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ABSTRACT:
A methodology to learn acoustical responses based on limited experimental datasets is presented. From a

methodological standpoint, the approach involves a multiscale-informed encoder used to cast the learning task in a

finite-dimensional setting. A neural network model mapping parameters of interest to the latent variables is then con-

structed and calibrated using transfer learning and knowledge gained from the multiscale surrogate. The relevance of

the approach is assessed by considering the prediction of the sound absorption coefficient for randomly-packed rigid

spherical beads of equal diameter. A two-microphone method is used in this context to measure the absorption coef-

ficient on a set of configurations with various monodisperse particle diameters and sample thicknesses, and a hybrid

numerical approach relying on the Johnson-Champoux-Allard-Pride-Lafarge model is deployed as the multiscale-

based predictor. It is shown that the strategy allows for the relationship between the micro-/structural parameters and

the experimental acoustic response to be well approximated, even if a small physical dataset (comprised of ten sam-

ples) is used for training. The methodology, therefore, enables the identification and validation of acoustical models

under constraints related to data limitation and parametric dependence. It also paves the way for an efficient explora-

tion of the parameter space for acoustical materials design.VC 2022 Acoustical Society of America.
https://doi.org/10.1121/10.0010187
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I. INTRODUCTION

The analysis of the relationship between microstructural

parameters and ultimate acoustic performance is a funda-

mental question that has attracted much attention over the

past two decades. Various frameworks and variations

thereof were proposed to understand the underlying physical

mechanisms and to predict acoustical properties for different

types of materials, including the use of purely phenomeno-

logical,1–4 semi-phenomenological,5–10 semi-analytical,11–13

and multiscale models;14–17 see Refs. 18 and 19 for a

review. Most of these approaches are found to produce rea-

sonably accurate estimations within their respective range of

applicability, even if some discrepancies between model

predictions and experimental responses are sometimes

observed for certain classes of materials, such as nonlinear

metamaterials.20,21 While a large body of the literature has

focused on bottom-up approaches, predicting acoustic per-

formance based on microstructural descriptors, the relation-

ship may also be investigated as a top-down approach,

solving an inverse problem to infer microstructural parame-

ters based on coarse-scale measurements. In this context, the

Bayesian approach to parameter identification was applied

in Ref. 22 to calibrate the geometrical, transport, and elastic

properties characterizing the elasto-acoustic behavior of

poro-elastic materials. More recently, so-called data-driven

approaches have emerged with the aim of learning forward

or inverse models based on datasets. The use of neural

network models, in particular, was proposed as a means to

represent potentially highly nonlinear maps in very high-

dimensional settings (see Ref. 23 for a review in acoustics,

as well as Ref. 24 for an application involving convolutional

neural networks). Physics-informed formulations involving

residuals from parametric partial differential equations were

proposed to bridge the gap between established physical the-

ories and approaches solely relying on data science (see the

seminal work,25 for instance). Deep learning techniques are

often meant to be operated in the big data limit, that is, for

very large datasets. This assumption may be deemed inade-

quate in scientific machine learning where practical applica-

tions typically involve limited physical experiments.

The goal of this work is to propose a methodology that

circumvents data limitations for learning experimental

acoustic responses parameterized by microstructural and

sample properties. Specifically, we address the calibration

of a neural network model using a small dataset—typically

comprised of a few experimental results—by leveraging

information gained through a standard multiscale analysis. It

is important to emphasize at this point that the aim of this

study is not to assess the performance or to promote the usea)Electronic mail: camille.perrot@univ-eiffel.fr
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of one class of methods against the other (that is, physics-

based versus data-driven models), for a specific regression

problem. We rather focus on the development of a method-

ology that combines these two ingredients in a synergistic

manner, to address a question that remains hard to tackle

using any of these methods independently. Borrowing ingre-

dients from multi-fidelity modeling26 and operator learn-

ing,27 we first introduce an appropriate simulation-based

representation that encodes the experimental response in the

frequency domain. Here, we consider the prediction of the

sound absorption coefficient as a prototypical application.

We then develop a neural network model between input

parameters of interest and the reduced variables defined by

the encoder. We finally use a transfer learning approach to

compensate for data scarcity at the training stage.

This paper is organized as follows. The overall method-

ology and technical ingredients are presented in Sec. II. We

discuss, in particular, the encoding-decoding strategy and

learning aspects. We then deploy and analyze the perfor-

mance of the approach in Sec. III. We specifically consider

the case of sound absorption measurements and introduce

both the experimental setting and the associated computa-

tional surrogate model. We show that the framework enables

the prediction of experimental results with a fairly good

accuracy (quantified in the L2 sense), even with limited data.

Concluding remarks are finally provided in Sec. IV.

II. METHODOLOGY

A. Overview of the approach

We seek a surrogate model mapping some input (material

or microstructural) parameters to the sound absorption coeffi-

cient over some angular frequency range, denoted by W. Let

l 7! faðx; lÞ;x 2 Wg be the forward map of interest, where

l is the vector of input parameters, a is the sound absorption

coefficient, and W is assumed to be the Cartesian product of

closed intervals. Our goal is to construct a methodology that

allows one to learn this forward map, using results from a lim-
ited set of physical experiments.

Owing to a probabilistic interpretation of l, which is

assumed to be defined on some probability space ðH;F ;PÞ
(whereH denotes the sample space, F is a r-field, and P is a

probability measure), and assuming that a 2 L2ðH; L2ðWÞÞ
(notice that a is of second-order as it is bounded almost

surely), the process faðxÞ;x 2 Wg can be represented

through its Karhunen-Loève (KL) expansion,28

aðxÞ ¼ aðxÞ þ
Xþ1

i¼1

ffiffiffiffi
ki

p
giuiðxÞ; (1)

where x 7! aðxÞ is the mean function of the sound absorp-

tion coefficient (that is, aðxÞ ¼ EfaðxÞg for all x 2 W),

the pairs fðki;uiÞgi�1 are the eigenvalues and eigenfunctions

of the covariance operator satisfying the integral equation,ð
W

Cðx;x0Þuiðx0Þ dx0 ¼ kiuiðxÞ; (2)

where ðx;x0Þ 7!Cðx;x0Þ is the covariance function of

faðxÞ;x 2 Wg, and the reduced variables fgigi�1 are

defined as

gi ¼
1ffiffiffiffi
ki

p ha� a;uii; (3)

with h�; �i the inner product between functions,

h f ; gi ¼
ð
W

f ðxÞgðxÞ dx: (4)

The variables fgigi�1 are centered, have unit variance, and

are pairwise uncorrelated. Notice that we did not adapt the

notation to reflect the stochastic interpretation in the above

equations for simplicity. The truncated expansion reads as

a�ðxÞ ¼ aðxÞ þ
X�
i¼1

ffiffiffiffi
ki

p
giuiðxÞ; (5)

where the order � is determined through a convergence anal-

ysis and a� converges to a in the mean square sense as

� ! þ1.

One natural path to learn the mapping l 7! faðxg; lÞ;
x 2 Wg then consists (i) of estimating the mean a and the

set of eigenpairs fðki;uiÞg�i from a given dataset, and (ii)

learning the mapping l 7! gðlÞ between the input parame-

ters and the latent reduced variables with gðlÞ ¼ ðg1ðlÞ;…;
g�ðlÞÞT . There are two main benefits of proceeding this

way. First, the learning task is now cast in a finite dimen-

sional space (that is, in R�), as proposed in Ref. 27, e.g., for

the learning between Hilbert spaces for instance. Second,

the use of a basis in the frequency domain renders the

approximation more robust to noise in the data. Since we

are interested in learning from experiments, it is convenient

to introduce the following truncated decomposition, related

to observations,

a exp
� ðxÞ ¼ a exp ðxÞ þ

X�
i¼1

ffiffiffiffiffiffiffiffiffi
k exp
i

q
g exp
i u exp

i ðxÞ: (6)

In Eq. (6), the superscript “exp” indicates that all quantities

are computed based on the experimental results, using statis-

tical estimators. In a standard setting where few samples are

available (meaning that the physical experiments are con-

ducted for a few choices of input parameters, typically less

than 10), the covariance operator estimated from the data is,

however, often found to be non-positive, hence making the

above formulation ill-posed. To circumvent that limitation

and properly set up the learning task, we propose the follow-

ing two-step “regularization” approach.

(i) First, a numerical multiscale-informed surrogate

model for the experiments is introduced. We denote

by fasimðxÞ;x 2 Wg the sound absorption coeffi-

cient thus obtained, and we consider the truncated

KL expansion,
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asim� ðxÞ ¼ asimðxÞ þ
X�
i¼1

ffiffiffiffiffiffiffiffi
ksimi

q
gsimi usim

i ðxÞ; (7)

with notation analogous to Eq. (6).

(ii) Second, the (centered) experimental data are pro-

jected onto the computational basis,

a exp
� ðxÞ ¼ a exp ðxÞ þ

X�
i¼1

ffiffiffiffiffiffiffiffi
ksimi

q
ĝ exp
i usim

i ðxÞ; (8)

where the same truncation order is assumed, without

loss of generality, and

ĝ exp
i :¼ 1ffiffiffiffiffiffiffiffi

ksimi

q ha exp � a exp ;usim
i i: (9)

The hat symbol in Eq. (9) is used to emphasize that

the reduced coordinates are different from those in

Eq. (6) (see the remark below). The mapping

l7!ĝ
exp ðlÞ is subsequently approximated by using

transfer learning with neural network models, using

prior knowledge gained by developing a surrogate

model for the mapping l 7!gsimðlÞ.

It should be noticed that the above approach can be

interpreted, to some extent, in a multi-fidelity setting where

a exp represents information that is costly to collect, while

the numerical approximation asim remains cheaper to syn-

thesize in general. A study about transfer learning in this

context can be found in Ref. 26, for instance. Moreover, the

use of a KL expansion rises theoretical issues pertaining to

approximation capabilities for the neural networks, due to

the non-compactness of the latent spaces. This fundamental

aspect is beyond the scope of this work, and we refer to Ref.

27 for a discussion. The ingredients of the above framework

are presented in the following sections.

Remark: It is important to note that Eq. (8) does not cor-

respond to the KL expansion of the process fa exp ðxÞ;
x 2 Wg. In particular, the right-hand side is not optimal in

the L2 sense, and the reduced variables fĝig�i¼1, while cen-

tered, are not pairwise uncorrelated. The representation is,

however, licit since fusim
i gi�1 constitutes an orthonormal

basis of L2ðWÞ (which follows from the properties of the

covariance operator).

B. Neural networks as surrogate models

In this section, we recall the necessary background on

(feed-forward) neural networks and transfer learning.

Providing general reviews on these very active research topics

is beyond the scope of this work, and we refer interested read-

ers to Ref. 29 and Refs. 30 and 31 for discussions, for instance.

1. Background

A neural network surrogate aims to map some input

vector-valued parameter x 2 RI to some output (vector-

valued) parameter y 2 RO, using a composite transforma-

tion that (i) involves input and output layers, as well as so-

called hidden layers that each contains a set of neurons; and

(ii) is learned on a training data set D ¼ fxðiÞ; yðiÞgND

i¼1 with

ND data points. Following standard notation, we denote by

NH the total number of hidden layers and let n‘ be the num-

ber of neurons in the ‘ th layer. In this work, we consider a

feed-forward neural network in which the output of the jth
neuron in a given layer is produced by transmitting a

weighted sum of input signals (from the preceding layer),

plus a bias, to an activation (or transfer) function /a:

z
ð‘Þ
j ¼ /a

Xn‘�1

i¼1

W
ð‘Þ
ij z

ð‘�1Þ
i þ hð‘Þj

 !
; 1 � j � n‘ ;

1 � ‘ � NH; (10)

with zi
ð0Þ ¼ xi; 1 � i � I . The components of the output

layer are defined as

yj ¼
XnNH
i¼1

W
ð0Þ
ij z

ðNHÞ
i þ hð0Þj ; 1 � j � O: (11)

In the above equations, W
ð‘Þ
ij denotes the weight for the con-

nection between the ith neuron in layer ð‘� 1Þ and the jth
neuron in layer ‘, and hð‘Þj is the bias corresponding to the

jth neuron in layer ‘. The neural network is therefore param-

eterized by the sets fWð‘ÞgNH

‘¼0 and fhð‘ÞgNH

‘¼0 of weight matri-

ces and bias vectors, where Wð0Þ and hð0Þ are associated with

the output layer by convention, and

Wð‘Þ ¼ W
ð‘Þ
ij

h i
2 Mnð‘�1Þ�nð‘Þ ðRÞ ;

hð‘Þ ¼ hð‘Þj

h i
2 M1�nð‘Þ ðRÞ: (12)

There exist many choices for the activation function, including

the Rectified Linear Unit (ReLU), sigmoid, and hyperbolic tan-

gent functions for instance; see Ref. 29. In this paper, we use

the sigmoid function /aðvÞ ¼ 1=½1þ expð�vÞ� for all hidden
layers, and the architecture of the neural networks was deter-

mined through parametric analyses on validation errors.

An important step while using neural networks pertains

to training, that is, to the calibration of the weight matrices

fWð‘ÞgNH

‘¼0 and bias vectors fhð‘ÞgNH

‘¼0. This is commonly

achieved by minimizing a loss function, potentially supple-

mented with a regularization term, and many techniques

were proposed in the literature.29 We use a standard super-

vised approach based on the minimization of the mean

squared error,

‘ðfWð‘Þ;hð‘ÞgNH

‘¼0Þ¼
1

ND

XND

i¼1

���ŷðxðiÞ;fWð‘Þ;hð‘ÞgNH

‘¼0Þ� yðiÞÞ
���2;
(13)

where ŷðxðiÞ; fWð‘Þ; hð‘ÞgNH

‘¼0Þ denotes the prediction of the

neural network parameterized by fWð‘Þ; hð‘ÞgNH

‘¼0 at the data

point xðiÞ.
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In this work, various algorithms for network training

were tested through parametric analyses, including the

Levenberg-Marquardt and stochastic gradient descent tech-

niques. Most algorithms were found to provide similar

results, and the results provided in Sec. III C were obtained

with the Levenberg-Marquardt optimizer.

2. Transfer learning

In the context of inductive learning for regression

problems (see Refs. 30 and 31 for reviews with applica-

tions to classification and regression), transfer learning

proceeds by adapting an existing neural network that has

been pretrained on data generated by a similar problem.

This principle is schematically depicted in Fig. 1, using

the terminology introduced in the aforementioned

references.

The adaptation can be performed, for instance, by pre-

serving the structure of the pretrained network and by updat-

ing its parameters in either all or a few layers, or by adding

hidden layers to approximate the mapping gsim 7!ĝ
exp ðgsimÞ.

In this work, we use the second approach given the analogy

between Eqs. (7) and (8), where asim is assumed to be a rea-

sonable proxy for a exp.

III. APPLICATION TO EXPERIMENTAL
MEASUREMENTS FOR THE SOUND ABSORPTION
COEFFICIENT

In this section, we deploy the methodology presented

in Sec. II A. The experimental analysis is first presented in

Sec. III A. The multiscale surrogate used for computing

the projection basis and transfer learning is then discussed

in Sec. III B. The learning strategy is finally exemplified in

Sec. III C.

Owing to a slight abuse of notation, we consider the

sound absorption coefficient to be expressed as a function of

the angular frequency x or the frequency f (with x ¼ 2pf ),
and denote by a the aforementioned coefficient regardless of

the associated variable.

A. Description of the physical experiments

In order to illustrate the approach, we consider the char-

acterization of the sound absorption coefficient for

randomly-packed rigid spherical beads. To that end, ten

samples with various combinations of monodisperse bead

diameter and sample thickness were processed; see Table I

and Fig. 2(a). Bead diameters were provided by the manu-

facturer and are sufficiently accurate for long wavelength

acoustical purposes.

A two-microphone method was used to estimate the

sound absorption coefficient of the porous media at normal

incidence, by measuring the pressure transfer function

H12 ¼ p1=p2, in which p1 and p2 are the pressures deter-

mined at the two microphones; see Figs. 2(b) and 2(c). A

steel net is used to control the sample thickness; see

Fig. 2(c). It is worth noticing that manual measurements of

the sample packing fraction can be expected to be less pre-

cise for large bead diameters. The sound absorption coeffi-

cient is then experimentally estimated as

a exp ¼ 1�
���� expðjkad12Þ � H12

H12 � expð�jkad12Þ
expð2jkad2sÞ

����
2

; (14)

in which ka represents the wavenumber in the ambient fluid,

d12 is the distance between microphones 1 and 2, and d2s is
the distance between microphone 2 and the front surface of

the porous sample.32 Measurements were conducted with an

impedance tube of length 1m and inner diameter 40mm

[see Fig. 2(b)], in the frequency range ½100; 4500� Hz with a

sampling step of 4Hz. The experimental results are reported

in Fig. 3.

FIG. 1. (Color online) Principles of

transfer learning for regression prob-

lems. A neural network is first pretrained

using data from a similar problem, asso-

ciated with a source model (top row).

Knowledge gained through this training

is subsequently transferred to train an

adapted neural network surrogate for the

target model (bottom row). Here, this

adaptation corresponds to an extension

of the pretrained model through the

addition of hidden layers.

TABLE I. Definition of the experimental samples.

Sample #

Parameter R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Diameter, d [mm] 3 4 5 6 7 3 4 5 6 7

Thickness, L [mm] 23.5 23.5 23.5 23.5 23.5 47 47 47 47 47

2590 J. Acoust. Soc. Am. 151 (4), April 2022 Trinh et al.
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The normal incidence sound absorbing behavior of

monodisperse spherical particles has been discussed else-

where; see Ref. 33, Sec. VIII (and Refs. 34 and 35) for

instance. Indeed, it was shown that accurate predictions of

the first sound absorption peak can be obtained in terms of

frequency and magnitude from the geometrical properties of

the material (d, L). The first normal incidence sound absorp-

tion peak corresponds to the quarter wavelength resonant

absorption of the material and is governed by its intrinsic

damped wavelength keq (and not directly by the wavelength

in the air). The successive maxima appear at the quarter

wavelength, where L=<eðkeqÞ ¼ n=4, with n being succes-

sive odd integers. The thickness-to-particle-diameter ratio

L / d controls the magnitude of the first sound absorption

peak and the optimal value of the thickness-to-particle-

diameter ratio Nopt allowing 100% absorption at a given

particle diameter was found to be a linear function of

the particle diameter [see Fig. 12 and Eq. (35) of Ref. 33]. Our

experimental results are consistent with the systematic analysis

proposed in Ref. 33, in which the optimal particle diameter is

given, for a given thickness L, as d1ðLÞ ¼
ffiffiffiffiffiffiffiffiffiffi
L=d1

p
(with

d1¼ 12 494 m�1; see Ref. 33). Note that symbols d1 and d1
are used hereinafter for consistency with Ref. 33. For the

two considered layer thicknesses, optimal particle diameters

are estimated as d1ðL ¼ 23:5mmÞ ¼ 1:4mm and d1ðL
¼ 47mmÞ ¼ 1:9mm. This explains why the sound absorption

magnitude of sample R6 reaches a maximum value above

0.9, whereas the first peak magnitude of sample R1 is

much lower than this critical value—even if the two sam-

ples involve the same particle diameter, d¼ 2mm. The

information described above constitutes the dataset for the

experimental response l7!fa exp ðx; lÞ;x 2 Wg, with

l ¼ ðd; LÞT .

B. Multiscale surrogate

We now introduce the computational surrogate for the

experiments described in Sec. III A. Additional results per-

taining to code verification and model accuracy are reported

in the Appendix A.

FIG. 2. (Color online) (a) Samples of randomly-packed rigid spherical beads. The top row corresponds to sphere layers with a thickness of 47mm, while the

bottom row shows 23.5mm-thick layers. (b), (c) Acoustical measurement setup and impedance tube configuration. Note that the specimen is backed by a

rigid wall.

FIG. 3. (Color online) Experimentally-

measured sound absorption coefficients

estimated for the samples described in

Table I.
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1. Microstructural sampling

The first step consists in sampling a random close pack-

ing of mono-sized rigid spheres (for a given value of l). To

that aim, we rely on the algorithm proposed in Refs. 36 and

37 where spheres are randomly distributed within the domain

at initialization and moved, in an iterative manner, to avoid

overlaps and reach a target packing fraction. In order to

enforce a periodic structure at the boundaries of the simula-

tion domain, each sphere intersecting with p faces at the

boundary (1 � p � 3) is duplicated p times, and the center of

each replicate is translated towards the face opposing the

intersecting boundary by a factor equal to the size of the

domain.38 Four sphere ensembles with a target solid volume

fraction of 0.6 are shown in Fig. 4, for the sake of illustration.

The radial distribution function g for several packing config-

urations is shown in Fig. 5. The generation of a microstruc-

ture with N¼ 128, 512, and 1024 spheres took about 35, 255,

and 1523 s, respectively, on a laptop equipped with an

Intel(R) Core(TM) i7-4500U (Intel, China) cadenced at

2.40GHz.

2. Determination of the transport properties

The second step involves the calculation of transport prop-

erties using the periodic solid skeleton defined in Sec. IIIB1.

Let X be the reconstructed Representative Volume

Element (RVE) under consideration with boundary @X, and
let its solid phase, fluid, and fluid-solid interface be denoted

by Xs, Xf, and @Xf , respectively. The porosity (or fluid vol-

ume fraction) / and the thermal characteristic length (or

generalized hydraulic radius) K0 are directly obtained as

/ ¼

ð
Xf

dVð
X
dV

; K0 ¼ 2

ð
Xf

dVð
@Xf

dS
: (15)

The macroscopic transport properties can be computed from

the numerical solutions of a series of canonical boundary

value problems, namely, (i) a viscous flow problem, for the

static viscous permeability k0 and static viscous tortuosity

a0;
5,7,8,39 (ii) an inertial flow problem, for the viscous char-

acteristic length K and the high frequency tortuosity

a1;5,40,41 and (iii) a steady-state heat conduction problem,

enabling for the static thermal permeability k00 and the static

thermal tortuosity a00 to be computed.7,9,42 These boundary

value problems are recalled below for the sake of self-

containedness; interested readers are referred to the litera-

ture19,39,43,44 for the first-principles calculations of these

transport properties.

a. Viscous flow. This problem corresponds to the low

frequency limit (that is, when x ! 0) where viscous effects

dominate, hence creating a steady-state flow in the porous

media. The flow, associated with an incompressible

Newtonian fluid at very low Reynolds numbers, is described

by the scaled Stokes problem,39

�r2k?0 þrp?0 ¼ e ; r � k?0 ¼ 0; (16)

in Xf, with k?0 ¼ 0 on @Xf and where the scaled velocity k?0
and pressure p?0 of the fluid are X-periodic. Here, e is a unitary
vector corresponding to the imposed macroscopic pressure

FIG. 4. (Color online) Realizations of the random close packing obtained for N¼ 128, N¼ 256, 512, and N¼ 1024 (from left to right), for a solid volume

fraction set to 0.6.

FIG. 5. (Color online) Graph of the function gðrÞ ! r�ð¼ 2r=dÞ for: (a) various numbers N with a value of solid volume fraction gp ¼ 0:60, and (b) several

packing fractions gp with N¼ 1024.
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gradient that drives the flow in a preferential direction. The

symbol r denotes the nabla differential operator, while the dot

symbol “�” denotes the classical inner product inR3. The sepa-

ration of scales (and thereby, macroscopic isotropy) is assumed

for the considered microstructure.45 The static viscous perme-

ability k0 and the static viscous tortuosity a0 are then calculated

as43,44

k0 ¼ /hk?0 � ei ; a0 ¼
hk?0 � k?0i
hk?0i � hk?0i

; (17)

where h•i indicates spatial averaging over the fluid domain.

Notice that the aforementioned scalar transport parameters

are sufficient to describe the (isotropic) static viscous per-

meability and tortuosity tensors.

b. Inertial flow. This problem is associated with the

high-frequency regime, x ! þ1. In this case, inertial

forces dominate over viscous ones and, consequently, the

saturating fluid tends to behave as a nearly perfect fluid

(without viscosity except in the vicinity of the boundary

layer). The inertial flow of the perfect incompressible fluid

then formally behaves according to an electric conduction

phenomenon (where the porous material is composed of a

non-conducting solid matrix and a conducting fluid).5,40,41

Quantities of interest in the inertial flow problem can be

thus obtained by solving the following set of potential

equations:

E ¼ �ruþ e ; r � E ¼ 0; (18)

in Xf, subjected to E � n ¼ 0 on @Xf and u is X-periodic. In
the above equations, e is a given macroscopic electric field,

E is the local solution to the boundary value problem having

�ru as a fluctuating part, and n is the unit normal to @Xf .

The viscous characteristic length K and the through-

thickness high-frequency tortuosity a1 are given by5,46

K ¼ 2

ð
Xf

E � E dVð
@Xf

E � E dS
; a1 ¼ hE � Ei

hEi � hEi : (19)

Similar to the static viscous permeability and tortuosity

parameters introduced in the previous section, these sca-

lar quantities are sufficient to parameterize the homoge-

nized response of the material (owing to macroscopic

isotropy).

c. Thermal effects. In the low frequency limit (that is,

in the static case), heat diffusion in porous media is gov-

erned by the Poisson equation,42

r2s ¼ �1; (20)

in Xf, with s¼ 0 on @Xf and s is @X-periodic. The static

thermal permeability k00 and static thermal tortuosity a1 are

finally estimated as40

k00 ¼ hsi ; a00 ¼
hs2i
hsi2

: (21)

As an illustration, Fig. 6 shows the solution fields obtained

by the finite element method (with a P2 �P1 formulation)

for a cubic domain of edge length 2.5 d.

3. Determination of the sound absorption coefficient

Within the framework of the equivalent-fluid theory,46

the air in a porous medium is replaced by an equivalent fluid

that exhibits (i) the same bulk modulus as the saturating air,

and (ii) a dynamic density that takes into account the vis-

cous and the inertial interactions with the frame. The deter-

mination of these two dynamic parameters subsequently

enables the estimation of the wavenumber and characteristic

impedance, which in turn can be used to define some rele-

vant properties of the air-filled porous media. In the

model,5,6,9 developed following this macroscopic perspec-

tive, the effective density and the effective bulk modulus are

respectively defined as

~qðxÞ ¼ q0~aðxÞ
/

; ~KðxÞ ¼ cP0

/
1

~bðxÞ
; (22)

where q0 is the density of the saturating fluid (here, the air),

c ¼ Cp=Cv where Cp is the pressure volume-specific heat

and Cv is the constant pressure-specific heat, P0 is the atmo-

spheric pressure, and / is the open porosity. The dynamic

tortuosity and dynamic compressibility, denoted by ~aðxÞ
and ~bðxÞ respectively, are then evaluated as

~aðxÞ ¼ a1 1þ 1

j-0
~FðxÞ

� �
;

~bðxÞ ¼ c� ðc� 1Þ 1þ 1

j-0
~F
0ðxÞ

� ��1

; (23)

where j is the imaginary unit, ~FðxÞ and ~F0 ðxÞ are the

dimensionless viscous and thermal shape functions depend-

ing on the dimensionless viscous and thermal angular fre-

quencies (denoted by - and -0, respectively), defined as

~FðxÞ ¼ 1� Pþ P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ M

2P2
j-

r
;

~F0 ðxÞ ¼ 1� P0 þ P0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ M0

2P02 j-
0

r
; (24)

with

- ¼ x
q0k0a1
/g

; -0 ¼ x
k00q0Cp

/j
; (25)

where g and j are the dynamic viscosity and the thermal

conductivity of the air, respectively. The four non-

dimensional shape factors M, M0, P, and P0 only depend on

the material transport parameters introduced in Sec. III B 2,
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M ¼ 8k0a1
K2/

; P ¼ M

4ða0=a1 � 1Þ ;

M0 ¼ 8k00
K02/

; P0 ¼ M0

4ða00 � 1Þ : (26)

It should be noticed that the so-called Johnson-Champoux-

Allard (JCA) and Johnson-Champoux-Allard-Lafarge (JCAL)

models are recovered by letting M0 ¼ P ¼ P0 ¼ 1 and

P ¼ P0 ¼ 1, respectively.

For a homogeneous acoustic layer, the wavenumber
~kðxÞ and the characteristic impedance ~ZcðxÞ can be calcu-

lated by

~kðxÞ ¼ x

ffiffiffiffiffiffiffiffiffiffiffi
~qðxÞ
~KðxÞ

s
; ~ZcðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~qðxÞ ~KðxÞ

q
: (27)

In the third and final step, the sound absorption coefficient

at normal incidence of the absorbing porous layer backed by

a rigid wall is defined as

asimðxÞ ¼ 1�
���� ~ZsðxÞ � Z0
~ZsðxÞ þ Z0

����
2

; (28)

where Z0 is the characteristic impedance of ambient air and
~ZsðxÞ ¼ �j ~ZcðxÞcot½~kðxÞL� is the surface impedance on

the free face of the sample having thickness L.

4. Numerical results

The entire set of transport parameters for the sphere-

packing microstructure is reported in Table II for the spe-

cific case d¼ 5mm. These parameters provide information

relevant to the propagation and dissipation phenomena in

the equivalent homogeneous material, in accordance with

the multiscale setting, and allows one to estimate the sound

absorption coefficient aðxÞ (following the derivations in the

previous sections).

In order to build the mapping l7!fasimðx; lÞ;x 2 Wg,
samples of l are drawn from the product of uniform probabil-

ity measures on the intervals [1, 10] mm (for the diameter d)
and [5, 100] mm (for the sample thickness L). Note that these
intervals are relevant to a broad range of absorber configura-

tions, as discussed in Ref. 33. Results obtained for the ten

configurations defined in Table III are displayed in Fig. 7.

C. Deploying the methodology

For numerical purposes, we consider discretized expan-

sions associated with a frequency step of 4Hz. Notice that

FIG. 6. (Color online) Asymptotic

solution fields: (a) mesh containing

58 400 Lagrangian tetrahedral ele-

ments; (b) low-frequency scaled veloc-

ity field k?0 � e [�10�8 m2] obtained for

e ¼ ð1; 0; 0Þ; (c) low-frequency scaled

temperature field s [�10�8 m2]; (d)

high-frequency scaled velocity field

E � e ½�� for an external unit field

e ¼ ð1; 0; 0Þ.

TABLE II. Transport properties computed for d¼ 5mm.

/ [-]

K0

[mm]

K
[mm]

k0
[�10�8 m2]

k00
[�10�8 m2] a1 [-] a 0 [-] a00 [-]

0.37 0.97 0.70 1.75 2.56 1.46 2.29 1.67
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the results reported in this section are displayed in terms of

frequency f.

1. Statistical reduction for the computational
surrogate

The first step of the methodology consists in analyzing

the reduction of the process fasimðxÞ;x 2 Wg, based on a

set of samples of l. To identify the number of realizations

that are necessary to achieve convergence for the projection

basis, we characterize the convergence of the statistical esti-

mator for the covariance matrix of the discretized process,

denoted by ½ ~C�. The graph of the function Nsim 7!jj½ ~CðNsimÞ�jj
is shown in Fig. 8, where Nsim denotes the number of realiza-

tions used to compute the estimator. It is seen that reasonable

convergence is achieved for Nsim ¼ 200, which is the number

considered in subsequent calculations.

We next determine the truncation order � in the statisti-

cal reduction [see Eq. (5)] by analyzing the convergence of

the function m 7!ErrðmÞ defined as

ErrðmÞ ¼ 1�

Xm
i¼1

ksimi

trð ~C½ �Þ
: (29)

The graph of the error function is shown in Fig. 9. It is found

that the error is less than 1� 10�2 (respectively 1� 10�4

and 1� 10�6) for m¼ 10 (respectively m¼ 21 and m¼ 33).

The graphs of the first five eigenfunctions fx 7!usim
i ðxÞg5i¼1

are displayed in Fig. 10. In what follows, we consider a trun-

cation at order �¼ 21, and a quantitative comparison

between the reference sound absorption coefficient asim and

the truncated KL representation is provided in Fig. 11, for a

specific microstructural sample.

2. Neural network surrogate for the computational
reduced coordinates

Following the second step in the approach outlined in

Sec. II A, samples for the reduced coordinates associated

with the multicale computational model are obtained as

gsimi ðmÞ ¼ 1ffiffiffiffiffiffiffiffi
ksimi

q hasimð• ;mÞ � asim;usim
i i; (30)

where m denotes a realization of l, and the mapping

l 7!gsimðlÞ is approximated by using a neural network (with

I ¼ 2 and O ¼ 21, following the notation introduced in

Sec. II B 1). As previously indicated, a feed forward Neural

Network (NN) is used in this work, and the architecture was

determined through a parametric analysis in terms of NH

(number of hidden layers) and the set fn‘gNH

‘¼1 (number of

TABLE III. List of parameters for the virtual sphere-packing samples ana-

lyzed in Fig. 7.

Sample name

Parameter V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Diameter,

d [mm]

5.24 3.07 8.60 2.75 3.03 2.54 3.05 4.92 3.79 9.31

Thickness,

L [mm]

93.24 74.38 51.42 59.96 27.54 48.59 96.49 56.95 54.51 27.00

FIG. 7. (Color online) Predicted sound absorption coefficients for the ten

virtual samples described in Table III.

FIG. 8. Graph of the Frobenius norm of the statistical estimator for the

covariance matrix, as a function of the number of samples Nsim. This figure

shows that 200 samples are sufficient to compute ½ ~C�.

FIG. 9. Graph of the function m7!ErrðmÞ measuring the error induced by

the truncation in the KL decomposition.
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neurons per layer, for all layers). While no attempt was

made to fully optimize the architecture for the problem at

hand, a structure with five hidden layers and �, 3�, �, �, and
� neurons per layer, respectively, was found to provide rea-

sonably accurate results (recall that �¼ 21). The conver-

gence of the mean squared error for the training, validation,

and testing stages can be seen in Fig. 12. Here, the training,

validation, and testing sets were composed of 144, 18, and

18 samples, respectively. The prediction obtained by using

the NN surrogate with the truncated (KL) expansion for a

given sample (not considered during the training process)

can be seen in Fig. 13. It is seen that the surrogate predicts

the sound absorption response fairly accurately over the

whole frequency domain for the virtual sample under con-

sideration. In particular, the location and magnitude of the

peaks are well estimated. It should, however, be pointed out

that larger (but still contained) discrepancies can be

observed on some other samples. The observed errors stem

from the combination of the error raised by the truncation in

the KL expansion, which can be reduced by increasing �,
and the error generated by the NN surrogate, which may be

decreased by refining the architecture and training strategy.

3. Neural network surrogate for the experimental
reduced coordinates and experimental sound
absorption prediction

In the final step of the methodology, transfer learning is

applied to approximate the mapping l7!ĝ
exp ðlÞ with the

limited dataset (composed of only ten samples). To this end,

a shallow network is added to the neural network con-

structed and calibrated in Sec. III C 2, with the aim of

FIG. 10. (Color online) Graph of the five first eigenfunctions which are

used to represent the sound absorption coefficient obtained from the multi-

scale formulation.

FIG. 11. (Color online) Graphs of the reference function f 7!asimðf Þ (black
dots) and approximation f 7! asim21 ðf Þ for a truncation order �¼ 21 (blue

dots) for the virtual sample with d¼ 9.61mm and L¼ 52.00mm.

FIG. 13. (Color online) Graphs of the reference function f 7!asimðf Þ (black
dots) and approximation f 7!asim;NN

21 ðf Þ defined through the KL expansion

(�¼ 21) and the NN model (blue dots) for the virtual sample with

d¼ 3.8mm and L¼ 54.51mm.

FIG. 12. (Color online) Performance of the proposed NN model within the

numerical training dataset: Convergence of the mean squared errors for

training, validation, and testing, respectively.
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representing the mapping gsim 7! ĝ
exp. The additional layer

contains � neurons, and is also optimized with the

Levenberg-Marquardt algorithm. Results from the training,

validation, and testing stages are reported in Fig. 14. A small

number of epochs is necessary to obtain good approximation

results in the transfer learning approach, which suggests that

the computational surrogate is fairly accurate. The increase in

the mean squared error for the validation test suggests overfit-

ting, which may be alleviated through various strategies

including model simplification, regularization (with early

stopping, for instance), and noise addition to list a few. As

stated earlier, no attempt was made to optimize the machine

learning part of the framework, given the scope of this study,

and refinements along those lines are left for future work.

Finally, the experimental sound absorption coefficient

is predicted as

a exp ;NN
� ðxÞ ¼ a exp ðxÞ þ

X�
i¼1

ffiffiffiffiffiffiffiffi
ksimi

q
ĝ exp ;NN
i usim

i ðxÞ; (31)

where ĝ
exp ;NN denotes the neural network surrogate cali-

brated through transfer learning. The graphs of the

experimentally-measured sound absorption coefficient a exp

and the prediction a exp ;NN
� for the physical samples R3 and

R7 (see Table I), which were both discarded for training, are

shown in Figs. 15 and 16, respectively. It is seen that the

hybrid surrogate model combining the KL expansion with

the computationally-based projection basis and the neural

network calibrated through transfer learning predicts the

experimental responses very well, even if only eight

experimentally-characterized samples were used as the data-

set. While the responses for R3 and R7 remain quite differ-

ent from one another, the surrogate can properly estimate

the locations of small and large peaks, as well as the corre-

sponding magnitudes in both cases. In practice, a normal-

ized L2 error, defined as

e� ¼
jja exp � a exp ;NN

� jj
jja exp jj ; (32)

can be used to assess the accuracy of the prediction. This

error is equal to 5.4% and 5.7% for samples R3 and R7,

respectively. Other analyses (which are not reported below

for the sake of conciseness) were performed by using other

pairs of discarded responses (in lieu of R3 and R7), and sim-

ilar results were obtained regarding the quality of the

approximations. It should be noticed that the asymptotic

result lim�!1 e� ¼ 0 holds in the big data limit (which is

not the setting considered in this paper), owing to the uni-

versal approximation theorem.47,48 The rate of convergence

depends on several factors, among which are the accuracy

of the computational model, the architecture of the neural

FIG. 14. (Color online) Performance of the proposed NN model within the

experimental dataset: Convergence of the mean squared errors for training,

validation, and testing, respectively.

FIG. 15. (Color online) Graphs of the experimentally-measured sound

absorption coefficient a exp and neural network prediction a exp ;NN
21 for sam-

ple R3 (see Table I).

FIG. 16. (Color online) Graphs of the experimentally-measured sound

absorption coefficient a exp and neural network prediction a exp ;NN
21 for sam-

ple R7 (see Table I).
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network, and the amount of experimental data available for

transfer learning. It is also observed that the sound absorbing

spectrum obtained from the recorded time series (Fig. 3)

showed some dips and peaks of small amplitudes (at 488,

724, 3324, 3856, and 4056Hz for sample R5, for instance).

Because the pics and dips are not included in the JCAPL

rigid-frame analytical model, these additive noise terms sug-

gest a potential influence (related to vibration effects) of the

sample holder that is made of a steel wire frame on the sound

absorption spectrum (grid size of 2mm and wire diameter of

0.2mm) and was not modeled in the simulations. Note that

modeling the vibration of the particle frame and casing

effects is beyond the scope of the present paper (see, for

instance, Ref. 49 and the references therein). Within the con-

text of this study, it is important to note that these small peaks

and dips are also captured by the neural network model; see

Figs. 15 and 16. Caution must therefore be exercised in using

the proposed framework on potentially corrupted data or on

data accounting for phenomena that are not included in the

model. In the former case, specific techniques based on, e.g.,

sensitivity analyses and filtering may be deployed to improve

robustness at the training stage. In the latter case, additional

physical mechanisms may be introduced to enhance the

model, depending on the problem of interest.

IV. CONCLUSION

A novel methodology to learn acoustical responses

based on limited experimental datasets was presented. From

a methodological standpoint, the approach combines a

multiscale-informed encoder, used to cast the learning task

in a finite-dimensional setting, with a neural network model

acting between the set of microstructural descriptors (com-

prised of the monodisperse particle diameter and the sample

thickness in the presented application) and the reduced

(latent) variables. The neural network is trained through

transfer learning, using synthesized multiscale data to com-

pensate for experimental data scarcity. The relevance of the

approach was investigated by considering the prediction of

the sound absorption coefficient. It was shown that the pro-

posed strategy allows for the map between the microstruc-

tural parameters and the acoustic response to be well

approximated, even with limited data.

From an application standpoint, this work demonstrates

how the experiments and models typically obtained and

developed into several significant contributions to acoustics

can be combined to enrich datasets in a context that

many researchers in the field of acoustical materials

encounter—namely, the identification and validation of

models parameterized by micro-/structural features, based

on a few experimental samples. The methodology allows

one to explore these important aspects with the ability to

account for microscopic effects, as well as correlation

effects between local properties of the medium. It also paves

the way for cost reduction through the efficient exploration

of the parameter space for acoustical materials design.

Avenues for future research include refinements on the

learning components such as network architecture and

TABLE IV. Analytical estimates derived by combining periodic homogenization and the self-consistent scheme. The determination of the characteristic

lengths and permeabilities of spherical packings is based on a bicomposite spherical pattern. Here, R ¼ d=2b with b ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� /3

p
(Refs. 43 and 44).

Method

Factor P-estimate C-estimate V-estimate

K=R 2/ð3� /Þ
9ð1� /Þ

2/ð3� /Þ
9ð1� /Þ

2/ð3� /Þ
9ð1þ b4Þð1� /Þ

K0=R 2/
3ð1� /Þ

2/
3ð1� /Þ

2/
3ð1� /Þ

k0=R
2 2� 3bþ 3b5 � 2b6

9bþ 6b6
10� 18bþ 10b3 � 2b6

45b
4� 9bþ 10b3 � 9b5 þ 4b6

18ðb1 � b6Þ
k00=R

2 3

2/
10� 18bþ 10b3 � 2b6

45b
3

2/
10� 18bþ 10b3 � 2b6

45b
3

2/
10� 18bþ 10b3 � 2b6

45b

FIG. 17. (Color online) Periodic unit cells of [SC (a), BCC (b), and FCC (c)] at / ¼ 0:42, and FCC (d) at / ¼ 0:26 within solder joints with a radius of

150lm (Ref. 50).
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learning strategy, as well as the assessment of the methodol-

ogy for other acoustical responses (e.g., intrinsic frequency-

dependent properties of polydisperse granular structures).
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APPENDIX A: VALIDATION OF MULTISCALE-
INFORMED PREDICTIONS

In this appendix, we report results pertaining to code

verification and model validation. Alternative analytical

models for transport parameters are first presented in

Appendix A 1. Comparisons of multiscale-inferred estima-

tions for the transport properties and the sound absorption

coefficient are then proposed in Appendix A 2 and A 3.

1. Analytical models for transport properties

Several analytical models can be used for estimating

the transport properties fed as inputs for the JCAPL semi-

phenomenological model. Here, we specifically consider

three models proposed in Refs. 43 and 44 whose parameters

are estimated as follows. The characteristic lengths and perme-

abilities are defined by the equations listed in Table IV. Three

cases are considered, namely, (i) the P-estimate (for which the

shear stress vanishes at the boundary); (ii) the V-estimate (for

which tangential velocities are equal at the boundary); and (iii)

the C-estimate (with vanishing velocity at the boundary). The

high-frequency tortuosity factor is defined as a1 ¼ ð3� /Þ=2
for all three cases. The static viscous tortuosities are estimated

for / ¼ 0:37 as a0V ¼ 1:52; a0C ¼ 1:58, and a0P ¼ 1:60.
The static thermal tortuosity a00 is finally equal to 1.94, in

agreement with Ref. 33.

2. Validation of the multiscale framework

Three classical cubic lattices are chosen for the sake of

verification, namely, simple cubic (SC), body-centered

cubic (BCC), and face-centered cubic (FCC) lattices; see

Fig. 17. Here, the sphere radius is equal to 1mm for all pat-

terns. Computational results are compared with those from

Refs. 51 and 52 and are found to be in good agreement, see

Table V. The evolution of the sound absorption coefficient

(at normal incidence) obtained from either the semi-

phenomenological models (fed with transport parameters) or

the direct numerical approach presented in Ref. 50 is shown

TABLE V. Numerical transport properties for classical lattices of spheres.

Transport parameters

/ K0 K k0 k00 a1 a0 a00
Lattice Reference [-] [mm] [mm] [�10�10 m2] [�10�10 m2] [-] [-] [-]

SC Ref. 51 0.48 0.624 0.369 102 246 1.40 2.02 1.43

Present 0.621 0.338 103 251 1.38 2.16 1.44

Ref. 52 0.42 1.56 0.99 535 1457 1.53 2.31 1.45

Present 1.56 0.99 546 1459 1.53 2.31 1.44

BCC Ref. 51 0.32 0.325 0.234 19.7 38.1 1.48 2.15 1.35

Present 0.319 0.189 21.1 37.9 1.47 2.22 1.39

Ref. 52 0.42 1.43 1.11 435 800 1.32 1.95 1.32

Present 1.43 1.11 452 803 1.32 1.93 1.31

FCC Ref. 51 0.26 0.247 0.159 6.70 27 1.65 2.49 1.85

Present 0.247 0.157 6.76 26.3 1.66 2.65 1.91

Ref. 52 0.42 1.43 1.12 365 817 1.32 1.86 1.55

Present 1.42 1.12 393 834 1.32 1.84 1.52

FIG. 18. (Color online) Comparison of the normal incidence sound absorb-

ing behavior obtained with the direct numerical method (circle markers)

and a hybrid method based on the JCA model (dashed line), the JCAL

model (dash-dotted line), and the JCAPL model (continuous line): (a)

L¼ 50mm and (b) L¼ 100mm. The inset plots show the same information

with a focus on low frequencies (smaller than 0.1 kHz). The horizontal

dashed line is the high-frequency sound absorption limit ah ¼ 0:56 for the

FCC pattern under study, at a porosity / ¼ 0:26.
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in Fig. 18. The agreement between the different predictions

shows that the hybrid approach allows the sound absorbing

behavior to be well described. The absorbers are based on

FCC packings [Fig. 17(d)] having two different thicknesses,

L 2 f50; 100g mm. The considered frequencies range

between 1 to 10 000 Hz. In the direct approach, the Sound

Absorption Coefficient (SAC) value is estimated from the

effective factors ~qðxÞ and ~bðxÞ taken from Tables 3.4 and

3.5 in Ref. 50. In agreement with results published else-

where,19,33,51 the normal incidence sound absorption coeffi-

cient of sphere-packed porous absorbers exhibits quarter-

wavelength resonances (see also Sec. III A), and oscillates

around the high-frequency sound absorption limit, ah ¼
1� ½ðẑ � 1Þ=ðẑ þ 1Þ�2 with ẑ ¼ /=

ffiffiffiffiffiffi
a1

p
.53

3. Comparison of multiscale-informed sound
absorption predictions

The predictions of the normal incidence SAC obtained

from different approaches are compared below. The

experimentally-measured sound absorbing behavior of the

ten real samples introduced in Table I is compared with both

simulations (combining the JCAPL model with the finite

element results on dense random packing of equal spheres)

and analytical estimates (combining the JCAPL model with

the self-consistent estimates described in Appendix

A 1).43,44 In general, the hybrid multi-scale numerical

approach is shown to provide a fairly good estimate of the

experimental behavior, as seen in Fig. 19. However, as the

particle diameter to sample thickness ratio increases (sam-

ples R4 and R5), border effects become significant in the

experimental response and a RVE model is less appropriate

to simulate such configurations [Figs. 19(d) and 19(e)].
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g�eom�etriques, analogie electromagn�etique, temps de relaxation” (“Sound

propagation in rigid porous materials saturated with a viscothermal fluid:

Geometrical parameters, electromagnetic analogy, relaxation times and

universality theory”), Ph.D. thesis, Le Mans Universit�e, Le Mans, France

(1993), pp. 1–114.
8S. R. Pride, F. D. Morgan, and A. F. Gangi, “Drag forces of porous-

medium acoustics,” Phys. Rev. B 47(9), 49644978 (1993).
9D. Lafarge, P. Lemarinier, J. F. Allard, and V. Tarnow, “Dynamic com-

pressibility of air in porous structures at audible frequencies,” J. Acoust.

Soc. Am. 102(4), 1995–2006 (1997).
10K. V. Horoshenkov, A. Hurrell, and J.-P. Groby, “A three-parameter ana-

lytical model for the acoustical properties of porous media,” J. Acoust.

Soc. Am. 145(4), 2512–2517 (2019).
11B. Semeniuk and P. G€oransson, “Microstructure based estimation of the

dynamic drag impedance of lightweight fibrous materials,” J. Acoust.

Soc. Am. 141(3), 1360–1370 (2017).
12B. Semeniuk, P. G€oransson, and O. Dazel, “Dynamic equations of a trans-

versely isotropic, highly porous, fibrous material including oscillatory

heat transfer effects,” J. Acoust. Soc. Am. 146(4), 2540–2551 (2019).
13B. Semeniuk, E. Lundberg, and P. G€oransson, “Acoustics modelling of

open-cell foam materials from microstructure and constitutive proper-

ties,” J. Acoust. Soc. Am. 149(3), 2016–2026 (2021).
14J. L. Auriault and E. S�anchez-Palencia, “Etude du comportement macro-

scopique d’un milieu poreux satur�e d�eformable” (“Study of the macro-

scopic behavior of a deformable saturated porous medium”), J. Mec.

16(4), 575–603 (1977).
15E. S�anchez-Palencia, “Non-homogeneous media and vibration theory,” in

Lecture Notes in Physics (Springer, New York, 1980), Vol. 127.
16J. L. Auriault, “Dynamic behaviour of a porous medium saturated by a

Newtonian fluid,” Int. J. Eng. Sci. 18(6), 775–785 (1980).
17S. Gasser, F. Paun, and Y. Br�echet, “Absorptive properties of rigid porous

media: Application to face centered cubic sphere packing,” J. Acoust.

Soc. Am. 117(4), 2090–2099 (2005).
18J. Allard and N. Atalla, Propagation of Sound in Porous Media:
Modelling Sound Absorbing Materials (John Wiley & Sons, New York,

2009).
19T. G. Zieli�nski, R. Venegas, C. Perrot, M. �Cervenka, F. Chevillotte, and K.
Attenborough, “Benchmarks for microstructure-based modelling of sound

absorbing rigid-frame porous media,” J. Sound Vib. 483, 115441 (2020).
20M. Yang and P. Sheng, “Sound absorption structures: From porous media

to acoustic metamaterials,” Ann. Rev. Mater. Res. 47, 83–114 (2017).
21Z. Laly, R. Panneton, and N. Atalla, “Characterization and development

of periodic acoustic metamaterials using a transfer matrix approach,”

Appl. Acoust. 185, 108381 (2022).
22J. Cuenca, P. G€oransson, L. De Ryck, and T. L€ahivaara, “Deterministic

and statistical methods for the characterisation of poroelastic media from

multi-observation sound absorption measurements,” Mech. Syst. Signal

Process. 163, 108186 (2022).
23M. J. Bianco, P. Gerstoft, J. Traer, E. Ozanich, M. A. Roch, S. Gannot,

and C.-A. Deledalle, “Machine learning in acoustics: Theory and

applications,” J. Acoust. Soc. Am. 146(5), 3590–3628 (2019).
24J. H. Jeon, E. Chemali, S. S. Yang, and Y. J. Kang, “Convolutional neural

networks for estimating transport parameters of fibrous materials based

on micro-computerized tomography images,” J. Acoust. Soc. Am. 149(4),

2813–2828 (2021).
25M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural

networks: A deep learning framework for solving forward and inverse

problems involving nonlinear partial differential equations,” J. Comput.

Phys. 378, 686–707 (2019).
26S. De, J. Britton, M. Reynolds, R. Skinner, K. Jansen, and A. Doostan,

“On transfer learning of neural networks using bi-fidelity data for uncer-

tainty propagation,” Int. J. Uncertain. Quantif. 10(6), 543–573 (2020).
27K. Bhattacharya, B. Hosseini, N. B. Kovachki, and A. M. Stuart, “Model

reduction and neural networks for parametric PDEs,” SMAI J. Comput.

Math. 7, 121–157 (2021).

28G. J. Lord, C. E. Powell, and T. Shardlow, An Introduction to
Computational Stochastic PDEs, Cambridge Texts in Applied

Mathematics (Cambridge University Press, Cambridge, UK, 2014).
29I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press,

Cambridge, MA, 2016).
30S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.

Knowl. Data Eng. 22(10), 1345–1359 (2010).
31K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer

learning,” J. Big Data 3(9), 1–40 (2016).
32O. Doutres, Y. Salissou, N. Atalla, and R. Panneton, “Evaluation of the acous-

tic and non-acoustic properties of sound absorbing materials using a three-

microphone impedance tube,” Appl. Acoust. 71(6), 506–509 (2010).
33V. V. Dung, R. Panneton, and R. Gagn�e, “Prediction of effective proper-

ties and sound absorption of random close packings of monodisperse

spherical particles: Multiscale approach,” J. Acoust. Soc. Am. 145(6),

3606–3624 (2019).
34V. Voronina and K. Horoshenkov, “Acoustic properties of unconsolidated

granular mixes,” Appl. Acoust. 65(7), 673–691 (2004).
35H. K. Kim and H. K. Lee, “Acoustic absorption modeling of porous con-

crete considering the gradation and shape of aggregates and void ratio,”

J. Sound Vib. 329(7), 866–879 (2010).
36W. S. Jodrey and E. M. Tory, “Computer simulation of isotropic, homoge-

neous, dense random packing of equal spheres,” Powder Technol. 30(2),

111–118 (1981).
37W. S. Jodrey and E. M. Tory, “Computer simulation of close random

packing of equal spheres,” Phys. Rev. A 32(4), 2347–2351 (1985).
38E. Ghossein and M. L�evesque, “A fully automated numerical tool for a

comprehensive validation of homogenization models and its application

to spherical particles reinforced composites,” Int. J. Solids Struct.

49(11–12), 1387–1398 (2012).
39J. L. Auriault, C. Boutin, and C. Geindreau, Homogenization of Coupled
Phenomena in Heterogenous Media (John Wiley & Sons, New York,

2010), Vol. 149.
40M. Avellaneda and S. Torquato, “Rigorous link between fluid permeabil-

ity, electrical conductivity, and relaxation times for transport in porous

media,” Phys. Fluids A 3(11), 2529–2540 (1991).
41Y. Achdou and M. Avellaneda, “Influence of pore roughness and pore-

size dispersion in estimating the permeability of a porous medium from

electrical measurements,” Phys. Fluids A 4(12), 2651–2673 (1992).
42J. Rubinstein and S. Torquato, “Diffusion-controlled reactions:

Mathematical formulation, variational principles, and rigorous bounds,”

J. Chem. Phys. 88(10), 6372–6380 (1988).
43C. Boutin and C. Geindreau, “Estimates and bounds of dynamic permeability

of granular media,” J. Acoust. Soc. Am. 124(6), 3576–3593 (2008).
44C. Boutin and C. Geindreau, “Periodic homogenization and consistent

estimates of transport parameters through sphere and polyhedron packings

in the whole porosity range,” Phys. Rev. E 82(3), 036313 (2010).
45J. Auriault, “Heterogeneous medium. is an equivalent macroscopic

description possible?,” Int. J. Eng. Sci 29(7), 785–795 (1991).
46D. Lafarge, “The equivalent fluid model,” in Materials and Acoustics
Handbook (Wiley, Chichester, UK, 2009), pp. 153–204.

47G. Cybenko, “Approximation by superpositions of a sigmoidal function,”

Math. Control Signals Syst. 2(4), 303–314 (1989).
48K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward net-

works are universal approximators,” Neural Netw. 2(5), 359–366 (1989).
49T. Tsuruha, Y. Yamada, M. Otani, and Y. Takano, “Effect of casing on

sound absorption characteristics of fine spherical granular material,”

J. Acoust. Soc. Am. 147(5), 3418–3428 (2020).
50S. Gasser, “Etude des proprietes acoustiques et mecaniques d’un materiau

metallique poreux modele a base de spheres creuses de nickel” (“Study of

acoustical and mechanical properties of a model porous metallic material

made of hollow nickel spheres”), Ph.D. thesis, Institut National

Polytechnique de Grenoble, Grenoble, France (2003).
51C. Y. Lee, M. J. Leamy, and J. H. Nadler, “Acoustic absorption calcula-

tion in irreducible porous media: A unified computational approach,”

J. Acoust. Soc. Am. 126(4), 1862–1870 (2009).
52T. G. Zieli�nski, “Microstructure-based calculations and experimental

results for sound absorbing porous layers of randomly packed rigid spher-

ical beads,” J. Appl. Phys. 116(3), 034905 (2014).
53R. Venegas, “Microstructure influence on acoustical properties of multi-

scale porous materials,” Ph.D. thesis, University of Salford, Salford, UK

(2011).

J. Acoust. Soc. Am. 151 (4), April 2022 Trinh et al. 2601

https://doi.org/10.1121/10.0010187

https://doi.org/10.1017/S0022112087000727
https://doi.org/10.1063/1.349482
https://doi.org/10.1103/PhysRevB.47.4964
https://doi.org/10.1121/1.419690
https://doi.org/10.1121/1.419690
https://doi.org/10.1121/1.5098778
https://doi.org/10.1121/1.5098778
https://doi.org/10.1121/1.4976814
https://doi.org/10.1121/1.4976814
https://doi.org/10.1121/1.5129368
https://doi.org/10.1121/10.0003824
https://doi.org/10.1016/0020-7225(80)90025-7
https://doi.org/10.1121/1.1863052
https://doi.org/10.1121/1.1863052
https://doi.org/10.1016/j.jsv.2020.115441
https://doi.org/10.1146/annurev-matsci-070616-124032
https://doi.org/10.1016/j.apacoust.2021.108381
https://doi.org/10.1016/j.ymssp.2021.108186
https://doi.org/10.1016/j.ymssp.2021.108186
https://doi.org/10.1121/1.5133944
https://doi.org/10.1121/10.0004768
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2020033267
https://doi.org/10.5802/smai-jcm.74
https://doi.org/10.5802/smai-jcm.74
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1016/j.apacoust.2010.01.007
https://doi.org/10.1121/1.5111753
https://doi.org/10.1016/j.apacoust.2003.12.002
https://doi.org/10.1016/j.jsv.2009.10.013
https://doi.org/10.1016/0032-5910(81)80003-4
https://doi.org/10.1103/PhysRevA.32.2347
https://doi.org/10.1016/j.ijsolstr.2012.02.021
https://doi.org/10.1063/1.858194
https://doi.org/10.1063/1.858523
https://doi.org/10.1063/1.454474
https://doi.org/10.1121/1.2999050
https://doi.org/10.1103/PhysRevE.82.036313
https://doi.org/10.1016/0020-7225(91)90001-J
https://doi.org/10.1007/BF02551274
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1121/10.0001210
https://doi.org/10.1121/1.3205399
https://doi.org/10.1063/1.4890218
https://doi.org/10.1121/10.0010187

	s1
	l
	n1
	s2
	s2A
	d1
	d2
	d3
	d4
	d5
	d6
	d7
	d8
	d9
	s2B
	s2B1
	d10
	d11
	d12
	d13
	s2B2
	s3
	s3A
	d14
	f1
	t1
	s3B
	f2
	f3
	s3B1
	s3B2
	d15
	s3B2a
	d16
	f4
	f5
	d17
	s3B2b
	d18
	d19
	s3B2c
	d20
	d21
	s3B3
	d22
	d23
	d24
	d25
	d26
	d27
	d28
	s3B4
	s3C
	f6
	t2
	s3C1
	d29
	s3C2
	d30
	t3
	f7
	f8
	f9
	s3C3
	f10
	f11
	f13
	f12
	d31
	d32
	f14
	f15
	f16
	s4
	t4
	f17
	app1
	s5A
	s5B
	t5
	f18
	s5C
	c1
	c2
	c3
	c4
	f19
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53

