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Abstract—Neural networks are being increasingly applied to control
and decision making for learning-enabled cyber-physical systems (LE-
CPSs). They have shown promising performance without requiring the
development of complex physical models; however, their adoption is
significantly hindered by the concerns on their safety, robustness, and
efficiency. In this work, we propose COCKTAIL, a novel design framework
that automatically learns a neural network based controller from multiple
existing control methods (experts) that could be either model-based
or neural network based. In particular, COCKTAIL first performs
reinforcement learning to learn an optimal system-level adaptive mixing
strategy that incorporates the underlying experts with dynamically-
assigned weights, and then conducts a teacher-student distillation with
probabilistic adversarial training and regularization to synthesize a
student neural network controller with improved control robustness
(measured by a safe control rate metric with respect to adversarial
attacks or measurement noises), control energy efficiency, and verifiability
(measured by the computation time for verification). Experiments on
three non-linear systems demonstrate significant advantages of our
approach on these properties over various baseline methods.

I. INTRODUCTION

Machine learning techniques, particularly those based on neural
networks, have seen rapidly growing applications in autonomous
cyber-physical systems such as self-driving vehicles, smart buildings,
and robotic systems. These learning-enabled cyber-physical systems
(LE-CPSs) adopt machine learning techniques not only for perception
of the environment [1], but increasingly also for control [2] and deci-
sion making, in large part due to their advantages in learning effective
strategies without the need of developing complex, costly, and error-
prone physical models [3]. However, applying neural networks for
building autonomous CPSs still faces significant hurdles, particularly
with concerns of their impact on system safety, robustness, and
efficiency. To enable their wider adoption, it is important to develop
automated design methods and tools for analyzing these properties
and optimizing the control design accordingly.

In this paper, we present COCKTAIL, a novel framework for
learning an improved neural network controller from multiple existing
control methods ( “experts”). This is based on the observation that
for many control applications, there are often multiple candidate
experts available [4]. They could be based on well-established model-
based approaches, such as model-predictive control (MPC) [5] or
linear quadratic regulator (LQR) [6]. They could also be neural
network based control methods that are trained through different
algorithms, e.g,. via various reinforcement learning (RL) approaches
with different rewards functions and hyper-parameters. In practice, it
is also common for LE-CPSs to have multiple available controllers
that are designed by different teams and/or for different objectives.

The multiple available controllers/experts, which may include
both model-based and neural network-based ones, often perform
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differently and have different strengths with respect to the changing
system state. Thus, the first step of our framework COCKTAIL is to
learn a system-level adaptive mixing strategy that linearly combines
the multiple available experts with dynamically-assigned weights for
generating control input to the system. The weights are adapted
based on the system state at each sampling period, to optimize
system control robustness and control energy efficiency. Note that
the robustness objective is defined as a safe control rate metric (i.e.,
how likely the system can remain safe from any initial state) under
optimized adversarial attacks or random measurement noises to the
system state. We formulate this adaptive mixing problem as a Markov
Decision Process (MDP) with a reward function modeling robustness
and efficiency.

While the adaptive mixing strategy can leverage the strengths from
multiple experts and effectively improve the control robustness and
energy efficiency, the mixed controller design could take significant
resources (e.g, in storage) to implement and very importantly, be
difficult to formally verify its properties such as safety and robustness.
Thus, the second step of COCKTAIL conducts a teacher-student
robust distillation to synthesize a single student neural network from
the mixed controller design, using a novel probabilistic adversarial
training and regularization technique with dual-objective regression
focusing on both robustness and verifiability (measured by the
computation time for verification). As we observed in experiments,
this provides significant further improvement on all the properties we
consider, including robustness, verifiability, and energy efficiency.

Related work: Our work is related to a rich literature on adaptive
controller design. For instance, simplex architecture [7] proposes
a switching logic between a baseline controller and an advanced
controller to improve the control performance. Control adaptation
based on switching among multiple controllers/experts has also been
addressed in [8] with a rule-based approach, in [4], [9] with DRL
approaches, and in [10] with finite-size weighted adaptation based on
Q-learning. Different from these discrete adaptation approaches, we
consider a continuous version of adaptive mixing, whose feasible
adaptation space is a super-space of the ones in these previous
approaches. We find that by expanding the adaptation space, our
approach can significantly improve the safe control rate over the
literature.

Our work also relates to the knowledge distillation paradigm [11],
where a complex neural network is distilled into a compact neural
network with similar or even better performance. Distillation from
multiple experts, i.e., an ensemble of teachers, has been considered
in works such as [12], [13]. In these approaches, the weight for
each teacher in the ensemble is pre-determined and the sum of the
weights is constrained to 1. In contrast, our approach dynamically
adjusts the weights with RL, and does not put constraint on the
weight sum to facilitate the implementation of the RL process.
Moreover, our distillation is based on a novel dual-objective process



wit h c o nsi d er ati o n of b ot h r o b ust n ess a n d v eri fi a bilit y.

I n s u m m ar y, o ur w or k m a k es t h e f oll o wi n g c o ntri b uti o ns:

• We pr o p os e t h e C O C K T A I L fr a m e w or k t o l e v er a g e m ulti pl e e x-
isti n g c o ntr ol m et h o ds ( e x p erts) a n d l e ar n a b ett er si n gl e n e ur al
n et w or k c o ntr oll er fr o m t h e m, wit h c o nsi d er ati o n of c o ntr ol r o-
b ust n ess, c o ntr ol e n er g y ef fi ci e n c y, a n d v eri fi a bilit y.

• T h e C O C K T A I L fr a m e w or k i n cl u d es t w o n o v el c o m p o n e nts. T h e
a d a pti v e mi xi n g st e p us es R L t o l e ar n a s yst e m-l e v el str at e g y
f or d y n a mi c all y assi g ni n g w ei g hts i n i n c or p or ati n g e x p erts, wit h
gl o b al o pti m u m c o n v er g e n c e ass ur a n c e. T h e r o b ust distill ati o n
st e p c o n d u cts pr o b a bilisti c a d v ers ari al tr ai ni n g a n d r e g ul ari z ati o n
t o s y nt h esi z e a si n gl e n e ur al n et w or k c o ntr oll er t h at f urt h er
i m pr o v es t h e mi x e d c o ntr oll er d esi g n.

• E x p eri m e nts o n t hr e e n o n-li n e ar s yst e ms d e m o nstr at e t h at o ur
a p pr o a c h c a n si g ni fi c a ntl y i m pr o v e r o b ust n ess, e n er g y ef fi ci e n c y,
a n d v eri fi a bilit y o v er v ari o us b as eli n e m et h o ds, i n cl u di n g a n y
si n gl e e x p ert a n d a st at e- of-t h e- art s wit c hi n g a d a pt ati o n m et h o d
fr o m t h e lit er at ur e.

I n t h e r est of t h e p a p er, S e cti o n II pr es e nts t h e pr o bl e m f or m ul ati o n.
S e cti o n III pr es e nts o ur C O C K T A I L fr a m e w or k. S e cti o n I V s h o ws t h e
e x p eri m e nt al r es ults, a n d S e cti o n V c o n cl u d es t h e p a p er.

II. P R O B L E M F O R M U L A T I O N

We c o nsi d er a dis cr et e-ti m e f e e d b a c k s yst e m wit h its d y n a mi cs as

s ( t + 1 ) = f ( s ( t) , u( t) , ω( t) , δ( t) ) , ∀ t ≥ 0 ( 1)

w h er e f : R |s | × R |u | × R |ω | × R |δ | → R |s | is a l o c all y Li ps c hit z-
c o nti n u o us f u n cti o n [ 1 4]. s ( t) ∈ R |s | is t h e s yst e m st at e v e ct or. X
is d e fi n e d as t h e s af e r e gi o n , a n d a n y st at e o ut of X is c o nsi d er e d
u ns af e. X 0 ⊆ X is t h e s et of all p ossi bl e i niti al s yst e m st at es. u ( t) ∈
U ∈ R |u | is t h e f e e d b a c k c o ntr ol i n p ut t o t h e s yst e m pl a nt at e a c h
ti m est e p t, w h er e U is t h e b o u n d f or v e ct or u ( t) . ω ( t) ∈ Ω ∈ R |ω |

is a b o u n d e d e xt er n al dist ur b a n c e. δ ( t) ∈ ∆ is a p ert ur b ati o n t o t h e
s yst e m st at e t h at c o ul d b e c a us e d b y t ar g et e d/ o pti mi z e d a d v ers ari al
att a c ks or r a n d o m m e as ur e m e nt n ois es. N ot e t h at X , X 0 , U , Ω , a n d
∆ ar e c o nstr ai n e d b y pr e- d e fi n e d f u n cti o ns, s u c h as b o x es.

T h e a b o v e s yst e m c a n b e c o ntr oll e d wit h a f e e d b a c k c o ntr oll er κ
t h at is eit h er m o d el- b as e d or m o d el-fr e e ( e. g., t h os e b as e d o n n e ur al
n et w or ks). At e a c h ti m est e p t, t h e c o ntr oll er κ r e a ds t h e s yst e m st at e
s ( t) , a n d c o m p ut es a c o ntr ol i n p ut as u ( t) = κ ( s ( t) ) . T h e s yst e m
t h e n e v ol v es t o s ( t + 1 ) a c c or di n g t o its d y n a mi cs i n E q ( 1). S u c h
pr o c ess r e p e ats a n d a tr aj e ct or y ϕ b as e d o n t h e s yst e m i niti al st at e
s ( 0 ) ∈ X 0 a n d t h e c o ntr oll er κ c a n b e d e fi n e d as

ϕ s ( 0 ) , κ ( t + 1 ) = f ( ϕ s ( 0 ) , κ ( t) , κ( ϕ s ( 0 ) , κ ( t) ) , ω( t) , δ( t) ) ( 2)

A tr aj e ct or y is s af e if e v er y st at e it visits is wit hi n t h e s af e r e gi o n
X . F or a c o ntr oll er κ , w e c a n d e fi n e a s af e i niti al st at e s et X , w hi c h
i n cl u d es a n y i niti al st at e w h os e tr aj e ct or y u n d er κ is s af e, i. e.,

X κ = { s | s ∈ X 0 , ϕs, κ ( t) ∈ X, ∀ t ≥ 0 }

We c a n t h e n d e fi n e a s af e c o ntr ol r at e m etri c f or e a c h c o ntr oll er κ t o
m e as ur e h o w l ar g e its s af e i niti al st at e s et X κ is, wit h r es p e ct t o t h e
s et of all p ossi bl e i niti al st at es X 0 (i. e., t h e r ati o b et w e e n t h e si z es
of t h e t w o s ets).

B as e d t h e a b o v e s yst e m m o d el, w e d e fi n e t hr e e pr o p erti es f or a
c o ntr oll er κ as f oll o ws.

Pr o p ert y 1: C o nt r ol r o b ust n ess f or a c o ntr oll er κ is d e fi n e d
as its s af e c o ntr ol r at e S r u n d er o pti mi z e d a d v ers ari al att a c ks or
r a n d o m m e as ur e m e nt n ois es o n t h e s yst e m st at e ( c a pt ur e d b y t h e

st at e p ert ur b ati o n δ ( t) ). N ot e t h at s yst e m s af et y m a y b e c o nsi d er e d
as a s p e ci al c as e of r o b ust n ess wit h 0 st at e p ert ur b ati o n.

Pr o p ert y 2: C o nt r ol e n e r g y ef fi ci e n c y [ 4] f or a c o ntr oll er κ is
d e fi n e d as t h e a v er a g e c o ntr ol e n er g y c ost e ( o v er T c o ntr ol st e ps)
of t h e v ari o us tr aj e ct ori es g e n er at e d fr o m t h e i niti al st at es i n its s af e
i niti al st at e s et X κ , i. e.,

e = E

T − 1

t = 0

||κ ( ϕ s, κ ( t) ) ||1 , ∀ s ∈ X κ ( 3)

w h er e · 1 is t h e 1- n or m o p er at or.
Pr o p ert y 3: Ve ri fi a bilit y is m e as ur e d b y t h e c o m p ut ati o n ti m e of

t h e v eri fi c ati o n pr o c ess es f or v ari o us pr o p erti es o n a gi v e n pl atf or m.
T h e pr o bl e m w e tr y t o s ol v e is t h e n d e fi n e d as: gi v e n a s yst e m as

d es cri b e d i n E q ( 1) a n d m ulti pl e c o ntr ol e x p erts κ i ( i = 1 , · · · , n) ( n ot
n e c ess ar y t o b e o pti m al), w e will d esi g n a n e w n e ur al n et w or k c o n-
tr oll er κ ∗ t h at o pti mi z es c o ntr ol r o b ust n ess, c o ntr ol e n er g y ef fi ci e n c y,
a n d v eri fi a bilit y.

III. O U R C O C K T A I L F R A M E W O R K

T his s e cti o n pr es e nts o ur pr o p os e d C O C K T A I L fr a m e w or k f or
s ol vi n g t h e a b o v e pr o bl e m. As s h o w n i n Fi g. 1, t h e C O C K T A I L

fr a m e w or k i n cl u d es t w o n o v el c o m p o n e nts. First, a s yst e m-l e v el
a d a pti v e mi xi n g str at e g y li n e arl y c o m bi n es t h e m ulti pl e c o ntr ol
e x p erts f or g e n er ati n g t h e c o ntr ol i n p ut t o t h e s yst e m pl a nt. T h e
w ei g hts f or t h e li n e ar c o m bi n ati o n ar e d y n a mi c all y a d a pt e d b as e d
o n t h e s yst e m st at e, a n d l e ar n e d vi a R L a c c or di n g t o a n M D P
f or m ul ati o n t h at o pti mi z es c o ntr ol r o b ust n ess (i. e., s af e c o ntr ol r at e)
a n d e n er g y ef fi ci e n c y wit h gl o b al o pti m u m ass ur a n c e. T h e n, t hr o u g h
t e a c h er-st u d e nt k n o wl e d g e distill ati o n, a st u d e nt n e ur al n et w or k κ ∗

is l e ar n e d fr o m t h e mi x e d c o ntr oll er d esi g n ( w hi c h i n cl u d es t h e
u n d erl yi n g e x p erts a n d t h e s yst e m-l e v el n e ur al n et w or k l e ar n e d vi a
R L f or g e n er ati n g t h e w ei g hts). T h e distill ati o n pr o c ess is b as e d o n a
pr o b a bilisti c a d v ers ari al tr ai ni n g a n d r e g ul ati o n t e c h ni q u e t h at f urt h er
i m pr o v es c o ntr ol r o b ust n ess a n d v eri fi a bilit y. O n c e w e o bt ai n t h e
distill e d st u d e nt c o ntr oll er, f or m al v eri fi c ati o n is a p pli e d t o a n al y z e
its s af et y. M or e d et ails of CO C K T A I L is s h o w n i n Al g orit h m 1 a n d
i ntr o d u c e d i n t h e r e m ai ni n g of t h e s e cti o n.

𝜅 1

𝜅 𝑛

C o ntr ol E x p ert s

S y st e m -l e v el w ei g ht e d c o m bi n ati o n

Pl a nt

𝑠 ( 𝑡 )

X

X

𝑢 ∗ ( 𝑡 )

T e a c h er 

St u d e nt 𝛋 ∗

𝑠 ( 𝑡 )

𝑢 ∗ ( 𝑡 )

𝑠 ′ ( 𝑡 )

A d v ers ari al
E x a m pl es

+X

R o b ust 
Distill ati o n

A d a pti v e 
Mi xi n g

Fi g. 1: O v er vi e w of t h e pr o p os e d C O C K T A I L fr a m e w or k.

A. R L- b as e d A d a pti v e Mi xi n g of M ulti pl e E x p erts

We pr o p os e t o l e ar n a s yst e m-l e v el a d a pti v e mi xi n g str at e g y t h at
si g ni fi c a ntl y e x p a n ds t h e a cti o n/ a d a pt ati o n s p a c e of t h e s wit c hi n g
c o ntr ol m et h o ds i n t h e lit er at ur e ( e. g., t h os e i n [ 4], [ 7]). I n pri n ci pl e,
w e c o ul d b uil d a n y m a p pi n g f u n cti o n g : R n ×| u | → R |u | t h at m a ps
t h e v ari o us c o ntr ol i n p ut v al u es c o m p ut e d b y t h e e x p erts t o a c o ntr ol
i n p ut f or t h e s yst e m pl a nt. I n t his w or k, w e f o c us o n li n e ar m a p pi n g
f u n cti o ns a n d d y n a mi c all y a dj ust t h e w ei g hts f or e a c h e x p ert b as e d o n



t h e s yst e m st at e. T o a c hi e v e t his, w e f or m ul at e t h e l e ar ni n g pr o c ess
f or s u c h a d a pti v e mi xi n g str at e g y as a n M D P a n d s ol v e d wit h R L,
wit h c o ntr ol r o b ust n ess a n d e n er g y ef fi ci e n c y as t h e r e w ar d.

O ur M D P is c a pt ur e d wit h a t u pl e ( S , A , P , R , γ). S is t h e
s yst e m st at e s p a c e, a n d A is t h e a cti o n s p a c e. P : S × A → S
d es cri b es t h e s yst e m d y n a mi cs. C o nst a nt γ ∈ ( 0 , 1] is dis c o u nt f a ct or.
P ar a m et eri z e d b y θ , p oli c y π θ ∈ Π : S → A d e n ot es t h e str at e g y.
M or e s p e ci fi c all y, t h e y ar e f or m ul at e d as f oll o ws.

Al g o rit h m 1 Pr o p os e d C O C K T A I L Fr a m e w or k

I n p ut: M ulti pl e c o ntr ol e x p erts κ i , i = 1 , · · · , n
O ut p ut: St u d e nt c o ntr oll er κ ∗ (; q )
I niti ali z e r e pl a y m e m or y D , a d a pti v e p oli c y n et w or k π θ , st at e p ert ur-
b ati o n b o u n d ∆ , e p o c hs N , st e ps T , Distill ati o n e p o c h N E , w ei g hts
β, λ a n d pr o b a bilit y p .

f o r e p o c h = 0 , . . . , N d o
R a n d o ml y i niti ali z e st at e s ( 0 ) ∈ X 0 , θ o l d ← θ .
f o r t = 0 , . . . , T d o

a ( t) = π θ o l d ( s ( t) ) .
u ( t) = cli p ( n

i = 1 a ( t) i × κ i ( s ( t) ) , Ui n f , Us u p ) ;
s ( t + 1 ) = f ( s ( t) , u( t) , ω( t) , δ( t) ) ; A g e nt r e c ei v es r ( t) ;
D. a p p e n d ([ s ( t) , a( t) , s( t + 1 ) , r( t)] ) .

/ * R L ( P P O ) f o r a d a p t i v e m i x i n g * /

S a m pl e mi ni- b at c h fr o m D ; C o m p ut e a d v a nt a g e f u n cti o n ˆA

θ = a r g m a x
θ

Ê
π θ ( a |s )

π θ o l d ( a |s )
ˆA − β K L [π θ o l d ( ·|s ) , πθ ( ·|s )] .

/ * R o b u s t d i s t i l l a t i o n * /
if e p o c h ≥ N E t h e n

z
u n i f o r m

←− − − − −−
r a n d o m

[ 0, 1].

δ = ∆ ∗ si g n ( ∇ s ( l( κ ∗ ( s ; q ) , u) ) ) if z ≤ p els e 0.
q = a r g mi n

q
l( κ ∗ ( s + δ ; q ) , u) + λ ||q ||22

e n d
e n d

e n d

St at e: S is t h e s yst e m st at e s p a c e. I n t his p a p er, w e ass u m e t h at e a c h
s ∈ S c a n b e o bs er v e d b ut m a y b e m ali ci o usl y att a c k e d or aff e ct e d
b y r a n d o m m e as ur e m e nt n ois es. T h e att a c ks or n ois es ar e c a pt ur e d
b y a b o u n d e d p ert ur b ati o n δ t o t h e s yst e m st at e as i ntr o d u c e d i n
S e cti o n II, a n d t h eir eff e cts r e fl e ct t h e c o ntr ol r o b ust n ess.

A cti o n: We c o nsi d er a li n e ar m a p pi n g f u n cti o n i n t his p a p er t o
g e n er at e t h e a cti o n s p a c e A f or o ur a d a pti v e mi xi n g str at e g y.
S p e ci fi c all y, at e a c h ti m est e p t, t h e a cti o n a ( t) = ( a 1 , · · · , an )
r e pr es e nts t h e w ei g ht assi g n m e nt t o t h e e x p erts i n t h e li n e ar m a p pi n g
f u n cti o n, w h er e a i is a b o u n d e d w ei g ht assi g n e d t o t h e i-t h e x p ert
(a i ∈ [− A B i , AB i ], A B i ≥ 1 ). T h e n, t h e c o ntr ol i n p ut t o t h e s yst e m
is t h e w ei g ht e d s u m of t h e c o ntr ol i n p uts c o m p ut e d b y t h e e x p erts,
wit h a cli p pi n g f u n cti o n e ns uri n g its f e asi bilit y:

u ( t) = cli p (

n

i = 1

a ( t) i × κ i ( s ( t) ) , Ui n f , Us u p ) ( 4)

w h er e κ i ( s ( t) ) is t h e c o ntr ol i n p ut v al u e c o m p ut e d b y t h e i-t h e x p ert.
U i n f a n d U s u p ar e t h e i n fi m u m a n d s u pr e m u m of t h e c o ntr ol i n p ut
v e ct or b o u n d U , r es p e cti v el y. N ot e t h at as a p ol y h e dr o n, t h e a cti o n
s p a c e i n o ur a p pr o a c h is a s u p er-s p a c e of t h e o n e i n [ 1 0] ( c o n v e x
h ull) a n d i n [ 4], [ 9] (s wit c hi n g).

R e w a r d f u n cti o n: T h e r e w ar d f u n cti o n e n c o d es o ur d esir e d g o al
f or o pti mi zi n g c o ntr ol r o b ust n ess (i. e., s af e c o ntr ol r at e) a n d c o ntr ol
e n er g y ef fi ci e n c y, b y st e eri n g t h e s yst e m a w a y fr o m t h e u ns af e r e gi o n
a n d usi n g as littl e e n er g y as p ossi bl e. S p e ci fi c all y, it is d e fi n e d as

r ( s, a ) =
R p u n , i f s /∈ X

h ( ||u ||) , ot h e r wi s e

w h er e R p u n is a l ar g e n e g ati v e p u nis h m e nt o n s af et y vi ol ati o ns (i. e.,
s /∈ X ). h is a m o n ot o ni c all y d e cr e asi n g f u n cti o n t h at c o m p ut es
e n er g y c o ns u m pti o n b as e d o n t h e c o ntr ol i n p ut ||u || i n E q ( 4).

Wit h a b o v e d esi g n of t h e r e w ar d f u n cti o n, w e f or m ul at e a n
o pti mi z ati o n pr o bl e m c o n c er ni n g r o b ust n ess a n d ef fi ci e n c y as

m a x J π θ =

T − 1

t = 0

E γ t · r ( s ( t) , a( t) )

s.t. s ( t + 1 ) = f ( s ( t) , u( t) , ω( t) , δ( t) ) , s( 0 ) ∈ X 0

a ( t) = π θ ( s ( t) )

− A B i ≤ a ( t) i ≤ A B i , ∀ i = 1 , · · · , n

w h er e T is a n e pis o di c c o ntr ol l e n gt h.
F or e a c h it er ati o n i n t h e l e ar ni n g of t h e a d a pti v e mi xi n g str at e g y

i n Al g orit h m 1, w e s ol v e t h e a b o v e o pti mi z ati o n pr o bl e m wit h t h e
gr a di e nt as c e nt t o w ar ds t h e o pti m al w ei g hts f or t h e e x p erts, i. e.,

θ = a r g m a x
θ

Ê
π θ ( a |s )

π θ o l d ( a |s )
ˆA − β K L [π θ o l d ( ·|s ) , πθ ( ·|s )]

w h er e ˆA is t h e a d v a nt a g e f u n cti o n i n R L, K L is t h e K L di v er g e n c e,
θ o l d r e pr es e nts t h e p ar a m et ers f or t h e a d a pti v e mi xi n g p oli c y n et w or k
fr o m t h e l ast it er ati o n, a n d Ê i s a n esti m at or (s a m pl e m e a n) f or
t h e e x p e ct ati o n. O ur a p pr o a c h c a n c o n v er g e t o t h e o pti m al w ei g ht
assi g n m e nt f or t h e o pti mi z ati o n pr o bl e m, as e x pl ai n e d b el o w.

Pr o p ositi o n 1: Gi v e n m ulti pl e e x p erts κ i ( i = 1 , · · · , n) , o ur R L-
b as e d a p pr o a c h c a n l e ar n a n o pti m al p oli c y π ∗ f or t h e a d a pti v e w ei g ht
assi g n m e nt of e x p erts, a n d o ut p erf or m ( or p erf or m e q u all y t o) a n y
si n gl e e x p ert c o ntr oll er or a n y s wit c hi n g a d a pt ati o n p oli c y π s .

Pr o of: First, a c c or di n g t o [ 1 5], t h e a ct or- criti c m et h o ds f or pr o x-
i m al p oli c y o pti mi z ati o n ( P P O) [ 1 6] wit h n e ur al n et w or ks a p pr o x-
i m ati o n c o n v er g e t o t h e gl o b al o pti m u m at a s u b-li n e ar r at e. T his
a p pli es t o o ur a p pr o a c h. M or e o v er, t h e a cti o n s p a c e of a n y s wit c hi n g
a d a pt ati o n p oli c y t h at s wit c h es a m o n g c o ntr oll ers ( e. g., t h e o n e i n [ 4])
or of a n y p oli c y wit h fi nit e-si z e w ei g ht e d a d a pt ati o n ( e. g., t h e o n e
i n [ 1 0]) is a s u b-s p a c e of o ur a cti o n s p a c e. As gl o b al o pti m u m is
b ett er t h a n or e q u al t o a n y l o c al o pti m u m, t h e o pti m al p oli c y π ∗

o bt ai n e d i n o ur a p pr o a c h s h o ul d o ut p erf or m or p erf or m e q u all y t o
t h e o n es fr o m a n y si n gl e e x p ert or s wit c hi n g p oli c y.

R e m ar k 1: T h e o pti m alit y ass ur a n c e o nl y a p pli es t o P P O i n
pri n ci pl e [ 1 5]. I n pr a cti c e, h o w e v er, w e fi n d t h at ot h er R L m et h o ds
s u c h as t h e d e e p d et er mi nisti c p oli c y gr a di e nt ( D D P G) [ 1 7] c a n als o
a c hi e v e si g ni fi c a nt i m pr o v e m e nt.

B. R o b ust Distill ati o n t o a Si n gl e N e ur al N et w or k C o ntr oll er

T h e a d a pti v e mi xi n g str at e g y c a n eff e cti v el y l e v er a g e t h e str e n gt hs
fr o m m ulti pl e e x p erts t o i m pr o v e c o ntr ol r o b ust n ess a n d e n er g y
ef fi ci e n c y. H o w e v er, t h e l e ar n e d mi x e d c o ntr oll er d esi g n, wit h t h e
m ulti pl e e x p erts a n d a n e ur al n et w or k f or t h e a d a pti v e mi xi n g p oli c y,
m a y c o ns u m e si g ni fi c a nt r es o ur c es i n i m pl e m e nt ati o n. M or e o v er, it
is h ar d t o f or m all y v erif y t h e pr o p erti es f or s u c h mi x e d c o ntr oll er
d u e t o its c o m pl e xit y. T his m oti v at es us t o s y nt h esi z e a si n gl e a n d
si m pl er n e ur al n et w or k c o ntr oll er vi a k n o wl e d g e distill ati o n.

A n i m p ort a nt o bs er v ati o n t h at dri v es o ur distill ati o n is t h at f or a
n e ur al n et w or k, b ot h its v eri fi c ati o n c o m pl e xit y a n d its r o b ust n ess ar e



oft e n aff e ct e d b y its Li ps c hit z c o nst a nt L . T y pi c all y, t h e s m all er t h e
Li ps c hit z c o nst a nt is, t h e m or e r o b ust a n d m or e v eri fi a bl e ( e. g., t a ki n g
l ess ti m e t o v erif y c ert ai n pr o p erti es) t h e n e ur al n et w or k is [ 1 8], [ 1 9].

T h us, t h e g o als f or o ur distill ati o n of t h e st u d e nt n et w or k ar e
t w o f ol ds: 1) t o a c hi e v e si mil ar c o ntr ol p erf or m a n c e as t h e mi x e d
c o ntr oll er d esi g n (i. e, t h e t e a c h er), b y mi ni mi zi n g a l oss f u n cti o n t h at
m e as ur es t h e r e gr essi o n err or b et w e e n t h e st u d e nt a n d t h e t e a c h er;
a n d 2) t o f urt h er i m pr o v e s yst e m v eri fi a bilit y a n d c o ntr ol r o b ust n ess
vi a r e d u ci n g t h e Li ps c hit z c o nst a nt of t h e st u d e nt n et w or k.

T o a c hi e v e o ur d u al o bj e cti v es, w e pr o p os e a h y bri d pr o b a bilisti c
l e ar ni n g pr o c ess b y r a n d o ml y s el e cti n g dir e ct distill ati o n or a d v ers ar-
i al tr ai ni n g wit h t h e f ast- gr a di e nt si g n m et h o d ( F G S M) [ 2 0] a n d L- 2
r e g ul ari z ati o n t o r e d u c e L , as s h o w n i n Al g orit h m 1. S p e ci fi c all y,
t h e p art of t h e a d v ers ari al tr ai ni n g wit h r e g ul ati o n s ol v es a mi n- m a x
pr o bl e m e a c h ti m e as:

mi n
q

( m a x
||δ || ≤∆

l( κ ∗ ( s + δ ; q ) , u) + λ ||q ||22 )

w h er e κ ∗ is t h e distill e d st u d e nt n et w or k wit h p ar a m et ers q . δ
b o u n d e d b y ∆ is t h e p ert ur b ati o n o n t h e s yst e m st at e, w hi c h m a y b e
c a us e d b y a d v ers ari al att a c ks or m e as ur e m e nt n ois es. l is t h e M S E
l oss f u n cti o n t h at m e as ur es t h e r e gr essi o n err or b et w e e n t h e st u d e nt
n et w or k a n d t h e t e a c h er, a n d λ is t h e w ei g ht f or t h e r e g ul ari z ati o n.
I nt uiti v el y, mi ni mi zi n g t his tr ai ni n g l oss will r e g ul at e t h e l o c al
Li ps c hit z c o nst a nt, as t h e o ut p ut of n ei g h b o ur r e gi o n of s is e x p e ct e d
t o m a p cl os e d t o u . T h e i n n er m a x pr o bl e m is s ol v e d b y a d v ers ari al
e x a m pl e g e n er ati o n wit h gr a di e nt as c e nt m et h o d a n d si g n f u n cti o n as

δ = ∆ ∗ si g n ( ∇ s ( l( κ ∗ ( s ; q ) , u) ) )

T hr o u g h t his mi n- m a x o pti mi z ati o n, t h e Li ps c hit z c o nst a nt of t h e
distill e d st u d e nt n et w or k c a n b e si g ni fi c a ntl y r e d u c e d, i m pr o vi n g b ot h
s yst e m v eri fi a bilit y a n d c o ntr ol r o b ust n ess.

C. Veri fi c ati o n of t h e N e ur al N et w or k b as e d C o ntr oll ers

O n c e w e o bt ai n t h e distill e d st u d e nt n e ur al n et w or k κ ∗ , w e m a y
f or m all y e v al u at e s o m e of its pr o p erti es s u c h as s af et y a n d r o b ust n ess,
usi n g t e c h ni q u es s u c h as c o ntr ol i n v ari a nt s et c o m p ut ati o n a n d r e a c h-
a bilit y a n al ysis f or s af et y v eri fi c ati o n. I nt uiti v el y, a c o ntr ol i n v ari a nt
s et is a s u bs et of t h e s af e r e gi o n t h at e v er y p ossi bl e tr aj e ct or y st arti n g
fr o m it will n e v er l e a v e it. T o c o m p ut e t h e i n v ari a nt s et, r e a c h a bl e
a n al ysis is us e d t o c o m p ut e t h e s et ( or a n o v er- a p pr o xi m ati o n of it)
of all p ossi bl e st at es t h e s yst e m m a y visit wit hi n a fi nit e- h ori z o n
ti m est e p. T h e y ar e m or e f or m all y d e fi n e d as f oll o ws.

D e fi niti o n 1: A c o ntr ol i n v ari a nt s et X I is a s u bs et of t h e s af e
r e gi o n X t h at is d e fi n e d as

X I = { s | ϕ s, κ ( t) ∈ X I ∈ X, ∀ t ≥ 0 , ∀ ω ( t) ∈ Ω }

N ot e t h at a n y i niti al st at e wit hi n t h e i n v ari a nt s et is g u ar a nt e e d
t o h a v e i n fi nit e-ti m e h ori z o n s af et y as its p ossi bl e tr aj e ct ori es ar e
b o u n d e d wit hi n t h e i n v ari a nt s et.

D e fi niti o n 2: T h e r e a c h a bl e s et f or a n i niti al st at e s ( 0 ) ∈ X 0 is
t h e s et of st at es t h at t h e s yst e m m a y r e a c h wit hi n T ti m est e ps, i. e.,

X R = { ϕ s 0 , κ ( t) | ∀ s ( 0 ) ∈ X 0 , ∀ 0 ≤ t ≤ T − 1 }

Dir e ctl y p erf or mi n g r e a c h a bilit y a n al ysis a n d s af et y v eri fi c ati o n o n
n e ur al n et w or ks is i ntr a ct a bl e i n m ost c as es. T h us, w e l e v er a g e t h e
m et h o ds fr o m [ 4], [ 2 1] b y first o v er- a p pr o xi m ati n g t h e n e ur al n et w or k
c o ntr oll er wit h a B er nst ei n p ol y n o mi al u n d er b o u n d e d err ors ( wit h
p artiti o ni n g t e c h ni q u e [ 2 1] f or r e d u ci n g t h e a p pr o xi m ati o n err or),
a n d t h e n tr a nsf or mi n g t h e e ntir e s yst e m (i n cl u di n g t h e pl a nt) i nt o
a h y bri d s yst e m. T h e s yst e m s af et y a n d t h e r o b ust n ess pr o p ert y (s af e

c o ntr ol r at e u n d er att a c ks or n ois es) c a n t h e n b e e v al u at e d o n t h e
h y bri d s yst e m wit h e xisti n g t o ols fr o m [ 2 2], [ 2 3]. S p e ci fi c all y, i n
m at h e m ati c al f or m, w e first a p pr o xi m at e t h e st u d e nt n et w or k κ wit h
a B er nst ei n p ol y n o mi al as f oll o ws:

κ ∗ ( x ) ∈ B d ( x ) + [ − , ], ∀ x ∈ X

w h er e d is t h e d e gr e e of t h e B er nst ei n p ol y n o mi al a n d is t h e
a bs ol ut e a p pr o xi m ati o n err or b o u n d. If t h e a p pr o xi m ati o n err or is
t o o l ar g e, w e c a n f urt h er p artiti o n t h e s yst e m st at e as:

κ ∗ ( x ) ∈ B p
d ( x ) + [ − ˆ p , ˆ p ], ∀ x ∈ X p , ∀ p = 1 , · · · , P.

w h er e P is t h e n u m b er of p artiti o ns a n d = m a x ( ˆ p ) is t h e a p pr o x-
i m ati o n err or. S u c h err or will e v e nt u all y b e c o u nt e d as a n a d diti o n al
e xt er n al dist ur b a n c e i nt o t h e ori gi n al s yst e m as Ω̂ = Ω , w h er e

is t h e Mi n k o ws ki s u m m ati o n o p er at or.
R e m ar k 2: B e n e fit e d fr o m t h e r o b ust distill ati o n, t h e n e ur al n et-

w or k c o ntr oll er κ ∗ g e n er at e d b y C O C K T A I L wit h r e d u c e d Li ps c hit z
c o nst a nt is m u c h m or e c o m p ut ati o n all y ef fi ci e nt f or v eri fi c ati o n
p ur p os e, c o m p ar e d wit h n ot o nl y t h e mi x e d c o ntr oll er d esi g n ( w hi c h
is h ar d t o v erif y wit h c urr e nt t o ols) b ut als o t h e st u d e nt n et w or k
g e n er at e d fr o m dir e ct distill ati o n (i. e., wit h o ut a d v ers ari al tr ai ni n g
a n d r e g ul ati o n f or r e d u ci n g Li ps c hit z c o nst a nt). T his is d u e t o t h e f a ct
t h at l ar g er Li ps c hit z c o nst a nt l e a ds t o m or e s a m pli n g, m or e p artiti o ns,
a n d hi g h er or d er of B er nst ei n p ol y n o mi als f or a p pr o xi m ati n g t h e
n e ur al n et w or k. M or e o v er, t h e tr a nsf or m e d h y bri d s yst e m als o h as
m or e o pti mi z ati o n v ari a bl es a n d r e q uir es m or e r es o ur c es t o v erif y.
N ot e, l ar g e Li ps c hit z c o nst a nt of n e ur al n et w or k c o ntr oll er is als o
e x p e ct e d t o c a us e a si g ni fi c a nt i m p a ct o n Verisi g [ 1 8], [ 2 4].

H o w e v er, w hil e s yst e m s af et y u n d er n o att a c k or m e as ur e n ois e
c a n b e eff e cti v el y v eri fi e d f or o ur t est e x a m pl es usi n g t h e g e n er at e d
st u d e nt n e ur al n et w or k ( a n d d e m o nstr at e d i n o ur e x p eri m e nts), a c-
c ur at el y c o m p uti n g t h e c o ntr ol r o b ust n ess u n d er att a c ks a n d n ois es
is still q uit e c h all e n gi n g wit h t h e c urr e nt f or m al a n al ysis t e c h ni q u es,
as t h e o v er- a p pr o xi m ati o n err or c a n n ot b e eff e cti v el y r e d u c e d wit hi n
r e as o n a bl e c o m p ut ati o n ti m e i n t his c as e [ 2 1]. T h us, i n o ur e x p eri-
m e nts, t h e s af e c o ntr ol r at e m etri c (i. e., r o b ust n ess) f or a c o ntr oll er
is esti m at e d b y pi c ki n g r a n d o m s a m pl es fr o m t h e i niti al st at e s et X 0

a n d e v al u ati n g t h e s yst e m s af et y u n d er t h e c o ntr oll er vi a si m ul ati o ns.
T his is als o b e c a us e t h e s af et y f or s o m e b as eli n es m et h o ds c a n n ot
b e f or m all y a n al y z e d i n a n y c as e wit h t h e c urr e nt t o ols.

I V. E X P E R I M E N T A L R E S U L T S

Test S yst e ms: We c o n d u ct e x p eri m e nts o n t hr e e n o n-li n e ar s yst e ms:

a Va n d er P ol’s os cill at or, a t hr e e- di m e nsi o n al s yst e m fr o m [ 2 5]
( e x a m pl e 1 5), a n d a c art p ol e s yst e m. E a c h s yst e m h as t w o a v ail a bl e
c o ntr ol e x p erts κ 1 a n d κ 2 , o bt ai n e d b y D D P G wit h diff er e nt h y p er-
p ar a m et ers, or i n t h e c as e of t h e 3 D s yst e m, D D P G a n d a m o d el- b as e d
c o ntr oll er fr o m [ 2 5]. M or e d et ails ar e as f oll o ws.

1) T h e Va n d er P ol’s os cill at or is d es cri b e d as

s 1 ( t+ 1 ) = s 1 ( t) + τ s 2 ( t)

s 2 ( t+ 1 ) = s 2 ( t) + τ [ ( 1− s 2
1 ( t) ) s 2 ( t) − s 1 ( t) + u ( t)] + ω ( t)

( 5)
w h er e s ( t) = ( s 1 ( t) , s2 ( t) ) is t h e s yst e m st at e. X = X 0 = [ − 2 , 2] 2

(f or f urt h er c o ntr ol i n v ari a nt a n al ysis). u ( t) is t h e c o ntr ol i n p ut
v ari a bl e, a n d is b o u n d e d b y [− 2 0 , 2 0] . E xt er n al dist ur b a n c e ω is a
r a n d o m v ari a bl e u nif or ml y s a m pl e d fr o m [− 0 .0 5 , 0 .0 5] . τ = 0 .0 5 is
t h e s a m pli n g p eri o d. We ass u m e t h at e a c h c o ntr ol e p o c h c o nsists of
1 0 0 c o ntr ol st e ps, i. e., T = 1 0 0 i n E q ( 3).

2) T h e 3 D s yst e m is d e fi n e d as ẋ = y + 0 .5 z 2 , ẏ = z, ż = u ,
w h er e s yst e m st at e s = ( x ( t) , y( t) , z( t) ) , X = X 0 = [ − 0 .5 , 0 .5] 3 ,



Os cill at or κ 1 κ 2 A S [ 4] A W κ D κ ∗

S r ( %) 8 5 7 9. 4 8 8. 4 9 8 9 8. 4 9 8. 8
e 9 4. 1 9 7. 9 9 4. 2 9 6. 3 9 4. 6 8 6. 2
L 3 5. 4 1 5. 1 - - 2 0. 5 7. 6

3 D s yst e m
S r ( %) 9 1 8 8. 6 9 6. 8 9 8. 2 9 7. 6 9 9

e 1 6. 6 1 6. 6 1 3. 5 1 2. 7 1 2. 3 1 1. 8
L 2 5 1 0. 7 2 - - 1 2. 1 7. 1

C art p ol e
S r ( %) 8 1. 6 8 4 9 0. 4 9 9 9 9 9 8. 6

e 1 0 6. 1 7 4. 7 8 4. 8 2 8. 8 2 9 2 7. 7
L 3 5 9. 7 3 0 3. 9 - - 1 2 6. 1 7 2. 5

T A B L E I. C o m p aris o n of C O C K T A I L wit h b as eli n es. S a is t h e s af e
c o ntr ol r at e wit h o ut att a c ks or m e as ur e m e nt n ois es t o t h e s yst e m
st at e y et, e is t h e c o ntr ol e n er g y c o ns u m pti o n, a n d L is t h e Li ps c hit z
c o nst a nt. T h e b as eli n es i n cl u d e κ 1 o nl y , κ 2 o nl y , s wit c hi n g a d a p-
t ati o n m et h o d A S , i nt er m e di at e mi x e d c o ntr oll er A W aft er a d a pti v e
mi xi n g i n C O C K T A I L ( n o distill ati o n), a n d dir e ct distill ati o n r es ult
κ D fr o m A W ( n o c o nsi d er ati o n of r o b ust n ess). κ 2 i n t h e 3 D s yst e m
is a p ol y n o mi al c o ntr oll er [ 2 5] a n d h as a v er y s m all L . T h e Li ps c hit z
c o nst a nt f or A S a n d A W c a n n ot b e m e as ur e d a n d t h us ar e d e n ot e d
as ’-’. We c a n s e e t h e si g ni fi c a nt i m pr o v e m e nt fr o m o ur a p pr o a c h.

u ( t) ∈ U = [ − 1 0 , 1 0] , a n d T = 1 0 0 . A s a m pli n g p eri o d τ = 0 .0 5
is us e d t o dis cr eti z e t h e or di n ar y diff er e nti al e q u ati o ns ( O D Es) i nt o
a dis cr et e s yst e m.

3) T h e c art p ol e s yst e m is d es cri b e d as






s 1 ( t + 1 ) = s 1 ( t) + τ s 2 ( t)

s 2 ( t + 1 ) = s 2 ( t) + τ s a c c

s 3 ( t + 1 ) = s 3 ( t) + τ s 4 ( t)

s 4 ( t + 1 ) = s 4 ( t) + τ θ a c c






ψ =
u + m p l s24 si n s 3

m t

θ a c c =
( g si n s 3 − c o s s 3 ψ ) m t

l( 1 .3 3 3 − m p ( c o s s 3 ) 2 )

s a c c =
ψ − m p l c o s s 3 θ a c c

m t
wit h m c = 1 , mp = 0 .1 , mt = 1 .1 , g = 9 .8 , l = 1 , τ = 0 .0 2 ,

T = 2 0 0 a n d s = ( s 1 , s2 , s3 , s4 ) . X = { s | s 1 ∈ [− 2 .4 , 2 .4] , s3 ∈
[− 0 .2 0 9 , 0 .2 0 9] } a n d X 0 = [ − 0 .2 , 0 .2] 4 (X 0 ⊂ X f or f urt h er
r e a c h a bilit y a n al ysis).

I n o ur t esti n g f or e a c h e x a m pl e, w e r a n d o ml y s a m pl e 5 0 0 i niti al
s yst e m st at es fr o m X 0 , a n d c o m p ar e t h e r es ults fr o m o ur CO C K T A I L

fr a m e w or k a n d ot h er b as eli n es. T h e c o m p aris o n o n c o ntr ol r o b ust n ess
a n d e n er g y ef fi ci e n c y is b as e d o n si m ul ati o ns wit hi n a P yt h o n
e n vir o n m e nt t h at w e d e v el o p e d. T h e f urt h er a n al ysis o n v eri fi a bilit y,
wit h s af et y c o nsi d er ati o n, is d o n e vi a f or m al a n al ysis as o utli n e d i n
S e cti o n III- C.

Eff e cti v e n ess of o u r a p p r o a c h o v e r b as eli n es: We c o m p ar e t h e
f oll o wi n g m et h o ds t o d e m o nstr at e t h e eff e cti v e n ess of o ur a p pr o a c h:
1) usi n g a si n gl e c o ntr ol e x p ert, e. g., κ 1 o nl y or κ 2 o nl y ; 2) a st at e- of-
t h e- art s wit c hi n g a d a pt ati o n c o ntr ol m et h o d fr o m [ 4], d e n ot e d as A S ;
3) t h e i nt er m e di at e mi x e d c o ntr oll e d d esi g n (i. e., b ef or e distill ati o n)
i n CO C K T A I L , d e n ot e d as A W ; 4) t h e dir e ct distill ati o n r es ult fr o m
A W wit h o ut a n y a d v ers ari al tr ai ni n g a n d r e g ul ati o n, d e n ot e d as κ D ;
a n d 5) t h e r o b ust distill ati o n r es ult fr o m A W , w hi c h is w h at o ur
C O C K T A I L e v e nt u all y pr o d u c es, d e n ot e d as κ ∗ .

T h e c o m p aris o n r es ults ar e s h o w n i n Ta bl e I. We c a n s e e t h at
c o m p ar e d wit h κ 1 , κ 2 a n d A S (si n gl e e x p ert or s wit c hi n g a d a pt ati o n
m et h o d), κ ∗ o bt ai n e d fr o m o ur C O C K T A I L fr a m e w or k pr o vi d es
si g ni fi c a nt i m pr o v e m e nt o n t h e s af e c o ntr ol r at e ( wit h o ut att a c ks
or m e as ur e m e nt n ois es t o t h e s yst e m st at e y et) a n d c o ntr ol e n er g y
ef fi ci e n c y. C o m p ar e d wit h t h e i nt er m e di at e mi x e d c o ntr oll er d esi g n
A W a n d t h e dir e ct distill ati o n r es ult κ D , κ ∗ is e asi er t o v erif y wit h
t h e s m all er Li ps c hit z c o nst a nt ( m or e a b o ut t his l at er; n ot e t h at t h e
mi x e d c o ntr oll er d esi g n c a n n ot b e v eri fi e d wit h c urr e nt t o ols a n d d o es

U n d er a d v ers ari al att a c ks Wit h m e as ur e m e nt n ois es
Os cill at or κ D κ ∗ κ D κ ∗

S r ( %) 9 5. 2 9 8. 8 9 8. 4 9 8. 8
e 8 3 7. 3 1 3 2. 1 3 8 3. 8 9 8. 9

3 D s yst e m κ D κ ∗ κ D κ ∗

S r ( %) 9 1. 6 9 8. 2 9 6 9 8. 8
e 1 4 9. 2 2 5. 7 6 1. 3 1 5. 5

C art p ol e κ D κ ∗ κ D κ ∗

S r ( %) 9 2. 2 9 6 9 6. 4 9 8. 4
e 3 0. 6 2 9. 1 3 1. 1 2 8. 1

T A B L E II. C o m p aris o n of κ ∗ a n d κ D u n d er o pti mi z e d a d v ers ari al
att a c ks a n d m e as ur e m e nt n ois es t o t h e s yst e m st at e. κ ∗ (C O C K T A I L )
s h o ws str o n g er r o b ust n ess, i n di c ati n g t h e ef fi c a c y of o ur r o b ust distil-
l ati o n d esi g n. N ot e t h at w hil e n ot s h o w n i n t h e t a bl e, A W p erf or ms
sli g htl y w ors e t h a n κ ∗ i n e n er g y ef fi ci e n c y, a n d ot h er b as eli n es
p erf or m m u c h w ors e i n b ot h r o b ust n ess a n d e n er g y ef fi ci e n c y.

n ot h a v e ass o ci at e d Li ps hit z c o nst a nt). O ur a p pr o a c h als o h as s m all er
c o ntr ol e n er g y c o ns u m pti o n t h a n A W a n d κ D .

F u rt h e r a n al ysis o n r o b ust n ess a n d v e ri fi a bilit y: We t h e n f ur-
t h er t est e d t h e eff e cti v e n ess of o ur a p pr o a c h i n i m pr o vi n g c o ntr ol
r o b ust n ess a n d s yst e m v eri fi a bilit y, c o nsi d eri n g t h e c as es w h er e t h e
s yst e m e n c o u nt ers a d v ers ari al att a c ks or m e as ur e m e nt n ois es t o t h e
s yst e m st at e. S p e ci fi c all y, t h e m e as ur e m e nt n ois e is a r a n d o m v ari a bl e
s a m pl e d fr o m a n u nif or m distri b uti o n a n d a d d e d t o t h e s yst e m st at e
s ( t) at e v er y st e p. T h e a d v ers ari al att a c k is g e n er at e d b y F G S M wit h
a b o u n d t h at is t h e s a m e or l ar g er t h a n t h e o n e ass u m e d i n o ur r o b ust
distill ati o n. I n t h e e x p eri m e nts, t h e n ois es a n d t h e att a c ks ar e b et w e e n
1 0 % − 1 5 % of t h e s yst e m st at e v al u e b o u n d. Ta bl e II s h o ws t h e
r es ult c o m p aris o n b et w e e n o ur a p pr o a c h ( g e n er ati n g κ ∗ ) a n d dir e ct
distill ati o n ( g e n er ati n g κ D ). We c a n s e e t h at o ur a p pr o a c h b e n e fits
fr o m t h e pr o b a bilisti c a d v ers ari al tr ai ni n g a n d r o b ust distill ati o n
d esi g n, pr o d u ci n g r es ults t h at ar e m or e r o b ust wit h r es p e ct t o t h e
a d v ers ari al att a c ks a n d m e as ur e m e nt n ois es, as w ell as h a v e s m all er
e n er g y c o ns u m pti o n. T h e c o ntr ol si g n al ( a n d its e n er g y c o ns u m pti o n)
fr o m o ur r es ults is als o m or e st a bl e u n d er att a c ks, w hi c h is vis u ali z e d
i n Fi g. 2. F urt h er m or e, w e c o n d u ct e d f or m al a n al ysis of t h e s yst e m
pr o p erti es (i. e., c o m p uti n g i n v ari a nt s et a n d c o n d u cti n g r e a c h a bilit y
a n al ysis f or s af et y v eri fi c ati o n) f or t h e os cill at or a n d t h e 3 D s yst e m,
r es p e cti v el y, as s h o w n i n Fi gs. 3 a n d 4. T h e r es ults d e m o nstr at e t h e
eff e cti v e n ess of o ur C O C K T A I L i n r e d u ci n g v eri fi c ati o n ti m e.

V. C O N C L U S I O N

I n t his p a p er, w e pr o p os e a n o v el fr a m e w or k C O C K T A I L t o a ut o-
m ati c all y l e ar n a n i m pr o v e d n e ur al n et w or k c o ntr oll er fr o m m ulti pl e
c o ntr ol e x p erts f or L E- C P Ss. O ur a p pr o a c h first l e ar ns a s yst e m-l e v el
a d a pti v e mi xi n g str at e g y wit h o pti m al w ei g hts d y n a mi c all y assi g n e d
t o t h e e x p erts usi n g r ei nf or c e m e nt l e ar ni n g, a n d t h e n s y nt h esi z e
a si n gl e st u d e nt n e ur al n et w or k c o ntr oll er wit h r o b ust distill ati o n.
E x p eri m e nts d e m o nstr at e t h at o ur a p pr o a c h c a n si g ni fi c a ntl y i m pr o v e
s yst e m c o ntr ol r o b ust n ess, c o ntr ol e n er g y ef fi ci e n c y, a n d v eri fi a bilit y.
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[ 2 3] X. C h e n, E. Á br a h á m, a n d S. S a n k ar a n ar a y a n a n, “ Fl o w *: A n a n al y z er
f or n o n-li n e ar h y bri d s yst e ms,” i n C A V . S pri n g er, 2 0 1 3, p p. 2 5 8 – 2 6 3.

[ 2 4] R. I v a n o v, J. Wei m er, R. Al ur, G. J. P a p p as, a n d I. L e e, “ Verisi g:
v erif yi n g s af et y pr o p erti es of h y bri d s yst e ms wit h n e ur al n et w or k
c o ntr oll ers,” i n Pr o c e e di n gs of t h e 2 2 n d A C M I nt er n ati o n al C o nf er e n c e
o n H y bri d S yst e ms: C o m p ut ati o n a n d C o ntr ol , 2 0 1 9, p p. 1 6 9 – 1 7 8.

[ 2 5] M. A. B. S assi, E. B art o c ci, a n d S. S a n k ar a n ar a y a n a n, “ A li n e ar
pr o gr a m mi n g- b as e d it er ati v e a p pr o a c h t o st a bili zi n g p ol y n o mi al d y n a m-
i cs,” I F A C- P a p ers O n Li n e, v ol. 5 0, n o. 1, p p. 1 0 4 6 2 – 1 0 4 6 9, 2 0 1 7.


	Introduction
	Problem Formulation
	Our Cocktail Framework
	RL-based Adaptive Mixing of Multiple Experts
	Robust Distillation to a Single Neural Network Controller
	Verification of the Neural Network based Controllers

	Experimental Results
	Conclusion
	References

