1	Draft Genome Sequence of Leijsonia pode strain BS/1, isolated from a Drought Microcosm
2	Authors: Hanaa Ahmed ^a , Kristen M. DeAngelis ^b , Maureen A. Morrow ^{a#}
3	
4	^a Department of Biology, State University of New York at New Paltz, New Paltz, New York, USA
5	^b Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
ϵ	
7	Draft Genome Sequence of <i>Leifsonia poae</i> strain BS71
8	
9	#Address correspondence to Maureen A. Morrow, morrowm@newpaltz.edu.
10	

- 11 We report the draft genome sequence of *Leifsonia poae* strain BS71. This bacterium was isolated
- 12 from a low soil moisture content model soil microcosm inoculated with forest soil that had been
- 13 subject to chronic warming.

Climate change is increasing temperature and drought conditions globally (2). To examine climate effects on soils, a field warming experiment was established in the Harvard Research Forest (HRF) in Petersham, MA (42.54°N, -72.18°W)(1). In October 2017, mineral horizon soil was collected from heated plots. A microcosm was generated by inoculating an 0.8 um filtered soil slurry to an artificial soil microcosm at 30% water content and incubated for 4 months at 15°C, fed weekly with cellobiose and NH4NO3, as described previously (3). These conditions were hypothesized to enrich for bacteria capable of growing in low soil moisture. BS71 was isolated from the microcosm on 1% glucose/ 0.4% potato infusion (Sigma-Aldrich, St. Louis, MO) agar plate, pH6, under aerobic conditions for 8 days at 25°C in the dark. BS71 was identified as *Leifsonia poae* by analyzing the 16S rRNA PCR product produced with the 27F/1492R primer pair(4) with IDTAXA(5).

BS71 DNA was prepared for sequencing by growing a single colony on 10% Tryptic Soy agar at 25°C for 7 days in the dark, scraping the biomass, and extracting the DNA using the Qiagen genomic DNA protocol (Qiagen, Valencia, CA). Whole genome sequencing was completed at the University of Massachusetts Medical School (UMMS) sequencing center. The DNA was sheared using a Biorupter (Diagenode, NJ) to a mean size of 20Kb. A PacBio SMRTbell library kit was used to construct the library that was sequenced on the PacBio RS II platform. The 150,292 raw reads, generated from a single cell, were filtered with the SMRT portal P-filter module (minimum subread length: 50 nucleotides, minimum polymerase quality: 75, and minimum polymerase read length: 50 nucleotides) and the resultant 69,059 filtered reads had a read N₅₀ of 7302 bases.

The genome was assembled using sprai v0.9.9.23 (https://anaconda.org/bioconda/sprai) and Canu v1.5 (6). The final draft assembly contained 5 contigs (contig N_{50} , 3.98Mb) and is estimated as 98.99% complete and 0.063% contaminated using CheckM v1.0.18 (7) in KBase (8). Gene annotations were completed within JGI's Integrated Microbial Genomes (IMG) MGAP v4.16.5(9) with the gene calling program: Prodigal v2.6.3 (10, 11). Default parameters were used for all software except where noted. The genome is 4,144,138 bp (94.3x coverage), with a GC content of 67.84% and is predicted to encode for 3961 proteins, a single rRNA operon, and 45 tRNA genes.

A manually curated list of drought-associated genes was compared between BS71 and the 20 *Leifsonia* genomes with the greatest 16S rRNA gene homology within IMG's database. A greater number of beta-glucosidase (EC 3.2.1.21) annotated genes were present in BS71 (24 genes), as compared to 10 or fewer such annotated genes in the other *Leifsonia* (Table 1). Beta-glucosidase enzymes are diverse and play an important role in biomass conversion of recalcitrant carbon (12). The presumptive BS71 drought tolerance is also supported by the annotation of two distinct aquaporin genes, and genes for the production and transport of osmoprotectants. This genome supports the hypothesis that drought conditions characteristic of climate change may select for bacteria with drought-associated traits.

Data availability. The 16S PCR product sequence accession number is <u>OL515151</u>. The raw whole genome sequence reads are available in GenBank under the BioProject accession number

- 58 PRJNA745001. The Sequence Read Archive (SRA) accession number is <u>SRR15142240</u> and the
- 59 nucleotide sequence accession number is <u>JAIHLP000000000</u>. The annotation reported in this
- study is available at the Joint Genome Institute as Leifsonia poae BS71 first assembly.

61

- 62 Acknowledgements
- 63 This work was supported by the National Science Foundation CAREER award program and
- associated Research Opportunity Award (ROA) under contract DEB-1749206 (K.M.D. and
- 65 M.A.M.), as well as the NSF Long-Term Ecological Research program (LTER) grant 1237491 to
- 66 Harvard Forest. H.A. and M.A.M. would like to thank the SUNY New Paltz Research, Scholarship
- and Creative Activities Program for Summer Undergraduate Research Experience funding.

68

- 69 References
- 1. Melillo JM, Frey SD, DeAngelis KM, Werner WJ, Bernard MJ, Bowles FP, Pold G, Knorr MA,
- Grandy AS. 2017. Long-term pattern and magnitude of soil carbon feedback to the climate
- 72 system in a warming world. Science 358:101.
- 73 2. Pokhrel Y, Felfelani F, Satoh Y, Boulange J, Burek P, Gädeke A, Gerten D, Gosling SN, Grillakis
- M, Gudmundsson L, Hanasaki N, Kim H, Koutroulis A, Liu J, Papadimitriou L, Schewe J,
- Müller Schmied H, Stacke T, Telteu C-E, Thiery W, Veldkamp T, Zhao F, Wada Y. 2021. Global
- terrestrial water storage and drought severity under climate change. Nature Climate
- 77 Change 11:226–233.

- Domeignoz-Horta LA, Pold G, Liu X-JA, Frey SD, Melillo JM, DeAngelis KM. 2020. Microbial
 diversity drives carbon use efficiency in a model soil. Nature Communications 11:3684.
- 4. Lane DJ. 1991. 16S/23S rRNA Sequencing, p. 115–175. *In* Nucleic Acid Techniques in
 Bacterial Systematic. John Wiley and Sons, Inc.
- 82 5. Murali A, Bhargava A, Wright ES. 2018. IDTAXA: a novel approach for accurate taxonomic classification of microbiome sequences. Microbiome 6:140.
- Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable and
 accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome
 Research 27:722–736.
- 7. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes.

 Genome Res, 2015/05/14 ed. 25:1043–1055.
- 90 8. Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, Dehal P, Ware D, Perez F, Canon S, Sneddon MW, Henderson ML, Riehl WJ, Murphy-Olson D, Chan SY, 91 92 Kamimura RT, Kumari S, Drake MM, Brettin TS, Glass EM, Chivian D, Gunter D, Weston DJ, 93 Allen BH, Baumohl J, Best AA, Bowen B, Brenner SE, Bun CC, Chandonia J-M, Chia J-M, 94 Colasanti R, Conrad N, Davis JJ, Davison BH, DeJongh M, Devoid S, Dietrich E, Dubchak I, 95 Edirisinghe JN, Fang G, Faria JP, Frybarger PM, Gerlach W, Gerstein M, Greiner A, Gurtowski 96 J, Haun HL, He F, Jain R, Joachimiak MP, Keegan KP, Kondo S, Kumar V, Land ML, Meyer F, 97 Mills M, Novichkov PS, Oh T, Olsen GJ, Olson R, Parrello B, Pasternak S, Pearson E, Poon SS,

98		Price GA, Ramakrishnan S, Ranjan P, Ronald PC, Schatz MC, Seaver SMD, Shukla M,
99		Sutormin RA, Syed MH, Thomason J, Tintle NL, Wang D, Xia F, Yoo H, Yoo S, Yu D. 2018.
100		KBase: The United States Department of Energy Systems Biology Knowledgebase. Nature
101		Biotechnology 36:566–569.
102	9.	Huntemann M, Ivanova NN, Mavromatis K, Tripp HJ, Paez-Espino D, Palaniappan K, Szeto E,
103		Pillay M, Chen I-MA, Pati A, Nielsen T, Markowitz VM, Kyrpides NC. 2015. The standard
104		operating procedure of the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4).
105		Stand Genomic Sci 10:86–86.
106	10	. Chen I-MA, Chu K, Palaniappan K, Pillay M, Ratner A, Huang J, Huntemann M, Varghese N,
107		White JR, Seshadri R, Smirnova T, Kirton E, Jungbluth SP, Woyke T, Eloe-Fadrosh EA, Ivanova
108		NN, Kyrpides NC. 2018. IMG/M v.5.0: an integrated data management and comparative
109		analysis system for microbial genomes and microbiomes. Nucleic Acids Research 47:D666–
110		D677.
111	11	. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic
112		gene recognition and translation initiation site identification. BMC Bioinformatics 11:119.
113	12	. Ketudat Cairns JR, Esen A. 2010. β-Glucosidases. Cellular and Molecular Life Sciences
114		67:3389–3405.
115		

Table 1 protein-protein BLAST results for beta-glucosidase (EC 3.2.1.21) annotated genes

Gene ID	Taxon identified by BLASTp highest	percent	amino	IMG annotation
Gene ib	score	identity	acids	description
				glycoside hydrolase
				family 3 C-terminal
				domain-containing
2806535936	Humibacter sp. WJ7-1	71	846	protein
				family 1
2806536034	Streptacidiphilus fuscans	63	401	glycosylhydrolase
				family 1
2806536039	Leifsonia shinshuensis	70	96	glycosylhydrolase
				glycoside hydrolase
				family 3 C-terminal
				domain-containing
2806536324	Microbacterium azadirachtae	60	788	protein
				glycoside hydrolase
2806536495	Leifsonia shinshuensis	84	599	family 3 protein
				glycoside hydrolase
				family 3 C-terminal
				domain-containing
2806536706	Leifsonia sp. NCR5	81	831	protein

				glycoside hydrolase
				family 3 C-terminal
				domain-containing
2806536737	Frondihabitans sp. 762G35	73	776	protein
				family 1
2806536747	Leifsonia sp. Root227	94	391	glycosylhydrolase
				glycoside hydrolase
				family 3 C-terminal
				domain-containing
2806536801	Leifsonia sp. NCR5	82	617	protein
2806537199	Leifsonia sp. PS1209	79	501	beta-glucosidase
				glycoside hydrolase
				family 3 C-terminal
				domain-containing
2806537254	Plantibacter flavus	65	592	protein
				glycoside hydrolase
				family 3 C-terminal
				domain-containing
2806537278	Microbacterium sp. Root61	91	761	protein
				glycoside hydrolase
2806538045	Rathayibacter sp. AY1A3	67	805	family 3 C-terminal

				domain-containing
				protein
				family 1
2806538050	Nonomuraea sp. 160415	61	403	glycosylhydrolase
				glycoside hydrolase
				family 3 C-terminal
				domain-containing
2806538065	Thermocatellispora tengchongensis	70	746	protein
				glycosyl hydrolase
2806538066	Microbacteriaceae bacterium	78	389	family protein
2806538078	Thermocatellispora tengchongensis	64	797	beta-glucosidase
				MULTISPECIES:
				glycoside hydrolase
				family 3 C-terminal
				domain-containing
2806538079	unclassified Leifsonia	77	609	protein
				glycoside hydrolase
				family 3 C-terminal
				domain-containing
2806538223	Plantibacter sp. YR521	69	781	protein

				glycoside hydrolase
				family 3 C-terminal
				domain-containing
2806535250	Actinoplanes sp. OR16	68	578	protein
				family 1
2806535263	Streptomyces sp. yr375	83	409	glycosylhydrolase
				ABC transporter
				substrate-binding
2806535267	Leifsonia sp. Root227	88	751	protein
				glycoside hydrolase
				family 3 C-terminal
				domain-containing
2806535268	Leifsonia sp. Root227	86	786	protein
				glycoside hydrolase
				family 3 C-terminal
				domain-containing
2806534677	Mycobacterium sp.	63	747	protein