AdaSens: Adaptive Environment Monitoring by Coordinating
Intermittently-Powered Sensors

Shuyue Lan
Northwestern University
shuyuelan2018 @u.northwestern.edu

Josiah Hester
Northwestern University
josiah@northwestern.edu

Abstract— Perceiving the environment for better and more
efficient situational awareness is essential in applications such
as wildlife surveillance, wildfire detection, crop irrigation,
and building management. Energy-harvesting, intermittently-
powered sensors have emerged as a zero maintenance solution
for long-term environmental perception. However, these devices
suffer from intermittent and varying energy supply, which
presents three major challenges for executing perceptual tasks:
(1) intelligently scaling computation in light of constrained
resources and dynamic energy availability, (2) planning commu-
nication and sensing tasks, (3) and coordinating sensor nodes to
increase the total perceptual range of the network. We propose
an adaptive framework, AdaSens, which adapts the operations
of intermittently-powered sensor nodes in a coordinated manner
to cover as much as possible of the targeted scene, both spatially
and temporally, under interruptions and constrained resources.
We evaluate AdaSens on a real-world surveillance video dataset,
VideoWeb, and show at least 16% improvement on the coverage
of the important frames compared with other methods.

I. INTRODUCTION

An intermittently-powered sensor network is a group of
spatially distributed devices that are powered by intermittent
energy sources (e.g., solar) and collect data by measuring
environmental conditions. Often, temperature, pressure, mois-
ture, position, lighting and sound are measured and used for
further analysis. These intermittently-powered devices harvest
energy from the environment, but unlike traditional wireless
sensor nodes, do not have a typical battery (other than a
small super-capacitor). They instead operate opportunistically
from harvested power, which means power failures are com-
mon [1]. Moreover, in many application scenarios, along with
the aforementioned sensors, cameras are deployed in sensor
networks to better perceive the environment, such as wildlife
surveillance, smart buildings and crop irrigation. Compared to
other sensors like temperature and humidity sensors, cameras
consume more energy to perceive the environment, create
more data and consume more storage, and need more commu-
nication bandwidth if the data needs to be sent back to servers.
More specifically, such intermittently-powered cameras are
very challenging to deploy because of the following reasons.

The first challenge for applying intermittently-powered de-
vices to capture video is to overcome the unstable energy sup-
ply to better perform perception tasks. Power failures and vari-
able energy make it difficult to provide reliable performance.

Zhilu Wang
Northwestern University
zhilu.wang @u.northwestern.edu

John Mamish

Northwestern University
JohnMamish2024 @u.northwestern.edu

Qi Zhu
Northwestern University
qzhu@northwestern.edu

Second, the sensor nodes are usually highly constrained in
terms of computational and memory resources. As camera
sensors are resource-hungry, a challenge is to make cameras
work with limited resources on these intermittently-powered
devices for computation, communication and storage. Third,
in a sensor network for monitoring on a target area, there is
often redundancy among the information captured by different
sensor nodes. For example, two cameras may monitor the same
parking lot with different but overlapping views. If a vehicle
enters their overlapping area, we may only need one camera
to be on in order to cover this interesting event and save
the energy of the other camera for capturing future important
scenes that have interesting events. The third challenge is thus
how to coordinate and utilize all intermittently-powered nodes
to better cover the important scenes.

Many multi-camera monitoring networks have been devel-
oped for various applications, such as vehicle tracking [2],
wide-area surveillance [3], complex activity detection [4],
etc. However, none of them considers energy-harvesting (EH)
powered, intermittent devices. There are works on devel-
oping efficient checkpoint schemes and algorithms for low-
power/intermittent devices, such as inference on intermittent
embedded systems [5], [6], [7] , computational and energy
harvesting task scheduling [8], [9], and efficient communica-
tion [10]. Other works focus on custom hardware that enables
energy management [11] and timekeeping [12]. However,
none of them has addressed multi-node collaboration for
intermittently-powered sensors. In contrast, our work consid-
ers system-level optimization of intermittently-powered sensor
networks for adaptive environment monitoring.

More specifically, we address the challenges in environment
monitoring with intermittently-powered camera sensors, where
multiple sensor nodes with cameras monitor the target area
from different points of view with overlapping. These nodes
are EH-powered with varying energy level from time to time,
and sometimes, the energy level may not be enough for the
energy cost of the sensing tasks. In the scene, important events
may happen at random time and duration, which means that
not every frame is worth being captured and the system should
save more energy for important frames.

We thus introduce AdaSens, an optimization framework for
adaptive environment monitoring on intermittently-powered
sensors. In AdaSens, we have multiple nodes equipped with
a camera, a super-capacitor and an energy harvesting module.
A remote conductor node is built upon these sensor nodes,

{E;}, i € [1,N]

Current energy level E;

Energy Prediction g

Energy level projection
function f;, i € [1,N]

{P}, L € [LN]

Runtime Adaptation

Execution schedule a;, i € [1, N]

Importance score P; !

Execution mode d;, i € [1,N]

Fig. 1: The overall framework of AdaSens. The sensor nodes perceive the environment and perform inference about the
scene. The conductor uses such information to predict the energy level of each sensor node in the future. Then it conducts
run-time adaptation to decide the executions for each sensor node in the next adaptation period.

which will perform system-level optimization to guide the
operation of the sensor nodes. Our objective is to cover as
much as possible of the targeted scene given the limited and
unstable harvesting power. The sensor nodes are responsible
for measuring the environment, acquiring the current energy
level of itself and performing inference on captured data. The
information will be sent to a remote server, which serves as
the conductor node. The conductor will take such information
to predict the energy level of each sensor node and decide the
future execution schedules with a run-time adaptation scheme.
In this way, every sensor node is scheduled to collectively
optimize the scene coverage given the intermittent energy
availability. The main contributions of our work include:

e We develop a framework AdaSens for adaptive environment
monitoring by coordinating intermittently-powered sensors,
with a conductor node to guide the operations of sensor
nodes for optimizing the coverage of scene under limited
and unstable harvesting power.

e We formulate the operations of sensor nodes as a mixed-
integer linear programming (MILP) problem to optimize
an objective that captures spatial, temporal and content
coverage of the scene.

e We demonstrate the effectiveness of AdaSens on a real-
world surveillance dataset and achieve better performance
than other methods.

II. ADASENS FRAMEWORK

A. Overview

With an intermittently-powered sensor network for environ-
ment monitoring, our objective is to develop a system that
covers as much as possible of the targeted scene under limited
and unstable power supply. In the proposed system, we have
N intermittently-powered nodes equipped with one or multiple
sensors that has a super-capacitor and energy harvesting mod-
ule. A conductor node is built upon these sensor nodes, which
periodically performs system-level optimization to guide the
operations of sensor nodes.

The overall framework is shown in Fig. 1. The system is
equipped with a conductor node that coordinates the opera-
tions of individual sensor nodes and carries out global opti-
mization for the scene coverage, and multiple intermittently-
powered sensor nodes that perceive the scene. The information
captured on different sensor nodes may have redundancy. The
sensor nodes are responsible for perceiving the environment,
acquiring the current energy level of itself and inferring the
importance of the scene. The information will be sent to the
conductor node. The conductor will take such information to
predict the energy level of each sensor node in the future.
Then a run-time adaptation module will decide the execution
schedules for each sensor node in the next adaptation period.
In this way, every sensor node is scheduled as to optimize the
scene coverage given the power situation.

Notations. We denote the N sensor nodes as the set of A =
{1,2,..., N} and divide the targeted area into M partitions as
the set of M = {z1,22,...,xp}, Where z,,,m € [1, M] is
the area of the m-th partition. For each sensor node i, A; ,, is
a binary indicator for sensing coverage. A;, = 1 indicates
that the view of node ¢ can cover the m-th partition. The
adaptations are made periodically with a period of 7T'. Before
each adaptation period, the conductor gets from node @ its
current energy level E; and an importance score P; computed
with data from last execution. Based on such information,
the conductor decides whether to perform a series of tasks
(referred as atomic tasks) at each time step ¢ for each node <,
indicated as a;[t]. The conductor considers K periods ahead,
i.e., KT steps, when optimizing the spatial-temporal coverage
and the content coverage. We refer to K as the adaptation
horizon. After optimization, only the schedule of the first 7'
steps will be applied for execution. The optimization considers
the following factors: the energy using rate Aewu; per atomic
task of node 4, the energy creation rate Aec;[t] of node i
at time ¢, the energy cost E, for one-time communication of
sensor nodes and the power capacity C' of each node. Here we
assume all nodes to be identical in hardware settings. Along
with the execution schedule, d; indicates the execution mode

Node 1

ttt ¢4 t ¢ Node2

a;[1]=1

t tt1¢1) Node i
0 af2]=0 T 2T KT

Fig. 2: Illustration of adaptation variables in AdaSens.

of each node 1.

Adaptation Variables. In the proposed framework, the con-
ductor aims at optimizing the scene coverage by deciding
for every node whether to perform an atomic task at each
time step. Fig. 2 illustrates the adaptation variables in the
optimization framework. We consider discrete time execution.
At the beginning of each adaptation period, the conductor
decides whether to perform an atomic task at time ¢ for
each node i, indicated as a;[t]. For example, in the figure,
a;[1] = 1 means that the node ¢ is instructed to execute an
atomic task at the time step 1, while a;[2] = 0 indicates
that node ¢ is not required to execute any task at the time
step 2. During operation, at time 0, the conductor will try to
optimize the scheduling of KT steps ahead, i.e., over [0, KT),
according to the predicted energy availability and the current
node feedback; but it only sends the optimized schedule for the
first T steps, i.e., over [0, T") to the nodes for executions. Then
at time 7T, the conductor will run the optimization again for
[T, T+ KT) steps and send the optimized schedule of [T, 2T")
to each node for executions. Such design is to improve system
performance by optimizing over a longer time horizon while
running the optimization with a shorter time interval.

B. Conductor

The goal of our conductor is to schedule the operations of
individual sensor nodes, with the consideration of the scene
coverage. The conductor has two modules: energy prediction
and runtime adaptation.

Energy Prediction. We assume that the conductor has en-
vironment sensors for acquiring the necessary information
for energy prediction. In our framework, we consider solar
energy as an example. Given the environment information
and the current energy level E; from sensor node i, the
energy prediction module generates the energy level projection
function at time ¢ for node 7 as:

t—1
filt, Be) = B 4+ Aecij] — By (1)
j=0

where E¥*¢? is the energy used from 0 to ¢-1, which includes
the energy cost of the scheduled executions and the commu-
nication costs in between. Aec;[j] is the energy creation rate
for sensor node ¢, which can be computed with current solar
radiation and future predicted radiations. Based on [13], the
power generated by a solar panel can be calculated as:

Piotar = AS (2)

where A is the area of the solar panel, and S is the solar ra-
diation perpendicular to the panel surface. The solar radiation

can be predicted based on the historical data. P,y is then
taken as Aec;[j].

We develop a Long Short-Term Memory (LSTM) model to
predict the future solar radiations S based on the environmen-
tal history. We use solar profiles from [14] and compute the
Pearson’s correlation coefficient between environmental sensor
measurements and the solar radiations. Based on the analysis,
we choose a feature vector with seven sensor measurements,
such as air temperature, humidity, pressure, etc. These data
are used to train the LSTM model. In this way, we will have
a model that takes some historical measured data as input and
outputs the predicted solar radiations in the future.

Runtime Adaptation. The runtime adaptation module sched-
ules the future operations of the sensor nodes given the energy
level projection functions and the importance scores from last
execution. For each discrete time ¢, we have a binary indicator
to indicate whether a sensor node is executing. a;[t] = 1 means
that node ¢ is executing at time ¢, and vice versa. As stated
before, we update the execution schedule in a periodic manner
with a period of 7. For every adaptation, we predict /K periods
ahead to optimize our objective during the time KT, and then
we apply the execution schedule of the first period to each
sensor node. The optimization problem is formulated as an
MILP problem as shown in Eqn. (3):

KT—1 M
max Z Z T - max (g m - pift] - a;t])
Va;[t], 0 - 1€[1,N]
i€[1,N], 7Y MT
te[0,KT)

s.t. fori € [1,N], t € [0, KT)

il = B+ S (Seali] - Acws -aili) - | 7] £

filtl<C
fz[t] > Aeu; Xai[t], t;ékT—]., ke [17K]
fi [t} > Aeui X a; [t] + Ecomm7 t=kT -1

3)
The objective function in (3) maximizes the spatial-temporal
coverage of the targeted scene. For each scene partition of area
Tm, We consider the sensor nodes that are capable to cover
this area, indicated by A;.,, where);,, = 1 indicates that
area x,, is in the view of node i. a,[t] indicates whether node
i is executing at time ¢. p;[t] is the decayed importance score
of node ¢ at time ¢, derived from the importance score P;
based on the executions of node ¢ from the last period as:

pilt] = 0.5+ (P, = 0.5) - exp (—pt)

where p is the decaying factor. The intuition for the decayed
importance score is that the scene is changing as time goes by
and the inference of importance will become less confident.
By this decaying function, we are trying to make every node
become equally important after a certain point of time. Taking
p;[t] as a scaling factor, the objective is to maximize the sum
of the areas covered by the system through a period of time.
In the defined optimization problem, we have four types of
constraints:

“

e Energy dynamic function. This constraint is the energy
dynamic function, which computes the projected energy

Algorithm 1 Conductor of AdaSens

Input: adaptation period 7', horizon K
Input: initial available energy E;,Vi € [1, N|

1: Initialize P; = 0.5,Vi € [1, N].

2: Initialize set of connected nodes © = {i | 7 € [1, N]}.

3: repeat

4: Denote current time as 0.

5: Predict solar radiations by LSTM model to estimate energy
creation rate Aec;[t], ¢t € [0, KT') (Eqn. (2)).
pi[t] = decay(P;,t), t € [0,KT), i € © (Eqn. (4)).
MILPset(K, T, pi[t], Ei, Aec;[t] | t € [0,KT),i € ©)
{a;[t] | t € [0, KT),i € ©} =MILP:solve() (Eqn. (3)).
9: if MILP solver has feasible solutions then

%A

10: Set in-network mode d; = 1 for i € ©.
11: else

12: Set isolation mode d; = 0 for i € ©.
13: for i€ [1,N] do

14: Send d;, a;[t],t € [0,T) to node 1.

15: Wait for 7" time steps.
16: ©={i|ie€[l,N]}
17: for i € [1,N] do

18: Receive new F;, P; from node 1.

19: if not hear from node ¢ then

20: 0 =0\ {i}.

21: Set node 7 in isolation mode d; = 0.

22: until Terminated

level of node ¢ at time t by Eqn. (1), denoted as f;[t].
We substitute £**“? in Eqn. (1) with E;;(l) Aeu; - a;[j] +
L%JEC, the sum of computation and communication costs.

e Energy capacity constraint. This constraint is to make sure
that the predicted available energy of each node at every
time step is within the designed energy capacity.

e Execution constraint. This is the execution constraint for
computation. For each time step in a period (except the
last step), in order to schedule an atomic task, the available
energy should be no less than the energy consumption of
executing a task.

e Execution constraint with communication. This constraint
is a special case of the third one. At the last execution
time step in a period, the available energy should be no
less than the energy cost of the scheduled executions and
the one-time communication cost, as the sensor nodes will
communicate with the conductor after this time step.

Based on the optimization problem in Eqn. (3), we develop
an adaptation algorithm for the conductor (Algo. 1). At each
adaptation period, based on the importance score and the
available energy of each node, the conductor predicts the
energy creation rate and computes the decayed importance
scores for the upcoming KT time steps, and then derives the
optimal execution strategy for each node by solving the MILP
problem and sends the execution strategy of first 7" time steps
to nodes. It then waits for one adaptation period 7" and receive
the new scores and energy availability from nodes. Note that
as the energy creation rate is predicted, it is possible that some
nodes may not have enough energy to send back the score and
energy availability. Thus, for each adaptation period, only the
nodes in set O, i.e., connected nodes, will be involved in the
conductor adaptation. Nodes that do not have enough energy
for communication will be put in an isolation mode (more
details in subsection II-C next).

i

(b) Camera views

(a) Camera locations

Fig. 3: Camera settings of VideoWeb Dayl dataset.

C. Sensor Node

Each sensor node is equipped with a super-capacitor of
capacity E. and an energy harvesting module. It receives
the schedule of executions a;[t] and and executes accordingly
based on the execution mode d;. It consists of two modules:
adapter and inference.

Adapter. At each adaptation period, a node will be in one
of the two possible execution modes, indicated by d;, where
d; = 1 denotes the in-network mode and d; = 0 denotes the
isolation mode.

()In-network mode. In this mode, a node has enough
energy to communicate with the conductor. The conductor is
able to schedule the execution ahead for the node. The node
will execute according to the instructions from the conductor.
At the beginning of each time step, if the node is instructed to
execute an atomic task and there is enough energy to execute
it, the node will do so. Otherwise, the node will remain idle.
If no task is scheduled by the conductor, the node will remain
idle too.

(2) Isolation mode. When a node does not have enough
energy to communicate with the conductor and the conductor
does not know the status of the node, no optimization can be
done for the node. The node will execute as many tasks as it
can based on its own energy availability. In order to recover
from the isolation mode to the in-network mode, the node is
required to accumulate the one-time communication energy
before it starts executing greedily.

Inference. For each sensor node ¢, the inference module
receives the captured images from the camera and performs
an efficient inference on the importance of frames, given as a
probability in [0, 1]. The importance of the frames is defined
based on the application. For example, if we want to monitor
deer activity in a habitat, we may defined the importance as
whether there exists a deer in the scene.

III. EXPERIMENTAL RESULTS

A. Experiment Setup

Scenarios. We evaluate AdaSens on a multi-view video
dataset VideoWeb [15], which contains realistic scenarios
in a multi-camera network that involves multiple persons
performing different activities. We use the 8-scene Day 1
subset which monitors a courtyard with four views (Fig. 3).
We transfer the given labels of important actions to binary
indicators of important frames. A global ground truth that
combines all important intervals across views is generated for
evaluating the performance. We divide the whole area into
M = 12 partitions with different areas x,,,m € [1, M] and

RR 24.98% +40.49%
GREEDY 47.21% .15 739
AdaSens ﬁwnﬂ
0% 10% 20% 30% 40% 50% 60%

I Storage M Coverage

Fig. 4: Comparison on coverage and storage of AdaSens with
GREEDY and RR baselines.

obtain the corresponding node covering indicators A; ,,,¢ €
[1’ N]’ m e []" M]'

Performance Measures. Similar to [16], [17], we consider a
coverage metric at frame level, which evaluates how well the
frames captured from the sensor nodes cover the important
frames. The coverage is computed as the percentage of covered
frames by all nodes in the global ground truth. If an important
frame is covered by any of the nodes, it will be considered
as true positive. Besides computation and communication, the
intermittently-powered sensor nodes have limited storage too,
so we also evaluate the storage for the processed frames.

Comparison Methods. We are not aware of any previous
work on adaptive environment monitoring with intermittently-
powered sensors targeting maximizing the coverage of the
scene. Therefore, we compare our AdaSens with two baselines
we implemented: a greedy baseline (GREEDY) and a round-
robin baseline (RR). In GREEDY, every node performs as
many tasks as possible given the available energy without
coordination among nodes. RR method coordinates nodes to
execute in turns.

Experimental Settings. We utilize solar profile from [14]
for sensor nodes and use a time step of one minute. Similar
to [6], we assume using the low-power OpenChirp network
architecture [18] for nodes to send data over long distances.
In AdaSens, only P; and E; are sent back to the conductor
from the nodes, which yields a one-time communication cost
of E. = 235mJ. With low-power cameras [19], images can
be taken at low energy as 10mJ/frame. The energy cost
of DNN inference on low-power chips can be as low as
26m.J [6]. An atomic task is to capture and infer on 10 frames,
which yields an energy usage rate of 360m.J per task.

B. Comparison with Other Methods

Fig. 4 shows the coverage and the storage needed for
captured frames of AdaSens and its comparison with other
approaches. From the figure, we can see that:

e On average, AdaSens achieves a coverage of 57.08% of
important frames with 40.60% of processed and stored
frames given the limited and unstable power supply.

e Compared to GREEDY, AdaSens has 15.73% improve-
ments of the coverage and 14% reduction of the storage.

e Compared to the round-robin method RR, AdaSens
achieves 40.49% improvements of the coverage. The stor-
age of the processed frames by RR method is lower than

TABLE I: Impact of adaptation period on coverage.

T 10 20 30 40 50 60
Coverage(%) | 54.15 | 55.52 | 57.08 | 53.56 | 54.26 | 49.14

TABLE II: Results using different day-time solar profiles.

Profile | GREEDY | AdaSens | Coverage gain
SP1 48.36% 58.33% +20.62%
SP2 49.32 57.08% +15.73%

ours as it cannot adapt to the change of energy level and
result in fewer important frames captured.

C. Impact of Adaptation Period and Horizon

In Tab. I, we show the results on the impact of adaptation
period T in AdaSens. We vary T from 10 - 60 minutes
with K = 1. At first, with increasing adaptation period
T, the coverage of important frames increases as it benefits
from the following factors: larger 7' leads to less energy for
communication and more energy for computation and longer
optimization horizon. The coverage decreases when T gets too
large: even with the benefit of longer optimization horizon,
the performance degrades because of the less accurate solar
energy prediction and the out-of-date important scores of
views. We also investigate the impact of adaptation horizon
on the coverage, and similar trend is observed. That is,
with the increase of K, the coverage increases with a longer
optimization horizon, but if K is too large, the performance
degrades due to inaccurate energy prediction and out-of-date
important scores.

D. Impact of Energy Factors

Energy Availability. The energy availability may be different
from what we expect when designing the system, which
can be inadequate or overabundent. We study on the impact
of energy availability by setting different solar panel sizes
(Fig. 5a). We can see that AdaSens outperforms both baselines
in the hatched area, which is the most common case in
practice. When the energy availability is too inadequate, the
RR method dispatches the limited available energy evenly and
performs better. When the energy availability is overabundent,
the GREEDY method performs better as it can do as much as
possible.

Energy Prediction Accuracy. We study different solar pro-
files to investigate the impact of energy prediction accuracy. In
Fig. 5b, we present two different day-time solar profiles: SP1
and SP2, selected from different days in the solar calendar. We
can see that SP2 is less predictable as it fluctuates more (SP2 is
used for all experiments above). The performance of AdaSens
using SP1 and SP2 are shown in Tab. II. In this experiment,
we only compare with GREEDY as it performs better than
RR. When using the smooth solar profile, the coverage gain of
AdaSens is +20.62%. While using the fluctuating solar profile,
the coverage gain of AdaSens is +15.73%. It implies that with
more predictable energy source, AdaSens performs better.

E. Study on Communication and Computation Costs

We run experiments with different combinations of com-
munication and computation costs. Both costs are within a
reasonable range for various computation cost [6], [20] and

SP1

90 1000
—— prediction —— label T
80 a 7501 o ™ ‘85
" <E 500 90— — 80
S S 250 80 75
T 60 < g 7
S e 0 g 65
8 o SP2 60
g 50 | 5 1000 5 60
) 8 3 50
o T 750 S 55
40 © 40 50
=—&— AdaSens « 500
30 —— GREEDY 8 30 45
RR o 250 0.3 — 40
0 02 T " 03
20 [- - - 04 T __— . 04 35
0.5 1 15 2 0 200 400 600 0 os °°

Relative solar panel size

(a) Impact of energy availability.

Time step in minute(8:00-18:00)

(b) Examples of solar profiles.

Communication cost(J) Computation cost(J)

(c) Coverage with different settings.

Fig. 5: Impact of energy availability, examples of solar profiles and coverage with different settings.

communication cost [21] on intermittently-powered sensors.
The result is shown in Fig. 5c. The translucent surface in
the background is the GREEDY baseline. We observe that
when the ratio of communication cost versus computation cost
is smaller, our methods provides more benefits on coverage,
and vise versa. This is reasonable as when the communication
takes too much energy compared to the computation task, it
is better not to communicate.

IV. CONCLUSION

We present a novel adaptive environment monitoring frame-
work with intermittently-powered camera sensors, AdaSens,
which optimizes the coverage of important frames by coor-
dinating the sensor operations under intermittent and varying
energy supplies. Experiments demonstrate significant improve-
ments of AdaSens over baselines that do not explore system-
level coordination and optimization.

Acknowledgements: We gratefully acknowledge the support
from National Science Foundation awards CNS-2038853,
CNS-1850496, 1IS-1724341, CNS-1834701, and Office of
Naval Research grant N00014-19-1-2496.

REFERENCES
[1]

J. Hester and J. Sorber, “The future of sensing is batteryless, intermit-
tent, and awesome,” in Proceedings of the 15th ACM Conference on
Embedded Network Sensor Systems, 2017, pp. 1-6.

Y. Qian, L. Yu, W. Liu, and A. G. Hauptmann, “Electricity: An
efficient multi-camera vehicle tracking system for intelligent city,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, 2020, pp. 588-589.

J. Boice, X. Lu, C. Margi, G. Stanek, G. Zhang, R. Manduchi, and
K. Obraczka, “Meerkats: A power-aware, self-managing wireless camera
network for wide area monitoring,” in Proc. Workshop on Distributed
Smart Cameras. Citeseer, 2006, pp. 393—422.

X. Liu, P. Ghosh, O. Ulutan, B. Manjunath, K. Chan, and R. Govindan,
“Caesar: cross-camera complex activity recognition,” in Proceedings of
the 17th Conference on Embedded Networked Sensor Systems, 2019, pp.
232-244.

Y. Wu, Z. Wang, Z. Jia, Y. Shi, and J. Hu, “Intermittent inference
with nonuniformly compressed multi-exit neural network for energy har-
vesting powered devices,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC), 2020, pp. 1-6.

G. Gobieski, B. Lucia, and N. Beckmann, “Intelligence beyond the edge:
Inference on intermittent embedded systems,” in Proceedings of the
Tiventy-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2019, pp. 199-213.
B. Islam and S. Nirjon, “Zygarde: Time-sensitive on-device deep in-
ference and adaptation on intermittently-powered systems,” Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol., vol. 4, no. 3, Sep. 2020.

[2]

[3]

(4]

(3]

(6]

[7]

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

J. Hester, K. Storer, and J. Sorber, “Timely execution on intermittently
powered batteryless sensors,” in Proceedings of the 15th ACM
Conference on Embedded Network Sensor Systems, ser. SenSys '17.
New York, NY, USA: Association for Computing Machinery, 2017.
[Online]. Available: https://doi.org/10.1145/3131672.3131673

K. S. Yildirim, A. Y. Majid, D. Patoukas, K. Schaper, P. Pawelczak,
and J. Hester, “Ink: Reactive kernel for tiny batteryless sensors,” in
Proceedings of the 16th ACM Conference on Embedded Networked
Sensor Systems, 2018, pp. 41-53.

Y. Wu, Z. Jia, F. Fang, and J. Hu, “Cooperative communication between
two transiently powered sensor nodes by reinforcement learning,” /IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2021.

A. Colin, E. Ruppel, and B. Lucia, “A reconfigurable energy stor-
age architecture for energy-harvesting devices,” in Proceedings of the
Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems, 2018, pp. 767-781.
J. de Winkel, C. Delle Donne, K. S. Yildirim, P. Pawelczak, and J. Hes-
ter, “Reliable timekeeping for intermittent computing,” in Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, 2020, pp. 53-67.
R. Ibrahim, T. D. Chung, S. M. Hassan, K. Bingi, and S. Salahuddin,
“Solar energy harvester for industrial wireless sensor nodes,” Procedia
Computer Science, vol. 105, no. C, pp. 111-118, 2017.

A. Maxey, C.; Andreas, “Oak ridge national laboratory (ornl); rotating
shadowband radiometer (rsr); oak ridge, tennessee (data); nrel report no.
da-5500-56512.” http://dx.doi.org/10.5439/1052553.

G. Denina, B. Bhanu, H. T. Nguyen, C. Ding, A. Kamal, C. Ravishankar,
A. Roy-Chowdhury, A. Ivers, and B. Varda, “Videoweb dataset for
multi-camera activities and non-verbal communication,” in Distributed
Video Sensor Networks. Springer, 2011, pp. 335-347.

S. Lan, R. Panda, Q. Zhu, and A. K. Roy-Chowdhury, “Ffnet: Video
fast-forwarding via reinforcement learning,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
S. Lan, Z. Wang, A. K. Roy-Chowdhury, E. Wei, and Q. Zhu, “Dis-
tributed multi-agent video fast-forwarding,” in Proceedings of the 28th
ACM International Conference on Multimedia, 2020, pp. 1075-1084.
A. Dongare, C. Hesling, K. Bhatia, A. Balanuta, R. L. Pereira, B. Ian-
nucci, and A. Rowe, “Openchirp: A low-power wide-area networking
architecture,” in 2017 IEEE International Conference on Pervasive Com-
puting and Communications Workshops (PerCom Workshops). 1EEE,
2017, pp. 569-574.

S. Naderiparizi, Z. Kapetanovic, and J. R. Smith, “Wispcam: An rf-
powered smart camera for machine vision applications,” in Proceedings
of the 4th International Workshop on Energy Harvesting and Energy-
Neutral Sensing Systems, 2016, pp. 19-22.

A. Montanari, M. Sharma, D. Jenkus, M. Alloulah, L. Qendro, and
F. Kawsar, “eperceptive: energy reactive embedded intelligence for bat-
teryless sensors,” in Proceedings of the 18th Conference on Embedded
Networked Sensor Systems, 2020, pp. 382-394.

V. Talla, M. Hessar, B. Kellogg, A. Najafi, J. R. Smith, and S. Gollakota,
“Lora backscatter: Enabling the vision of ubiquitous connectivity,” Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, vol. 1, no. 3, pp. 1-24, 2017.

