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Learning Log-Determinant Divergences for
Positive Definite Matrices

Anoop Cherian* Panagiotis Stanitsas* Jue Wang Mehrtash Harandi
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Abstract—Representations in the form of Symmetric Positive Definite (SPD) matrices have been popularized in a variety of visual
learning applications due to their demonstrated ability to capture rich second-order statistics of visual data. There exist several
similarity measures for comparing SPD matrices with documented benefits. However, selecting an appropriate measure for a given
problem remains a challenge and in most cases, is the result of a trial-and-error process. In this paper, we propose to learn similarity
measures in a data-driven manner. To this end, we capitalize on the αβ-log-det divergence, which is a meta-divergence parametrized
by scalars α and β, subsuming a wide family of popular information divergences on SPD matrices for distinct and discrete values of
these parameters. Our key idea is to cast these parameters in a continuum and learn them from data. We systematically extend this
idea to learn vector-valued parameters, thereby increasing the expressiveness of the underlying non-linear measure. We conjoin the
divergence learning problem with several standard tasks in machine learning, including supervised discriminative dictionary learning
and unsupervised SPD matrix clustering. We present Riemannian gradient descent schemes for optimizing our formulations efficiently,
and show the usefulness of our method on eight standard computer vision tasks.

Index Terms—region covariance matrices, positive definite matrices, log-det divergence, action recognition, texture recognition.
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1 INTRODUCTION
The trail of Symmetric Positive Definite (SPD) matrices in com-
puter vision applications is becoming more prominent in the recent
years. Examples include, flexible image representations derived
in the form of Region CoVariance Descriptors (RCoVDs) [1]
capable of fusing various modalities while compactly capturing
their second order statistics. Popular deep learning architectures
have also benefited by the use of SPD matrices employing them
as second-order pooling operators [2], [3], [4], [5]. In an effort
to harness the representational power of SPD matrices, the newly
devised domain of geometric deep learning has produced powerful
machinery for addressing inference problems in a Riemannian
deep learning setup [5]. More classical approaches promote the use
of SPD matrices as kernel matrices of high-dimensional data [6],
points in diffusion MRI [7], and diffusion tensors [8].
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SPD matrices belong to an open cone in the Euclidean space
as a result of their positive definiteness property, and thus a natural
way to compare two SPD matrices is the standard Euclidean
distance. However, it is often found practically that using a Eu-
clidean geometry leads to sub-optimal performance. A motivating
application in this regard is perhaps the problem of computing
the barycenter of a set of SPD matrices [9], [10]; a common task
arising in ensemble learning of Gaussian models [11] or when
interpolating DT-MRI points (which are SPD matrices) [7], [12].
It is often found that using a Euclidean geometry in these applica-
tions lead to unrealistic barycenters (often producing bloated SPD
matrices, which may be interpreted as an overestimated covariance
in Gaussian models). However, enforcing a non-linear (often
Riemannian) geometry on the SPD cone using a suitable non-
linear measure avoids such pitfalls, leading to practical benefits,
as demonstrated in several successful applications [2], [3], [13],
[14], [15], [16].

Interestingly, SPD matrices constitute a very rich class of
mathematical objects that appear in several disciplines, and for
which a wide variety of similarity measures and geometries have
been associated with. Notable representatives of such measures
include: (i) the Affine Invariant Riemannian Metric (AIRM) which
is a geodesic distance induced by their natural Riemannian geom-
etry [7], (ii) the Jensen-Bregman [17], [18], [19] and Burg [20]
divergences which result from information geometry perspective
and, (iii) the Jeffreys KL divergence (KLDM) using relative en-
tropy [21], among several others such as the Bures distance used in
quantum information theory [22], Bures-Wasserstein distance [23]
recently proposed in optimal transport theory, the popular log-
Euclidean Riemannian metric used in diffusion MRI [12] and its
kernel analogues such as the Hilbert-Schmidt metric [24]. Given
such an elaborate choice of potential measures, it is overwhelming
to consider choosing an appropriate similarity for a given problem.

In this paper, we attempt to tackle the challenge of choosing
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the similarity measure using data-driven approach by directly
learning the divergence from a training set of SPD matrices.
While, one may resort to standard metric learning [25] ideas or
their SPD matrix variants [13], [26], [27], [28] in this regard,
we propose to use the recently introduced αβ-Logdet Divergence
(ABLD) [29] for this purpose. ABLD is a meta-divergence on
SPD matrices, parametrized by scalars α and β, and which is
shown to be exactly equal to some of the popular divergences
and metrics listed above for specific values of these scalars.
For example, ABLD converges to AIRM as α, β → 0 and is
equal to Burg divergence when α = β = 1, among others
(see Sec. 3). This unifying result suggests that we could learn
to choose an appropriate similarity measure in a data-driven way
by learning α and β. In contrast to standard metric learning
approaches, our proposed learning setup not only allows learning
a suitable measure from a continuum of log-det divergences, but
also guarantees that standard measures are included in the learning
landscape.

While, learning ABLD is our primary motivation, we go
far beyond this goal and generalizes our learning setup in two
predominant ways, (i) a dictionary learning and divergence learn-
ing setting for supervised regression and classification, and (ii)
divergence learning combined with unsupervised clustering in a
K-Means setting. Specifically, instead of learning the parameters
of a single ABLD, we propose to learn a family of ABLDs, each
parametrized separately, via learning a vector of parameter pairs
under the assumption that there might be distinct SPD matrix
subspaces (clusters or classes) in the given data that may adhere to
their own divergences. We further parameterize the origin in these
subspaces via learning them; our full setup we call Information
Divergence and Dictionary Learning (IDDL), where each origin
forms an atom in an SPD matrix dictionary. Using this setup,
we propose SPD data regression and classification models by
embedding a given SPD matrix into a vector; each dimension of
this vector capturing its similarity to a respective dictionary atom
via its learned divergence. We combine IDDL with i) a ridge-
regression objective, and ii) using a structured-SVM objective. Our
full model (including IDDL and classifier) are learned end-to-end
in a Riemannian alternating minimization setup. For clustering, we
derive a scheme for K-Means on SPD matrices while addressing
the problem of finding optimal values of α and β. This effort
yields a variant of K-Means, which we call αβ-KMeans.

To evaluate our frameworks, we present experiments on an
extensive set of computer vision applications, including texture
recognition, activity recognition, 3D object, and cancerous tissue
recognition, on a multitude of datasets with different levels of
data complexities. We supplement our experimental comparisons
with an equally extensive ablation study of our schemes under
various settings. Our results demonstrate the benefits of joint learn-
ing by achieving state-of-the-art performance against competing
techniques, including the recent sparse coding, Riemannian metric
learning, and kernel coding schemes.

This paper extends our previous works on this topic [30],
[31], which consider the IDDL and AB-KMeans clustering setups
separately. In this paper, we not only unifies these setups, but also
explores more richer classification settings via a structured-SVM
formulation, which is jointly learned with our IDDL framework.
We also provide additional technical details of our optimization.
Extensive discussion is provided in the form of a detailed ablation
study discussing all the different elements of our scheme.

2 RELATED WORK

The αβ-logdet divergence is a matrix generalization of the
well-known αβ-divergence [32] that computes the (a)symmetric
(dis)similarity between two finite positive measures (data den-
sities). As the name implies, αβ-divergence is a unification of
the so-called α-family of divergences [33] (that includes popular
measures such as the KL-divergence, Jensen-Shannon divergence,
and the chi-square divergence) and the β-family [34] (including
the squared Euclidean distance and the Itakura Saito distance).
Against several standard measures for computing similarities, both
α and β divergences are known to lead to solutions that are robust
to outliers and additive noise [35], thereby improving application
performance. They have been used in several statistical learning
applications including non-negative matrix factorization [36],
[37], [38], nearest neighbor embedding [39], and blind-source
separation [40].

A class of methods with similarities to our formulation are
metric learning schemes on SPD matrices. One popular technique
is the manifold-manifold embedding of large SPD matrices into
a lower-dimensional SPD space in a discriminative setting [13].
Log-Euclidean metric learning has also been proposed for this
embedding in [27], [41]. While, we also learn a metric in a dis-
criminative setup, ours is different in that we learn an information
divergence. In Thiyam et al. [42], ABLD is proposed replacing
symmetric KL divergence in better characterizing the learning
of a decision hyperplane for BCI applications. In contrast, we
propose to embed the data matrices as vectors, each dimension of
these vectors learning a different ABLD, thus leading to a richer
representation of the input matrix. More recently, extensions of
ABLD to an infinite dimensional Hilbert space setting is explored
in [43]. However, our work is complementary to this effort, and
explores a finite-dimensional setting.

Vectorial embedding of SPD matrices has been investigated
using disparate formulations for computer vision applications. As
alluded to earlier, the log-Euclidean projection [12] is a common
way to achieve this, where an SPD matrix is isomorphically
mapped to the Euclidean space of symmetric matrices using the
matrix logarithm. Popular sparse coding schemes have been ex-
tended to SPD matrices in [44], [45], [46] using SPD dictionaries,
where the resulting sparse vector is assumed Euclidean. Another
popular way to handle the non-linear geometry of SPD matrices
is to resort to kernel schemes by embedding the matrices in an
infinite dimensional Hilbert space which is assumed to be linear
[6], [47], [48]. In all these methods, the underlying similarity
measure is fixed and is usually chosen to be one among the popular
αβ-logdet divergences or the log-Euclidean metric.

Several unsupervised schemes for clustering SPD matrices
have also been proposed in the relevant literature. Commonly used
schemes capitalize on conventional clustering machinery after
being modified towards abiding to the non-linear geometry of SPD
matrices. In this direction, two extensions of the popular KMeans
have been derived admitting the manifold of the SPD matrices.
In the first variant of KMeans, centroids are computed using the
Karcher means algorithm [10] and the affine-invariant Riemannian
metric [7]. Substituting the similarity computation based on the
AIRM by the log-Euclidean metric [12], yields a second variant
of KMeans for SPD matrices termed LE-KMeans. Using the ma-
trix logarithm operation, which entails a diffeomorphic mapping
of an SPD matrix onto its tangent space, allows for distance
computations in a Euclidean manner (as this tangent space is
Euclidean). In that way, centroids are computed by averaging the
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(α, β) ABLD Divergence

(α, β)→ 0
∥∥∥LogX− 1

2 Y X− 1
2

∥∥∥2
F

Squared Affine Invariant Riemannian Metric (AIRM) [7]

α = β = ± 1
2

4
(
log det X+Y

2
− 1

2
log detXY

)
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− d Jeffreys KL Divergence1 [21]

α = 1, β = 1 Tr
(
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−1
)
− log detXY

−1− d Burg Matrix Divergence [20]

TABLE 1: ABLD and its connections to popular divergences.

samples’ vectorial representations in the tangent space. Additional
variants of KMeans can be derived by capitalizing on the different
similarity measures for SPD matrices.

A second family of clustering schemes for SPD matrices takes
advantage of Euclidean embeddings in the form of similarity ma-
trices computed using suitable measures. In that direction, Spectral
clustering schemes have been developed for SPD matrices by
computing suitable Mercer kernels on the data using appropriate
distances (e.g., LE). Sparse subspace clustering schemes have
also been derived for SPD matrices via their embedding into a
Reproducing Kernel Hilbert Space [49], [50]. Such schemes come
at the expense of additional memory requirements involved with
computing the eigen spectrum of the computed kernel.

In addition, non-parametric schemes for clustering SPD matri-
ces have been derived in the form of dimensionality reduction
on Riemannian manifolds [51], using Locally Linear Embed-
dings [52], or capitalizing on the Laplacian eigenmaps [53]. In
the family of non-parametric clustering algorithms, a Bayesian
framework for SPD matrices is formulated using the Dirichlet Pro-
cess [54]. Finally, variants of the Mean shift clustering algorithm
and Kernel Density Estimation for SPD matrices have also been
derived in [55] and [56] respectively.

In contrast to all these methods, to the best of our knowl-
edge, this is the first unified attempt to bridge the learning of
information divergences with dictionary learning and clustering
objectives. Even though automatic selection of the parameters of
αβ-divergence is investigated in [57], [58] they deal solely with
scalar density functions in a maximum-likelihood setup and do not
consider the optimization of α and β jointly.

Notation: Following standard practice, we use upper case for
matrices (such as X), lower-bold case for vectors x, and lower
case for scalars x. Further, Sd++ is used to denote the cone of
d × d SPD matrices. We use B to denote a 3D tensor each slice
of which is an SPD matrix of size d × d. Further, we use Id to
denote the d × d identity matrix, Log for the matrix logarithm,
and diag for the diagonalization operator. In addition, we use C
to denote a 3D tensor each slice of which corresponds to an SPD
centroid of size d × d for the proposed clustering setup. Finally,
we use Π = {π1, ..., πk} to denote a clustering of data into k
partitions; πi is the i-th partition and comprises a subset of the
dataset assigned to this cluster.

3 BACKGROUND

In this section, we setup the mathematical preliminaries necessary
to elucidate our contributions.

3.1 Alpha-Beta-Log-Determinant Divergence (ABLD)
Introduced in Cichocki et al. [29], the αβ-log-det divergence is
a result of an effort to extend the log-det divergences, existing
in various forms [7], [17], [21], and finding connections between
them. Below, we review this meta-divergence, its connections to

α

β

1

-1

1

-1

Burg [20]

AIRM [7] Jeffrey’s [21]

JBLD [17]

JBLD [17]

Jeffrey’s [21]

Fig. 1: An illustration of ABLD and its connections to popular
divergences on SPD matrices.

other divergences, and some of its properties that will be useful in
our formulations.
Definition 1 (ABLD [29]). For X,Y ∈ Sd++, the αβ-log-det

divergence is defined as:

D(α,β)(X‖Y )=
1

αβ
log det

(
α(XY −1)β+β(XY −1)−α

α+ β

)
,

(1)
α 6= 0, β 6= 0 and α+ β 6= 0. (2)

It can be shown that ABLD depends only on the generalized
eigenvalues of X and Y [29]. Suppose λi denotes the i-th
eigenvalue of XY −1. Then under constraints defined in (2), we
can rewrite (1) as:

D(α,β)(X‖Y)=
1

αβ

d∑
i=1

log
(
αλβi +βλ−αi

)
−d log (α+β). (3)

This formulation will come handy when deriving the gradient up-
dates for α and β in the sequel. As alluded to earlier, a hallmark of
ABLD is that it unifies several popular distance measures on SPD
matrices that one commonly encounters in machine learning and
vision applications. In Table 1, we provide connections of ABLD
with popular similarity measures on SPD matrices. A graphical
illustration of the landscape of these measures is provided in
Figure 1 for various values of α and β.

3.2 ABLD Properties
Avoiding Degeneracy: An important observation regarding the
design of optimization algorithms on ABLD is that the quantity
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inside the log det term has to be positive definite. When both α, β
are simultaneously positive or negative, this quantity is positive-
definite. However, when α and β have different signs, the log det
term may become degenerate, the necessary conditions to avoid
which are stipulated by the following theorem.
Theorem 1. For X,Y ∈ Sd++, if λi is the i-th eigenvalue of

XY −1, then D(α,β)(X ‖ Y ) ≥ 0 only if

λi >

∣∣∣∣αβ
∣∣∣∣ 1
α+β

, for α > 0 and β < 0, or (4)

λi <

∣∣∣∣βα
∣∣∣∣ 1
α+β

, for α < 0 and β > 0,∀i = 1, 2, · · · , d. (5)

Proof See [29].

As the algorithms we introduce in the sequel use sets of input
SPD matrices, it may be computationally challenging to impose
the restrictions in Theorem 1 on the learned α and β for every
matrix pair. Thus, we restrict our scope in this paper to the form of
ABLD when both α and β have the same sign, thereby avoiding
the quantity inside log det to become indefinite. We make this
assumption in our formulations in Section 4.
Affine Invariance: For a non-singular matrix A ∈ Rd×d, ABLD
is invariant under congruent transformations:

D(α,β)(X ‖ Y ) = D(α,β)(AXA> ‖ AY A>). (6)

This is an important property that makes this divergence useful in
a variety of applications, e.g., diffusion MRI [59], where affine-
invariance allows the similarity to be robust to anatomical changes
in the subjects or to configurations of the image acquisition
hardware. Assuming affine invariance also helps derive a metric
in a Riemmanian symmetric space; this metric is often found
to be better in restoration, interpolation, and filtering of DTMRI
images [7].
Identity of Indiscernibles: For any α, β, it holds that

D(α,β)(X ‖ Y ) = 0 if and only if X = Y. (7)

Scaling Invariance: For any c > 0, it is easy to show that

D(α,β)(cX ‖ cY ) = D(α,β)(X ‖ Y ). (8)

Smoothness of α, β: Assuming α, β have the same sign, except at
the origin (α = β = 0), ABLD is smooth everywhere with respect
to α and β, thus allowing us to develop Newton-type algorithms
on them. Due to the discontinuity at the origin, we ought to design
algorithms specifically addressing this particular case.
Dual Symmetry: This property allows us to extend results derived
for the case of α to the one on β later.

D(α,β)(X ‖ Y ) = D(β,α)(Y ‖ X). (9)

4 PROPOSED METHOD
We start by introducing our Information Divergence and Dictio-
nary Learning (IDDL) problem setup in which a discriminative
divergence learning framework is combined with a dictionary
learning setting. Specifically, instead of using a single divergence
measure on the SPD matrices, we present a very general setting
in which we assume there are SPD subspaces in the data, which
may be characterized via learning separate ABLD measures, each
parametrized distinctly. We further generalize this model into a
bag-of-words setting, by combining our multi-divergence learning
problem with an SPD dictionary learning problem, where we

X

Bi X

Bk

Bj

X

Fig. 2: A schematic illustration of our IDDL scheme. From an
infinite set of potential geometries, our goal is to learn multiple
geometries (parameterized by (α, β)) and representative dictionary
atoms for each geometry (represented by B’s), such that a given SPD
data matrix X can be embedded into a similarity vector VX , each
dimension of which captures the divergence of X to the Bs using the
respective measure. We use VX for classification.

also assume that each divergence also has its own SPD subspace
origin with respect to which the divergence is measured. We
include our IDDL framework within a joint classification setup.
We explore two variants of the classification model: i) using a
ridge-regression loss, and ii) using a structured SVM loss. Next,
we present divergence learning within a K-Means clustering setup,
where alongside learning the ABLD parameters, we also learn the
SPD cluster centroids.

4.1 Information Divergence & Dictionary Learning
Suppose we are given a dataset of SPD matrices X =
{X1, X2, · · · , XN}, each Xi ∈ Sd++ and their associated class
labels yi ∈ L = {1, 2, · · · , L}. Our goal is to amalgamate three
learning pursuits, namely, (i) learn a dictionary B ∈ Sd++×n,
a product of n SPD manifolds, (ii) learn an ABLD on each
dictionary atom to best represent the given data for the task of
classification, and (iii) learn a discriminative objective function
on the encoded SPD matrices (in terms of B and the respective
ABLDs) for the purpose of classification. This is the most general
form of our classification model. For example, if we assume
the dictionary atoms are all identity matrices, then our setting is
basically a multi-divergence learning setting, while if we assume
n = 1, we have a single divergence learning setup. We formalize
the three aforementioned objectives in the formulation presented
below.

IDDL := min
B>0,W,
α>0,β>0

N∑
i=1

f(vi, yi;W )

subject to vki = D(αk,βk)(Xi ‖ Bk), (10)

where the k-th dictionary atom in B is denoted by Bk, the vector
vi ∈ Rn denotes the encoding of Xi in terms of the dictionary,
and vki is the k-th dimension of this encoding. Specifically, the
k-th dimension of vi captures the distance of Xi to the dictionary
atom Bk via the respective divergence D(αk,βk)(Xi ‖ Bk).
Note that, in our formulations, we assume α, β are non-negative
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to avoid degenerate solutions during optimization caused by the
constraint in (2). Instead, we consider the positive and negative
orthants separately, and design specialized descent for the case
when α = β = 0, and select the parameter configuration that
leads to the smallest loss. The function f in (10), parametrized by
W ∈ RL×n, learns a classifier on vi according to the provided
class labels yi. Figure 2 illustrates our classification model. For
the classifier, we consider two popular loss functions, (i) a ridge
regression loss, which has a closed form update as we show below,
and (ii) a structured-SVM loss which we optimize in an iterative
manner.

4.1.1 Ridge Regression Loss
Our first choice for f is a simple ridge regression objective. Let
hi ∈ {0, 1}L be a one-off encoding of class labels (i.e., hyii = 1,
zero everywhere else). Then, we define f1 as follows,

f1(vi, yi;W ) =
1

2
‖hi −Wvi‖2 + γ ‖W‖2F , (11)

where γ is a regularization parameter.

4.1.2 Structured-SVM Loss
A more richer choice for f in (10) is perhaps to consider a
max-margin hinge loss (similar to structured-SVM). Letting ∆
denote a control variable on the margins of the classifiers and let
g(vi,W ) = Wvi + b, for a bias b ∈ RL×1, we define f2 as:

f2(vi, yi;W ) =
∑
l 6=yi

(max (0, g(vi,W )l − g(vi,W )yi + ∆))

+ γ||W ||2F , (12)

where γ is a regularization parameter, and g(vi,W )yi represent
the yi element of the vector g. For simplifying our notation, in
the sequel, for the case of structured-SVM loss, we assume W ∈
RL+1×n, where the last row of W captures the bias b. Similarly,
we augment v to have n+1 dimensions, where the last dimension
is a constant with value one.

4.2 Information Divergence & Clustering
In the clustering setup, our objective is to partition a set of SPD
matrices X = {X1,X2, · · · ,XN} into k partitions, for a given
k. Let Π = {π1, · · · , πk} denote a partitioning of X where
πi is the set of samples assigned to the i-th cluster and let Ci

be the respective cluster centroid. We cast the joint information
divergence learning and clustering (IDC) problem as:

IDC := min
C,Π,α,β>0

f3 (Π,X ;α, β) + Ω(α, β), (13)

where our objective jointly learns a partition of data points Π, the
cluster centroids C, and the divergence scalar parameters α, β.
The function Ω(α, β) = µ

(
α2 + β2

)
is a regularization term

on the parameters α and β, and µ is a regularization constant.
Substituting the standard KMeans formulation in (13) and using
ABLD as the similarity measure, we have the following definition
for f3:

f3 (Π,X ;α, β) =
∑
π∈Π

∑
i∈π

(
D(α,β)(Xi ‖ Cπ)

)
. (14)

5 EFFICIENT OPTIMIZATION
In this section, we briefly review the necessary Riemannian
optimization machinery that we resort to for solving our objectives
formulated in the last section.

5.1 Optimization on Riemannian Manifolds

As was shown in Section 4, we need to solve a non-convex
constrained optimization problem in the form:

minimize L(B)

s.t. B ∈ Sd++ . (15)

Classical optimization methods generally turn a constrained
problem into a sequence of unconstrained problems for which
unconstrained techniques can be applied. In contrast, in this paper
we make use of the optimization on Riemannian manifolds to min-
imize (15). This is motivated by recent advances in Riemannian
optimization techniques where benefits of exploiting geometry
over standard constrained optimization are shown [60]. As a
consequence, these techniques have become increasingly popular
in diverse application domains [6], [44].

A detailed discussion of Riemannian optimization goes beyond
the scope of this paper, and we refer the interested reader to [60].
However, the knowledge of some basic concepts will be useful
in the remainder of this paper. As such, here, we briefly consider
the case of Riemannian Conjugate Gradient method (RCG), our
choice when the empirical study of this work is considered. First,
we formally define the SPD manifold.
Definition 2 (The SPD Manifold). The set of (d×d) dimensional

real, SPD matrices endowed with the Affine Invariant Rieman-
nian Metric (AIRM) [7] forms the SPD manifold Sd++.

Sp++ , {X ∈ Rd×d : vTXv > 0, ∀v ∈ Rd−{0d}} . (16)

To minimize (15), RCG starts from an initial solution B(0)

and improves its solution using the update rule

B(t+1) = τB(t)

(
P (t)

)
, (17)

where P (t) identifies a search direction and τB(·) : TBSd++ →
Sd++ is a retraction. The retraction serves to identify the new
solution along the geodesic defined by the search direction P (t).
In RCG, it is guaranteed that the new solution obtained by Eq. (17)
is on Sd++ and has a lower objective. The search direction P (t) ∈
TB(t)Sd++ is obtained by

P (t) = −grad L(B(t)) + η(t)π(P (t−1), B(t−1), B(t)) . (18)

Here, η(t) can be thought of as a variable learning rate, ob-
tained via techniques such as Fletcher-Reeves [60]. Furthermore,
grad L(B) is the Riemannian gradient of the objective function
at B and π(P,X, Y ) denotes the parallel transport of P from TX
to TY . In Table 2, we define the mathematical entities required
to perform RCG on the SPD manifold. Note that computing the
standard Euclidean gradient of the function L, denoted by∇∗(L),
is the only requirement to perform RCG on Sd++.

Sd
++

Riemannian gradient grad L(B) = Bsym
(
∇B(L)

)
B

Retraction. τB(ξ) = B
1
2 Exp(B− 1

2 ξB− 1
2 )B

1
2

Parallel Transport. π(P,X, Y ) = ZPZT

TABLE 2: Riemannian tools to perform RCG on Sd
++. Here,

sym(X) = 1
2
(X +XT ), Exp(·) denotes the matrix exponential and

Z = (Y X−1)
1
2 .
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5.2 Learning ABLDs via Block Coordinate Descent
We propose to use a block-coordinate descent (BCD) scheme to
optimize our objectives in (10) and (14). In this scheme, each
variable is updated alternately, while fixing others. We use the
Riemannian conjugate gradient (RCG) algorithm [60] for opti-
mizing over the dictionary atoms in IDDL (and cluster centroids
in IDC). As our objective is non-convex in its variables (except
for W ), convergence of BCD iterations to a global minima is not
guaranteed. In Alg. 1 and Alg. 2, we detail out the meta-steps in
our optimization scheme for solving our IDDL objective, while
Alg. 3 details the steps for optimizing our IDC objective. We
initialize the dictionary atoms and the divergence parameters as
described in Section 6.3.

Recall from Section 5.1 that an essential ingredient in RCG
is efficient computations of the Euclidean gradients of the ob-
jective with respect to the variables. In the following, we derive
expressions for these gradients. Note that we assume that the
dictionary atoms (i.e., Bi) to be on an SPD manifold. As the
optimization setup when both α,β are either positive or negative
is essentially the same, in the derivations to follow, we assume α
and β belong to the non-negative orthant of the Euclidean space.
We use the spectral projected gradient (SPG) descent algorithm
[61] for learning α and β. This algorithm uses Barzillai-Borwein
step-size selection in the gradient descent, and projects the iterates
into the non-negative orthant (or to the non-positive orthant if
α,β < 0) to enforce the constraints. Empirically, using SPG is
seen to converge very quickly, as is also observed in [44].

Input: X , H , n
B← log-euc-kmeans(X , n), (α,β)← GridSearch;
repeat

for k = 1 to n do
Bk ← update B(X ,W,α,β, Bk); // use (27)

end
(α,β)← update αβ(X ,W,B,α,β); // use (28)
W ← update W ; // use (25)

until until convergence;
return B,α,β

Algorithm 1: Block-Coordinate Descent for IDDL and
Ridge Regression Loss.

Input: X , H , n
B← log-euc-kmeans(X , n), (α,β)← GridSearch;
repeat

for k = 1 to n do
Bk ← update B(X ,W,α,β, Bk); // use (32)

end
(α,β)← update αβ(X ,W,B,α,β); // use (33)
repeat

W ← update W ; // use (29) and (30)
until until convergence;

until until convergence;
return B,α,β

Algorithm 2: Block-Coordinate Descent for IDDL Struc-
tured SVM Loss.

5.3 Gradients on ABLD
To complete the optimization schemes presented above, we need
the gradients of our objectives with respect to the model param-

Input: X , k
C← log-euc-kmeans(X , n), (α, β)← init(lb, up);
repeat

for z = 1 to k do
Cz ← update C(X ,Π, α, β, Cz); // use (22)

end
(α, β)← update αβ(X ,Π, α, β, Cz); // use (19)
Π← update Π(X , α, β, C); // use (34)

until until convergence;
return C,Π, α, β

Algorithm 3: Overview of Block-Coordinate Descent for
IDC.

eters, which we present now. First, towards optimizing for the
parameters of the divergence, quantities of particular interest are
the derivatives of the ABLD with respect to its parameters α and
β. Second, an equally important quantity for our learning schemes
is the derivative of the ABLD with respect to the dictionary
atoms. Furthermore, we explicitly handle the limiting case for
α = β → 0 via the explicit derivation of the derivative of the
ABLD with respect to its input matrices.

5.3.1 Derivative of ABLD wrt α
Towards computing the derivative of ABLD with respect to its
parameter α, we use the form of the ABLD given in (3) that
involves the generalized eigenvalues of XY −1. Letting θ = α+β
and ν = αβ, for X,Y ∈ Sd++ the derivative has the form:

∇αD(α,β)(X ‖ Y ) =
d∑
i=1

∇α

[
1

ν
log

αλβi + βλ−αi
θ

]

=
1

αν

d∑
i=1

{
αλβi − νλ

−α
i log λi

αλβi + βλ−αi
− α

θ
− log

αλβi + βλ−αi
θ

}
.

(19)

Using the dual symmetry property of ABLD reviewed in (9),
derivative of ABLD with respect to β is straightforward.

5.3.2 Derivative of ABLD wrt Y
Towards deriving the derivative of the ABLD with respect to its
input matrix Y , we use the form of the divergence given in (1). In
that way, letting ρ = α

β and Z = X−1, the derivative of (1) with
respect to matrix Y has the form:

∇YD(α,β)(X ‖ Y ) =
1

ν
∇Ylog det

[
ρ (ZY )

θ
+ Id

]
− 1

β
Y −1.

(20)
The following theorem will come handy when we design

gradients in our dictionary learning setup.
Theorem 2. For A,B ∈ Sd++ and p, q ≥ 0,

∇B log det [p (AB)
q

+ Id] =

pqB−1A−
1
2

(
A

1
2BA

1
2

)q
×
(
Id + p

(
A

1
2BA

1
2

)q)−1

A
1
2 .

Making use of Theorem 2, the derivative described in (20)
becomes:

∇YD(α,β)(X ‖ Y ) = ρθY −1Z−
1
2

(
Z

1
2Y Z

1
2

)θ
×
(
Id + ρ

(
Z

1
2Y Z

1
2

)θ)−1

Z
1
2 − 1

β
Y −1. (21)
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Remark 1. Computing (21) for large datasets can become
overwhelming. A more efficient implementation could be
the following. Say, (U,∆) be the Schur decomposition of
Z

1
2Y Z

1
2 , which is faster to compute than the eigenvalue

decomposition [62] (required for computing Z
1
2 ). With δ =

diag(∆), (21) can be rewritten as:

∇YD(α,β)(X ‖ Y ) = ρθY −1
(
Z−

1
2U
)[

diag

(
δθ

1 + ρδθ

)]
×
(
Z−

1
2U
)
−1− 1

β
Y −1. (22)

Compared to (21), this reduces the number of matrix multipli-
cations from 5 to 3 and matrix inversions from 2 to 1.

5.3.3 Derivative of the ABLD for α = β → 0 wrt Y
As alluded to earlier, ABLD is non-smooth at the origin and we
need to resort to the limit of the divergence, which happens to be
the natural Riemannian metric (AIRM). That is,

D(0,0)(X ‖ Y ) =
∥∥∥Log

(
X−

1
2Y X−

1
2

)∥∥∥2

F
. (23)

Letting P = X−
1
2Y X−

1
2 , the derivative of (23) with respect to

matrix Y is given by:

∇YD(0,0)(X ‖ Y ) = 2X−
1
2 (LogP )P−1X−

1
2 . (24)

Note that a simplification similar to (22) is also possible for (24).
With this general gradients for learning α, β, dictionary and

the cluster centroids, now we consider learning parameters specific
to each of our objectives.

5.4 Optimizing IDDL – Ridge Regression Objective

Reconsidering our ridge regression loss f1 defined in (11), sup-
pose V and H are matrices obtained by stacking vi and hi along
their i-th column, for i = 1, 2, · · · , N . When fixing B,α and β,
the objective can be solved in closed form as:

W ∗ = HV T (V V T + γId)
−1, (25)

Towards deriving the gradient of the IDDL objective for f1

w.r.t. the kth dictionary atom Bk we capitalize on the observation
that only the k-th dimension of vi involves Bk. To simplify the
notation, let us assume:

ζi = −(hi −Wvi)
TW, (26)

and let ζki be its k-th dimension. Then we have:

∇Bkf1 = ζki ∇Bk
(
D(αk,βk)(Xi ‖ Bk)

)
, (27)

where the gradient of the ABLD w.r.t. the k-th atom is derived in
(22). Similarly, for gradients w.r.t. αk, using the derivative of the
ABLD derived in (19), we get:

∇αkf1 = ζki ∇αk

(
D(αk,βk)(Xi ‖ Bk)

)
. (28)

It should be noted that the gradients w.r.t. βk can be easily
computed using the dual symmetry property described in (9).

5.5 Optimizing IDDL – Structured SVM Objective

Looking back at our SVM loss f2 in (12); differentiating f2 w.r.t.
the rows of W while fixing B,α, and β we get:

∇wyi
f2 = −

∑
j 6=yi

1(wT
j vi−wT

yi
vi+∆>0)

vi + 2γwyi (29)

∇wj 6=yi f2 = 1(wT
j vi−wT

yi
vi+∆>0)vi + 2γwj (30)

where 1(.) is the indicator function. Similarly to our derivations
for f1, to simplify our notations we let:

ξi = −
∑
j 6=yi

1(wT
j vi−wT

yi
vi+∆>0) (wj −wyi) . (31)

and let ξki be its k-th dimension. That way, making use of (22)
and (19), we define the gradients of f2 w.r.t to Bk and αk,
respectively as:

∇Bkf2 = ξki ∇Bk
(
D(αk,βk)(Xi ‖ Bk)

)
, (32)

∇αkf2 = ξki ∇αk

(
D(αk,βk)(Xi ‖ Bk)

)
. (33)

5.6 Optimizing IDC – Clustering Objective

The gradients of f3 with respect to both the divergence parameters,
as well as the clustering centroids, are obtained directly from (19)
and (22), respectively. Lastly, to update Π in (14), we need to
find the cluster centroid Cπ nearest to a given data point Xi, for
which we solve the following argmin problem, by assuming the
ABLD parameters are fixed at the current iterate. Formally, the
data points in the cluster πz are updated as πz∗ → πz∗ ∪ {Xi},
where:

z∗ = arg min
∀z∈{1,2,··· ,k}

D(α,β)(Xi ‖ Cz). (34)

5.7 Computational Complexity

It should be noted that terms such asXi
−1, which can be computed

offline are omitted from this analysis. Using the simplifications
depicted in (22) and Schur decomposition, gradient computation
for each dictionary atom or centroid takes O(Nd3) flops. Using
the gradient formulation in (19) for α and β, we need O(Ndn+
Nd3) flops. Computations of the closed form for W using the
ridge regression loss in (25) takesO(n2(L+N)+n3+nLN). For
the discriminative setup, at test time, given that we have learned
the dictionary and the parameters of the divergence, encoding a
data matrix requires O(nd3) flops, which is similar in complexity
to the recent sparse coding schemes such as [44]. As for the
gradient computation for each C in IDC takes O(Nd3) flops and
the overall clustering setup takes O(Ndk + Nd3) flops, similar
in complexity to a Karcher mean algorithm [10] using AIRM as
the similarity measure.
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6 EXPERIMENTS

In this section, we present a thorough evaluation of the proposed
inference schemes on a diverse set of computer vision datasets.
We use the following eight datasets, namely (i) JHMDB [63], (ii)
HMDB [64] (iii) KTH-TIPS2 [65], (iv) Brodatz textures [66], (v)
Virus [67], (vi) SHREC 3D [68], (vii) Myometrium cancer [69],
and (viii) Breast cancer [69]. Below, we provide details of all these
datasets, and how SPD descriptors are obtained on them.

We use standard evaluation schemes reported previously on
these datasets. In some cases, we use our own implementations of
popular methods but strictly following the recommended evalua-
tion settings. For those datasets that do not have prescribed cross-
validation splits, we repeat the experiments at least 5 times and
average the performance scores. For our SVM-based experiments,
we use a linear SVM on the log-Euclidean mapped SPD matrices.

6.1 Datasets

HMDB [64] and JHMDB [63] datasets: These are two popular
action recognition benchmarks. The HMDB dataset consists of
51 action classes associated with 6766 video sequences, each
sequence with 30–400 video frames. JHMDB is a subset of
HMDB with 955 sequences in 21 action classes with 15–40 frames
in each video, where the video subset in JHMDB has human pose
better visible. Following the official train/test split, we use 70%
of the videos for training and rest for testing on both datasets.
To generate SPD matrices on these datasets, we use the scheme
proposed in [70], where we compute RBF kernel descriptors on the
output of per-frame CNN class predictions (fc8) for each stream
(RBF and optical flow) separately, and fusing these two SPD
matrices into a single block-diagonal matrix per sequence. For
the two-stream model, we use a VGG16 model trained on optical
flow and RGB frames separately as described in [71]. Thus, our
descriptors are of size 102 × 102 for HMDB and 42 × 42 for
JHMDB.
SHREC 3D Object Recognition Dataset [68]: It consists of
15000 RGBD covariance descriptors generated from the SHREC
dataset [68] by following [72]. SHREC consists of 51 3D object
classes. The descriptors are of size 18 × 18. Similar to [44], we
randomly picked 80% of the dataset for training and used the
remaining for testing.
KTH-TIPS2 dataset [65] and Brodatz Textures [66]: These
are popular texture recognition datasets. The KTH-TIPS dataset
consists of 4752 images from 11 material classes under varying
conditions of illumination, pose, and scale. Covariance descriptors
of size 23 × 23 are generated from this dataset following the
procedure in [47]. We use the standard 4-split cross-validation for
our evaluations on this dataset. As for the Brodatz dataset, we used
100 texture images for our experiments, each image is 640× 640
resoultion. To produce the covariance descriptors, we follow the
procedure outlined in [44]. Specifically, we extracted 32 × 32
non-overlapping patches from each image. Next, to produce the
covariance descriptor for a given patch, we used the relative pixel
coordinates for all pixels in the patch, its image intensity, and
respective image gradients, which form 5-dimensional features,
from which 5 × 5 region covariance descriptors are produced for
the respective patch. Our dataset consists of 31000 SPD matrices.
As proposed in [44], for our evaluation use an 80:20 rule as in the
RGBD dataset above.
Virus Dataset [67]: It consists of 1500 images of 15 different
virus types. Similar to the KTH-TIPS, we use the procedure in [47]

to generate 29 × 29 covariance descriptors from this dataset and
follow their evaluation scheme using three-splits.
Cancer Datasets [69]. Apart from these standard SPD datasets,
we also report performances on two cancer recognition datasets
from [69]. We use images from two types of cancers, namely
(i) Breast cancer, consisting of binary classes (tissue is either
cancerous or not) consisting of about 3500 samples, and (ii) My-
ometrium cancer, consisting of 3320 samples; we use covariance-
kernel descriptors as described in [69] which are of size 8×8. We
follow the 80:20 rule for evaluation on this dataset as well.

6.2 Experimental Setup
Since we present experiments on a variety of datasets and under
various configurations, we summarize our main experiments first.
There are four sets of experiments we conduct, namely (i) an
ablative study of various parameters, learning configurations,
convergence, and run-time analysis of our problem setup, (ii)
comparison of IDDL against other popular measures on SPD
matrices, (iii) comparisons among various configurations of IDDL,
and (iv) comparisons against state of the art approaches on the
above datasets. We follow a similar trend in our experimental setup
for our clustering setup.

6.3 Parameter Initialization
In all the experiments, we initialized the parameters of IDDL
(e.g., the initial dictionary) in a principle-way. We initialized
the dictionary atoms by applying log-Euclidean K-Means; i.e.,
we compute the log-Euclidean map of the SPD data, compute
Euclidean K-Means on these mapped points, and remap the K-
Means centroids to the SPD manifold via an exponential map.
To initialize α and β, we recommend grid-search by fixing the
dictionary atoms as above. As an alternative to the grid-search, we
empirically observed that a good choice is to start with the Burg
divergence (i.e., α = β = 1). The regularization parameter γ in
IDDL was chosen using cross-validation, while the regularization
parameter µ for IDC was set to 1.

6.4 Ablative Study
In this section, we study the influence of each of the components
in our algorithm. First, we demonstrate how the performance on a
dataset varies when changing the parameters α and β in ABLD.
This forms the basis of all our further experiments.

6.4.1 Performance for Varying α, β
In Figure 4(a) and 4(b), we plot a heatmap of the classification
accuracy against changing α and β on the KTH-TIPS2 and Virus
datasets. We fixed the size of dictionaries to 22 for the KTH TIPS
and 30 for the Virus datasets. The plots reveal that the performance
varies for different parameter settings, thus (along with the results
in Table 4) substantiates that learning these parameters is a way to
improve performance.

6.4.2 Comparisons to Variants of IDDL
In this section, we analyze various aspects of the performance of
IDDL, using the ridge regression objective. Generally speaking,
IDDL formulation is generic and customizable. For example, even
though we formulated the problem as using a separate ABLD on
each dictionary atom, it does not hurt to learn the same divergence
over all atoms in some applications. To this end, we test the
performance of three scenarios, namely (i) using a scalar α and
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Fig. 3: Comparisons between different variants of IDDL for increasing number of dictionary atoms.

(a) (b) (c) (d)

Fig. 4: 4(a) and 4(b) show accuracy on KTH-TIPS2 and Virus datasets as we change α and β, fixing the number of dictionary atoms. See the
algorithmic settings in Sec. 6.4.1). 4(c) and 4(d) show convergence of our optimization scheme for IDDL (ridge regression) on KTH-TIPS2
and Virus datasets. See the text for more details.

β that is shared across all the dictionary atoms (which we call
IDDL-S), (ii) a vector α and β, where we assume α = β, but
each dictionary atom can potentially have a distinct parameter
pair (we call this case IDDL-V), and (iii) the most generic case
where we could have α, β as vectors and they may not be equal,
which we refer as IDDL-N. In Figure 3, we compare all these
configurations on six of the datasets. We also include specific
cases such as the Burg divergence (α = β = 1) and the AIRM
case (α = β = 0) for comparisons (using the dictionary learning
scheme proposed in Section 5.3.2). Our experiments show that
IDDL-N and IDDL-V consistently perform well on almost all
datasets. This is unsurprising given the generality of IDDL. While
IDDL-S shows similar performance to other methods when the
number of atoms is small, it drops for more number of atoms.

6.4.3 Convergence Study
In Figures 4(c) and 4(d), we plot the convergence of our objective
against iterations. We also depict the BCD objective as contributed
by the dictionary learning updates and the parameter learning; we
use the IDDL-V for this experiment. As is clear, most part of the
decrement in objective happens when the dictionary is learned,
which is not surprising given that it has the most number of
variables to learn. For most datasets, we observe that the RCG
converges in about 200-300 iterations. In Figure 5, we plot the
running time for one iteration of RCG against the number of
dimensions of the matrices and the number of dictionary atoms.
While our dictionary updates seem quadratic in the number of
dimensions, it scales linearly with the dictionary size.

6.4.4 Evaluation of Joint Learning
In Table 3, we evaluate the usefulness of learning the information
divergence against learning the dictionary on the Virus dataset.
For this experiment, we evaluated three scenarios, (i) fixing the

Fig. 5: Time taken for one gradient computation and two objective
functions evaluations against an increasing number of matrix dimen-
sions (left) and number of dictionary atoms (right).

dictionary to the initialization (using KMeans), and learning the
parameters α, β using the IDDL-S variant, (ii) fixing α, β to
the initialization using GridSearch, while learning the dictionary,
and (iii) learning both dictionary and the parameters jointly. As
the results in Table 3 shows, jointly learning the parameters
demonstrates better results, thus justifying our IDDL formulation.

Atoms — Method IDDL-Fix(α, β) IDDL-Fix(B) IDDL-N
15 78.33% 61.67% 77.33%
45 80.33% 70.00% 83.67%
75 81.67% 76.00% 82.33%

TABLE 3: Performance evaluation of IDDL on a single split of the
Virus dataset when fixing the dictionary atoms against fixing the
parameters, and jointly learning the atoms and the parameters.

6.4.5 Trajectories of α, β
In this experiment, we demonstrate the BCD trajectories of α and
β for the IDDL-S algorithm on the Virus dataset. Specifically,
in Figure 6, we show how the value of α and β varies as
the BCD iteration progresses. In this experiment, we used 15
dictionary atoms. All experiments used the same initializations
for the invariants. We also plot the corresponding objective and
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training accuracies. It appears that different initializations leads
to disparate points of convergence. However, for all points of
convergence, the objective convergence is very similar (and so
is the training accuracy), suggesting that there are multiple local
minima that leads to similar empirical results. We also find that
initializing with α = 1.0 demonstrates slightly better convergence
than other possibilities, which we observed for other datasets too.

6.5 Comparisons to Standard Measures
In this experiment, we compare the IDDL (ridge regression) to
the standard similarity measures on SPD matrices including log-
Euclidean Metric [12], AIRM [7], and JBLD [17]. We report 1-NN
classification performance on these baselines. In Table 4, we report
the performance of these schemes. As a rule of thumb (and also
supported empirically by cross-validation studies on our datasets),
for a C-class problem, we chose 5C atoms in the dictionary.
Increasing the size of the dictionary seems not helping in most
cases. We also report a discriminative baseline by training a linear
SVM on the log-Euclidean mapped SPD matrices. The results
reported in Table 4 demonstrates the advantage of IDDL against
the baselines, where the benefits can go over more than 10% in
some cases (such as the JHMDB and virus).

6.6 Comparisons to the State of the Art
We compare IDDL to the following popular methods that share
similarities to our scheme, namely (i) Log-Euclidean Metric learn-
ing (LEML) [27], (ii) kernelized Sparse Coding [47] that uses log-
Euclidean metric for sparse coding SPD matrices (kSPLE), (iii)
kernelized sparse coding using JBLD (kSPJBLD), (iv) kernel-
ized locality constrained coding [6], and Riemannian dictionary
learning and sparse coding (RSPDL) [44]. For IDDL, we chose
the variant from Figure 3 that performed the best on the respective
dataset (refer to the last column for the IDDL-variant). Our results
are reported in Table 7. Again we observe that IDDL performs the
best amongst all the competitive schemes, clearly demonstrating
the advantage of learning the divergence and the dictionary. Note
that comparisons are established by considering the same number
of atoms for all schemes and fine-tuning the parameters of each
algorithm (e.g., the bandwidth of the RBF kernel in kSPJBLD)
using a validation subset of the training set. As for LEML, we
increased the number of pairwise constraints until the performance
hit a plateau.

In Table 6, we further compare our best results on these
datasets against our IDDL-V and N variants using the structured-
SVM objective. We used the predicted label of the IDDL classifier
(ridge regression or the structured SVM) for evaluation on all the
datasets we use, except HMDB. On the HMDB dataset, we found
that training an additional lib-linear SVM solver [73] on the em-
beddings produced by our trained ABLD model performed better
(∼ 1% better). This observation is perhaps unsurprising, given
that we use 102-D covariance descriptors for this dataset (largest
among our datasets), which are often (nearly) ill-conditioned, and
thus may prevent the ABLD classifier from achieving the best
performances in the non-convex learning setup, thereby producing
embeddings that may be noisy. From Table 6, it is clear that our
SSVM formulation is better on some datasets, for example, on
Brodatz, and 3D object datasets, there is a substantial gain of
nearly 5%, while on others the performance is similar to ridge
regression objective. On the smaller datasets, such as Breast and
Myometrium cancer, ridge regression is much better.

6.7 Evaluation of Clustering Objective
Now, we present experiments on the aforementioned benchmarks
using our αβ-KMeans clustering framework. To evaluate the qual-
ity of clustering, we use the standard F1-Score. Before presenting
comparisons to other popular clustering schemes on SPD matrices,
we study the empirical properties of our formulation next.

We compare the quality of clustering against (i) dimensionality
of the input matrices, and (ii) number of true clusters, and iii)
time taken for the relevant updates. For this experiment, we use
synthetic datasets generated using the code from [54], which pro-
duces Wishart SPD matrix clusters for k arbitrarily parameterized
Wishart distributions; k being the number of true data clusters.

6.7.1 Increasing Matrix Dimensionality
For this experiment, we generate synthetic SPD datasets of dimen-
sionality d, where d ∈ {5, 15, 30, 50, 75, 100} corresponding to
k = 15 clusters and using fifty samples per class. Figure 7(a)
summarizes the computed F1-scores averaged across ten runs. We
can clearly see that the accuracy of αβ-KMeans is not impacted
much by the increasing dimensions of the input matrices, while
both variants consistently outperform the baseline of LE-KMeans.
Figure 7(b) present the time taken for a single iteration of each op-
timization component of αβ-KMeans, which looks approximately
linear.

6.7.2 Increasing Number of Clusters
Next, we test the robustness of the αβ-KMeans with increasing
number of true data clusters k, for k ∈ {2, 5, 10, 20, 50, 100}.
For this experiment, we keep the dimension of the SPD matrices
fixed to d = 10 and use twenty five samples per true data class.
Figure 7(c) summarizes the F1-Score of αβ-KMeans averaged
across ten runs for an increasing number of clusters. We can infer
that both variants are negatively affected by large increases in the
number of clusters, nevertheless, the our performance is consis-
tently higher than that of the LE-KMeans baseline. In addition,
as depicted in Figure 7(d), there is an increasing overall trend in
the time required for all components of αβ-KMeans (compared to
Figure 7(b), due to the time required to iterate through the different
clusters.

6.7.3 Empirical Convergence Analysis
Now, we empirically study the convergence of αβ-KMeans. We
select to present this analysis on the Myometrium cancer dataset
nevertheless, the results remain consistent among the different
datasets. Figure 8 illustrates the convergence of the BCD scheme
discussed in Section 4 for αβ-KMeans with α = β. Even though
the objective is non-convex, it is apparent that the convergence
is satisfactory. We run the scheme until more than 99.9% of the
clustering assignments remain unchanged between two successive
clustering steps.

6.7.4 Comparisons to Variants of KMeans
Comparisons are first established against two popular variants
of KMeans for SPD matrices; LE-KMeans and Karcher Means.
Table 7 summarizes the experiments evaluating the performance
of the αβ-KMeans in a pure clustering setup. The first and second
columns correspond to the F1-Score achieved by LE-KMeans and
Karcher Means respectively. The two proposed variants of αβ-
KMeans are depicted in columns three (α = β) and four (α 6= β).
For each dataset, we average our results across ten different
runs to alleviate the effect of initializations. We can clearly see
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(a) (b) (c)

Fig. 6: (a) Trajectory of α and β over BCD iterations on the virus dataset, (b) shows the respective objective descent, and (c) shows the training
set accuracy. We plot for various initializations of α and β.

Dataset — Classifier LE 1-NN AIRM 1-NN JBLD 1-NN SVM-LE IDDL Variant
JHMDB 52.99% 51.87% 52.24% 54.48% 68.3% V
HMDB 29.30% 43.3% 46.3% 41.7% 55.50% N
VIRUS 66.67% 67.89% 68.11% 68.00% 78.39% N

BRODATZ 80.10% 80.50% 80.50% 86.80% 74.10% N
KTH TIPS 72.05% 72.83% 72.87% 75.59% 79.37% V
3D Object 97.4% 98.2% 95.6% 98.9% 96.08% Burg

Breast Cancer 87.42% 80.00% 84.00% 87.71% 90.46% Burg
Myometrium Cancer 80.87% 84.18% 93.20% 93.22% 94.66% Burg

TABLE 4: Comparisons against 1-NN and SVM classification. Last column shows the variant of IDDL that worked best.

Dataset/Method LEML kSPLE kSPJBLD kLLC RSPDL IDDL-S IDDL-V IDDL-N IDDL-A IDDL-B
JHMDB 58.85% 55.97% 44.40% 57.46% 57.5% 67.10% 68.3% 67.20% 61.19% 61.01%

HMDB 52.15% 44.9% 28.43% 40.20% 21.0% 52.30% 57.3% 58.6% 43.20% 46.94%

VIRUS 74.60% 68.00% 57.84% 70.91% 60.8% 76.48% 77.74% 79.44% 78.33% 78.37%

BRODATZ 47.15% 55.00% 65.19% 70.00% 74.9% 72.50% 73.2% 77.10% 62.63% 79.44%
KTH TIPS 79.25% 77.18% 69.92% 73.96% 64.5% 78.68% 79.37% 79.67% 78.80% 78.36%

3D Object 87.56% 59.26% 72.45% 87.40% 80.0% 89.17% 94.07% 92.57% 87.90% 96.08%
Breast Cancer 83.18% 76.34% 71.67% 82.32% 74.2% 89.99% 90.00% 90.02% 88.00% 90.46%

Myometrium Cancer 90.94% 88.69% 86.80% 88.74% 87.0% 93.41% 93.30% 90.24% 93.99% 94.66%

TABLE 5: Comparisons against state of the art. IDDL-A and IDDL-B refers to IDDL-AIRM and IDDL-Burg respectively. Refer to Section 6.4.2
for details of other abbreviations.

Ridge Regression Structured-SVM
Datasets IDDL V IDDV N IDDL V IDDL N
JHMDB 68.3% 67.2% 69.2% 65.8%
HMDB 57.3% 58.6% 56.7% 53.8%
VIRUS 77.4% 79.4% 79.6% 78.6%

BRODATZ 73.2% 77.1% 81.5% 82.1%
KTH TIPS2 79.4% 79.7% 71.3% 73.7%
3D Object 94.1% 92.3% 98.3% 98.2%

Breast 90.0% 88.0% 78.1% 76.7%
Myometrium 93.3% 90.2% 89.8% 89.2%

TABLE 6: Comparisons between IDDL variants for ridge regression
and structured SVM alternatives.

that the two variants of αβ-KMeans consistently outperform the

competing schemes underlying the merits of learning the measure

while clustering the data.

7 DISCUSSIONS
Our experiments show that learning the divergence and the pa-

rameters of the respective task demonstrate superior performances

on all the datasets we used. That said, there are also some

challenges one may need to circumvent when using the setup.

The main limitation of our approach is the non-convexity of our

Dataset — Method LE Karcher αβ-E αβ-NE
VIRUS 0.248 0.254 0.252 0.257

BRODATZ 0.353 0.366 0.378 0.381
KTH TIPS 0.379 0.400 0.429 0.419

Prostate Cancer 0.578 0.594 0.679 0.660

Myometrium Cancer 0.737 0.661 0.778 0.779

TABLE 7: F1-Score based comparisons against different KMeans
variants.

objective; that precludes a formal analysis of the convergence.

A further limitation is that the gradient expressions involve matrix

inversions and may need careful regularizations to avoid numerical

instability. We also note that the AB divergence has a discontinuity

at the origin, which needs to be accounted for when learning the

parameters. Further, from our experimental analysis, it looks like

there is no single variant of IDDL (amongst IDDL-S, IDDL-V,

IDDL-N, IDDL-A, and IDDL-B) that consistently performs the

best for all datasets. However, with the possibility of learning

alpha-beta, we would think the most generalized variant IDDL-

N with the structurd-SVM formulation might perhaps be the
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(a) (b) (c) (d)

Fig. 7: Sensitivity of αβ-KMeans against 7(a) increasing dimensionality in the range [5, 100]. The blue and red lines correspond to αβ-
KMeans with α = β and α 6= β respectively, while the black line corresponds to LE-KMeans. 7(b) Time required for each iteration of
updating parameters αβ (blue line) and centroids (green line). 7(c) and 7(d) show the same for increasing number of clusters.

Fig. 8: Convergence plot of the objective function 13 for the my-
ometrium cancer dataset and α = β. Cyan line segments correspond
to iterations of updating the divergence parameters, blue segments cor-
respond to updating the clustering assignment and magenta segments
correspond to iterations of updating the centroids.

best choice for any application as it can plausibly learn all the
alternatives.

As for our clustering setup, we found that it is essential to
use a regularizer on α and β; in the absence of which, the
optimization was seen to diverge, the parameters taking very
large values leading to irrecoverable numerical deficiencies. As
noted earlier, we found quadratic regularizers on α, β yielded
good results. Exploring other forms, such as polynomials on α
and β, or robust priors such as the Huber loss, is left as future
work. From our experiments on real data, we found beneficial
small additive perturbations on the diagonal of the SPD matrices
(to make them strongly positive definite). On all our datasets,
we found each block of updates using RCG converged in about
5-10 steps. Surprisingly, the proposed BCD scheme is seen to
converge much faster for the α 6= β-case in comparison to
α = β, when centroids are initialized using the LE-KMeans rather
than randomly selecting samples from each dataset. This faster
convergence is perhaps because of the more degrees of parameter
freedom and the conditioning of the matrices.

8 CONCLUSIONS

In this paper, we proposed a novel framework unifying the
problem of information divergence learning and standard machine
learning tasks, such as dictionary learning, ridge regression, classi-
fication, and clustering on SPD matrices. We leveraged the recent
advances in information geometry for this purpose, namely using
the αβ-logdet divergence. We formulated objectives for jointly
learning the divergence and the respective task specific objectives,
and showed that it can be solved efficiently using optimization

methods on Riemannian manifolds in an end-to-end manner. Ex-
periments on eight computer vision datasets demonstrate superior
performance of our approach against alternatives.
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APPENDIX
Proof of Theorem 2. To simplify the notation, let S = A

1
2 . Note

that the eigenvalues (and hence the log det) of AB is the same as
that of A

1
2BA

1
2 , however, the latter is symmetric and thus keeps

B symmetric, when using it in a gradient descent scheme. Thus,
we will use this form. Then,

log det [p (SBS)
q

+ Id] = Tr (Log (p (SBS)
q

+ Id)) . (35)

Using Taylor series expansion of Log:

(35) = Tr

(
p(SBS)q − p2(SBS)2q

2
− · · ·

)
. (36)

∇B (36) = pqS(SBS)q−1S − qp2S(SBS)2q−1S + · · ·
= pqS(SBS)−1 (SBS)

q
(Id − p (SBS)

q
+ · · · )S

Recall that, the middle term is the MacLaurin series expansion:

(Id − p (SBS)
q

+ · · · ) = (Id + p (SBS)
q
)−1

substituting for which we get our desired result. Note that, the
series expansions we use in the proof are valid only when
p ‖SBS‖2 ≤ 1, which can be achieved via rescaling or nor-
malizing our data. �
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