and globally disconnected samples
to leverage positiveness and negativeness of sam-
ple pairs in a contrastive way to separate different
clusters. Experimental results on various datasets
illustrate that our proposed approach achieves out-
standing clustering performance over most of the
state-of-the-art clustering methods for both image
and non-image data even without convolution.

1 Introduction
Clustering aims to separate scattered N data samples X =
{Xi}Ni=1 in a feature space into different groups (e.g., K
number of clusters) in an unsupervised manner. In general,
the priority is to gather the samples within the same group
close and make the samples across different clusters distinct
from each other. As a fundamental topic in machine learning,
clustering has played critical roles in a broad range of fields
including gene sequence clustering in bioinformatics [Pete-
grosso et al., 2020; Zou et al., 2020], creation of perfection-
ism profiles in social science [Bolin et al., 2014], unsuper-
vised image segmentation [Kanezaki, 2018; Ji et al., 2019],
document clustering in information retrieval [Xu et al., 2003;
Fard et al., 2020; Costa and Ortale, 2020] and etc.

Traditional methods such as k-means [MacQueen and
others, 1967], DenPeak [Rodriguez and Laio, 2014], DB-
SCAN [Ester et al., 1996], and Spectral Clustering [Zelnik-
Manor and Perona, 2005; Chen and Cai, 2011] have been

effective when datasets used to be relatively small. As re-
cent datasets become larger in both size and dimension, tradi-
tional shallow methods suffer from high computational com-
plexity. Various Deep Clustering (DC) techniques have been
recently developed to cope with issues of conventional meth-
ods. The core of DC consists of two components: 1) Di-
mension Reduction with Deep Learning (e.g., autoencoder,
self-supervised learning) for mapping high-dimensional data
onto a low-dimensional space and 2) Self-training the low-
dimensional embedding to further improve clustering results
from traditional clustering algorithms such as k-means [Xie
et al., 2016; Ghasedi Dizaji et al., 2017].

The premise behind the DC algorithms is that suitable low-
dimensional embeddings and cluster centers will assign each
sample to a vivid individual cluster. These techniques fo-
cus on optimizing ‘cluster assignment probability’ — a like-
lihood of a sample belonging to each cluster. Many DC meth-
ods minimize Kullback–Leibler (KL) divergence between the
distribution of the cluster assignment probability and an aux-
iliary target distribution directly computed from it, or directly
use Fully Connected (FC) Layers to predict the cluster assign-
ment probability. This process makes the assignment proba-
bility localized to a single cluster for each sample.

Unfortunately, many DC approaches suffer from two major
bottlenecks. First, the initial clusters usually computed from
a centroid-based clustering algorithm with random initializa-
tion, e.g., k-means, often cause stability issues when the low-
dimensional embedding is not sufficiently effective for clus-
tering. This problem can be restrictively relieved for image
data using self-supervised learning (e.g., SimCLR, MoCo,
SwAV) to learn a better feature space for the initial cluster-
ing [Van Gansbeke et al., 2020; Caron et al., 2020], but not
for other types of data. The second issue, perhaps even more
critical, stems from the self-training process and FC layers
where the update of cluster assignment probability is mainly
focused on clustering easy samples close to the centers and
overlooks the samples near the “boundary” of clusters.

In fact, for clustering, what matters over the variation in
the data is the relationships between data samples (i.e., struc-
ture) typically represented as a graph, e.g., k-nearest neighbor
(kNN) graph. Also, a sound clustering method should pro-
vide compact clusters that are distinct from each other. This
can be done by pulling similar samples together and pushing
dissimilar samples apart in a latent space in a contrastive way.
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(a) Raw Data. (b) JULE. (c) DEPICT. (d) LNSCC (Ours).

Figure 1: Visualization of embedding in subspaces optimized by different methods on MNIST-test dataset. (a) The raw data in 2D with PCA.
(b) The embedding subspace of JULE [Yang et al., 2016]. (c) The embedding subspace of joint DEPICT [Ghasedi Dizaji et al., 2017]. (d)
The embedding subspace of LNSCC by exploring the relationships among samples in a contrastive way.

While many contrastive learning methods have been success-
ful, they mainly work on identifying similar sample pairs (i.e.,
positive pairs) for optimization. However, focusing only on
the positive pairs, a.k.a., “hard contrastive learning”, may not
be effective in practice as seen in k-Nearest Neighbors clas-
sification on ImageNet [Van Gansbeke et al., 2020] when the
data are in high-dimensional space with large variations.

In this regards, for effective compact clustering, we pro-
pose the following hypothesis: the method should be able to
1) accurately separate samples near cluster boundaries where
the similarities among the neighborhood have large variation,
2) compactly contract similar samples near cluster centers,
3) completely disconnected samples should be expanded far
apart. For this, we propose an end-to-end clustering algorithm
that implements our ideas above in three different phases. The
key is to consider both positiveness and negativeness for each
pair of samples together in a “soft contrastive” way rather
than the hard contrastive scheme. Our work demonstrates the
following contributions:

(i) we propose a novel method “Locally Normalized Soft
Contrastive Clustering” (LNSCC) that achieve very
compact clusters by introducing the concept of con-
trastive learning to the clustering task,

(ii) LNSCC performs dimension reduction, self-training
and clustering simultaneously as a unified framework,

(iii) we carry extensive empirical validation of LNSCC with
various independent datasets, demonstrating competi-
tive qualitative and quantitative performances.

Fig. 1 (d) is a teasing result from LNSCC achieving localized
clusters in a learnt 2D space using high-dimensional MNIST-
test data, and its details are introduced in the following.

2 Related Work
Deep Clustering introduces deep learning into clustering to
learn effective representations and cluster assignments [Guo
et al., 2019; Xie et al., 2016; Yang et al., 2019; Huang et
al., 2020]. In [Ghasedi Dizaji et al., 2017], a denoised au-
toencoder was used to further improve the low-dimensional
embedding and increased clustering performance. Some DC
methods demonstrated more powerful results with data aug-
mentation. SCAN [Van Gansbeke et al., 2020], GCC [Zhong
et al., 2021], SwAV [Caron et al., 2020] and MiCE [Tsai et
al., 2020] recently achieved state-of-the-art clustering perfor-
mance on image datasets using contrastive learning. SCAN
takes advantage of the nearest neighbors and proposes that
the sample and its nearest neighbors should be assigned to

the same cluster, and GCC assumes that the transform of an
image and its neighbors’ transformer should also be similar
further improving clustering performance on image data.

Unlike other DC algorithms which treat nearest neighbors
of each sample equally as similar pairs, we take advantage of
the local structure (i.e., the distribution of neighbors) of each
sample in a dataset with both positiveness (similar) and nega-
tiveness (dissimilar/disconnected) with soft contrastive learn-
ing. Moreover, the input of our framework is not limit to im-
ages, and the good features learned by self-supervised models
(e.g., SimCLR, MoCo) can also be utilized to boost the clus-
tering performance further.

3 LNSCC: Locally Normalized Soft
Contrastive Clustering

Given a dataset X = {Xi ∈ RD}Ni=1 with N samples in D-
dimensional space, the principle of clustering is to separate X
into K clusters such that intra-cluster samples stay compact
while inter-cluster samples stay far apart. LNSCC aims to
obtain compact clusters with a low-dimensional embedding
Z by mining the relationships between samples via positive-
ness and negativeness of each sample pair for clustering.

3.1 Locally Normalized Soft Contrastive Learning
Contrastive learning is a representation learning technique
that aims at learning good representations by contracting pos-
itive (i.e., similar) pairs and expanding negative (i.e., differ-
ent) pairs without labels. The key is to discriminate positive
sample pairs: SimCLR [Chen et al., 2020] considers posi-
tive sample pairs in a latent space, and SCAN [Van Gansbeke
et al., 2020] and GCC [Zhong et al., 2021] discover posi-
tive sample pairs using a kNN graph. In all those methods,
discriminating good positive sample pairs is known as “Hard
Contrastive Learning”. However, the assumption that a sam-
ple and its neighbors belong to the same category may not be
true as shown in the misleading k-NN classification on Ima-
geNet [Van Gansbeke et al., 2020], which indicates that the
neighbors of each sample should be considered separately.

Unlike the previous contrastive learning which considers
positive pairs only, in this paper, we consider both positive
and negative sample pairs jointly. We explore both positive
and negative relations among the neighbors of each sample
and propose a locally normalized soft contrastive learning
(LNSCL) approach with two components: Locally Normal-
ized Structure and Soft Contrastive Assignment. The former
builds a locally normalized kNN graph via three phases P:
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Figure 2: The overview of LNSCC model. Two models are trained in an end-to-end scheme: Neural Network (NN) that embeds X to Z and
Fully Connected (FC) layer that assigns clusters. Loss functions for different phases for contrastive learning (in Section3.2) are defined using
similarities and connectivity of samples.

• Pim: focusing on samples with a skewed distribution of
similarities among its neighbors with high variance (i.e.,
imbalanced neighbors) near cluster boundaries,

• Pba: focusing on samples with similarities among its
neighbors close to uniform distribution (i.e., balanced
neighbors) near cluster centers,

• Pdis: focusing on disconnected samples,
and the overview of the framework including the ideas of the
three P is shown in Fig. 2. The latter assigns both positive-
ness and negativeness scores instead of choosing either pos-
itive or negative for each sample pair by exploring the struc-
ture of locally normalized kNN.
Locally Normalized Structure. A naive weighted kNN of-
ten has large edge weights (i.e., high similarities) among sam-
ples in densely populated regions mostly near the center of
sample clusters, and small weights among samples near clus-
ter boundaries where samples exist sparsely (e.g., E and F in
Fig. 3 respectively). Because of such tendency, a downstream
clustering algorithm mostly focuses on the already well com-
pactly grouped samples with large edge weights and ignores
the samples sparsely distributed at the boundary of clusters.
To fairly separate the samples at the cluster boundary, we in-
troduce a locally normalized kNN graph which normalizes
the neighbors’ weights at each sample to fully take advantage
of neighbor structure of each sample independently.

Consider a distance matrix DN×M computed from X
where M is the predefined number of nearest neighbors. The
elements in each row Di:, i ∈ [1, 2, ..., N ] of D are distance
metrics (e.g., Euclidean distance) of the i-th sample to its M
different nearest neighbors (we use M instead of k to avoid
confusion with the number of clusters K). To normalize the
neighbors at each sample, the softmax function is used at each
row of D to achieve a normalized weight matrix W.

Wi: = softmax(−Di:). (1)

Based on W, a directed weight matrix ŴN×N can be de-
rived, and a symmetric adjacency matrix A is defined as

Aij = Ŵij + Ŵji − ŴijŴji, (2)

E F

Figure 3: Illustration of edge weight distribution of samples with
imbalanced neighbors (i.e., F) and balanced neighbors (i.e., E) in a
locally normalized 3-NN graph. Line width denotes the edge weight.

which defines edge weights of a latent graph Glg . The A im-
putes edges that are one-sided in W and makes the separation
of cluster boundaries more effective.

In a latent graph Glg , small edge weights typically exist on
the samples with neighbors with large variations in their sim-
ilarities as they are normalized per sample. At the central re-
gion of each cluster, samples stay close to each other and the
weights in their sub-graphs have low variation. However, at
the cluster boundaries, samples are sparsely distributed and it
is highly likely to obtain imbalanced sub-graphs with high av-
erage and variations in their distances. Fig. 3 illustrates such
behavior, where samples around F are sparse with different
similarities (edge thickness) while samples around an interior
point E are populated with low variation in their similarities.

Soft Contrastive Assignment. Instead of discriminating
positive and negative pairs as in other works, we assign posi-
tiveness and negativeness scores for each sample pair to rep-
resent the similarity and dissimilarity. We observed that con-
nected samples in a kNN graph do not always belong to the
same category, and the difference between positive pairs and
negative pairs may not be clear in a naive kNN.

We propose a soft contrastive assignment scheme which
derives positiveness score s+ij and negativeness score s−ij to
quantify the relationships between samples Xi and Xj .

s+ij = ϕP(Aij) and s−ij = φP(Aij), (3)

where ϕP(·) and φP(·) are score functions with a clustering
rule that similar samples have large positiveness score while
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dissimilar samples have with large negativeness score, and
P ∈ {Pim,Pba,Pdis} represents different learning phases.
Batch-wise Training with Over/Under Sampling. Oper-
ating directly on all edges in a graph for training a model can
be computationally challenging since the number of edges
dramatically increases along with the number of samples. For
efficient training, we take traditional batch-wise training by
randomly selecting a batch of sample pairs. As seen in Fig. 2,
there are two Networks to be trained using this batch train-
ing scheme, where the Neural Network (NN) is a backbone
network used to obtain embedding Z of X and FC is used to
obtain localized clustering assignment matrix U from Z .

Also, instead of directly defining ϕ and φ, we create over-
and under-sampled datasets whose elements are augmented
sample pairs according to the ideas of ϕ and φ depending
on A. Different datasets are curated for each Pim,Pba,Pdis

such that the notion of s+ij and s−ij are inherited as the propor-
tion of desirable and undesirable sample pairs for different
phases. This is done by designing a quantity augmentation
(QA) matrix Q as a function of A (and thereby s+ and s−)
that determines how many times each sample pair should be
included in the augmented dataset. This way, we indirectly
incorporate the notion of the scores.

3.2 Learning Clustering-oriented Latent Space
Let Z be an unknown embedding of samples in a low-
dimensional latent space. Given two samples Zi and Zj from
Z , their similarity Oij in the embedding space should be an-
tidependent on their distance d(Zi,Zj), and we use an expo-
nential function to define Oij as

Oij = e−d(Zi,Zj). (4)

Here, two close samples with small d(Zi,Zj) lead to a large
Oij which indicates that “attractive force” between those two
samples is strong in the latent space, and vice versa for two
far samples. This Oij will be used to define loss functions
together with an augmented dataset using A.

Pim: Focusing on Samples with Imbalanced Neighbors
The goal of Pim is to attract each sample to its similar neigh-
bors and expand it from the farther neighbors, and the con-
trastive assignments are given as

s+ij = Aij and s−ij = 1−Aij . (5)

Given the observation that the samples with imbalanced
neighbors are highly associated with small edge weights
which are near cluster boundaries, we use the following QA
matrices, Qim+ and Qim−, to encode the above s+ and s−:

Qim+
ij =

⌊
αAmax

s−ij

⌋
, Qim−

ij =

⌊
(1−A)max

s+ij

⌋
, (6)

where ⌊·⌋ is the floor function, Amax and (1−A)max are the
largest values in A and 1 − A respectively, and α balances
the over-sampling ratio for positiveness and negativeness.

The introduction of α lies in two reasons: 1) A is not uni-
formly distributed in the range [0, 1] and along with the in-
crease of the number of nearest neighbors M , the mean of A
is decreasing; 2) each sample pair (Xi,Xj) in Pim is in the

top M nearest neighbors of Xi, which means the expansion
between (Xi,Xj) should be much weaker.

The Qim+ lets the edges with large weights become more
likely to be selected to compute Lim, while Qim− behaves
exactly the opposite. Then, the augmented sample pair
datasets, E im+ and E im− are given as

Eim+ =
⋃

(Xi,Xj)∈Glg

Qim+
ij⋃
r=1

{(Xi,Xj)} , (7)

Eim− =
⋃

(Xi,Xj)∈Glg

Qim−
ij⋃
r=1

{(Xi,Xj)} . (8)

The loss Lim for a batch E im+
bat , i.e., a subset of E im+, and a

batch E im−
bat , i.e., a subset of E im−, is defined as

Lim = −
∑

(Xi,Xj)∈Eim+
bat

logOij −
∑

(Xi,Xj)∈Eim−
bat

log(1−Oij).

(9)
Here, logOij attracts sample pairs in E im+, while log(1 −
Oij) expands sample pairs in E im−.

Pba: Focusing on Samples with Balanced Neighbors
While Pim focused on separating samples near cluster bound-
aries, the goal of Pba is to contract those samples and their
neighbors to achieve compact clusters. Therefore, the con-
trastive assignments for Pba are defined as

s+ij = Aij and s−ij = 0. (10)

Assigning positiveness scores s+ij = Aij and extremely low
scores to denote negativeness s−ij = 0 for sample pairs let
samples within the same cluster contract. To encode them,
the QA matrix, Qba, for Pba is given by

Qba
ij =

⌊
s+ij

Amean

⌋
, (11)

where Amean is the mean value in A. This way, Qba as-
signs more numbers of the sample pairs with relatively large
positiveness scores (i.e., above average) to be included in the
augmented sample pair dataset Eba as

Eba =
⋃

(Xi,Xj)∈Glg

Qba
ij⋃

r=1

{(Xi,Xj)} . (12)

Then, the loss Lba computed for a batch Eba
bat of training data

per epoch is computed as

Lba = −
∑

(Xi,Xj)∈Eba
bat

logOij . (13)

By contracting similar sample pairs only, Lba helps achieve
very compact clusters with samples near cluster centers.

Pdis: Focusing on Disconnected Samples
In contrast to optimizing connected samples, to make better
clusters, disconnected samples should be dramatically sep-
arated in Z . Notice that similarity is not needed here; the
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model only needs to know if two samples are disconnected
(possibly from different clusters) to push them apart. There-
fore, based on local similarity from A, a binary disconnectiv-
ity matrix BN×N is computed with a sign function as

Bij = 1− sign(Aij) =

{
0, if Aij > 0

1, otherwise
. (14)

Note that each element in B indicates if two samples are dis-
connected in the kNN graph. To expand the disconnected
samples far away, the contrastive assignment is given as

s+ij = 0 and s−ij = Bij , (15)

where only the negativeness scores are considered.
The number of disconnected sample pairs (i.e., non-zero

elements in B) is often very large, so using the entire discon-
nected samples can be inefficient. Therefore, we use a subset
of disconnections in the graph as the sample pair dataset Edis.

Let B be the set of disconnected sample pairs in B. We
create Edis by undersampling the disconnected sample pairs
from B according to the following condition

|Edis| = β|E im+|, (16)

where |·| represents the size of the dataset, and β is the hyper-
parameter to balance the expansion among disconnected sam-
ples and the contraction among connected samples from other
P . Intuitively, without a sufficient force to separate dissimilar
samples from Pdis, Pim and Pba will contract all samples as
close as possible without distinct clusters.

Finally, the loss Ldis for a batch Edis
bat is computed as

Ldis = −
∑

(Xi,Xj)∈Edis
bat

log(1−Oij). (17)

Unlike Lim and Lba which inherit positiveness and negative-
ness of sample pairs inside local neighborhood, Ldis provides
a global view of exploring the negativeness of disconnected
sample pairs to avoid all samples from being merged.

3.3 Cluster Assignment with Self-training
Similar to [Ghasedi Dizaji et al., 2017; Van Gansbeke et al.,
2020], the clustering head in our framework is implemented
with a FC layer, Θ, followed by the softmax function. Given
an embedding Zi ∈ Z , the FC generates its cluster assign-
ment probability Uk

i for each cluster k = [1, 2, · · · ,K].
To iteratively make cluster assignment probability U local-

ized to a specific cluster, we adopt the self-training process
which first calculates a target cluster assignment V from U
by applying a specific normalization on U, and then mini-
mize the clustering loss Lclu, i.e., the Kullback–Leibler (KL)
divergence between the cluster assignment matrix U and V:

Lclu = KL(V||U) + γ
∑
k∈K

Ūk log(Ūk), (18)

where Vk
i =

(Uk
i )

2/
∑

i′ U
k
i′∑

j(U
j
i )

2/
∑

i′ U
j

i′
, Ūk = 1

|Z|
∑

Zi∈Z
Uk

i and γ is

a hyperparameter to regularize the distribution of clusters to
avoid all the predictions being assigned to the same cluster.
If the prior distribution of clusters is known, the second term

can be replaced with a KL-divergence loss. The overall ob-
jective function combines Lim, Lba, Ldis and Lclu as

L = Lim + Lba + Ldis + ηLclu, η = min(δ × ni, ξ) (19)

to achieve LNSCC, an end-to-end pipeline to achieve an op-
timal embedding space and compact clustering of samples. δ
is a hyperparameter to balance the clustering and embedding,
ni represents the i-th iteration, and ξ is the upper limit of η.

4 Experiments
In this section, we compare LNSCC with various baseline
clustering methods. We first evaluate LNSCC on relatively
simple (image and non-image) datasets and then test it on
complex image datasets that are adopted by SOTA methods.

4.1 Experimental Setup
Datasets. To evaluate performances of different clustering
methods, five popular public datasets were used: REUTERS-
10K [Guo et al., 2017], MNIST, MNIST-test, USPS, and
Fashion-MNIST. Each dataset contains several classes with
ground truths. The datasets are summarized in TABLE 1.

Dataset # Samples # Classes Sample Dimension Type

REUTERS-10K 10,000 4 2000 non-image
MNIST 70,000 10 28× 28 image
MNIST-test 10,000 10 28× 28 image
USPS 9,298 10 16× 16 image
Fashion-MNIST 10,000 10 28× 28 image

Table 1: Summary of Datasets.

Baselines. We adopt 20 different shallow to deep cluster-
ing methods for comparison shown in TABLE 2. All shallow
methods are listed in the top panel, and Deep methods in the
middle and bottom panels are categorized by the use of con-
volutional techniques, which are suited for image data.
Evaluation Metrics. To evaluate the performance of var-
ious clustering algorithms, we adopt the two most com-
mon evaluation metrics (i.e., Normalized Mutual Information
(NMI) and Clustering Accuracy (ACC)) in our experiments.
Unlike ACC which is computed by finding the best match be-
tween cluster assignment and target labels, NMI captures the
similarity between cluster assignment and target labels which
is appropriate for evaluating clustering.
Implementation. The input data were projected onto a low-
dimensional space with an MLP (with layers: 500, 500, 2000
nodes) which is widely used in other DC methods, while
the clustering head is also implemented using an MLP (with
one layer: 32 nodes). The dimension of Z was set to 64.
When constructing the locally normalized kNN graph Glg ,
the number of nearest neighbors was set to 10 and 70 only for
REUTERS-10k dataset, and Euclidean distance was used for
distance metric. For the MLPs, we used Stochastic Gradient
Descent (SGD) as the optimizer with learning rate 0.01, mo-
mentum 0.9, and weight decay 0.0005 and the batch size was
set to 200. The α in (6) was 2, the β in (16) was 5, the γ in
(18) was 1, and the (δ, ξ) were set as (0.05, 5) in (19). Pre-
trained VGG [Simonyan and Zisserman, 2015] was used to
extract image features if convolution was separately needed.
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w/ MNIST MNIST-test USPS Fashion-MNIST REUTERS-10K

Conv. ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

k-means ✗ 0.500 0.534 0.501 0.547 0.450 0.460 0.476 0.512 0.516 0.309∗
DBSCAN ✗ – – 0.114 0 0.167 0 0.100 0 0.403 0.003
DenPeak ✗ – – 0.357 0.399 0.390 0.433 0.344 0.398 – –
N-Cut ✗ 0.411 0.327 0.753 0.304 0.675 0.314 – – – –
LDMGI ✗ 0.802 0.842 0.811 0.847 0.563 0.580 – – – –
SC-ST ✗ 0.416 0.311 0.756 0.454 0.726 0.308 – – – –
SC-LS ✗ 0.706 0.714 0.756 0.740 0.681 0.659 – – – –

DEC ✗ 0.849 0.816 0.856 0.830 0.758 0.769 0.591 0.618 0.737 0.497
IDEC ✗ 0.881 0.867 0.846 0.802 0.759 0.777 0.523 0.600 0.756 0.498
DKM ✗ 0.840 0.796 – – 0.757 0.776 – – – –
DCN ✗ 0.830 0.810 0.802 0.786 0.688 0.683 – – – –
UMAPkmeans ✗ 0.759 0.713 0.848 0.789 0.764 0.789 0.580 0.569 0.781 0.571
LNSCC (ours) ✗ 0.964 0.921 0.946 0.889 0.970 0.937 0.670 0.656 0.812 0.605

k-meansV GG ✓ 0.804 0.682 0.822 0.721 0.792 0.837 0.552 0.598 – –
JULE ✓ 0.964 0.913 0.961 0.915 0.950 0.913 – – – –
DEPICT ✓ 0.965 0.917 0.963 0.915 0.964 0.927 – – – –
ConvDEC ✓ 0.940 0.916 0.861 0.847 0.784 0.820 0.514 0.588 – –
ConvDEC-DA ✓ 0.985 0.961 0.955 0.949 0.970 0.953 0.570 0.632 – –
DDC ✓ 0.965 0.932 0.965 0.916 0.967 0.918 0.619 0.682 – –
DDC-DA ✓ 0.969 0.941 0.970 0.927 0.977 0.939 0.609 0.661 – –
UMAPkmeans

V GG ✓ 0.909 0.867 0.962 0.916 0.978 0.945 0.593 0.605 – –
LNSCCV GG ✓ 0.983 0.971 0.982 0.969 0.981 0.969 0.665 0.703 – –

Table 2: Clustering performances on public datasets. Top: Shallow methods, Mid: Deep methods, Bottom: Methods with Convolution (or
image features). The results of baselines taken from [Ren et al., 2020; Yang et al., 2019]. “–” and “∗”mean the results are not available or
obtained by running provided codes, respectively.

4.2 Results and Discussions
Clustering on Public Datasets. TABLE 2 compares the
clustering performances of baseline methods and LNSCC on
various datasets. Top-2 algorithms on each dataset are high-
lighted in bold. TABLE 2 shows that most deep methods per-
form better than shallow models. Among the deep methods,
comparing DEC and ConvDEC clearly tells that the convolu-
tion results in an increase in clustering performance for image
data. Moreover, comparisons of DDC vs. DDC-DA and Con-
vDEC vs. ConvDEC-DA show that Data Augmentation (DA)
provides an improvement as well.
Without Convolution. Shallow methods mostly did not
perform well on these high-dimensional data, and Deep meth-
ods yielded reasonable results. On the other hand, LNSCC
achieved the best performance in both ACC and NMI on all
five datasets across image and non-image data. LNSCC’s
performances on image data were also comparable with or
sometimes even better than the results from the baselines that
utilize convolution to extract effective image representations.
These results tell that LNSCC is able to learn very effective
representation of the data regardless of its modality.
With Image Features. The LNSCC with VGG features
achieved at least top-2 ACC and NMI (∼0.98) on MNIST
and USPS datasets, and only ConvDEC with DA yielded
a slightly better result than LNSCC on the accuracy.
For Fashion-MNIST which is more complicated, LNSCC
achieved good ACC (0.665) and NMI (0.703) which outper-
formed all the clustering baselines designed for images. One
notable result is that LNSCC without VGG features yielded
the highest accuracy on the Fashion-MNIST data. This may

(a) PCA. (b) UMAP. (c) LNSCC.

Figure 4: The visualization of embedding on CIFAR10 test dataset
with a) PCA, b) UMAP and c) LNSCC in 2D space.

be because, while VGG features are effective, their dimen-
sions are too high compared to the original image size.

4.3 Evaluations on Challenging Image Datasets
TABLE 3 compares the performances of other recent image
clustering methods with LNSCC on more complex datasets
including CIFAR10 [Krizhevsky et al., 2009], CIFAR100-20
[Krizhevsky et al., 2009] and STL10 [Coates et al., 2011].
We provide these results separately as their results on MNIST,

CIFAR10 CIFAR100-20 STL10

ACC NMI ACC NMI ACC NMI

DeepCluster [Caron et al., 2018] 0.374 - 0.189 - 0.334 -
DAC [Chang et al., 2017] 0.522 0.400 0.238 0.185 0.470 0.366
IIC [Ji et al., 2019] 0.617 0.511 0.257 0.225 0.596 0.496
SCAN-Loss (SimCLR) 0.787 - - - - -
SCAN-Loss (RA) 0.818 0.712 0.422 0.441 0.755 0.654
LNSCC (ours) 0.820 0.713 0.439 0.446 0.738 0.662

Table 3: Comparisons with SOTA methods on challenging image
datasets. LNSCC achieves competitive results.
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(a) Beginning. (b) Middle. (c) Final.

Figure 5: Visualization of LNSCC’s clustering assignment on MNIST-test data throughout training. Top: clustering results at different
training stages, Bot: distribution of similarities between two closest clusters which become localized during training.

USPS, Fashion-MNIST and Reuters-10K have not been re-
ported. The experimental settings follow [Van Gansbeke et
al., 2020] for SCAN which trains and evaluates the model
using the train and validation splits, respectively.

TABLE 3 shows that SCAN [Van Gansbeke et al., 2020]
and our LNSCC outperform other methods with a large gap
(> 17%) in accuracy. SCAN uses self-supervised learning
(i.e., SimCLR) from [Chen et al., 2020] and a strong data aug-
mentation for self-labeling, i.e., RandAugment (RA) [Cubuk
et al., 2020]. For fair comparisons, LNSCC here adopted the
same embedding from SimCLR as an input. From the ta-
ble, we can see SCAN with self-labeling performs much bet-
ter than the original SCAN. However, our LNSCC can still
outperforms SCAN on CIFAR10 and CIFAR100-20 datasets
in both ACC and NMI. On STL10 dataset, our LNSCC is
still competitive in ACC and achieves the best NMI. Finally,
Fig. 4 visualizes the quality of low-dimensional embedding
obtained with LNCSS on the CIFAR10 compared to PCA and
UMAP, even when only 2D is used for the data embedding.

4.4 Ablation Study and Model Analysis
TABLE 4 shows our ablation study on Lim (separating
boundary points), Lba (contracting sample pairs) and Ldis

(expanding sample pairs) using MNIST-test data. It shows
that the performance of LNSCC drops (i.e., ACC/NMI drop

w/ w/ w/ MNIST-test

Lim Lba Ldis ACC NMI

LNSCC

✓ ✓ ✓ 0.946 0.889
✗ ✓ ✓ 0.784 0.835
✓ ✗ ✓ 0.915 0.837
✓ ✓ ✗ 0.810 0.852
✓ ✗ ✗ 0.801 0.820

Table 4: Ablation study on Lim, Lba and Ldis for LNSCC.

from 0.94/0.89 to 0.78/0.83 after removing Lim and to
0.80/0.82 when Lba and Ldis are ablated. It also shows that
the expansion is critical in clustering accuracy emphasizing
the importance of separating samples near cluster boundaries.
The failure cases, i.e., indistinct clusters, were observed when
Lim was removed or both Lba and Ldis were not included.

Fig. 5 shows the training process of LNSCC. It is seen that
clusters are gradually separated as the training progresses. At
the final epoch, individual clusters are compactly clustered
with very few false-positives. The bottom row shows intra-
and inter-class similarity distributions of the two nearest clus-
ters (i.e., classes) to demonstrate the quality of the clusters.
Notice that the intra-class similarities in both clusters (red and
blue) become highly localized to small values, and inter-class
similarity distribution (purple) gets shifted to larger values.
Such a behavior is exactly what we expected with LNSCC.

5 Conclusion
In this paper, we introduced a unified end-to-end clustering
framework, i.e., LNSCC, which demonstrate very compet-
itive clustering performance for both image and non-image
data. The key idea is to consider both positiveness and neg-
ativeness for each pairs of samples in a locally normalized
graph to learn an effective low-dimensional embedding of
data, and propose a batch-wise training scheme to efficiently
perform contrastive learning. The clustering results show
very compact clusters, which demonstrate significant poten-
tials to be deployed in various application fields.
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