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Learning acoustic responses from experiments:
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ABSTRACT:

A methodology to learn acoustical responses based on limited experimental datasets is presented. From a
methodological standpoint, the approach involves a multiscale-informed encoder used to cast the learning task in a
finite-dimensional setting. A neural network model mapping parameters of interest to the latent variables is then con-
structed and calibrated using transfer learning and knowledge gained from the multiscale surrogate. The relevance of
the approach is assessed by considering the prediction of the sound absorption coefficient for randomly-packed rigid
spherical beads of equal diameter. A two-microphone method is used in this context to measure the absorption coef-
ficient on a set of configurations with various monodisperse particle diameters and sample thicknesses, and a hybrid
numerical approach relying on the Johnson-Champoux-Allard-Pride-Lafarge model is deployed as the multiscale-
based predictor. It is shown that the strategy allows for the relationship between the micro-/structural parameters and
the experimental acoustic response to be well approximated, even if a small physical dataset (comprised of ten sam-
ples) is used for training. The methodology, therefore, enables the identification and validation of acoustical models
under constraints related to data limitation and parametric dependence. It also paves the way for an efficient explora-

tion of the parameter space for acoustical materials design. © 2022 Acoustical Society of America.
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I. INTRODUCTION

The analysis of the relationship between microstructural
parameters and ultimate acoustic performance is a funda-
mental question that has attracted much attention over the
past two decades. Various frameworks and variations
thereof were proposed to understand the underlying physical
mechanisms and to predict acoustical properties for different
types of materials, including the use of purely phenomeno-
logical,'™ semi-phenomenological,” ' semi-analytical,''~"?
and multiscale models;'*!” see Refs. 18 and 19 for a
review. Most of these approaches are found to produce rea-
sonably accurate estimations within their respective range of
applicability, even if some discrepancies between model
predictions and experimental responses are sometimes
observed for certain classes of materials, such as nonlinear
metamaterials.”?! While a large body of the literature has
focused on bottom-up approaches, predicting acoustic per-
formance based on microstructural descriptors, the relation-
ship may also be investigated as a top-down approach,
solving an inverse problem to infer microstructural parame-
ters based on coarse-scale measurements. In this context, the
Bayesian approach to parameter identification was applied
in Ref. 22 to calibrate the geometrical, transport, and elastic
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properties characterizing the elasto-acoustic behavior of
poro-elastic materials. More recently, so-called data-driven
approaches have emerged with the aim of learning forward
or inverse models based on datasets. The use of neural
network models, in particular, was proposed as a means to
represent potentially highly nonlinear maps in very high-
dimensional settings (see Ref. 23 for a review in acoustics,
as well as Ref. 24 for an application involving convolutional
neural networks). Physics-informed formulations involving
residuals from parametric partial differential equations were
proposed to bridge the gap between established physical the-
ories and approaches solely relying on data science (see the
seminal work,? for instance). Deep learning techniques are
often meant to be operated in the big data limit, that is, for
very large datasets. This assumption may be deemed inade-
quate in scientific machine learning where practical applica-
tions typically involve limited physical experiments.

The goal of this work is to propose a methodology that
circumvents data limitations for learning experimental
acoustic responses parameterized by microstructural and
sample properties. Specifically, we address the calibration
of a neural network model using a small dataset—typically
comprised of a few experimental results—by leveraging
information gained through a standard multiscale analysis. It
is important to emphasize at this point that the aim of this
study is not to assess the performance or to promote the use
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of one class of methods against the other (that is, physics-
based versus data-driven models), for a specific regression
problem. We rather focus on the development of a method-
ology that combines these two ingredients in a synergistic
manner, to address a question that remains hard to tackle
using any of these methods independently. Borrowing ingre-
dients from multi-fidelity modeling®® and operator learn-
ing,>” we first introduce an appropriate simulation-based
representation that encodes the experimental response in the
frequency domain. Here, we consider the prediction of the
sound absorption coefficient as a prototypical application.
We then develop a neural network model between input
parameters of interest and the reduced variables defined by
the encoder. We finally use a transfer learning approach to
compensate for data scarcity at the training stage.

This paper is organized as follows. The overall method-
ology and technical ingredients are presented in Sec. II. We
discuss, in particular, the encoding-decoding strategy and
learning aspects. We then deploy and analyze the perfor-
mance of the approach in Sec. III. We specifically consider
the case of sound absorption measurements and introduce
both the experimental setting and the associated computa-
tional surrogate model. We show that the framework enables
the prediction of experimental results with a fairly good
accuracy (quantified in the L? sense), even with limited data.
Concluding remarks are finally provided in Sec. IV.

Il. METHODOLOGY
A. Overview of the approach

We seek a surrogate model mapping some input (material
or microstructural) parameters to the sound absorption coeffi-
cient over some angular frequency range, denoted by W. Let
p— {o(w; p), € W} be the forward map of interest, where
u is the vector of input parameters, o is the sound absorption
coefficient, and W is assumed to be the Cartesian product of
closed intervals. Our goal is to construct a methodology that
allows one to learn this forward map, using results from a /im-
ited set of physical experiments.

Owing to a probabilistic interpretation of u, which is
assumed to be defined on some probability space (®,F,P)
(where © denotes the sample space, F is a o-field, and P is a
probability measure), and assuming that « € L?*(®,L*(W))
(notice that o is of second-order as it is bounded almost
surely), the process {o(w),w € W} can be represented
through its Karhunen-Loeve (KL) expansion,*®

() = 2(0) + Y Vo o), 0

where @+ o(w) is the mean function of the sound absorp-
tion coefficient (that is, a(w) = E{a(w)} for all ® € W),
the pairs {(4;, ¢;)};~, are the eigenvalues and eigenfunctions
of the covariance operator satisfying the integral equation,

‘[WC(CU, w/)qoi(w’) do' = Lipi(), (2)
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where (®, ') — C(w, ') is the covariance function of
{o2(w),w € W}, and the reduced variables {n;}., are
defined as

1
n; =ﬁ<a—z, ®;), 3)

with (-, -) the inner product between functions,

mw=JNM@Mu 4

W

The variables {#;},., are centered, have unit variance, and
are pairwise uncorrelated. Notice that we did not adapt the
notation to reflect the stochastic interpretation in the above
equations for simplicity. The truncated expansion reads as

1(0) = a(0) + 3 v/ e o), ®)

where the order v is determined through a convergence anal-
ysis and o, converges to o in the mean square sense as
v — +00.

One natural path to learn the mapping p+— {o(w}; ),
® € W} then consists (i) of estimating the mean o and the
set of eigenpairs {(/;, ¢;)}! from a given dataset, and (ii)
learning the mapping u+— #(¢) between the input parame-
ters and the latent reduced variables with n(u) = (1, (n), ...,
n,(u))". There are two main benefits of proceeding this
way. First, the learning task is now cast in a finite dimen-
sional space (that is, in R"), as proposed in Ref. 27, e.g., for
the learning between Hilbert spaces for instance. Second,
the use of a basis in the frequency domain renders the
approximation more robust to noise in the data. Since we
are interested in learning from experiments, it is convenient
to introduce the following truncated decomposition, related
to observations,

(@) = 2™ (@) + Y /40 0 (). ()
=1

In Eq. (6), the superscript “exp” indicates that all quantities
are computed based on the experimental results, using statis-
tical estimators. In a standard setting where few samples are
available (meaning that the physical experiments are con-
ducted for a few choices of input parameters, typically less
than 10), the covariance operator estimated from the data is,
however, often found to be non-positive, hence making the
above formulation ill-posed. To circumvent that limitation
and properly set up the learning task, we propose the follow-
ing two-step “regularization” approach.

(i) First, a numerical multiscale-informed surrogate
model for the experiments is introduced. We denote
by {o™(w),m € W} the sound absorption coeffi-
cient thus obtained, and we consider the truncated
KL expansion,

Trinh et al.
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O(Sim( _

s1m _|_Z /)51m sim s1m (7

with notation analogous to Eq. (6).
(i)  Second, the (centered) experimental data are pro-
jected onto the computational basis,

where the same truncation order is assumed, without
loss of generality, and

1 () = 2

~ €X] 1 €X €X §1m
070 == (0 — g% ™). ©)

l B
}Slm

The hat symbol in Eq. (9) is used to emphasize that
the reduced coordinates are different from those in
Eq. (6) (see the remark below). The mapping
w—n P (u) is subsequently approximated by using
transfer learning with neural network models, using
prior knowledge gained by developing a surrogate
model for the mapping p—n*™ (u).

It should be noticed that the above approach can be
interpreted, to some extent, in a multi-fidelity setting where
o®*P represents information that is costly to collect, while
the numerical approximation 8™ remains cheaper to syn-
thesize in general. A study about transfer learning in this
context can be found in Ref. 26, for instance. Moreover, the
use of a KL expansion rises theoretical issues pertaining to
approximation capabilities for the neural networks, due to
the non-compactness of the latent spaces. This fundamental
aspect is beyond the scope of this work, and we refer to Ref.
27 for a discussion. The ingredients of the above framework
are presented in the following sections.

Remark: It is important to note that Eq. (8) does not cor-
respond to the KL expansion of the process {a®P(w),
® € W}, In particular, the right-hand side is not optimal in
the L? sense, and the reduced variables {n;}i_,, while cen-
tered, are not pairwise uncorrelated. The representation is,
however, licit since {@$™}.., constitutes an orthonormal
basis of L>(VW) (which follows from the properties of the
covariance operator).

B. Neural networks as surrogate models

In this section, we recall the necessary background on
(feed-forward) neural networks and transfer learning.
Providing general reviews on these very active research topics
is beyond the scope of this work, and we refer interested read-
ers to Ref. 29 and Refs. 30 and 31 for discussions, for instance.

1. Background

A neural network surrogate aims to map some input
vector-valued parameter x € R? to some output (vector-

J. Acoust. Soc. Am. 151 (4), April 2022

valued) parameter y € R, using a composite transforma-
tion that (i) involves input and output layers, as well as so-
called hidden layers that each contains a set of neurons; and
(ii) is learned on a training data set D = {x, y@}"* with
Np data points. Following standard notation, we denote by
Ny the total number of hidden layers and let n; be the num-
ber of neurons in the ¢ th layer. In this work, we consider a
feed-forward neural network in which the output of the jth
neuron in a given layer is produced by transmitting a
weighted sum of input signals (from the preceding layer),
plus a bias, to an activation (or transfer) function ¢,:

Nny—1
=4, (Z W'z 0_,(-“) S 1gj<m,
=1
1<0<Ny, (10)

with zi<0) =x;, 1 <i<7Z. The components of the output
layer are defined as

nNH

0) (N, 0
yJ:ZIWl(J>Zt( H)+Hj()7

In the above equations, W, () denotes the weight for the con-
nection between the ith neuron in layer (¢ — 1) and the jth
neuron in layer ¢, and 0! is the bias corresponding to the
jth neuron in layer £. The neural network is therefore param-
eterized by the sets {WV})" and {0(/ } ", of weight matri-
ces and bias vectors, where W(® and ) are associated with
the output layer by convention, and

1<j<0O. an

w = [Wl(f)} S Mn([—l)xn(é)(R)7

0 = (0] € M0 (R). (12)
There exist many choices for the activation function, including
the Rectified Linear Unit (ReLU), sigmoid, and hyperbolic tan-
gent functions for instance; see Ref. 29. In this paper, we use
the sigmoid function ¢,(v) = 1/[1 4 exp(—v)] for all hidden
layers, and the architecture of the neural networks was deter-
mined through parametric analyses on validation errors.

An important step while using neural networks pertains
to trammg, that is, to the calibration of the weight matrices
{wOn " and bias vectors {0} . This is commonly
achieved by minimizing a loss function, potentially supple-
mented with a regularization term, and many techniques
were proposed in the literature.” We use a standard super-
vised approach based on the minimization of the mean
squared error,

1
:N_DZ

i=1

S0 WO,00 ) 50|

13)

(W03

where y(x@; {W©) 00" )

neural network parameterlzed by {W 0(4)
point x).

denotes the prediction of the
N” at the data

Trinh et al. 2589
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In this work, various algorithms for network training
were tested through parametric analyses, including the
Levenberg-Marquardt and stochastic gradient descent tech-
niques. Most algorithms were found to provide similar
results, and the results provided in Sec. III C were obtained
with the Levenberg-Marquardt optimizer.

2. Transfer learning

In the context of inductive learning for regression
problems (see Refs. 30 and 31 for reviews with applica-
tions to classification and regression), transfer learning
proceeds by adapting an existing neural network that has
been pretrained on data generated by a similar problem.
This principle is schematically depicted in Fig. 1, using
the terminology introduced in the aforementioned
references.

The adaptation can be performed, for instance, by pre-
serving the structure of the pretrained network and by updat-
ing its parameters in either all or a few layers, or by adding
hidden layers to approximate the mapping #*™—s# <P (™),
In this work, we use the second approach given the analogy
between Egs. (7) and (8), where oM is assumed to be a rea-
sonable proxy for o “*P.

lll. APPLICATION TO EXPERIMENTAL
MEASUREMENTS FOR THE SOUND ABSORPTION
COEFFICIENT

In this section, we deploy the methodology presented
in Sec. IT A. The experimental analysis is first presented in
Sec. IIT A. The multiscale surrogate used for computing
the projection basis and transfer learning is then discussed
in Sec. III B. The learning strategy is finally exemplified in
Sec. III C.

Owing to a slight abuse of notation, we consider the
sound absorption coefficient to be expressed as a function of
the angular frequency w or the frequency f (with w = 2xf),
and denote by « the aforementioned coefficient regardless of
the associated variable.

2590  J. Acoust. Soc. Am. 151 (4), April 2022

trainable layers

FIG. 1. (Color online) Principles of
transfer learning for regression prob-
lems. A neural network is first pretrained
using data from a similar problem, asso-
J ciated with a source model (top row).
Knowledge gained through this training
is subsequently transferred to train an

> Source
model

i ) adapted neural network surrogate for the
: ) target model (bottom row). Here, this
= Target adaptation corresponds to an extension
el del of the pretrained model through the
i é mode addition of hidden layers.
S

y

A. Description of the physical experiments

In order to illustrate the approach, we consider the char-
acterization of the sound absorption coefficient for
randomly-packed rigid spherical beads. To that end, ten
samples with various combinations of monodisperse bead
diameter and sample thickness were processed; see Table I
and Fig. 2(a). Bead diameters were provided by the manu-
facturer and are sufficiently accurate for long wavelength
acoustical purposes.

A two-microphone method was used to estimate the
sound absorption coefficient of the porous media at normal
incidence, by measuring the pressure transfer function
His = p1/pa, in which p; and p, are the pressures deter-
mined at the two microphones; see Figs. 2(b) and 2(c). A
steel net is used to control the sample thickness; see
Fig. 2(c). It is worth noticing that manual measurements of
the sample packing fraction can be expected to be less pre-
cise for large bead diameters. The sound absorption coeffi-
cient is then experimentally estimated as

exp(jkydin) — Hin . :
- exp(2jkqdas)|
Hyy — exp(—jkad2) P(2/kadz)

A =1 — (14)

in which k, represents the wavenumber in the ambient fluid,
di, is the distance between microphones 1 and 2, and dy; is
the distance between microphone 2 and the front surface of
the porous sample.>* Measurements were conducted with an
impedance tube of length 1 m and inner diameter 40 mm
[see Fig. 2(b)], in the frequency range [100, 4500] Hz with a
sampling step of 4 Hz. The experimental results are reported
in Fig. 3.

TABLE I. Definition of the experimental samples.

Sample #

Parameter Rl R2 R3 R4 R5 R6 R7 R8 R9 RI0

Diameter, d [mm)] 3 4 5 6 7 3 4 5 6 7
Thickness, L [mm] 23.5 23.5 23.5 23.5 23.5 47 47 47 47 47

Trinh et al.
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Hio=

Source

steel net ———r_
fixed ring—~ )
tube — -

7 o——— 1

backing

FIG. 2. (Color online) (a) Samples of randomly-packed rigid spherical beads. The top row corresponds to sphere layers with a thickness of 47 mm, while the
bottom row shows 23.5 mm-thick layers. (b), (c) Acoustical measurement setup and impedance tube configuration. Note that the specimen is backed by a

rigid wall.

The normal incidence sound absorbing behavior of
monodisperse spherical particles has been discussed else-
where; see Ref. 33, Sec. VIII (and Refs. 34 and 35) for
instance. Indeed, it was shown that accurate predictions of
the first sound absorption peak can be obtained in terms of
frequency and magnitude from the geometrical properties of
the material (d, L). The first normal incidence sound absorp-
tion peak corresponds to the quarter wavelength resonant
absorption of the material and is governed by its intrinsic
damped wavelength 4, (and not directly by the wavelength
in the air). The successive maxima appear at the quarter
wavelength, where L/Re(Z.,) = n/4, with n being succes-
sive odd integers. The thickness-to-particle-diameter ratio
L/d controls the magnitude of the first sound absorption
peak and the optimal value of the thickness-to-particle-
diameter ratio N,,, allowing 100% absorption at a given
particle diameter was found to be a linear function of
the particle diameter [see Fig. 12 and Eq. (35) of Ref. 33]. Our
experimental results are consistent with the systematic analysis
proposed in Ref. 33, in which the optimal particle diameter is

given, for a given thickness L, as d;(L) = +/L/d; (with
0, =12494 m~!; see Ref. 33). Note that symbols d; and &,
are used hereinafter for consistency with Ref. 33. For the
two considered layer thicknesses, optimal particle diameters
are estimated as d;(L =23.5mm)=14mm and d(L
=47 mm) = 1.9 mm. This explains why the sound absorption
magnitude of sample R6 reaches a maximum value above
0.9, whereas the first peak magnitude of sample R1 is
much lower than this critical value—even if the two sam-
ples involve the same particle diameter, d =2 mm. The
information described above constitutes the dataset for the
experimental response u—{a®*? (w; u),w € W}, with
n= (daL)T'

B. Multiscale surrogate

We now introduce the computational surrogate for the
experiments described in Sec. III A. Additional results per-
taining to code verification and model accuracy are reported
in the Appendix A.

1 T T T T 1 T T
(a) (b) —
08 1 087 —RS
——RI1 R9
=06 ‘R2 <067 —R10
:’ —R3 :’ FIG. 3. (Color online) Experimentally-
3 R4 g measured sound absorption coefficients
G047 S 04r estimated for the samples described in
Table 1.
0.2 T 02r 1
d/ d/
L 1 1 L 0 L 1 L 1
1000 2000 3000 4000 1000 2000 3000 4000
f [Hz] f [Hz]
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FIG. 4. (Color online) Realizations of the random close packing obtained for N =128, N =256, 512, and N = 1024 (from left to right), for a solid volume

fraction set to 0.6.

1. Microstructural sampling

The first step consists in sampling a random close pack-
ing of mono-sized rigid spheres (for a given value of u). To
that aim, we rely on the algorithm proposed in Refs. 36 and
37 where spheres are randomly distributed within the domain
at initialization and moved, in an iterative manner, to avoid
overlaps and reach a target packing fraction. In order to
enforce a periodic structure at the boundaries of the simula-
tion domain, each sphere intersecting with p faces at the
boundary (1 < p < 3)is duplicated p times, and the center of
each replicate is translated towards the face opposing the
intersecting boundary by a factor equal to the size of the
domain.*® Four sphere ensembles with a target solid volume
fraction of 0.6 are shown in Fig. 4, for the sake of illustration.
The radial distribution function g for several packing config-
urations is shown in Fig. 5. The generation of a microstruc-
ture with N =128, 512, and 1024 spheres took about 35, 255,
and 1523s, respectively, on a laptop equipped with an
Intel(R) Core(TM) i7-4500U (Intel, China) cadenced at
2.40 GHz.

2. Determination of the transport properties

The second step involves the calculation of transport prop-
erties using the periodic solid skeleton defined in Sec. III B 1.

Let Q be the reconstructed Representative Volume
Element (RVE) under consideration with boundary 9€Q, and
let its solid phase, fluid, and fluid-solid interface be denoted
by Q;, Q, and 0€, respectively. The porosity (or fluid vol-
ume fraction) ¢ and the thermal characteristic length (or
generalized hydraulic radius) A’ are directly obtained as

10 5 T T T -
i (a) -
< B 1
I @ o N =128
= 6 o N=256 |
=E N =512
g 4
N = 1024
= 8
e W = .
0 . - . : :
0 1 2 3 4 5 6

J, av [ v
Q Joy

J av J ds
Q o0y

The macroscopic transport properties can be computed from
the numerical solutions of a series of canonical boundary
value problems, namely, (i) a viscous flow problem, for the
static viscous permeability ko and static viscous tortuosity
oco;5 78,39 (i1) an inertial flow problem, for the viscous char-
acteristic length A and the high frequency tortuosity
%C;s,4o,41 and (iii) a steady-state heat conduction problem,
enabling for the static thermal permeability k;, and the static
thermal tortuosity oy, to be computed.””** These boundary
value problems are recalled below for the sake of self-
containedness; interested readers are referred to the litera-
ture' 93?434 for the first-principles calculations of these

transport properties.

¢ — A =2 (15)

a. Viscous flow. This problem corresponds to the low
frequency limit (that is, when w — 0) where viscous effects
dominate, hence creating a steady-state flow in the porous
media. The flow, associated with an incompressible
Newtonian fluid at very low Reynolds numbers, is described
by the scaled Stokes problem,*”

~V’k;+ Vg =e, V- -kj=0, (16)
in Q4 with kj = 0 on 0y and where the scaled velocity k;
and pressure 7 of the fluid are Q-periodic. Here, e is a unitary
vector corresponding to the imposed macroscopic pressure

10 T T T

(b)

I - 7, =01

FIG. 5. (Color online) Graph of the function g(r) — r*(= 2r/d) for: (a) various numbers N with a value of solid volume fraction 1, = 0.60, and (b) several

packing fractions 7, with N = 1024.
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gradient that drives the flow in a preferential direction. The
symbol V denotes the nabla differential operator, while the dot
symbol “-”” denotes the classical inner product in R3. The sepa-
ration of scales (and thereby, macroscopic isotropy) is assumed
for the considered microstructure.*> The static viscous perme-
ability k, and the static viscous tortuosity o, are then calculated
a s43,44

(kg - k)

k0:¢<k6-e>, “Ozma

a7)

where (°) indicates spatial averaging over the fluid domain.
Notice that the aforementioned scalar transport parameters
are sufficient to describe the (isotropic) static viscous per-
meability and tortuosity tensors.

b. Inertial flow. This problem is associated with the
high-frequency regime, @ — +oo. In this case, inertial
forces dominate over viscous ones and, consequently, the
saturating fluid tends to behave as a nearly perfect fluid
(without viscosity except in the vicinity of the boundary
layer). The inertial flow of the perfect incompressible fluid
then formally behaves according to an electric conduction
phenomenon (where the porous material is composed of a
non-conducting solid matrix and a conducting fluid).>***!
Quantities of interest in the inertial flow problem can be
thus obtained by solving the following set of potential
equations:

E=-Vop+e, V-E=0, (18)
in Qy, subjected to E - n = 0 on 0Q and ¢ is Q-periodic. In
the above equations, e is a given macroscopic electric field,
E is the local solution to the boundary value problem having
—V ¢ as a fluctuating part, and n is the unit normal to 9€Y.

The viscous characteristic length A and the through-

thickness high-frequency tortuosity o, are given by>*°
J E-EdV EE
A=2i2 - EB (19)
J E.EdS (E) - (E)
o0y

Similar to the static viscous permeability and tortuosity
parameters introduced in the previous section, these sca-
lar quantities are sufficient to parameterize the homoge-
nized response of the material (owing to macroscopic
isotropy).

c. Thermal effects. In the low frequency limit (that is,
in the static case), heat diffusion in porous media is gov-
erned by the Poisson equation,*

Vit =1, (20)

in Qp with =0 on 9 and 7 is 0Q-periodic. The static
thermal permeability k;, and static thermal tortuosity o, are
finally estimated as*’
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'% = <I>a O(E)

21

As an illustration, Fig. 6 shows the solution fields obtained
by the finite element method (with a P, — P, formulation)
for a cubic domain of edge length 2.5 d.

3. Determination of the sound absorption coefficient

Within the framework of the equivalent-fluid theory,*
the air in a porous medium is replaced by an equivalent fluid
that exhibits (i) the same bulk modulus as the saturating air,
and (ii) a dynamic density that takes into account the vis-
cous and the inertial interactions with the frame. The deter-
mination of these two dynamic parameters subsequently
enables the estimation of the wavenumber and characteristic
impedance, which in turn can be used to define some rele-
vant properties of the air-filled porous media. In the
model,>®° developed following this macroscopic perspec-
tive, the effective density and the effective bulk modulus are
respectively defined as

plo) =229 ) =P 22)

¢ ¢ Blo)’
where pg is the density of the saturating fluid (here, the air),
7 =C,/C, where C, is the pressure volume-specific heat
and C, is the constant pressure-specific heat, P is the atmo-
spheric pressure, and ¢ is the open porosity. The dynamic
tortuosity and dynamic compressibility, denoted by &(w)
and f3(w) respectively, are then evaluated as

&@gzamp+ﬁ%ﬁ@ﬂ,

Blw)=7— (- 1) [1 T j%ﬁ’(w)} , 3

where j is the imaginary unit, F(w) and F'(w) are the
dimensionless viscous and thermal shape functions depend-
ing on the dimensionless viscous and thermal angular fre-
quencies (denoted by @ and @', respectively), defined as

. M
Fw)=1=P+P\[1+ o jo,

- M
(o) =1=P + P14+ oo, 24)
with
ki ki poC
S— a)poqs():ac , o = Og(;c P’ (25)

where 7 and x are the dynamic viscosity and the thermal
conductivity of the air, respectively. The four non-
dimensional shape factors M, M’, P, and P’ only depend on
the material transport parameters introduced in Sec. III B 2,
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It should be noticed that the so-called Johnson-Champoux-
Allard (JCA) and Johnson-Champoux-Allard-Lafarge (JCAL)
models are recovered by letting M’ =P =P =1 and
P = P’ = 1, respectively.

For a homogeneous acoustic layer, the wavenumber
k(w) and the characteristic impedance Z.(w) can be calcu-
lated by

k(o) = M, Ze(w) =/ p(w)K (). (27)

In the third and final step, the sound absorption coefficient
at normal incidence of the absorbing porous layer backed by
arigid wall is defined as

; (28)

where Z is the characteristic impedance of ambient air and
Zs(w) = —jZ.(w)cot[k(w)L] is the surface impedance on
the free face of the sample having thickness L.
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FIG. 6. (Color online) Asymptotic
1 solution fields: (a) mesh containing
58400 Lagrangian tetrahedral ele-
ments; (b) low-frequency scaled veloc-
ity field k- e [x 10~ m?] obtained for
e = (1,0,0); (c) low-frequency scaled
temperature field © [x10~¥m?]; (d)
high-frequency scaled velocity field
E-e [—] for an external unit field
" e=(1,0,0).

4. Numerical results

The entire set of transport parameters for the sphere-
packing microstructure is reported in Table II for the spe-
cific case d =5 mm. These parameters provide information
relevant to the propagation and dissipation phenomena in
the equivalent homogeneous material, in accordance with
the multiscale setting, and allows one to estimate the sound
absorption coefficient a(w) (following the derivations in the
previous sections).

In order to build the mapping p— {o*™(w; p), » € W},
samples of u are drawn from the product of uniform probabil-
ity measures on the intervals [1, 10] mm (for the diameter d)
and [5, 100] mm (for the sample thickness L). Note that these
intervals are relevant to a broad range of absorber configura-
tions, as discussed in Ref. 33. Results obtained for the ten
configurations defined in Table III are displayed in Fig. 7.

C. Deploying the methodology

For numerical purposes, we consider discretized expan-
sions associated with a frequency step of 4 Hz. Notice that

TABLE II. Transport properties computed for d =5 mm.

A A ko K,
-1 [mm] [mm] [x10%m’*] [x10%m’] o [-] agl-] of[]
0.37 097 0.70 1.75 2.56 1.46 2.29 1.67
Trinh et al.
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TABLE III. List of parameters for the virtual sphere-packing samples ana-
lyzed in Fig. 7.

Sample name

Parameter V1 V2 V3 V4 V5 V6 V7 V8 V9 VIO

Diameter, 5.24 3.07 8.60 2.75 3.03 2.54 3.05 492 379 9.31
d [mm)]
Thickness, 93.24 74.38 51.42 59.96 27.54 48.59 96.49 56.95 54.51 27.00

L [mm]

the results reported in this section are displayed in terms of
frequency f.

1. Statistical reduction for the computational
surrogate

The first step of the methodology consists in analyzing
the reduction of the process {o*™(w), w € W}, based on a
set of samples of u. To identify the number of realizations
that are necessary to achieve convergence for the projection
basis, we characterize the convergence of the statistical esti-
mator for the covariance matrix of the discretized process,
denoted by [C]. The graph of the function N*™— [|[C (N*™)]||
is shown in Fig. 8, where N®™ denotes the number of realiza-
tions used to compute the estimator. It is seen that reasonable
convergence is achieved for N*™ = 200, which is the number
considered in subsequent calculations.

We next determine the truncation order v in the statisti-
cal reduction [see Eq. (5)] by analyzing the convergence of
the function m—Err(m) defined as

m
sim
>4
=t

Br(m) =1 u([C])

(29)

The graph of the error function is shown in Fig. 9. It is found
that the error is less than 1 x 1072 (respectively 1 x 107#
and 1 x 107%) for m=10 (respectively m =21 and m =33).
The graphs of the first five eigenfunctions {a)r—>q)fim(a))}f: |
are displayed in Fig. 10. In what follows, we consider a trun-
cation at order =21, and a quantitative comparison
between the reference sound absorption coefficient o™ and
the truncated KL representation is provided in Fig. 11, for a
specific microstructural sample.

N —V1
08} \ /\/ / \‘ —V2
—V3
—V4
—V5
—V6
- A — V7
—V8

500 1000 1500 2000 2500 3000 3500 4000 4500
[ [Hz]

—V9
—V10

FIG. 7. (Color online) Predicted sound absorption coefficients for the ten
virtual samples described in Table III.
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FIG. 8. Graph of the Frobenius norm of the statistical estimator for the
covariance matrix, as a function of the number of samples N*"". This figure
shows that 200 samples are sufficient to compute [C].

2. Neural network surrogate for the computational
reduced coordinates

Following the second step in the approach outlined in
Sec. IT A, samples for the reduced coordinates associated
with the multicale computational model are obtained as

™ (m) = —— (o

where m denotes a realization of u, and the mapping
u—n*™(u) is approximated by using a neural network (with
Z =2 and O =21, following the notation introduced in
Sec. II B 1). As previously indicated, a feed forward Neural
Network (NN) is used in this work, and the architecture was
determined through a parametric analysis in terms of Ny

(number of hidden layers) and the set {n[}’fvi’l (number of

N\

S (e m) — ot @), (30)

X

10-10 L

-15

10

0 10 20 30 40 50 60 70 80 90
m

FIG. 9. Graph of the function m—Err(m) measuring the error induced by
the truncation in the KL decomposition.
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FIG. 10. (Color online) Graph of the five first eigenfunctions which are
used to represent the sound absorption coefficient obtained from the multi-
scale formulation.

neurons per layer, for all layers). While no attempt was
made to fully optimize the architecture for the problem at
hand, a structure with five hidden layers and v, 3v, v, v, and
v neurons per layer, respectively, was found to provide rea-
sonably accurate results (recall that »=21). The conver-
gence of the mean squared error for the training, validation,
and testing stages can be seen in Fig. 12. Here, the training,
validation, and testing sets were composed of 144, 18, and
18 samples, respectively. The prediction obtained by using
the NN surrogate with the truncated (KL) expansion for a
given sample (not considered during the training process)
can be seen in Fig. 13. It is seen that the surrogate predicts
the sound absorption response fairly accurately over the
whole frequency domain for the virtual sample under con-
sideration. In particular, the location and magnitude of the
peaks are well estimated. It should, however, be pointed out

aSm(p) - asim(f)

0.2

0.1

500 1000 1500 2000 2500 3000 3500 4000

[ [He]

FIG. 11. (Color online) Graphs of the reference function fi—a*™(f) (black
dots) and approximation f+ 5™ (f) for a truncation order v=21 (blue
dots) for the virtual sample with d =9.61 mm and L = 52.00 mm.
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FIG. 12. (Color online) Performance of the proposed NN model within the
numerical training dataset: Convergence of the mean squared errors for
training, validation, and testing, respectively.

that larger (but still contained) discrepancies can be
observed on some other samples. The observed errors stem
from the combination of the error raised by the truncation in
the KL expansion, which can be reduced by increasing v,
and the error generated by the NN surrogate, which may be
decreased by refining the architecture and training strategy.

3. Neural network surrogate for the experimental
reduced coordinates and experimental sound
absorption prediction

In the final step of the methodology, transfer learning is
applied to approximate the mapping p—# <" (p) with the
limited dataset (composed of only ten samples). To this end,
a shallow network is added to the neural network con-
structed and calibrated in Sec. IIIC2, with the aim of

oS (f)
sim,NN
Qg1

()

1 1 1 1 1 1 )

0 1
0 500

1000 1500 2000 2500 3000 3500 4000 4500

[ [Hz]

FIG. 13. (Color online) Graphs of the reference function freo¥m(f) (black
dots) and approximation f—u5""" (f) defined through the KL expansion
(v=21) and the NN model (blue dots) for the virtual sample with

d=3.8mm and L =54.51 mm.
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representing the mapping 4™ — f “*?. The additional layer
contains v neurons, and is also optimized with the
Levenberg-Marquardt algorithm. Results from the training,
validation, and testing stages are reported in Fig. 14. A small
number of epochs is necessary to obtain good approximation
results in the transfer learning approach, which suggests that
the computational surrogate is fairly accurate. The increase in
the mean squared error for the validation test suggests overfit-
ting, which may be alleviated through various strategies
including model simplification, regularization (with early
stopping, for instance), and noise addition to list a few. As
stated earlier, no attempt was made to optimize the machine
learning part of the framework, given the scope of this study,
and refinements along those lines are left for future work.

Finally, the experimental sound absorption coefficient
is predicted as

14
1PN (@) =4 (0) + 3\ AT g o),
i=1

where P NN denotes the neural network surrogate cali-
brated through transfer learning. The graphs of the
experimentally-measured sound absorption coefficient o®*P
and the prediction o NN for the physical samples R3 and
R7 (see Table I), which were both discarded for training, are
shown in Figs. 15 and 16, respectively. It is seen that the
hybrid surrogate model combining the KL expansion with
the computationally-based projection basis and the neural
network calibrated through transfer learning predicts the
experimental responses very well, even if only eight
experimentally-characterized samples were used as the data-
set. While the responses for R3 and R7 remain quite differ-
ent from one another, the surrogate can properly estimate
the locations of small and large peaks, as well as the corre-
sponding magnitudes in both cases. In practice, a normal-
ized L2 error, defined as

€29

0 > 3 | FEEE RS e 3 ERE H Tk e ean
10 fera ol '!::: B Tram ok

15 - = Validation

Mean squared errors

Iteration
FIG. 14. (Color online) Performance of the proposed NN model within the
experimental dataset: Convergence of the mean squared errors for training,

validation, and testing, respectively.
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FIG. 15. (Color online) Graphs of the experimentally-measured sound
absorption coefficient & and neural network prediction o.5>™ for sam-
ple R3 (see Table I).

ex exp ,NN
Nl ey )
[locex ]|
can be used to assess the accuracy of the prediction. This
error is equal to 5.4% and 5.7% for samples R3 and R7,
respectively. Other analyses (which are not reported below
for the sake of conciseness) were performed by using other
pairs of discarded responses (in lieu of R3 and R7), and sim-
ilar results were obtained regarding the quality of the
approximations. It should be noticed that the asymptotic
result lim,_. & = 0 holds in the big data limit (which is
not the setting considered in this paper), owing to the uni-
versal approximation theorem.*”*® The rate of convergence
depends on several factors, among which are the accuracy
of the computational model, the architecture of the neural

#
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exp,NN . . .
Qg (f) (NN with multiscale-informed TL)
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FIG. 16. (Color online) Graphs of the experimentally-measured sound
absorption coefficient & and neural network prediction g™ for sam-
ple R7 (see Table I).
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TABLE IV. Analytical estimates derived by combining periodic homogenization and the self-consistent scheme. The determination of the characteristic
lengths and permeabilities of spherical packings is based on a bicomposite spherical pattern. Here, R = d/2f with # = /T — ¢ (Refs. 43 and 44).

Method
Factor P-estimate C-estimate V-estimate
A/R 2903 — ¢) 293 - ¢) 293 — ¢)
9(1 - ) 91 —¢) 91+ (1 - ¢)
A/R 2¢ 2¢ 2¢
3(1—¢) 3(1—¢) 3(1-¢)
ko/R? 23843 —28° 10— 188 + 108> — 28° 4984+ 108> —9p° +4p°
9B+ 6f° 45p 18(8" — %)
ky/R? 3 10— 188+ 108° —2° 310 — 185 + 104° — 28° 310 — 185 + 104 — 2°
2¢ 458 2¢ 458 2¢ 458

network, and the amount of experimental data available for
transfer learning. It is also observed that the sound absorbing
spectrum obtained from the recorded time series (Fig. 3)
showed some dips and peaks of small amplitudes (at 488,
724, 3324, 3856, and 4056 Hz for sample RS, for instance).
Because the pics and dips are not included in the JCAPL
rigid-frame analytical model, these additive noise terms sug-
gest a potential influence (related to vibration effects) of the
sample holder that is made of a steel wire frame on the sound
absorption spectrum (grid size of 2 mm and wire diameter of
0.2mm) and was not modeled in the simulations. Note that
modeling the vibration of the particle frame and casing
effects is beyond the scope of the present paper (see, for
instance, Ref. 49 and the references therein). Within the con-
text of this study, it is important to note that these small peaks
and dips are also captured by the neural network model; see
Figs. 15 and 16. Caution must therefore be exercised in using
the proposed framework on potentially corrupted data or on
data accounting for phenomena that are not included in the
model. In the former case, specific techniques based on, e.g.,
sensitivity analyses and filtering may be deployed to improve
robustness at the training stage. In the latter case, additional
physical mechanisms may be introduced to enhance the
model, depending on the problem of interest.

IV. CONCLUSION

A novel methodology to learn acoustical responses
based on limited experimental datasets was presented. From

(a.) (b‘ ‘ ‘

a methodological standpoint, the approach combines a
multiscale-informed encoder, used to cast the learning task
in a finite-dimensional setting, with a neural network model
acting between the set of microstructural descriptors (com-
prised of the monodisperse particle diameter and the sample
thickness in the presented application) and the reduced
(latent) variables. The neural network is trained through
transfer learning, using synthesized multiscale data to com-
pensate for experimental data scarcity. The relevance of the
approach was investigated by considering the prediction of
the sound absorption coefficient. It was shown that the pro-
posed strategy allows for the map between the microstruc-
tural parameters and the acoustic response to be well
approximated, even with limited data.

From an application standpoint, this work demonstrates
how the experiments and models typically obtained and
developed into several significant contributions to acoustics
can be combined to enrich datasets in a context that
many researchers in the field of acoustical materials
encounter—namely, the identification and validation of
models parameterized by micro-/structural features, based
on a few experimental samples. The methodology allows
one to explore these important aspects with the ability to
account for microscopic effects, as well as correlation
effects between local properties of the medium. It also paves
the way for cost reduction through the efficient exploration
of the parameter space for acoustical materials design.

Avenues for future research include refinements on the
learning components such as network architecture and

FIG. 17. (Color online) Periodic unit cells of [SC (a), BCC (b), and FCC (c)] at ¢ = 0.42, and FCC (d) at ¢ = 0.26 within solder joints with a radius of

150 um (Ref. 50).

2598  J. Acoust. Soc. Am. 151 (4), April 2022

Trinh et al.


https://doi.org/10.1121/10.0010187

Transport parameters

¢ A A ko kg, Ono oo o

Lattice Reference [] [mm] [mm] [x107'° m?] [x1071° m?] [-1 [-1 [-1
Ne Ref. 51 0.48 0.624 0.369 102 246 1.40 2.02 1.43
Present 0.621 0.338 103 251 1.38 2.16 1.44
Ref. 52 0.42 1.56 0.99 535 1457 1.53 231 1.45
Present 1.56 0.99 546 1459 1.53 231 1.44
BCC Ref. 51 0.32 0.325 0.234 19.7 38.1 1.48 2.15 1.35
Present 0.319 0.189 21.1 37.9 1.47 222 1.39
Ref. 52 0.42 1.43 1.11 435 800 1.32 1.95 1.32
Present 1.43 1.11 452 803 1.32 1.93 131
FCC Ref. 51 0.26 0.247 0.159 6.70 27 1.65 2.49 1.85
Present 0.247 0.157 6.76 26.3 1.66 2.65 1.91
Ref. 52 0.42 1.43 1.12 365 817 1.32 1.86 1.55
Present 1.42 1.12 393 834 1.32 1.84 1.52

learning strategy, as well as the assessment of the methodol-
ogy for other acoustical responses (e.g., intrinsic frequency-
dependent properties of polydisperse granular structures).
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APPENDIX A: VALIDATION OF MULTISCALE-
INFORMED PREDICTIONS

In this appendix, we report results pertaining to code
verification and model validation. Alternative analytical
models for transport parameters are first presented in
Appendix A 1. Comparisons of multiscale-inferred estima-
tions for the transport properties and the sound absorption
coefficient are then proposed in Appendix A 2 and A 3.

1. Analytical models for transport properties

Several analytical models can be used for estimating
the transport properties fed as inputs for the JCAPL semi-
phenomenological model. Here, we specifically consider
three models proposed in Refs. 43 and 44 whose parameters
are estimated as follows. The characteristic lengths and perme-
abilities are defined by the equations listed in Table IV. Three
cases are considered, namely, (i) the P-estimate (for which the
shear stress vanishes at the boundary); (ii) the V-estimate (for
which tangential velocities are equal at the boundary); and (iii)
the C-estimate (with vanishing velocity at the boundary). The
high-frequency tortuosity factor is defined as o, = (3 — ¢)/2
for all three cases. The static viscous tortuosities are estimated
for ¢ =0.37 as ogy = 1.52, 0pc = 1.58, and ogp = 1.60.
The static thermal tortuosity o, is finally equal to 1.94, in
agreement with Ref. 33.
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2. Validation of the multiscale framework

Three classical cubic lattices are chosen for the sake of
verification, namely, simple cubic (SC), body-centered
cubic (BCC), and face-centered cubic (FCC) lattices; see
Fig. 17. Here, the sphere radius is equal to 1 mm for all pat-
terns. Computational results are compared with those from
Refs. 51 and 52 and are found to be in good agreement, see
Table V. The evolution of the sound absorption coefficient
(at normal incidence) obtained from either the semi-
phenomenological models (fed with transport parameters) or
the direct numerical approach presented in Ref. 50 is shown

0 2000 4000 6000

f[Hz]

8000 10000

= JCA —-—f= JCAL JCAPL

O  Gasser (2003) wm

4000 6000 8000

f[Hz]

0 |

0 2000 10000

FIG. 18. (Color online) Comparison of the normal incidence sound absorb-
ing behavior obtained with the direct numerical method (circle markers)
and a hybrid method based on the JCA model (dashed line), the JCAL
model (dash-dotted line), and the JCAPL model (continuous line): (a)
L=50mm and (b) L =100 mm. The inset plots show the same information
with a focus on low frequencies (smaller than 0.1 kHz). The horizontal
dashed line is the high-frequency sound absorption limit o, = 0.56 for the
FCC pattern under study, at a porosity ¢ = 0.26.
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3000 FIG. 19. (Color online) Normal inci-

dence SAC of samples R1 to RS (left
panels a—e) and R6 to R10 (right pan-
els f—j): experiments (green thick con-
tinuous line), predictions [P-estimate
(magenta continuous line), C-estimate
(blue dashed line), and V-estimate

(black continuous line)], and FE com-
putations (line with cross-markers).
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in Fig. 18. The agreement between the different predictions
shows that the hybrid approach allows the sound absorbing
behavior to be well described. The absorbers are based on
FCC packings [Fig. 17(d)] having two different thicknesses,
L € {50,100} mm. The considered frequencies range
between 1 to 10000 Hz. In the direct approach, the Sound
Absorption Coefficient (SAC) value is estimated from the
effective factors p(w) and ff(w) taken from Tables 3.4 and
3.5 in Ref. 50. In agreement with results published else-
where,lg’e'3 S the normal incidence sound absorption coeffi-
cient of sphere-packed porous absorbers exhibits quarter-
wavelength resonances (see also Sec. Il A), and oscillates
around the high-frequency sound absorption limit, o) =

1— [z - 1)/ + D) withz = ¢/ /a0,

3. Comparison of multiscale-informed sound
absorption predictions

The predictions of the normal incidence SAC obtained
from different approaches are compared below. The
experimentally-measured sound absorbing behavior of the
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ten real samples introduced in Table I is compared with both
simulations (combining the JCAPL model with the finite
element results on dense random packing of equal spheres)
and analytical estimates (combining the JCAPL model with
the self-consistent estimates described in Appendix
A1).%* In general, the hybrid multi-scale numerical
approach is shown to provide a fairly good estimate of the
experimental behavior, as seen in Fig. 19. However, as the
particle diameter to sample thickness ratio increases (sam-
ples R4 and RS5), border effects become significant in the
experimental response and a RVE model is less appropriate
to simulate such configurations [Figs. 19(d) and 19(e)].
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