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Abstract

This paper develops a stochastic model for the spatially-dependent material parameters parameterizing anisotropic strain
nergy density functions. The construction is cast within the framework of information theory, which is invoked to derive

least-informative model while ensuring consistency with theoretical requirements in finite elasticity. Specifically, almost
ure polyconvexity and uniform growth conditions are enforced through proper repulsion constraints and regularization, hence
aking the forward problem of uncertainty propagation well posed. In addition, transformations arising from the linearization

rocedure are introduced for consistency and induce statistical dependencies in the primary variables. The latter include material
oduli, a weight balancing between the isotropic and anisotropic contributions, and the angle defining the structural tensors.
he identification of the model is subsequently performed, using an existing database on human arterial walls. Maximum

ikelihood estimators are obtained and provided for the adventitia, media, and intima layers, which enables the use of the
roposed model as a generative surrogate for, e.g., training and classification in data-driven approaches integrating inter-patient
ariability. Finally, uncertainty propagation on a realistic, patient-specific geometry is conducted to demonstrate the efficiency
f the stochastic modeling framework.
2022 Elsevier B.V. All rights reserved.
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1. Introduction

The proper mathematical representation and identification of parametric uncertainties is a central task of
ncertainty quantification. From a mechanics of materials standpoint [1], such fluctuations can be primarily
ttributed to subscale variability, which itself – and most often – stems from complex processing conditions for
ngineered composites (such as fiber-reinforced composites or concrete), or evolution-based optimization in the
ase of biological tissues. There has been a tremendous amount of works focusing on the integration of such
ncertainties in the past three decades. Labeled statistical distributions, such as Gaussian, Gamma, and lognormal
istributions, are generally assumed to model homogeneous stochastic inputs. The choice of these distributions
s sometimes arbitrarily made or based on data fitting (which may lead to ill-posed forward problems), and can
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facilitate uncertainty propagation through spectral approaches [2–4] where quantities of interest are represented by
polynomial chaos surrogate models [5–8]. For the very same reasons, an underlying Gaussian measure, usually
reduced by means of a Karhunen–Loève expansion (to tackle the so-called curse of dimensionality) and pushed-
forward by a given (e.g., exponential) transformation (to ensure almost sure positiveness as coefficient in an elliptic
operator for instance), is usually invoked for heterogeneous inputs, described as random fields [2,4]. Alternatively,
input probability measures for constitutive models may be implicitly described through scale-bridging procedures
where microstructural features are modeled [9,10], homogenized at mesoscale [11–15], and potentially integrated
within generic frameworks for dimensionality reduction [16] and materials design [17]. Such approaches can provide
more realistic descriptions of material variability, owing to the fact that they rely on a mechanistic, multiscale-
informed generator for the stochastic inputs. When an accurate microstructural description is not possible, due to
data limitation, prior models can be constructed that capture available physical information, such as anisotropy,
as well as mathematical constraints related to well-posedness for the associated forward propagation problem.
Information-theoretic contributions proceeding along those lines can be found in [18–21] for the case of tensor-
valued coefficients in linear differential operators, to list a few; see also [22] for yet another type of methodology,
as well as [23] for integration within a Bayesian setting.

Modeling contributions in the context of nonlinear behavior are far more scarce. As with the case of linear
elasticity, implicit descriptions can be obtained through computational homogenization; see [24,25] for hyperelastic
microstructures, and [26] for plasticity. Another approach aimed at prescribing dependencies evaluated through
the statistical treatment of a digital database on hyperelastic solids was reported in [27]. The first attempts to
construct stochastic models for hyperelastic materials based on information theory can be found in [28,29] for
the incompressible and compressible (homogeneous) cases, respectively. Here, constraints related to polyconvexity
and linearization at small strains were considered to ensure well-posedness and introduce statistical dependencies
between the primary material parameters. Such models were used to identify the probabilistic behavior of soft
biological tissues based on physical experiments in [30], and to investigate a series of theoretical propagation
problems in [31–34] (see also [35]). These developments served as the basis to address the heterogeneous case,
where properties are allowed to vary spatially, in [36]. In addition to admissibility, the model also enforced the
structural compliance of the covariance kernel on patient-specific geometries by relying on noise filtering—a
technique that we will use in this paper as well. The methodology was later used in [37] to identify fluctuations in
the anisotropic strain energy density function defining a composite laminate. Finally, a Bayesian approach relying
on a regular covariance kernel (evaluated with the Euclidean metric) was proposed in [38]; see also [39] for
Bayesian model selection for the homogeneous case. The aim of this work is twofold. First, we revisit and extend
the methodological steps presented in [36] to model spatially-varying stochastic anisotropic strain energy density
functions. Specifically, regularization is now imposed on the isotropic part of the strain energy density function and
the parameterization is extended to account for fluctuations and waviness in the structural tensors and covariance
kernel. Second, and more importantly, we address the identification of the model based on experimental results
available on human arterial walls, with the goal of providing interested readers with the capability to generate
datasets that are consistent with inter-patient fluctuations. We restrict the analysis to the passive mechanical response
of the artery: the integration of the active component, which can play an important role in vivo [40], is left
for future study. To the authors’ best knowledge, this represents the first contribution where both the stochastic
model and the calibrated hyperparameters are presented in a self-contained manner. This may, in particular, support
the development of data-driven frameworks, which are increasingly used to model and classify the behavior
of such soft biological tissues (see [41] as an example). It is also important to note that the methodology of
construction is applicable for modeling other classes of materials, such as engineered composite laminates that
can be experimentally characterized through full-field measurement techniques.

This paper is structured as follows. In Section 2, we recall the necessary background pertaining to constitutive
modeling in finite elasticity. In Section 3, we address the modeling of stochastic stored energy functions param-
eterized by homogeneous random coefficients. These results are subsequently invoked and extended in Section 4
where we consider the case of spatially-dependent material parameters, modeled as non-Gaussian random fields.
Calibration aspects are discussed in Section 5, using physical experiments taken from the literature. Uncertainty

propagation on patient-specific geometries is finally conducted in Section 6.

2



P. Chen and J. Guilleminot Computer Methods in Applied Mechanics and Engineering 394 (2022) 114897

w
o

w
t

w
i

ψ

f
ψ

2. Background in nonlinear elasticity

2.1. Constitutive modeling for arterial tissues

Let B be a collection of material points identified with their vector of coordinates x in R3, and denote by ∂B
the boundary of B. For any material point x ∈ B, the spatial point xϕ in the deformed configuration Bϕ is given
by xϕ = ϕ(x), where ϕ is the deformation map. For any x ∈ B, the deformation gradient F is a second-order
tensor defined as F = ∇x xϕ . The right Cauchy–Green deformation tensor is defined as C = FT F. For later
use, we introduce the isochoric counterpart C of C, defined as C = J−2/3C , with J = det(F) the Jacobian of
the transformation. Notice that notations x and xϕ to denote points in the reference and deformed configurations,
respectively, are unusual in the literature of finite elasticity [42] but are introduced for the sake of consistency with
the rest of this paper—where deterministic vector-valued variables are represented with bold lowercase symbols.

Following standard assumptions [43–47] (see also [48] and the references therein for instance), the material is
assumed to be hyperelastic, nearly-incompressible, and anisotropic. Note that while a transversely isotropic model is
considered hereinafter, due to the considered application, the methodological ingredients related to the construction
of the stochastic model remain valid for other classes of anisotropy. The nonlinear constitutive model is thus defined
by a strain energy density function ψ : M3

+
→ R taken as

ψ(F) = ψMR(F) + ψp(F) +
2∑

k=1

ψ ti
(k)(F) , (1)

in which ψMR denotes an isochoric Mooney–Rivlin strain energy density function, ψp is a penalty term used to
account for the near-incompressibility constraint [49], and {ψ ti

(k)}
2
k=1 are anisotropic strain energy density functions

to be defined momentarily. The Mooney–Rivlin contribution is given by

ψMR(F) = µ1
(
tr(C) − 3

)
+ µ2

(
tr(Cof(C))3/2

− 33/2) (2)

ith a slight abuse of notation, where µ1 and µ2 are strictly positive material parameters, “tr” denotes the trace
perator and “Cof” is the matrix of cofactors, Cof(A) = det(A)A−T for any matrix A. The penalty term is given

by

ψp(F) = µ3(J β3 + J−β3 − 2) , (3)

where µ3 ∈ R>0 is a material parameter and β3 ∈ R>2 is a (numerical) model parameter. The anisotropic
contribution modeling the stiffening effect of the tissue in tension (only), along a direction defined by a unit vector
a(k), is defined as

ψ ti
(k)(F) =

µ4

β4

{
exp

(
β4

(
(1 − ρ)(tr(C) − 3)2

+ ρ(||Fa(k)
||

2
2 − 1)2))

− 1
}
, (4)

here µ4 ∈ R>0, β4 ∈ R>0, and ρ ∈ [0, 1] are material parameters [50]. Following standard modeling assumptions,
he unit vectors a(1) and a(2) are defined as

a(1)
= cos(α)e(1)

+ sin(α)e(2) , a(2)
= cos(α)e(1)

− sin(α)e(2) , (5)

here e(1) and e(2) are unit vectors defining a local basis at every location x in the reference configuration, and α
s the angle between tissue orientation and the aforementioned basis. Notice that ψ ti

(1) = ψ ti
(2) in this case, owing to

the evenness of the right-hand side in Eq. (4).

Proposition 1. The stored energy density function ψ defined by Eq. (1) is polyconvex and satisfies proper growth
conditions, hence ensuring the well-posedness of the nonlinear boundary value problem [42,51].

Proof. The strain energy density function F ↦→ ψ(F) is polyconvex if and only if there exists a convex function
∗ such that

ψ(F) = ψ∗(F,Cof(F), det(F)) (6)

or all F in M3. For an additive decomposition, the above requirement amounts to showing that each term in

is a convex function in the associated variable. For the isotropic contribution, the convexity of the functions
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F ↦→ tr(C) = ||F||
2
F/(det(F))2/3 and F ↦→ tr(Cof(C))3/2

= ||Cof(F)||3F/(det(F))2 was established in many
references; see, e.g., [52,53]. Regarding the anisotropic counterpart, notice first that the convexity of the function
F ↦→ ⟨||Fak ||

2
− 1⟩2

m was shown in [54]. Since the function F ↦→ tr(C) is convex, it then follows that the convex
combination (1 − ρ)(tr(C) − 3)2

+ ρ⟨||Fak ||
2
− 1⟩2

m , with ρ ≥ 0, also defines a convex function in F. For β4 > 0,
the exponential term in Eq. (4) is thus the composition of a (strictly) convex nondecreasing function and a convex
function, and is therefore convex. For µ4 > 0, the strain energy density function defined is hence polyconvex. For
growth conditions, see, e.g., [51]. □

2.2. Definition of the boundary value problem

In a general setting, the strong form of the boundary value problem (balance of linear momentum) in the reference
configuration is stated as [55]

∇xP + b = 0 , ∀ x ∈ B , (7)

u = u , ∀ x ∈ ∂BD , (8)

P · N = t , ∀ x ∈ ∂BN , (9)

where ∇x denotes the divergence operator in the reference configuration, P is the first Piola–Kirchhoff stress tensor
defined as

P =
∂w(F)
∂F

, (10)

he vector b is the body force, N is unit vector normal to the boundary in the reference configuration, u and t are
iven smooth vector fields on the Dirichlet and Neumann boundaries, denoted by ∂BD and ∂BN respectively. The

solution to the above problem is classically sought (in an appropriate function space) as a stationary point of the
following energy functional [55]:

Π (ϕ) =
∫

B
ψ(F) dV −

∫
B

b · ϕ dV −

∫
∂BN

t · ϕ d A . (11)

.3. Elasticity tensor at small strains

We conclude this section by deriving the linearized elasticity tensor at small strains associated with the
eterministic strain energy density function ψ . This calculation will be used, in Section 3, to introduce suitable

constraints, as well as an ad hoc parameterization, in the stochastic models. The small strain elasticity tensor is
denoted by C and is defined as (see [56] for instance)

C = 4
∂2ψ

∂C∂C

⏐⏐⏐⏐
C=I

. (12)

Following Eq. (1), we introduce the decomposition

C = CM R
+ Cp

+ Cti (13)

with

CMR
= 4

∂2ψMR

∂C∂C

⏐⏐⏐⏐
C=I

, Cp
= 4

∂2ψp

∂C∂C

⏐⏐⏐⏐
C=I

, Cti
= 4

∂2(ψ ti
(1) + ψ

ti
(2))

∂C∂C

⏐⏐⏐⏐⏐
C=I

. (14)

roceeding with standard tensor calculus, we obtain

CMR
= (4µ1 + 6

√
3µ2)K , Cp

= 6µ3β
2
3J , Cti

= 48µ4(1 − ρ)J , (15)

here J and K are the standard basis tensors for the set of isotropic tensors, given by

Ji jkℓ = (1/3)δi jδkℓ , Ki jkℓ = Ii jkℓ − Ji jkℓ , (16)

ith I the fourth-order symmetric identity tensor, defined as Ii jkℓ = (δikδ jℓ + δiℓδ jk)/2. The total contribution
herefore writes as

C = (6µ β2
+ 48µ (1 − ρ))J+ (4µ + 6

√
3µ )K . (17)
3 3 4 1 2
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Eq. (17) indicates that the model exhibits isotropy at small strains and can thus be rewritten as

C = 3c1J+ 2c2K , (18)

where c1 and c2 are identified as the bulk and shear moduli, respectively:

c1 = 2µ3β
2
3 + 16µ4(1 − ρ) , c2 = 2µ1 + 3

√
3µ2 . (19)

he above relationships can be used to express µ2 and µ4 in terms of the remaining variables, yielding

µ2 = 3−3/2(c2 − 2µ1) , µ4 = (c1 − 2µ3β
2
3 )/ (16(1 − ρ)) . (20)

or later use, it is convenient to introduce two auxiliary variables u and v defined as

u = 2µ1/c2 , v = c1 − 2µ3β
2
3 , (21)

so that

µ2 = 3−3/2c2(1 − u) , µ4 = v/ (16(1 − ρ)) . (22)

It should be observed that by construction, u ∈ ]0, 1[ and v > 0. As indicated earlier, these variables will be used
in subsequent sections to define an appropriate parameterization of the probabilistic representations.

3. Stochastic model for homogeneous material parameters

In this section, we discuss the construction of the stochastic stored energy function ensuring the well-posedness
of the stochastic nonlinear boundary value problem. We specifically define an information-theoretic probabilistic
representation using the consistency condition at small strains.

3.1. Regularization and well-posedness

In order to lay the ground for spatially-dependent behaviors and in particular, to enforce uniform growth
conditions [36], we decompose the stochastic stored energy function as

Ψϵ(F) =
1

1 + ϵ
(ΨMR(F) + ϵE(ΨMR(F))) + ψp(F) +

2∑
k=1

Ψ ti
(k)(F) , (23)

where 0 < ϵ ≪ 1 is a regularization parameter, E denotes the operator of mathematical expectation, ψp is the
deterministic penalty term previously introduced (see Remark 1 at the end of Section 3.2.2), ΨMR is a stochastic
Mooney–Rivlin strain energy density function written as

ΨMR(F) = G1tr(C) + G2tr(Cof(C))3/2 , (24)

here G1 and G2 are random variables defined on a probability space (Θ,F , P) and with values in R>0, and Ψ ti
(k)

is the stochastic counterpart of the anisotropic term ψ ti
(k), k = 1, 2:

Ψ ti
(k)(F) =

G4

B4

{
exp

(
B4

(
(1 − R)(tr(C) − 3)2

+ R(||F A(k)
||

2
− 1)2))

− 1
}
, (25)

here G4, B4, and R are random variables defined on (Θ,F , P) and with values in R>0, R>0, and [0, 1] respectively,
and

A(1)
= cos(A)e(1)

+ sin(A)e(2) , A(2)
= cos(A)e(1)

− sin(A)e(2) , (26)

here A is a random variable defined on (Θ,F , P) and with values in [0, π/2].
Let g

1
and g

2
denote the mean values of G1 and G2, respectively. Consequently, one has

1
1 + ϵ

(ΨMR(F) + ϵE(ΨMR(F))) =
1

1 + ϵ
(G1 + ϵg

1
)tr(C) +

1
1 + ϵ

(G2 + ϵg
2
)tr(Cof(C))3/2 , (27)

so that
1

(ΨMR(F) + ϵE(ΨMR(F))) ≥
ϵ

(g tr(C) + g tr(Cof(C))3/2) (28)

1 + ϵ 1 + ϵ 1 2

5
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with probability one. Owing to the definition of the state spaces for the involved random variables and to the
positiveness of the functions in the strain energy density function, it can be deduced that

Ψϵ(F) ≥
ϵ

1 + ϵ
(g

1
tr(C) + g

2
tr(Cof(C))3/2) , ∀F ∈ M3 , (29)

hich shows that the regularized strain energy density function satisfies standard growth (coercivity) conditions
lmost surely. Provided that all remaining parameters satisfy the inequality constraints raised by the polyconvexity
equirement (see Section 2.1), it follows that the stochastic strain energy density function defined by Eq. (23) makes
he stochastic nonlinear boundary value problem well-posed, almost surely.

.2. Construction of the stochastic model using information theory

.2.1. Background on information theory
In this subsection, we detail background related to the construction of stochastic models using information theory

nd more specifically, the principle of maximum entropy. Let Z denote a generic vector-valued random variable
with n ≥ 1 components), defined by a probability density function fZ, and let SZ ⊆ Rn be the support of fZ.
ssume that some prior information related to Z is available in the form of a mathematical expectation:

E{H(Z)} = m , (30)

here H is a given measurable mapping from Rn into Rm and m is a given deterministic vector in Rm . Notice
hat the value of m shall be left undefined for the purpose of model construction. Eq. (30) represents a set of

algebraically-independent constraints on Z, including, e.g., standard statistical moments or specific constraints. The
principle of maximum entropy stated by Jaynes in the late 50’s [57,58] then states that fZ should be “maximally
noncommittal with regard to missing information”, so that the model “avoids bias while agreeing with whatever
information is given”. Mathematically, fZ is then defined as

fZ = arg max f ∈C E{ f } , (31)

where C is the set of all probability density functions supported over S that satisfy the constraints defined by
Eq. (30). The quantity

E{ f } = −

∫
Rn

f (z) loge ( f (z)) d z (32)

denotes the Shannon’s entropy of f ∈ C and quantifies the uncertainty in the model. From a technical standpoint, the
bove functional optimization problem can easily be solved by using the method of Lagrange multipliers, leading
o the solution

fZ(z) = 1SZ (z)K exp (−⟨τ ,H(z)⟩) , (33)

where 1SZ is the indicator function of SZ, K is the positive normalization constant, ⟨·, ·⟩ denotes the Euclidean
inner product in Rm , and τ is the Lagrange multiplier such that the constraint given by Eq. (30) is satisfied.

In this information-theoretic framework, the definition of the information defining the space C is of primary
importance. In particular, it should be noticed that the consideration of univariate constraints (that is, for H(z) =
(H1(z), . . .Hm(z))T where each component Hi (z), 1 ≤ i ≤ m, only depends on one single component of z, denoted
by z ji with 1 ≤ ji ≤ n) leads to statistically independent components when the indicator function 1SZ exhibits a
eparable structure, that is

1SZ (z) =
n∏

i=1

1Szi
(zi ) , (34)

n which 1Szi
is the indicator function associated with the component zi .

3.2.2. Stochastic model
We now turn to the construction of the stochastic model for the material parameters in the probabilistic strain

energy density function. The regularized decomposition introduced in Section 3.1 suggests a parameterization of
the form

T
Z = (G1,G2,G4, B4, R, A) , (35)

6
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where the random variables G1 and G2 define the stochastic Mooney–Rivlin potential ΨMR, and the variables B4, R,
and A define Ψ ti

(1) and Ψ ti
(2). Recall that without loss of generality, the penalty term ψp is left deterministic hereinafter.

Based on the discussion in Section 3.2.1, the use of such a parameterization leads to statistically independent
parameters, owing to the fact that well-posedness constraints (in terms of both polyconvexity and growth conditions)
do not introduce cross-information between the parameters. Following earlier works by the authors [28,29,36,37],
we pursue a different approach where constraints raised by the linearization at small strains are accounted for.

The randomization of material parameters naturally leads to the definition of the stochastic counterpart of C,
denoted by C. Following the notation introduced in Section 3.1, the stochastic elasticity tensor C is given by

C = (6µ3β
2
3 + 48G4(1 − R))J+ (4G1 + 6

√
3G2)K (36)

here

G2 = 3−3/2C2(1 − U ) , G4 = V/ (16(1 − R)) , (37)

nd the random variables U and V correspond to the stochastic counterparts of u and v. We can then define the
lasticity tensor

Cϵ =
1

1 + ϵ
(CMR

+ ϵE(CMR)) + Cp
+Cti (38)

ssociated with the linearization of the regularized stochastic potential Ψϵ . It follows that

Cϵ = 3Cϵ1J+ 2Cϵ2K , (39)

here the regularized stochastic bulk and shear moduli are given by

Cϵ1 = C1 , Cϵ2 =
1

1 + ϵ
(C2 + ϵE(C2)) , (40)

nd

C1 = 2µ3β
2
3 + 16G4(1 − R) , C2 = 2G1 + 3

√
3G2 . (41)

Following these changes of variables, we then consider

Z = (C2, V, B4,U, R, T )T , (42)

here T = 2A/π takes values in [0, 1] and components are organized such that variables exhibiting a semi-bounded
upport (namely, C2, V , and B4) or a bounded support (that are, U , R, and T ) are placed next to one another. Below,

we use the generic notation Z i to denote the i th component of Z (that is, Z1 stands for C2, Z2 for U , etc.), with
the aim of deriving models in a concise manner. Recall that the random variables G1, G2, and G4 are defined as

G1 = C2U/2 , G2 = 3−3/2C2(1 − U ) , G4 = V/ (16(1 − R)) . (43)

he above formulation offers two benefits:

• All variables are normalized in terms of the supports for their probability density functions, as they take values
in either R>0 or [0, 1];

• The statistical dependencies generated by the linearization at small strains become apparent, as both G1 and
G2 are expressed as functions of C2 and U for instance.

e first address the definition of the available information for the variables taking values in R>0. In order to facilitate
dentification using limited data (through minimal parameterization), only constraints related to well-posedness are
ntroduced hereinafter. We therefore assume that the mean values are known, that is

E{Z i } = zi , 1 ≤ i ≤ 3 , (44)

nd note that C1 and C2 should satisfy

|E{log(C1)}| < +∞ , |E{log(C2)}| < +∞ , (45)

o make the stochastic linearized elasticity problem well-posed [18,21]. The properties in Eq. (45) generate vanishing
robability levels near the origin and are called, for this reason, repulsive constraints. Since

2
C1 = V + 2µ3β3 , (46)

7
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where µ3β
2
3 is finite and positive, it follows that the property |E{log(V )}| < +∞ must hold. We also assume a

similar constraint for B4, given its appearance in the denominator in the anisotropic terms, and hence we consider
the additional constraints

E{log (Z i )} = χi , |χi | < +∞ , 1 ≤ i ≤ 4 . (47)

We next focus on variables taking values in [0, 1]. In this case, we impose repulsive constraints at the boundary of
the support, viz.

E{log (Z i )} = χ
i
, |χ

i
| < +∞ , 5 ≤ i ≤ 6 (48)

and

E{log (1 − Z i )} = χ i , |χ i | < +∞ , 5 ≤ i ≤ 6 . (49)

sing the constraints given by Eqs. (44), (47), (48), and (49) into the principle of maximum entropy, it can be
educed that fZ exhibits a separable structure,

fZ(z) =
6∏

i=1

1Szi
(zi ) fZi (zi ) , (50)

here fZi denotes the probability density function defining the random variable Z i . Specifically, it is found that

Z i ∼ `(δ−2
i , ziδ

−2
i ) (51)

or 1 ≤ i ≤ 3, where `(α1, α2) is the Gamma distribution with shape parameter α1 and scale parameter α2, and

Z i ∼ B(−(ziδ
2
i + zi − 1)/δ2

i , ((zi − 1)(ziδ
2
i + zi − 1))/(ziδ

2
i )) (52)

for 4 ≤ i ≤ 6, where B(α1, α2) is the Beta distribution with shape parameter α1 and scale parameter α2. In the
above equations, zi and δi are the mean and coefficient of variation of Z i , respectively. While the form of fZ
given in Eq. (50) implies that the variables C2, V , B4, U , R, and T are independent, it should be noticed that
he transformation pulling these variables back to the primary variables parameterizing the stochastic strain energy
ensity function (that is, G1, G2, G4, B4, R, and A) induces some statistically dependencies between these variables
in particular, between G1, G2, G4, and R).

emark 1. The material parameter µ3 involved in the penalty term ψ p is not randomized in the proposed
ormulation (such a randomization was performed in [36] for another constitutive model for instance). The modeling
f the stochastic counterpart of this material parameter, denoted by G3, would indeed change the information that is
ed into the maximum entropy formulation, since C1, V , and G3 would then be coupled through C1 = V + 2G3β

2
3

see Eqs. (19)–(22), as well as (46) for the stochastic equation). This modification could be handled, in practice, by
dapting the repulsion constraints, or by considering conditional distributions (as described in [29] for the case of
ompressible hyperelastic materials). This modeling choice was not following in this study for the sake of simplicity.

. Stochastic model for spatially-dependent material parameters

.1. Regularization and well-posedness for the heterogeneous case

Following the derivations proposed in Section 3, we introduce the regularized stochastic strain energy density
unction Ψϵ defined as

Ψϵ(F, x) =
1

1 + ϵ
(ΨMR(F, x) + ϵE(ΨMR(F, x))) + ψp(F) +

2∑
k=1

Ψ ti
(k)(F, x) , (53)

where the second argument in the strain energy density functions (if any) emphasizes spatial dependency for material
parameters, with

ΨMR(F, x) = G (x)tr(C) + G (x)tr(Cof(C))3/2 , (54)
1 2

8
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and

Ψ ti
(k)(F, x) =

G4(x)
B4(x)

{
exp

(
B4(x)

(
(1 − R(x))(tr(C) − 3)2

+ R(x)(||F A(k)(x)||2 − 1)2))
− 1

}
(55)

or k = 1, 2, and

A(1)(x) = cos(A(x))e(1)(x) + sin(A(x))e(2)(x) , A(2)(x) = cos(A(x))e(1)(x) − sin(A(x))e(2)(x) . (56)

n Eqs. (54)–(56), the terms {G1(x), x ∈ B}, {G2(x), x ∈ B}, {G4(x), x ∈ B}, {B4(x), x ∈ B}, {R(x), x ∈ B},
nd {A(x), x ∈ B} represent random fields defined on (Θ,F , P) and with values in R>0, R>0, R>0, [0, 1], and
0, π/2], respectively. Here we assume that E{G1(x)} = g

1
(x) ≥ g

1
> 0 and E{G2(x)} = g

2
(x) ≥ g

2
> 0, where

g
1

and g
2

are given deterministic lower bounds, independent of x. Following similar derivations as in Section 3.1,
it is seen that

Ψϵ(F, x) ≥
ϵ

1 + ϵ
(g

1
tr(C) + g

2
tr(Cof(C))3/2) , ∀F ∈ M3

+
, ∀x ∈ B . (57)

q. (57) implies that the regularized stochastic strain energy density function satisfies uniform standard growth
coercivity) conditions almost surely, hence ensuring the well-posedness of the stochastic nonlinear boundary value
roblem.

The linearization (at small strains) of the spatially-dependent regularized strain energy density function yields

Cϵ(x) = 3Cϵ1(x)J+ 2Cϵ2(x)K , (58)

n which the random fields {Cϵ1(x), x ∈ B} and {Cϵ2(x), x ∈ B} of regularized stochastic bulk and shear moduli
ead

Cϵ1(x) = C1(x) , Cϵ2(x) =
1

1 + ϵ
(C2(x) + ϵE(C2(x))) , (59)

with

C1(x) = 2µ3β
2
3 + 16G4(x)(1 − R(x)) , C2(x) = 2G1(x) + 3

√
3G2(x) . (60)

Following the changes of variables proposed in Section 3.2.2, we next introduce the vector-valued random field
{Z(x), x ∈ B} with statistically independent components, defined on the probability space (Θ,F , P) as

Z(x) = (C2(x), V (x), B4(x),U (x), R(x), T (x))T , (61)

where the auxiliary random fields {C2(x), x ∈ B}, {V (x), x ∈ B}, {U (x), x ∈ B}, and {T (x), x ∈ B} are related to
he material parameters random fields by

G1(x) = C2(x)U (x)/2 , (62)

G2(x) = 3−3/2C2(x)(1 − U (x)) , (63)

G4(x) = V (x)/ (16(1 − R(x))) , (64)

A(x) = 2T (x)/π . (65)

In the next two sections, we address the construction of a stochastic model for {Z(x), x ∈ B} in the class defined
by the push-forward action

Z(x) = H{Ξ (x)} , ∀x ∈ B , (66)

where H is a measurable nonlinear mapping and {Ξ (x), x ∈ B} is an auxiliary centered Gaussian random field
with values in R6, called the latent Gaussian field [59].

4.2. Definition and sampling of the latent Gaussian field

In order to define the random field {Z(x), x ∈ B} following Eq. (68), we first define the latent Gaussian random
field {Ξ (x), x ∈ B}. This vector-valued Gaussian has statistically independent components and is assumed to be
centered. Each of these components therefore defines a scalar-valued random field {Ξi (x), x ∈ B}, 1 ≤ i ≤ 6, that

is uniquely determined by a correlation function (x, y) ↦→ Ri (x, y) = E(Ξi (x)Ξi ( y)).

9
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When the reference geometry B is such that the correlation function Ri can be specified in closed form, and
epending on whether the field is assumed to be homogeneous (in which case Ri only depends on the distance
x− y∥) or not, realizations of {Ξi (x), x ∈ B} can be obtained using standard techniques, including quadrature rules
or integral representations [60,61] (see also [62,63] for techniques in the case of translation fields), a Karhunen–
oève expansion, and direct or iterative factorization techniques (see [64] for theoretical and implementation details,

or instance).
When the geometrical complexity of B does not allow Ri to be specified analytically, the methodology proposed

n [21,36] for stochastic modeling in linear and finite elasticity, respectively, can be followed. The strategy relies
n the stochastic partial differential equation (SPDE) approach proposed in [65], in which the anisotropic filtering
perator is tuned in order to capture natural correlation paths over B. In a nutshell, each component {Ξi (x), x ∈ B}

is defined as the solution to the anisotropic fractional stochastic partial differential equation [66,67]

(γ 2I − ⟨∇, D∇⟩)α/2U = Ẇ , (67)

here I and ∆ are the identity and Laplacian operators, γ is a scaling parameter, α is a parameter controlling the
moothness of the field (and in particular, its mean-squared differentiability), Ẇ denotes the normalized Gaussian
hite noise in R3, and equality holds in the sense of distributions [66]. Here D denotes a spatially-varying field
ith values in the set S3

≻0 of (3 × 3) symmetric positive definite matrices, termed the diffusion field. Neumann
oundary conditions are considered and rescaling is performed to account for folding boundary effects; see [68–70]
or discussions on alternative boundary conditions. Readers are referred to [65] for an efficient strategy to solve
he SPDE (this approach is summarized in B for the sake of self-containedness), based on Galerkin projection and
egression (depending on α); see Section 6 for a numerical example.

.3. Definition of the transport map

As discussed at the end of Section 4.1, the non-Gaussian random field {Z(x), x ∈ B} is defined through the
ointwise transformation

Z(x) = H{Ξ (x)} , ∀x ∈ B , (68)

here H is a mapping to be defined and {Ξ (x), x ∈ B} is the underlying Gaussian random field defined in
ection 4.2. In this work, H is constructed by imposing the first-order marginal distribution for the field, that

s, H is such that

Z(x) ∼ π (d z) (69)

or any x fixed in B, where π (d z) denotes a target probability measure. Here, we use the results derived in
ection 3.2.2 and define π (d z) as

π (d z) = fZ(z) d z , (70)

here fZ is given by Eq. (50). Consequently, the mapping H is defined for the first three components of Z(x)
hrough

Z i (x) =
(

F−1
`(δ−2

i ,zi δ
2
i )
◦ FN (0,1)

)
(Ξi (x)) , ∀x ∈ B , (71)

for 1 ≤ i ≤ 3 (see Eq. (51)), where F` and FN are the cumulative distribution functions associated with the Gamma
and normal distributions, respectively, and the symbol “◦” denotes the composition of functions. Likewise, we set

Z i (x) =
(

F−1
B(−(zi δ

2
i +zi−1)/δ2

i ,(zi−1)(zi δ
2
i +zi−1)/(zi δ

2
i ))

◦ FN (0,1)

)
(Ξi (x)) , ∀x ∈ B , (72)

or 4 ≤ i ≤ 6 (see Eq. (52)), with FB the cumulative distribution functions of the Beta distribution. Notice that H
an be made spatially dependent on purpose, to model nonstationary effects for instance.
10
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5. Identification based on physical experiments

We now address the calibration of the hyperparameters using interpatient physical data. To that end, we consider
the set of experiments presented in [50], corresponding to uniaxial extension tests on human illiac artery walls.
In those experiments, 13 specimens were used and 2 different strips were harvested along the circumferential and
axial (longitudinal) directions on each specimen to capture anisotropic effects. The results were subsequently used
to fit material parameters in a strain energy density function that slightly differs from the one used in this work:
the parameters fitted on each specimen (as listed in Table 3), together with Eq. (1) in [50], were used to synthesize
the data that are considered in this section. Since the experiments are concerned with macroscopic tension, they
do not allow information related to the random field (such as the first-order marginal distribution and correlation
structure) to be extracted. However, they enable the identification of hyperparameters related the first-order marginal
distribution, namely the parameters {zi }

6
i=1 (means) and {δi }

6
i=1 (coefficients of variation). In order to proceed with

he identification, we follow a two-step strategy:

1. First, realizations of the random material parameters are obtained by fitting the strain energy density function
defined by Eq. (1) for both directions, for each specimen.

2. Second, we use these realizations to compute the aforementioned parameters, using the maximum likelihood
method—to compensate for data scarcity.

hese two steps are described in Sections 5.1 and 5.2, respectively. Notice that some values listed in Tab. 3 in [50]
were found to produce results that are not consistent with the experimental results (specifically, the results associated
with samples 4 and 7 for the adventitia layer, and samples 6 and 9 in the intima) and may therefore contain
typographical errors. Such results (i.e., specimens) were discarded in our analysis.

5.1. Deterministic calibration on experimental samples

Following the above methodology, realizations of the stochastic coefficients are first computed by fitting the
deterministic model presented in Section 2.1 on each specimen. Here, we consider the identification of the material
parameters µ1, µ2, µ4, β4, ρ, and α, while the values for the parameters in the penalty term (for subsequent
computational analysis) are taken from a previous study [36]: µ3 = 9.7, β3 = 3.6.

In order to proceed with the calibration of the aforementioned material parameters, we denote by λ1 the stretch
in the direction of extension (which can be either circumferential or longitudinal), and by λ2 the in-plane transverse
stretch. Since the material is assumed to be anisotropic, the deformation gradient F and the right Cauchy–Green
tensor C are given by

F = diag (λ1, λ2, 1/(λ1λ2)) , C = diag
(
λ2

1, λ
2
2, 1/(λ2

1λ
2
2)
)
. (73)

The value of λ2 is obtained, for a given stretch λ1, by imposing the free-stress condition S22 = 0, where S is the
second Piola–Kirchhoff stress tensor. The stress component S11 is subsequently computed, and the corresponding
component for the Cauchy stress is evaluated as

σmodel(λ1) = λ2
1S11 , (74)

where the superscript “model” indicates the use of the continuum mechanics model. Denoting by p = (µ1, µ2, µ4,

β4, ρ, α) the vector of parameters to be calibrated, we introduce the objective function

r ( p) =

∑nc
p

i=1

(
σ exp(λc

1) − σmodel(λc
1; p)

)2∑nc
p

i=1 σ
exp(λc

1)2
+

∑na
p

i=1

(
σ exp(λa

1) − σmodel(λa
1; p)

)2∑na
p

i=1 σ
exp(λa

1)2
, (75)

here the superscripts “c” and “a” refer to data obtained by stretching along the circumferential and axial directions,
espectively, nc

p and na
p are the associated numbers of datapoints, and the dependence of the model on p is made

explicit (see [48]). The optimal parameters for a given specimen are then defined as

p∗
= min

p∈C p
r ( p) , (76)

here C p ⊂ R6 is the admissible set for the parameters. This procedure is summarized in the flowchart in Fig. 1.
otice that the optimal values for the parameters involved in the stochastic formulation, gathered in a realization
ector z∗, are then obtained by using the changes of variables defined in Section 3.2.2.
11
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Fig. 1. Summary of the procedure enabling the deterministic calibration of material parameters on the synthesized samples.

Fig. 2. Fitting results for the adventitia layer. The reference results are shown in solid black line, while the results obtained with the
roposed model are shown in red solid line. Left panel: circumferential direction. Right panel: longitudinal direction. (For interpretation of
he references to color in this figure legend, the reader is referred to the web version of this article.)

The results of the adjusted material model and the digitally-generated data for the three layers are shown in
igs. 2, 3, and 4. It is seen that the model can reproduce the data very well, as expected given the similarities
etween the strain energy density functions used in this paper and in the reference work [50] (which only differs in
he isotropic contribution). The lists of material parameters thus obtained are provided for all layers in Tables 1–3.
he mean averages for these parameters (in the order µ1, µ2, µ4, β4, α, and ρ) are provided for each layer below:

• Adventitia: 6.5462 [kPa], 0.1034 [kPa], 21.3557 [kPa], 96.6721 [–], 1.1419 [rad], 0.5151 [–];
• Media: 1.2079 [kPa], 0.0230 [kPa], 10.7838 [kPa], 8.1899 [–], 0.3558 [rad], 0.2490 [–];
• Intima: 28.4956 [kPa], 0.4725 [kPa], 145.8811 [kPa], 177.3867 [–], 1.1096 [rad], 0.5044 [–].
12
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m
t

Fig. 3. Fitting results for the media layer. The reference results are shown in solid black line, while the results obtained with the proposed
model are shown in red solid line. Left panel: circumferential direction. Right panel: longitudinal direction. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Fitting results for the intima layer. The reference results are shown in solid black line, while the results obtained with the proposed
odel are shown in red solid line. Left panel: circumferential direction. Right panel: longitudinal direction. (For interpretation of the references

o color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Calibrated parameters for the adventitia. Specimens numbers are associated with the results presented in [50]. Note that the parameter µ4
here is half of the corresponding parameter in [50], given the expression for the strain energy density function.

Specimen µ1 µ2 µ4 β4 α ρ Error r (p∗)
# [kPa] [kPa] [kPa] [–] [rad] [–] ×10−6

1 3.8154 0.0952 16.2516 103.8667 1.2681 0.6503 0.3131
2 2.2703 0.0471 6.9480 81.3985 1.1781 0.7510 0.8667
3 4.8053 0.0395 33.6126 49.4776 1.0699 0.4999 0.1708
5 9.1153 0.2103 41.0040 145.0781 0.9320 0.3998 0.8243
6 7.7952 0.0571 12.6815 67.9862 1.2264 0.7003 0.1121
8 2.0467 0.0833 18.8116 48.7029 1.1422 0.4040 0.2818
9 5.6493 0.2089 16.4234 167.2432 1.3151 0.2998 0.2761
10 14.7392 0.0778 59.5418 214.0337 0.9320 0.6001 0.2067
11 12.3502 0.1629 17.5735 84.9840 1.2083 0.6005 0.2450
12 2.8631 0.1009 8.7606 68.4434 0.9597 0.4105 0.9009
13 6.5583 0.0541 3.3039 32.1794 1.3297 0.3500 0.2420
13
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Table 2
Calibrated parameters for the media layer. Specimens numbers are associated with the results presented in [50]. Note that the parameter µ4
here is half of the corresponding parameter in [50], given the expression for the strain energy density function.

Specimen µ1 µ2 µ4 β4 α ρ Error r (p∗)
# [kPa] [kPa] [kPa] [–] [rad] [–] ×10−6

1 0.9122 0.0094 6.6063 10.7580 0.3592 0.2476 0.2793
2 1.0174 0.0269 12.8334 5.8988 0.4449 0.2970 0.2268
3 1.7214 0.0236 10.4581 5.7353 0.3916 0.1967 0.2478
4 1.5992 0.0109 13.1523 9.5337 0.4439 0.3980 0.1677
5 2.4868 0.0223 8.3441 13.8411 0.2968 0.2000 0.2959
6 0.6409 0.0338 15.2760 5.3399 0.3226 0.2987 0.2007
7 0.8698 0.0246 12.4674 7.5124 0.2147 0.1500 0.2853
8 0.2368 0.0313 13.9616 5.4142 0.1840 0.1993 0.1661
9 2.2856 0.0119 4.2552 12.8970 0.4405 0.3032 0.1334
10 0.7071 0.0531 15.5753 2.5561 0.2740 0.0986 0.1921
11 1.1838 0.0117 6.5073 8.4201 0.5203 0.3015 0.3128
12 0.8871 0.0263 10.7400 7.7343 0.3482 0.1480 0.2638
13 1.1550 0.0130 10.0128 10.8277 0.3842 0.3984 0.2561

Table 3
Calibrated parameters for the intima. Specimens numbers are associated with the results presented in [50]. Note that the parameter µ4 here
is half of the corresponding parameter in [50], given the expression for the strain energy density function.

Specimen µ1 µ2 µ4 β4 α ρ Error r (p∗)
# [kPa] [kPa] [kPa] [–] [rad] [–] ×10−6

1 26.0930 1.0707 61.8350 180.6829 1.2129 0.5496 0.1064
2 42.0952 0.1300 132.1545 286.9763 0.9372 0.6999 0.0253
3 24.8050 0.2085 117.1730 176.7649 1.0085 0.5005 0.0233
4 48.1296 2.2548 930.3108 454.7669 0.8168 0.3994 0.0235
5 24.2734 0.1897 184.8636 342.9503 0.6965 0.7002 0.0266
7 34.2402 0.1682 27.4200 92.7600 1.2620 0.3498 0.0307
8 25.8023 0.1473 30.0657 110.3671 1.2950 0.3499 0.0253
10 27.2055 0.1071 16.2175 72.3563 1.1521 0.3998 0.0223
11 25.8057 0.1510 28.1253 77.8412 1.1570 0.4999 0.0256
12 15.2380 0.5128 40.1371 73.7906 1.3643 0.6499 0.0203
13 19.7643 0.2577 36.3891 81.9973 1.3036 0.4498 0.0263

5.2. Calibration of the stochastic model

Since the components of Z are statistically independent, we use the maximum likelihood method to calibrate
the hyperparameters for each random variable. Denote by s the vector gathering the set of hyperparameters for a
iven component of Z in the stochastic model. The optimal value of s is then obtained as

ŝ = argmaxs∈Cs L(s; y) , (77)

here Cs denotes the parameter space, L is the likelihood function, and y is the observed data sample. The values
f all hyperparameters are given in Table 4, and the associated probability density functions (together with samples)
re shown in Figs. 5, 6, and 7. In practice, these hyperparameters can be used to generate mathematically-consistent
irtual samples.

Using these results, new samples of Z can be generated and pulled back to obtain samples of the primary
parameters defining the strain energy density function. Using 106 samples, the following mean values were obtained
or these parameters:

• Adventitia: 6.4760 [kPa], 0.1297 [kPa], 24.0164 [kPa], 96.4960 [–], 1.1426 [rad], 0.5172 [–];
• Media: 1.2076 [kPa], 0.0379 [kPa], 11.1438 [kPa], 8.0084 [–], 0.3539 [rad], 0.2440 [–];
• Intima: 24.2965 [kPa], 0.3893 [kPa], 136.2482 [kPa], 151.3538 [–], 0.9806 [rad], 0.4672 [–].

t is seen that these results slightly differ from the ones reported in Section 5.1, where mean averaging was used

nstead of a maximum likelihood estimator. In order to qualitatively assess this result, the mean responses obtained

14



P. Chen and J. Guilleminot Computer Methods in Applied Mechanics and Engineering 394 (2022) 114897

L

L

L

Fig. 5. Probability density functions (PDFs), with hyperparameters estimated with the maximum likelihood method, and experimental samples.
eft panel: random variable C2. Right panel: random variable V .

Fig. 6. Probability density functions (PDFs), with hyperparameters estimated with the maximum likelihood method, and experimental samples.
eft panel: random variable B2. Right panel: random variable U .

Fig. 7. Probability density functions (PDFs), with hyperparameters estimated with the maximum likelihood method, and experimental samples.
eft panel: random variable T . Right panel: random variable R.
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Table 4
Hyperparameters estimated with the maximum likelihood method for all layers.

Parameter ŝ (adventitia) ŝ (media) ŝ (intima)

C2 (2.9459, 4.6266) (3.6841, 0.7075) (1.4120, 35.8575)
V (1.6574, 99.5985) (5.9044, 22.4244) (0.6364, 1.645 × 103)
B4 (3.5262, 27.4153) (5.2736, 1.5154) (1.1744, 129.0230)
U (48.4729, 2.5140) (14.4793, 1.1649) (34.4290, 1.43553)
R (5.8703, 5.5101) (6.25578, 19.3627) (3.1868, 1.9178)
T (17.7955, 6.6881) (8.8830, 30.5876) (4.5830, 5.2297)

Fig. 8. Experimental results (black solid lines), mean responses obtained for the adventitia layer by using either the MLE-based estimate
blue solid line) or a mean average (blue dashed line), and 95% confidence interval (red solid line). Left panel: circumferential direction.
ight panel: longitudinal direction. (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

y using either parameterization (that is, the one provided in Section 5.1 or the one given above) are shown for
all layers and both directions in Figs. 8, 9, and 10. The difference between the two responses is most noticeable
for the intima layer, due to the strong stiffening effect. Finally, 95% confidence intervals were estimated with the
model, using 100,000 independent samples. These intervals are also displayed in Figs. 8, 9, and 10, and are seen
to capture experimental variability with reasonable accuracy.

6. Uncertainty propagation

6.1. Definition of the random field model on a patient-specific geometry

In this section, we consider the propagation of the uncertainties associated with the proposed random field model
on a patient-specific geometry. Without loss of generality, we assume that the latter corresponds to the adventitia
layer (which is the outermost layer in the arterial wall). We use the domain studied in [36], which was obtained
by postprocessing the inner surface available as file 0098 in the Aneurisk database [71]. The domain is about 12
[mm] long and is shown in Fig. 11. Details about discretization are provided in Section 6.2.

In order to define the latent Gaussian field {Ξ (x), x ∈ B}, we use the SPDE approach introduced in Section 4.2
(with α = 2). As a preliminary step, we use the Laplace–Dirichlet Rule-Based algorithm [72,73] to define some
local orientation fields involved in the parameterization of the diffusion [H ]. Specifically, we introduce the vector
fields x ↦→ e(1)(x) and x ↦→ e(2)(x) defined as

e(1)(x) =
∇Ψ2(x)
∥∇Ψ2(x)∥

, e(2)(x) = e(3)(x) × e(1)(x) , e(3)(x) =
∇Ψ1(x)
∥∇Ψ1(x)∥

, (78)

here x ↦→ Ψ1(x) satisfies

∆Ψ (x) = 0 , ∀ x ∈ B , (79)
1
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Fig. 9. Experimental results (black solid lines), mean responses obtained for the media layer by using either the MLE-based estimate (blue
solid line) or a mean average (blue dashed line), and 95% confidence interval (red solid line). Left panel: circumferential direction. Right
panel: longitudinal direction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 10. Experimental results (black solid lines), mean responses obtained for the intima layer by using either the MLE-based estimate (blue
solid line) or a mean average (blue dashed line), and 95% confidence interval (red solid line). Left panel: circumferential direction. Right
panel: longitudinal direction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 11. Three-dimensional and slice views of the arterial wall, computed from [71].
17
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Table 5
Scaled values for the coefficients of variation of the random variables.

Parameter Data-based coefficient of variation Scaled coefficient of variation

C2 0.5826 0.15
V 0.7768 0.2
B4 0.5325 0.1371
U 0.0316 0.0081
R 0.2753 0.0709
T 0.1214 0.0313

Table 6
Hyperparameters corresponding to the scaled coefficients
of variation (given in the far-right column in Table 5).

Parameter ŝ (adventitia)

C2 (44.4351, 0.3067)
V (25, 6.6031)
B4 (53.1877, 1.8176)
U (744.5323, 38.6146)
R (95.81, 89.9306)
T (278.6547, 104.727)

with Ψ1(x) = 0 on the inlet surface and Ψ1(x) = 1 on the outlet surface, and x ↦→ Ψ2(x) is the solution to a
imilar Laplace problem with Ψ2(x) = 0 on the inner surface and Ψ2(x) = 1 on the outer surface [36].

As a first step, we then consider the Gaussian component associated with the angle random field {A(x), x ∈ B}
nd use a SPDE where the diffusion field is defined as

D(x) = κ I + τ1 ê(1)(x) ⊗ ê(1)(x) + τ2 ê(2)(x) ⊗ ê(2)(x) , (80)

here

ê(1)(x) = cos(a)e(1)(x) + sin(a)e(2)(x) , ê(2)(x) = cos(a)e(1)(x) − sin(a)e(2)(x) , (81)

nd a is the mean value for the angle obtained from the calibrated step detailed in Section 5 (for the adventitia
ayer). In effect, this introduces some waviness effect in the local orientation, for both the anisotropic mechanical
ehavior and covariance structure, which can be related to waviness in the orientation of collagen fibers at a finer
cale. By construction, this modeling feature can be turned off by setting the associated coefficient of variation to
ero.

Next, and for a given sample x ↦→ a(x, θ) of the angle random field thus obtained, with θ ∈ Θ , the latent
Gaussian components associated with the other material random fields are defined and sampled by solving the
SPDE with the diffusion taken as in Eq. (80), where the orientation vectors are now defined as

ê(1)(x) = cos(a(x, θ))e(1)(x) + sin(a(x, θ))e(2)(x) (82)

and

ê(2)(x) = cos(a(x, θ))e(1)(x) − sin(a(x, θ))e(2)(x) . (83)

Following the methodology of construction presented in Section 4, we now proceed with the specification of
the hyperparameters defining the transport map H . A natural choice here is to use the parameters identified in
Section 5.2; see Table 4. However, the associated probability density functions represent inter-patient variability
and would therefore generate unrealistically large (intra-patient) spatial fluctuations. For this reason, we propose to
preserve the mean values estimated at the calibration stage, and to scale the coefficients of variation in a proportional
manner (meaning that properties that exhibit larger fluctuations still present larger spatial variations). The proposed
values for these coefficients of variation are listed in Table 5. The corresponding set of hyperparameters are provided
in Table 6.

Realizations of the random fields of material parameters are shown in Figs. 12, 13, and 14, for γ = 1, κ = 0.1,
and τ = τ = 10. These values are selected for the sake of illustration to induce moderate correlation ranges on
1 2
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Fig. 12. Sample of {G1(x), x ∈ B} (left) and {G2(x), x ∈ B} (right) in the adventitia layer.

Fig. 13. Sample of {G4(x), x ∈ B} (left) and {B4(x), x ∈ B} (right) in the adventitia layer.

Fig. 14. Sample of {R(x), x ∈ B} (left) and {A(x), x ∈ B} (right) in the adventitia layer.

the arterial wall. The identification of such parameters requires spatial data that are not currently available for the
proposed application (and may be obtained using, e.g., ultrasound characterization techniques) and is left for future
work.
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Fig. 15. Mean (left) and coefficient of variation (right) for the von Mises stress (slice views).

6.2. Propagation of uncertainties

In this work, the nonlinear boundary value problem is solved by the finite element method, using a total La-
grangian formulation and a three-field formulation (P2−P0−P0 discretization) to handle quasi-incompressibility [55].
The geometry shown in Fig. 11 is discretized with a mesh containing 297,828 cells and 432,250 nodes. An inflating
pressure of 1 [kPa] is applied on the inner layer and sliding displacement boundary conditions are prescribed on
the inlet and outlet surfaces (the system is made statically determined by restricting additional degrees of freedom
at two nodes located on the outlet surface). Implementation was performed within the MOOSE finite element
framework [74] and code verification was conducted through the method of manufactured solution (described in
A).

Given the random field modeling setting, a Monte-Carlo approach was used to propagate uncertainties (see the
remark at the end of this section). Interested readers are referred to [4] for a comprehensive review on alternative
stochastic solvers (see [75] for a specific discussion regarding hyperelastic materials). Parallel computing with 36
cores was used to accelerate the deterministic runs.

The fields of mean values and coefficients of variation are shown in Fig. 15. Substantial spatial variations
are observed in both fields and localization is less pronounced than in the results presented in [36]—as angular
waviness tends to mitigate that effect. Values for the mean field range from 0.15 to 40 [kPa], while values for the
coefficient of variation are distributed between 0.025 to 0.42. While these quantitative results are conditioned by
the proposed scaling in variance (defined in Table 5) and the selected values for the hyperparameters defining the
latent Gaussian fields, they show the impact of material variability on the response of the arterial wall. Additional
work assimilating spatial data is therefore necessary to refine the propagation analysis and translate the results into
practical applications: the proposed modeling framework is a first step towards that goal.

Remark 2. The usual spectral approach to uncertainty propagation consists in representing the random fields
through Karhunen–Loève expansions and in seeking a polynomial chaos surrogate in terms of the reduced variables.
It is therefore instructive to analyze a posteriori the dimension obtained for a given field defined and sampled through
the SPDE approach, say {G1(x), x ∈ B}. The graph of the standard error function n ↦→ Conv(n), where

Conv(n) = 1 −

∑n
i=1 λi

tr(Cov{G1})
(84)

nd the covariance matrix Cov{G1} (and its eigenvalues {λi }i≥1) are computed by using a singular value de-
omposition on the matrix of centered samples (200 samples are used here), is shown in Fig. 16. Retaining a
runcation threshold of 0.01 leads to a reduced dimension of 158, which suggests – given that six random fields are
nvolved in the parameterization of the stochastic strain energy density function – a very high-dimensional setting
or propagation through collocation-type approaches.
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Fig. 16. Graph of the function n ↦→ Conv(n).

7. Conclusion

We developed a stochastic model for spatially-dependent anisotropic strain energy density functions. A least-
informative model was obtained by applying the maximum entropy principle under constraints related to existence
theorems in finite elasticity. This approach therefore ensures that the associated nonlinear boundary value problem
is well posed almost surely. Information related to model linearization was also integrated and generate statistical
dependencies in the variables parameterizing the stochastic strain energy density function. The identification of the
model was performed using a database on human arteries, available in the literature. Here, maximum likelihood
estimators were obtained and are provided for the three layers constituting the arterial wall. Finally, uncertainty
propagation on a realistic, patient-specific geometry was conducted to demonstrate some capabilities of the stochastic
modeling framework.

Avenues for future work include the use of the proposed framework to derive generative models for data-driven
methodologies, the integration of the active response exhibited by arteries in in-vivo conditions, as well as refined
identification using nondestructive techniques resolving spatial scales.
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Appendix A. Code verification

In this work, code verification is performed by considering a cube B = [0, 1]3 and a manufactured displacement
field taken as

uMMS(x) = (−0.01 exp(x3), 0, 0)T . (A.1)

Dirichlet boundary conditions in accordance with the above solution are prescribed on all boundaries. A body force
is defined such that the manufactured solution corresponds to the nonlinear boundary value problem defined in
Section 2.2. The convergence order is measured by the L2-norm of the difference between the approximation and
the manufactured solution. The h-convergence of the norm is shown in Fig. A.17, and a third-order convergence
rate is observed as expected.
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Fig. A.17. Convergence of the L2 error (h-refinement) for the manufactured solution..

ppendix B. Strategy for solving the fractional stochastic partial differential equation

For the sake of self-consistency, the numerical strategy to solve the anisotropic fractional stochastic partial
ifferential equation

(γ 2I − ⟨∇, D∇⟩)α/2U = Ẇ , (B.1)

is recalled in this appendix. Following [65], a finite-dimensional representation associated with a set {ψi }
N
i=1 of

piecewise linear basis functions (with a mesh comprising N nodes) is introduced as follows:

U (x) =
N∑

i=1

Uiψi (x) . (B.2)

Let U = (U1, . . . ,UN )T be the Gaussian random vector of nodal values. For α = 2, it was shown in the above
reference that the weak Galerkin stochastic solution satisfies

U ∼ N (0N ,Σ ) , (B.3)

where the covariance matrix Σ is given by

Σ =
(
κ2 M + G

)−1 M
(
κ2 M + G

)−1
, (B.4)

with

Mi j =

∫
Ω

ψi (x)ψ j (x) dx (B.5)

and

G i j =

∫
Ω

⟨∇ψi (x), D(x)∇ψ j (x)⟩ dx (B.6)

for 1 ⩽ i, j ⩽ N , respectively. For computational efficiency, the sampling task is then usually recast using the
precision matrix

Σ−1
=

(
κ2 M + G

)
M−1 (κ2 M + G

)
, (B.7)

where M−1 can be evaluated by applying a lumping procedure. For α ̸= 2, recursive formula can be applied,
see [65].
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