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Abstract

Dispersal is a fundamental community assembly process that maintains soil
microbial biodiversity across spatial and temporal scales, yet the impact of
dispersal on ecosystem function is largely unpredictable. Dispersal is unique
in that it contributes to both ecological and evolutionary processes and is
shaped by both deterministic and stochastic forces. The ecosystem-level
ramifications of dispersal outcomes are further compounded by microbial
dormancy dynamics and environmental selection. Here we review the knowl-
edge gaps and challenges that remain in defining how dispersal, environmen-
tal filtering, and microbial dormancy interact to influence the relationship
between microbial community structure and function in soils. We propose
the classification of microbial dispersal into three categories, through vege-
tative or active cells, through dormant cells, and through acelluar dispersal,
each with unique spatiotemporal dynamics and microbial trait associations.
This conceptual framework should improve the integration of dispersal in
defining soil microbial community structure-function relationships.
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1. Introduction1

The interplay between microbial dispersal, environmental filtering, and2

microbial dormancy introduces ecoevolutionary dynamics to soil ecosystems3
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that limit our ability to decipher, much less predict, community structure-4

function relationships. Despite rapid development of high throughput molec-5

ular methods, decreasing sequencing costs, and accelerating generation of6

large ecological data, soils remain messy. This is because soils are massively7

complex superorganisms with emergent functions that are not yet easily pre-8

dicted. To inform our predictions of amassed scale effects that determine soil9

behavior, we need a better understanding of how microbial processes, such10

as dormancy and environmental filtering, compound dispersal outcomes that11

transpire to whole ecosystems.12

We suggest an adaptable framework for thinking about how microbial13

dispersal across space and time influences soil biodiversity, and ultimately,14

ecosystem function. Modes of microbial dispersal are categorized as cellular15

(i.e. vegetative or dormant cells) and acelluar (i.e. genetic material as-16

sociated with viruses and/or gene flow independent of cellular life), where17

dispersal outcomes for organisms and/or their genes happen across different18

spatiotemporal scales (Figure 1). Here we discuss the mechanistic constraints19

of microbial dispersal modes and the interplay between dispersal, environ-20

mental filtering, and dormancy. Finally, we propose a traits-based approach21

for quantifying dispersal outcomes, and suggest how this framework can be22

used to evaluate soil microbial structure-function relationships.23

1.1. Microbial community assembly24

To predict ecosystem function from community composition, we first need25

to understand the community assembly processes that create and maintain26

patterns of microbial diversity. In both microbial ecology and the broader27

field of ecology, niche theory and selection-based models have classically ex-28

plained patterns of community assembly, looking to environmental selection29

and biotic interactions to define niche space and determine what conditions30

a species will persist (Chase and Leibold, 2003, Holt, 2009). Alternatively,31

neutral theory relies on stochastic processes to explain community ecology32

patterns (Hubbell, 2001, Chave, 2004). Few elements of ecology are an ab-33

solute either-or, and mathematical frameworks unify both niche and neutral34

theory (Harshey, 2003, Mutshinda and O’Hara, 2011). In reality, compre-35

hensive theory explains that variations in community assembly arise through36

both deterministic and stochastic processes, and that individual processes37

exist somewhere along a continuum between selection and neutrality (Chase38

and Myers, 2011).39
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Figure 1: Microbial dispersal modes. Dispersal affects microbial structure-function re-
lationships in soils by distributing genes (i.e. potential ecological functions, which are
represented here by blue/red DNA fragments) in three primary ways: through active or
vegetative cell dispersal, through dormant cell dispersal, and through acellular dispersal.
Dispersal can occur at different scales over space and time, and can be independent of
environmental filtering and ecological constraints that structure organism-level rules of
microbial community assembly. Long-range spatial migration is likely dominated by dor-
mant (i.e. spore) dispersal through aeolian deposition, though active cells and viruses
also constitute the air microbiome. Local dispersal over short time scales includes viral-
mediated genetic transfer as well as uptake of free environmental DNA (eDNA) from soil
necromass pools. Cellular dispersal over intermediate spatial scales can occur via fungal
highways or vectors including soil arthropods. Over longer time scales, dormancy shapes
population genetics by effecting evolutionary diversification processes.

A useful synthesis describes community assembly as a function of the four40

fundamental ecoevolutionary processes of dispersal, selection or environmen-41

tal filtering, ecological drift, and diversification (Vellend, 2010). How these42

same mechanisms extend to microbial biogeography has been eloquently sum-43

marized previously (Nemergut et al., 2013, Hanson et al., 2012, Martiny et al.,44

2006). Much research in the last few decades has quantified the relative con-45

tributions of these community assembly processes in microbial systems, see46

(Stegen et al., 2013, 2015, Caruso et al., 2011, Ofiţeru et al., 2010, Liao et al.,47

2016). Of Vellend’s four fundamental processes, dispersal is the least under-48
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stood in terrestrial microbial systems and often assumed to be negligible.49

Due to small cell size, large populations, high potential for dispersal, and50

a bias for niche-based approaches, the influence of stochastic processes, in-51

cluding dispersal, is historically under-explored in microbial ecology (Zhou52

and Ning, 2017). We believe that a renewed focus of research efforts on un-53

derstanding microbial dispersal will advance our understanding of microbial54

structure-function relationships considerably.55

2. What is microbial dispersal?56

Dispersal is predominately defined as ”the movement of individuals or57

propagules with potential consequences for gene flow across space” (Ronce,58

2007). Consequently, dispersal entails both dissemination and establishment59

or colonization, each with unique constraints. But dispersal remains poorly60

conceptualized for microbes. This is because theoretical frameworks in ecol-61

ogy were historically built on observations of plants and animals, yet it is62

crucial to apply, adapt, or develop theory that includes the microbial per-63

spective (Prosser et al., 2007). While unification of micro- and macroecology64

theory seems conceptually attainable, there remain unique aspects of mi-65

crobial systems, including scaling, microbial species concepts, and gene flow66

dynamics that continue to impose challenges to reconciliation (Shade et al.,67

2018, Barberán, Casamayor and Fierer, 2014).68

Current sampling methods limit our ability to accurately enumerate soil69

microbes and their dispersal, though sampling challenges are certainly not70

unique to microbes (Shade et al., 2018, Elphick, 2008). Perhaps the largest71

hurdle to quantifying microbial dispersal is counting individuals and species72

and identifying their presence-absence across sites. For census numbers, di-73

rect counts using microscopy has both low feasibility and little resolutions74

beyond basic cell morphology. Alternatively, quantification using molecu-75

lar approaches like quantitative PCR of 16S ribosomal RNA (rRNA) genes76

(or other marker genes) is preferred, although imperfect given biases in nu-77

cleic acid extraction, amplification, and uneven distribution rRNA operon78

copy numbers. More importantly, marker genes lack sufficient resolution to79

address dispersal patterns of individual species (Choudoir et al., 2012).80

Microbial species concepts are well supported with theoretical and empiri-81

cal data (Achtman and Wagner, 2008, Rosselló-Móra and Amann, 2015, Ward82

et al., 2008), but practical demarcations of microbial species remain challeng-83

ing. Gene flow across space and time further obscures microbial population84
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boundaries. Gene exchange dynamics vary greatly between macro and mi-85

croorganisms, making it difficult to apply macroecology dispersal theory to86

microbial systems. Furthermore, recombination patterns differ between mi-87

crobial taxa, with microbes ranging form strictly clonal to wildly promiscuous88

(Gogarten et al., 2002, Didelot and Maiden, 2010, Jain et al., 2002). This is89

not to say that quantifying microbial dispersal is unattainable, but it does90

require careful experimental design and appropriate cultivation-based and/or91

molecular methods.92

2.1. Modes of microbial dispersal93

We propose classifying microbial dispersal into three categories, each with94

unique microbial trait associations and spatiotemporal dynamics: vegetative95

or active cells, dormant cells, and acelluar or genetic dispersal (Figure 1).96

This conceptual framework is intended to better integrate microbial dispersal97

outcomes into community structure-function relationships. We note that98

molecular ecology methods (e.g. 16S rRNA gene amplicon surveys, shotgun99

metagenomics, whole genome sequencing of isolates) are often exclusively100

used to infer patterns of cellular dispersal. Thus, we encourage moving away101

from a strictly cellular framework and towards thinking about dispersal and102

its consequences for ecosystem function in terms of genetic dispersal, since103

ultimately, genes underlie functional potential. Finally, we acknowledge that104

these categories are not mutually exclusive, sometimes overlap, and exist on105

a multi-dimensional continuum.106

2.1.1. Vegetative dispersal107

Vegetative dispersal is the movement of growing, physiologically-active108

microbial cells across space. Vegetative dispersal in soils can be passive or109

active and occurs at cellular, micro-habitat, and local spatial scales. Spo-110

radic wetting events that saturate soils can induce passive cell dispersal via111

Brownian motion (Mitchell and Kogure, 2006), but most of the time the112

soil is an unsaturated and irregular matrix of solid particles and liquids113

connected by gaseous pores (Or et al., 2007). From the perspective of a114

single microbial cell the soil is cavernous, and movement across this habi-115

tat requires some evolutionary ingenuity. Bacteria and archaea have evolved116

diverse methods of motility and active dispersal across surfaces including117

flagellar and non-flagellar swimming, twitching, or gliding mechanisms (Jar-118

rell and McBride, 2008). Social microbes have evolved multi-cellular modes119

of dispersal like biofilm or fruiting body formation (Harshey, 2003). Hyphal120
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growth in filamentous microorganisms, including some fungi and bacterial121

actinomycetes, is another form of dispersal that creates mycelial networks122

(Prosser and Tough, 1991). In additional to a filamentous developmen-123

tal stage, some Streptomyces bacteria assume a newly discovered life stage124

termed ”exploratory growth” which allows cells to rapidly transverse surfaces125

in response to environmental or biotic signals (Jones and Elliot, 2017, Jones126

et al., 2017). Although similar in structure to filamentous bacterial hyphae,127

fungal hyphae are much larger, and in fact bacteria can migrate along these128

fungal highways (Kohlmeier et al., 2005, Warmink et al., 2011).129

2.1.2. Dormant dispersal130

Dormant dispersal is the movement of dormant microbial cells across131

space. Dormancy is an organism’s ability to reduce cell function to the min-132

imum allowable energy expenditure, defined as maintenance energy (Pirt,133

1987). Therefore, conduits of dormant dispersal are, by definition, passive.134

Dormancy is reversible, which permits survival during periods of unfavorable135

environmental conditions. In macroecology, the ”temporal storage effect”136

refers to a mechanism that contributes to species coexistence and depends137

on varying environmental conditions, competition, and a persistent long-138

lived state (Chesson and Warner, 1981, Warner and Chesson, 1985). In this139

sense, we can also conceptualize microbial dormancy as the dispersal of cells140

through time as well as space. Dormancy has recurrently evolved among141

microorganisms, manifesting in diverse physiologies which may include mor-142

phological differentiation and formation of spores, endospores, conidia, cysts,143

or akinetes (Lennon and Jones, 2011). Dormancy is also surmised to include144

”resting states” in which minimal energy is invested only in stopping cell145

damage or decay, and is usually accompanied by a reduction in size, some-146

times called viable-but-not-cultivable (Roszak and Cowell, 1987, Lennon and147

Jones, 2011). For fungi engaging in sexual reproduction, dispersal of both148

sexual and asexual spores may be crucial for successful establishment and149

range expansion.150

Soil microbes continuously fluctuate between active and dormant phys-151

iological states (Stenström et al., 2001), and these varying stages of rest-152

ing states is exemplified by the wide diversity of soil microbes that respond153

within minutes to the first season’s rain in a Mediterranean grassland (Pla-154

cella et al., 2012). This is a demonstration of the taphonomic gradient (Lynch155

and Neufeld, 2015), an idea which suggests that cellular metabolic state is156

not a dichotomy of ”active” or ”dormant”, but that microbial activity falls157
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along a gradient from active to dormant to fossilized. Measurements of soil158

microbes being dormant at any one time range from most (Lennon and Jones,159

2011) to almost none (Papp et al., 2018). Modern estimates of dormancy in160

soils are largely based on the detection of rRNA, and in fact, many papers use161

the absence of rRNA as an indication of dormancy (Aanderud et al., 2016,162

Loeppmann et al., 2018, Kearns et al., 2016). The use of rRNA as a proxy163

for active populations is problematic, as not all taxa degrade their rRNA as164

they move into dormancy (Blazewicz et al., 2013). This means that certain165

taxa will retain rRNA even when dormant, which can create a stochastic,166

or worse, phylogenetically-conserved bias in discriminating between dormant167

and active microbes. In other words, since dormant cells can include rRNA,168

the use of rRNA as an indicator of an active state will under-estimate the169

dormant population in natural systems.170

2.1.3. Acellular dispersal171

Genetic dispersal is the movement of genes across space that can be inde-172

pendent of cellular dispersal. Acellular dispersal can facilitate the expansion173

of functional capabilities with ecosystem-level ramifications. For example,174

genetic dispersal has long been observed for antibiotic resistance genes (Zhu175

et al., 2019) and microbial virulence factors (Wagner and Waldor, 2002).176

Viruses are ubiquitous with microbes and are a major source of genetic di-177

versity in natural systems (Correa et al., 2021). Viral-mediated horizontal178

gene exchange creates a model of dispersal that, while dependent on cellular179

machinery for replication and transmission, possesses unique spatial and tem-180

poral dynamics. New research has demonstrated that viruses are agents of181

genetic diversity that shape biogeochemical cycling (Starr et al., 2019, Trubl182

et al., 2018). Viruses direct carbon flows in ecosystems through a top-down183

manner, in which viral cell lysis increases organic matter concentrations.184

The ’viral shunt’ as a source of fresh organic matter from viral predation has185

long been appreciated in marine systems, but is also important in terrestrial186

systems (Hungate et al., 2021). In a study of viral sequences from across187

a permafrost thaw gradient, authors found that many viruses encoded gly-188

coside hydrolases, some with confirmed activity, targeted at degradation of189

pectin, hemicellulose and starch. Further, modeling revealed that in almost190

every case viral abundance predicted pore water dissolved organic carbon,191

sometimes better than the host abundance (Emerson et al., 2018). Though192

evidence for viral-mediated genetic dispersal in soils remains somewhat lim-193

iting, there is clear precedent for viruses to act as agents of dispersal of genes194
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that can shape the functional capacity of soil microbial communities.195

Extracellular relic DNA is abundant and stable in soils (Carini et al.,196

2016, Lennon et al., 2018), representing a large reservoir of genetic diversity197

uncoupled from cellular identity. Furthermore, transformation of free envi-198

ronmental DNA (eDNA) by naturally competent soil bacteria (Paget and199

Simonet, 1994) may represent an under appreciated mechanism of gene flow200

and introduction of new heritable traits in soil populations. While acellu-201

lar dispersal is not unique to microbes, it likely plays a much larger role in202

microbial ecology than it does in plant or animal ecology.203

2.2. Long-distance dispersal204

Aeolean deposition, or dispersal promoted by the action of wind, can205

cause dramatic changes in immigration rates of microbes in natural environ-206

ments. Microbes from terrestrial, marine, and glacial origins were found in207

the Arctic air microbiome (Šantl-Temkiv et al., 2018), indicating that the208

atmosphere represents a potentially important channel connecting Earth’s209

bioshperes. Aerial dispersal shapes fungal community structure at local210

scales (500 m) with strong seasonal trends (Adams et al., 2013). At con-211

tinental scales, regional climactic and environmental variables shape the212

distribution of bacterial and fungal taxa associated with settled dust (Bar-213

berán et al., 2015). Wind and weather patterns have been connected to214

microbial migration at global scales (Kellogg and Griffin, 2006, Smith et al.,215

2013), and in particular, microbes on dust particles originating from seasonal216

desert storms are associated with transoceanic and intercontinental airborne217

dispersal routes (Kellogg and Griffin, 2006, Barberán, Henley, Fierer and218

Casamayor, 2014). Functional attributes related to dormancy are enriched219

in desert microbes (Fierer et al., 2012), supporting the hypothesis that air-220

borne dispersal is dominated by dormant cells.221

Atmospheric viral transmission of genetic material is possible considering222

estimates of viral particles in the air microbiome. By one account, viral-like223

particles and bacterial-like particles exist at concentrations of about 10e5224

per cubic meter of air, with similar concentrations inside and outside, and225

a viral to bacterial ratio of about 1.4–1 (Prussin et al., 2015). The enu-226

meration of bacterial and viral particles based on size may have resulted227

in over-estimating their abundances, but reliably quantifying airborne biotic228

particles is notoriously difficult (Judith et al., 2020). Further, it is unclear229

whether the viral constituents of the air microbiome are mostly human-230

derived, or whether the focus on human health has biased this estimation231
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(Prussin and Marr, 2015). Most of the work on the viral component of air232

microbiomes is focused on the built (i.e.indoor) environment with an effort233

to quantify pathogens, so the natural ecology of outdoor particles and their234

dispersal constraints remain under-explored.235

2.3. Vector-mediated dispersal236

Finally, microbes can disperse through animals vectors across varying237

spatial scales. Across intermediate to long-range distances, small mammals238

and birds are dispersers of arbuscular mycorrhizal (AM) spores (Correia239

et al., 2019, Mangan and Adler, 2000). At local scales, it’s long been ap-240

preciated that soil arthropods assist fungal and bacterial dispersal (Ruddick241

and Williams, 1972, Lussenhop, 1992). A recent study demonstrates that242

geosmin, a volatile compound emitted by sporulating actinomycetes that243

smells like fresh soil after the rain, recruited arthropods and facilitated spore244

dispersal (Becher et al., 2020). Soil arthropods Collembolans accelerated the245

dispersal of antibiotic resistance genes in a controlled experiment, likely in-246

directly as a result of altered bacterial community structure in Collembolan-247

inhabited soils (Zhu et al., 2019).248

2.4. Consequences of microbial dispersal249

Dispersal is a key ingredient for spatial structuring of genetic diversity and250

population structure. Dispersal is also a unique mechanism as it impacts both251

ecological (Stegen et al., 2015) and evolutionary (Thompson and Fronhofer,252

2019) processes. Dispersal connects local populations with regional pools,253

and thus dispersal is the important glue connecting metacommunities and254

facilitating metacommunity dynamics (e.g. patch dynamics, species-sorting,255

and mass effects) (Leibold et al., 2004). For instance, cellular dispersal can256

influence community ecology by altering local abundance and distribution257

patterns of community members. As an evolutionary force related to gene258

flow, dispersal and can increase local diversity through the introduction of259

novel genetic material or can homogenize genetic diversity at high dispersal260

rates due to mass effects.261

The prevalence of non-random distributions of bacterial species supports262

the idea that dispersal limitation is an important factor shaping community263

assembly (Martiny et al., 2006). Dispersal limitation refers to geographic264

or ecological constraints of dispersal, and in some cases can create distance-265

decay relationships. Distance-decay relationships are observed in patterns of266
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soil microbial community composition and structure across geographic dis-267

tances ranging from micro to local to global scales (Albright and Martiny,268

2018, Peay et al., 2007, Martiny et al., 2006). The taxa-area relationship269

is another illustration of dispersal limitation (Horner-Devine et al., 2004,270

Green and Bohannan, 2006). For instance, isolation by distance (IBD) de-271

scribes a linear relationship between genetic variation and geographic dis-272

tance (Wright, 1943), and this pattern is observed in the population structure273

of the soil microbe Myxococcus xanthus (Vos and Velicer, 2008). Biogeogra-274

phy studies in other microbial systems highlight the importance of dispersal275

limitation on spatial structuring of genetic and genomic diversity (Reno et al.,276

2009, Peay et al., 2010, Andam et al., 2016, Bottos et al., 2018).277

3. Dispersal and its dependencies278

The outcomes of dispersal on community function are interdependent279

on environmental filtering and dormancy dynamics acting at dispersal loca-280

tions. Stronger environmental filtering reduces perceived rates of dispersal281

and shifts dispersal outcomes from more stochastic to more deterministic.282

Dormancy can mitigate environmental selection in heterogeneous or chang-283

ing habitats, effectively increasing perceived rates of dispersal. In this way,284

environmental filtering and dormancy are opposing constraints related to dor-285

mancy in community assembly processes. However, the variables that dictate286

dispersal outcomes on soil community composition are still not mapped out287

to an extent that will facilitate prediction of structure-function relationships288

in soil.289

3.1. Dispersal and environmental filtering290

The Baas Becking hypothesis, ”Everything is everywhere, but the envi-291

ronment selects” (Translated from the original Dutch: ”Alles is overal: maar292

het milieu selecteert”) (O’Malley, 2007) has persisted since its publication in293

the 1930s because of our continued and growing appreciation for microbial294

biodiversity and the rare biosphere, with modern high throughput methods295

still not plumbing the depths of the microbial species catalogue (Lynch and296

Neufeld, 2015). This hypothesis has been rejected (Papke et al., 2003, Telford297

et al., 2006) and accepted (Finlay, 2002, Finlay and Fenchel, 2004) for various298

ecosystems, scales, and populations. At its heart, the Baas Becking hypothe-299

sis is a direct test of the relative contributions of dispersal and environmental300
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selection in determining patterns of biogeography. Spatial scale plays an im-301

portant role, with niche selection functioning at smaller scales and dispersal302

at broader scales (Wisnoski et al., 2019). The hypothesis of cosmopolitan303

dispersal has been recently evaluated for genes, and authors found that gene304

pools show stronger evidence of environmental filtering and lower geographic305

constraints compared to whole organisms (Fodelianakis et al., 2019).306

In a study modeling the interaction between dispersal rates and envi-307

ronmental filtering on microbial communities assembled on different litter308

qualities, dispersal limitation (defined as less than 25 percent turnover) re-309

sulted in high within-group and between-group distances, suggesting a preva-310

lence of stochastic processes (Evans et al., 2017). Community distance de-311

creased in simulations with higher dispersal rates, yet stochastic assembly312

was more prevalent under conditions of stronger selection, highlighting an313

important relationship between selection and dispersal. Conversely, drought314

stress shifted microbial community assembly to more deterministic processes315

(Chase, 2007). Under scenarios of environmental stress, we can imagine how316

the consequences of dispersal will also depend on what microbes and their317

associated traits are dispersing, their relative fitness, and their adaptive po-318

tentials.319

3.2. Dispersal and dormancy320

An accurate estimate of microbial dormancy in soils is critical to under-321

standing how community assembly processes shape soil biodiversity and to322

extrapolating the impact of dispersal on community function. Seed banks323

constructed of dormant microorganisms, many of which are members of324

the rare biosphere, are important contributors to generating and maintain-325

ing soil microbial diversity (Jones and Lennon, 2010, Lennon and Jones,326

2011, Aanderud et al., 2015). Furthermore, ecosystem models indicate dor-327

mancy dynamics are important for predicting biogeochemical nutrient cycling328

(Stolpovsky et al., 2011, Wang et al., 2015). Dormancy also has the poten-329

tial to shape population genetics and fundamental evolutionary processes330

(Shoemaker and Lennon, 2018).331

There is a strong theoretical grounding for the hypothesis that dormancy332

shapes patterns of microbial biogeography by enhancing dispersal, but empir-333

ical evidence has been harder to come by (Epstein, 2009). Mestre and Höfer334

(Mestre and Höfer, 2020) outline a compelling conceptual framework, the335

Microbial Conveyor Belt, for surmising how dormancy, dispersal, and resus-336

citation interact to shape marine microbial community structure and function337
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at the global scale. The Theory of Island Biogeography likewise indirectly338

supports the link between dormancy and dispersal, where modeling exercises339

show that increasing the dormancy rate (expressed as a dampening of extinc-340

tion rates over time) increases community richness (Lennon and Jones, 2011).341

Some of the first direct evidence linking microbial dormancy and dispersal342

limitation to microbial biogeography shows that dormancy dampens envi-343

ronmental and spatial distance-decay relationships for microbes in forested344

ponds (Locey et al., 2020). Another recent study found that both resusci-345

tation of local dormant cells and regional dispersal of active cells contribute346

to soil community resilience following a period of thermal stress (Sorensen347

and Shade, 2020). This study poses the question, what are the long-term348

outcomes of dormant versus active cellular dispersal in natural systems?349

3.3. Dispersal outcomes on community function350

The outcomes of dispersal on community function depend on the inter-351

play between microbial traits associated with dispersers and the strength of352

local environmental filtering. Dispersal-colonization tradeoffs may structure353

microbial trait distributions across the spatial and environmental landscape354

(Smith et al., 2018). In a recent wood decomposition study spanning sites355

along a forest/non-forest ecotone, dispersal limitation of traits associated356

with rapid wood-degradation shaped community composition and function357

such that fungal communities farther from forests decomposed wood blocks358

more slowly (Smith and Peay, 2021). Independent of forest proximity, there359

was also a significant negative relationship between alpha-diversity (shaped360

by stochastic dispersal) and decomposition due to interspecific competition,361

linking dispersal to independent drivers of community function in this system362

(Smith and Peay, 2021).363

An intuitive hypothesis is that dispersal can mitigate microbial responses364

to environmental stress by introducing stress-tolerant microbes, but this pre-365

diction depends on the regional pool of microbial traits, their adaptive poten-366

tial, and the extent of functional redundancy. In an experimental evolution367

experiment, dispersal elevated community growth under ambient conditions368

but hindered growth in a warming treatment (Lawrence et al., 2016), suggest-369

ing that dispersal may dampen the ability of microbial communities to adapt370

to environmental change by introducing maladapted individuals. In another371

study looking at the interaction between dispersal and drought, dispersal372

altered the community composition to a greater extent under drought con-373

ditions but also resulted in loss of community function, which was contrary374
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to the hypothesis that dispersal could mitigate drought stress by introduc-375

ing tolerant microbes (Evans et al., 2020). In a common garden experiment376

across a natural precipitation gradient, enhanced dispersal had no effect on377

community composition, which was the strongest predictor of functional re-378

sponses to changes in moisture (Waring and Hawkes, 2018). However, under379

certain conditions, dispersal can enhance community stability in the face of380

environmental change for both acute and more gradual disturbances (Evans381

et al., 2019, Sorensen and Shade, 2020).382

The order and timing of dispersal events can also influence dispersal out-383

comes. For instance, the release of fungal spores during day versus night384

influences dispersal longevity and survival (Oneto et al., 2020). Historical385

contingencies are past biological interactions or environmental conditions,386

whose order and timing impact the trajectory of a community response. Pri-387

ority effects are a specific example of a biotic historical contingency where388

the early or late arrival of a species determines community assembly out-389

comes (Fukami, 2015). The important of historical contingencies (Hawkes390

and Keitt, 2015) and priority effects (Sprockett et al., 2018, Hiscox et al.,391

2015, Svoboda et al., 2018) on microbial community assembly has been392

demonstrated across a range of habitats.393

4. Traits-based approach for predicting dispersal outcomes394

Traits are increasingly invoked as the key parameters to understand ecosys-395

tem function. Traits include the physiological, life history, and behavioral396

characteristics of organisms that underlie ecosystem function (Martiny et al.,397

2015). Because traits more directly relate to ecosystem function, and most398

traits are phylogenetically conserved to some degree, traits are a valuable399

tool in linking microbial biogeography to ecosystem function (Green et al.,400

2008, Nelson et al., 2016, Fierer et al., 2012). Quantification of traits related401

to dormancy and dispersal should also be valuable to understanding their402

interaction, but current attempts are hampered by the breadth of traits that403

contribute to these processes.404

For example, range size correlates to genomic and phenotypic attributes405

of dust-associated microbes, suggesting that these traits may be related to406

dispersal capabilities (Choudoir et al., 2018). For AM fungi, a recent study407

showed that small spore size was positively associated with aerial dispersal408

(Chaudhary et al., 2020), while another study found spore size to be a poor409

predictor of AM fungal range size (Kivlin, 2020). It’s clear we are far from410
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understanding physiological traits that determine dispersal outcomes. Since411

atmospheric dispersal is important to both plants and microbes, looking to412

decades of studies in plant ecology for inspiration about traits related to413

dispersal will likely yield fruitful insights (Thomson et al., 2010, Tamme414

et al., 2014). Once traits are identified, analyses developed for genome-wide415

association studies (GWAS) (Eriksson et al., 2010, San et al., 2020) may416

offer useful insights for identifying genetic variation related to common traits417

associated with dormancy and/or dispersal.418

Ultimately, we need to develop a predictive framework for implementing419

dispersal traits into changes in ecosystem function. One suggestion is im-420

plementation of the response-effect framework (Lavorel and Garnier, 2002),421

where response traits determine community structure (indirect drivers) and422

effect traits influence ecosystem function (direct drivers). This framework has423

been previously applied to fungal systems (Crowther et al., 2014, Koide et al.,424

2014), and while it can be challenging to parse indirect versus direct effects425

on ecosystem function, there is predictive power when response and effect426

traits are correlated. Using this framework, microbial dormancy and disper-427

sal traits are response traits which control microbial community structure428

directly (and ecosystem function indirectly), as separate from effect traits429

that govern ecosystem function directly. Another approach could implement430

a tradeoff framework, such as the yield-resource acquisition-stress (Y-A-S)431

traits framework developed as a microbial analog to Grime’s competitor-432

stress tolerator-ruderal (C-S-R) framework (Grime, 1977, Malik et al., 2020).433

For example, dormancy could be invoked as a measure of community stress434

response. A third approach could implement dormancy or dispersal as a435

performance filter along an ecological gradient overlaying other system traits436

(Webb et al., 2010). These frameworks could be high-level conceptualizations437

to be combined with statistical modeling. For example, the relative contri-438

bution of dispersal to ecosystem function can be estimated using generalized439

nonlinear models, with microbial traits as potential fixed effects screened440

in model selection. Structural equation modeling (SEM) can be employed441

downstream to define direct and indirect drivers of ecosystem function.442

5. Road map and research recommendations443

To improve our predictions of structure-function relationships in soils, we444

need to apply and evaluate a more precise, yet adaptable conceptualization445

of microbial dispersal. We propose a reframing of microbial dispersal into446
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active, dormant, and acellular modes. The ecological, spatial, and temporal447

restraints vary between cellular and acelluar dispersal (Figure 1), with genetic448

dispersal potentially decoupled from environmental filtering and organismal449

identity. We are not the first to frame patterns of biogeography through the450

lens of genetic dispersal. For example, Baltrus (Baltrus, 2020) discusses the451

dynamics of genetic element dispersal and the contributions to the biogeog-452

raphy microbial pathways. We also encourage researchers to contemplate the453

limits of this thinking. Can microbial dispersal always be sufficiently repre-454

sented as genetic dispersal, or is it sometimes more important to consider455

the individual organisms harboring these genes?456

To close current knowledge gaps, we recommend starting with these re-457

search directions. First, we need to develop a quantitative theoretical frame-458

work that integrates microbial dispersal, dormancy, and environmental fil-459

tering. A new model describes the interactions between dispersal and dor-460

mancy and outcomes on community diversity across scales (Wisnoski and461

Shoemaker, 2021). This model considers multiple dormancy traits (i.e. sur-462

vival and germination rates) and how these processes interact with dispersal463

to create nonlinear effects on metacommunity diversity across local and re-464

gional spatial scales. Models that capture dispersal and dormancy dynamics465

will continue to improve as we better measure these phenomena, both as466

ecosystem processes and as microbial traits.467

Second, we need to develop more accurate methods for quantifying, and468

accounting for, microbial dispersal and dormancy. Golan and Pringle (Golan469

and Pringle, 2017) provide a comprehensive framework for considering fungal470

long distance dispersal that entails mathematical models, genetic inference,471

and direct quantification based on spore capture. We also need improved472

tools to quantify genetic dispersal (Brito, 2021). We recommend incorpo-473

rating dispersal and dormancy explicitly into soil structure-function studies.474

A typical structure-function analysis neglects the influence of dispersal from475

a regional pool, and also assumes that all recovered DNA sequences are476

representative of active (or potentially active) organisms. Incorporating dis-477

persal might mean a no-dispersal or enhanced-dispersal treatment as part of478

the experimental design, or accounting for new taxa from the atmosphere479

at regional scales or along fungal highways at local scales. Incorporating480

dormancy might mean including a resuscitation treatment (e.g. bacterial481

resuscitation factor Rpf, see (Kuo et al., 2021)), or filtering taxa based on482

microbial activity. Although at present our methods for quantifying active483

versus non-active fractions are imperfect. If we knew how to differentiate ac-484
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tive versus inactive rRNA, we’d be a lot closer to estimating true dormancy485

rates. Cell-resolved metabolomics might offer a promising solution (Walsh486

et al., 2018).487

Finally, we need to better qualify and quantify traits related to dormancy488

and dispersal. This may require different strategies for different microbial489

lineages. For example, identifying a taxon-specific sporulation gene, or an490

environmental signal that is associated with entering dormancy or the re-491

suscitation of a particular microbe. New research on the homeostasis of492

ribosomes in Methanococcus during energy limitation underscores the need493

for alternative traits that accompany activity and dormancy (Müller et al.,494

2021). We as microbial ecologists need to support research that focuses on495

specific members of a microbial community (e.g. revitalization of microbial496

cultivation efforts (Carini, 2019)). In understanding the trees, we may finally497

be able to see the forest.498
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