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Abstract Molecular fluctuations can lead to macroscopically observable effects. The ran-
dom gating of ion channels in the membrane of a nerve cell provides an important example.
The contributions of independent noise sources to the variability of action potential timing
has not previously been studied at the level of molecular transitions within a conductance-
based model ion-state graph. Here we study a stochastic Langevin model for the Hodgkin-
Huxley (HH) system based on a detailed representation of the underlying channel-state
Markov process, the “14 x 28D model” introduced in (Pu and Thomas 2020, Neural Com-
putation). We show how to resolve the individual contributions that each transition in the ion
channel graph makes to the variance of the interspike interval (ISI). We extend the mean—
return-time (MRT) phase reduction developed in (Cao et al. 2020, SIAM J. Appl. Math) to
the second moment of the return time from an MRT isochron to itself. Because fixed-voltage
spike-detection triggers do not correspond to MRT isochrons, the inter-phase interval (IPT)
variance only approximates the ISI variance. We find the IPI variance and ISI variance agree
to within a few percent when both can be computed. Moreover, we prove rigorously, and
show numerically, that our expression for the IPI variance is accurate in the small noise
(large system size) regime; our theory is exact in the limit of small noise. By selectively
including the noise associated with only those few transitions responsible for most of the
ISI variance, our analysis extends the stochastic shielding (SS) paradigm (Schmandt and
Galan 2012, Phys. Rev. Lett.) from the stationary voltage-clamp case to the current-clamp
case. We show numerically that the SS approximation has a high degree of accuracy even
for larger, physiologically relevant noise levels. Finally, we demonstrate that the ISI vari-
ance is not an unambiguously defined quantity, but depends on the choice of voltage level
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set as the spike-detection threshold. We find a small but significant increase in ISI variance,
the higher the spike detection voltage, both for simulated stochastic HH data and for voltage
traces recorded in in vitro experiments. In contrast, the IPI variance is invariant with respect
to the choice of isochron used as a trigger for counting “spikes”.

Keywords Channel Noise - Stochastic Shielding - Phase Response Curve - Inter-spike-
interval - Neural Oscillators - Langevin Models

1 Introduction

Nerve cells communicate with one another, process sensory information, and control motor
systems through transient voltage pulses, or spikes. At the single-cell level, neurons exhibit
a combination of deterministic and stochastic behaviors. In the supra-threshold regime, the
regular firing of action potentials under steady current drive suggests limit cycle dynamics,
with the precise timing of voltage spikes perturbed by noise. Variability of action potential
timing persists even under blockade of synaptic connections, consistent with an intrinsi-
cally noisy neural dynamics arising from the random gating of ion channel populations, or
“channel noise” [82].

Understanding the molecular origins of spike time variability may shed light on several
phenomena in which channel noise plays a role. For example, microscopic noise can give
rise to a stochastic resonance behavior [61]], and can contribute to cellular- and systems-
level timing changes in the integrative properties of neurons [13]. Jitter in spike times un-
der steady drive may be observed in neurons from the auditory system [23.2641] as well
as in the cerebral cortex [38] and may play a role in both fidelity of sensory information
processing and in precision of motor control [65]. As a motivating example for this work,
channel noise is thought to underlie jitter in spike timing observed in cerebellar Purkinje
cells recorded in vitro from the “leaner mouse”, a P/Q-type calcium channel mutant with
profound ataxia [81]]. Purkinje cells fire NaTaction potentials spontaneously [36|37], and
may do so at a very regular rate [81], even in the absence of synaptic input (cf. Fig.[T|A and
C). Mutations in an homologous human calcium channel gene are associated with episodic
ataxia type II, a debilitating form of dyskinesia [50.54]. Previous work has shown that the
leaner mutation increases the variability of spontaneous action potential firing in Purkinje
cells [47.[81]] (Fig.[I|B and D). It has been proposed that increased channel noise akin to that
observed in the leaner mutant plays a mechanistic role in this human disease [81].

Despite its practical importance, a quantitative understanding of distinct molecular sources
of macroscopic timing variability remains elusive. Significant theoretical attention has been
paid to the variance of phase response curves and interspike interval (ISI) variability. Most
analytical studies are based on the integrate-and-fire model [7,134,180]], except [14], which
perturbs the voltage of a conductance-based model with a white noise current rather than
through biophysically-based channel noise. Standard models of stochastic ion channel ki-
netics comprise hybrid stochastic systems. As illustrated in Fig. 2] the membrane potential
evolves deterministically, given the transmembrane currents; the currents are determined by
the ion channel state; the ion channel states fluctuate stochastically with opening and closing
rates that depend on the voltage [21/5./8,48]]. This closed-loop nonlinear dynamical stochas-
tic system is difficult to study analytically, because of recurrent statistical dependencies of
the variables one with another. An important and well studied special case is fixed-voltage
clamp, which reduces the ion channel subsystem to a time invariant Markov process [63]].
Under the more natural current clamp, the ion channel dynamics taken alone are no longer
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Fig. 1: Somatic voltage recorded in vitro from intact Purkinje cells (cerebellar slice prepa-
ration) during spontaneous tonic firing, with synaptic input blocked. Recordings courtesy
of Dr. D. Friel. See §D]for details. A: Sample voltage recordings from a wild type Purkinje
cell showing precise spontaneous firing with interspike interval (ISI) coefficient of vari-
ation (CV=standard deviation / mean ISI) of approximately 3.9%. B: Sample recordings
from Purkinje cells with leaner mutation in P/Q-type calcium channels showing twice the
variability in IST (CV c. 30%). C, D: histogram of ISI for wild type and leaner mutation,
respectively. Bin width = 1 msec for each.

Markovian, as they intertwine with current and voltage. A priori, it is challenging to draw
a direct connection between the variability of spike timing and molecular-level stochastic
events, such as the opening and closing of specific ion channels, as spike timing is a path-
wise property reflecting the effects of fluctuations accumulated around each orbit or cycle.
In Schmandt and Galan introduced stochastic shielding as a fast, accurate approx-
imation scheme for stochastic ion channel models. Rather than simplifying the Markov
process by aggregating ion channel states, stochastic shielding reduces the complexity of
the underlying sample space by eliminating independent noise sources (corresponding to
individual directed edges in the channel state transition graph) that make minimal contri-
butions to ion channel state fluctuations. In addition to providing an efficient numerical
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Fig. 2: Statistical dependencies among voltage (V;), ionic currents (/¢), and ion channel
state (X;) form a hybrid, or piecewise deterministic, stochastic model. A, B: Molecular
sodium (Nat) and potassium (K1) channel states for the Hodgkin-Huxley model. Filled
circles mark conducting states N4 and M31. Per capita transition rates for each directed
edge (an, Bn, am, Bm, ap, and Bj) are voltage dependent (cf. App. @) Directed edges
are numbered 1-8 (KT channel) and 1-20 (Na™-channel), marked in small blue numerals.
C: Voltage V; at time ¢ influences current I; as well as the transition from channel state
X = [Moo, Mo, ..., M3z1,No, N1,..., Ny, at time ¢ — 1 to time ¢. (For illustration we
assume discrete sampling at integer multiples of a nominal time step At in arbitrary units.)
Channel state dictates the subsequent ionic current, which dictates the voltage increment.
Arrowheads (—) denote deterministic dependencies. T-connectives (L) denote statistical
dependencies.

procedure, stochastic shielding leads to an edge importance measure [63] that quantifies the
contribution of the fluctuations arising along each directed edge to the variance of chan-
nel state occupancy (and hence the variance of the transmembrane current). The stochastic
shielding method then amounts to simulating a stochastic conductance-based model using
only the noise terms from the most important transitions. While the original, heuristic im-
plementation of stochastic shielding considered both current and voltage clamp scenarios
[60]], subsequent mathematical analysis of stochastic shielding considered only the constant
voltage-clamp case [621163].

In our previous work [S3l], we numerically estimated the contribution of each directed
edge in the transition graph (Fig. 2JA,B) to the variance of ISIs. In this paper we provide, to
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Fig. 3: A, B: Molecular sodium (Na™t) and potassium (K ™) channel states for the Hodgkin-
Huxley model. Filled circles mark conducting states N4 and M31. Per capita transition rates
for each directed edge (an, Bn, m, Bm, ap, and By) are voltage dependent (cf. App. .
Directed edges are numbered 1-8 (K™ channel) and 1-20 (Na™ -channel), marked in small
blue numerals.

our knowledge, the first analytical treatment of the variability of spike timing under current
clamp arising from the random gating of ion channels with realistic (Hodgkin-Huxley) kinet-
ics. Building on prior work [[114(531/60,/62li63], we study the variance of the transition times
among a family of Poincaré sections, the mean—return-time (MRT) isochrons investigated
by [66l11] that extend the notion of phase reduction to stochastic limit cycle oscillators.
We prove a theorem that gives the form of the variance, ai, of inter-phase-intervals (IPIﬂ
in the limit of small noise (equivalently, large channel number or system size), as a sum
of contributions 0(21,7  from each directed edge k in the ion channel state transition graph
(Fig. 2A,B). The IPI variability involves several quantities: the per capita transition rates
ay, along each transition, the mean-field ion channel population Mj () at the source node
for each transition, the stoichiometry (state-change) vector (, for the kth transition, and the
phase response curve Z of the underlying limit cycle:

2= 3 o%,=eTo> E (ak(v(t))Mi(k)(t) (CTZ(t))° dt) +0 (62) ,
k

k€all edges

in the limit as ¢ — 0. Here T, v(t) and M(t) are the period, voltage, and ion channel
population vector of the deterministic limit cycle for e = 0. By E we denote expectation with
respect to the stationary probability density for the Langiven model (cf. eqn. (3)). As detailed
below, we scale € o< 1/ /2 where the system size (2 reflects the size of the underlying ion
channel populations.

' Equivalently, “iso-phase-intervals™: the time taken to complete one full oscillation, from a given isochron
back to the same isochron.
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Thus we are able to pull apart the distinct contribution of each independent source of
noise (each directed edge in the ion channel state transition graphs) to the variability of
timing. Figs. illustrate the additivity of contributions from separate edges for small
noise levels. As a consequence of this linear decomposition, we can extend the stochastic
shielding approximation, introduced in [60] and rigorously analyzed under voltage clamp in
[63.162], to the current clamp case. Our theoretical result guarantees that, for small noise, we
can replace a full stochastic simulation with a more efficient simulation driven by noise from
only the most “important” transitions with negligible loss of accuracy. We find numerically
that the range of validity of the stochastic shielding approximation under current clamp
extends beyond the “small noise limit” to include physiologically relevant population sizes,
cf. Fig.

The inter-phase-interval (IPI) is a mathematical construct closely related to, but distinct
from, the inter-spike-interval (ISI). The ISI, determined by the times at which the cell voltage
moves upward (say) through a prescribed voltage threshold vresh, 1S directly observable
from experimental recordings — unlike the IPI. However, we note that both in experimental
data and in stochastic numerical simulations, the variance of the ISI is not insensitive to the
choice of voltage threshold, but increases monotonically as a function of vinresh (cf. Fig. .
In contrast, the variance of inter-phase-interval times is the same, regardless of which MRT
isochron is used to define the intervals. This invariance property gives additional motivation
for investigating the variance of the IPI.

The structure of the paper is as follows: In §2] we review the 14 x 28D Langevin
Hodgkin-Huxley model proposed in [53], and provide mathematical definitions of first pas-
sage times, interspike intervals, asymptotic phase functions, and iso-phase intervals for the
class of model we consider. In §3] we state the necessary assumptions and prove the small-
noise decomposition theorem. In §4 we compare the contributions of individual transitions
to both interspike interval variability and interphase interval variability, predicted from the
decomposition theorem, against the results of numerical simulations. Section §5] discusses
the theoretical and practical limitations of our results.

A preliminary version of the results reported here formed part of the first author’s doc-
toral thesis [52].

2 Definitions, Notation and Terminology

In this section, we recall the notation and assumptions of the 14 x 28D Langevin model for
the stochastic Hodgkin-Huxley system introduced in [53]]. In addition, we will present defi-
nitions, notations and terminology that are necessary for the main result. We adopt the stan-
dard convention that uppercase symbols (e.g. V, M, IN) represent random variables, while
corresponding lowercase symbols (e.g. v, m, n) represent possible realizations of the ran-
dom variables. Thus P(V' < ) is the probability that the random voltage V' does not exceed
the value v. We set vectors in bold font and scalars in standard font.

2.1 The Langevin HH Model

For the HH kinetic scheme given in Fig. 2JA-B (p.[d), we define the eight-component state
vector M for the Na™ gates, and the five-component state vector N for the KT gates, re-
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spectively, as

M = [Moo, M1o, Mao, M3o, Mo1, M11, Ma1, Ms1]" € [0,1]° M
N = [No, N1, N2, N3, N4]" € [0,1]°, 2

where 3% Z;:O M;; = 1and Y;_, N; = 1. The fraction of open Na* channels is
M3, and the fraction of open K™ channels is N4. Using Kurtz’s strong approximation
theorem for Markov Chains [31]], one can derive the Langevin equation for the stochastic
HH model. Based on Fox and Lu’s framework [20]], our previous paper [33] proposed a
14 x 28D Langevin HH model. Here, we make the dependence of the channel noise on
system size (number of channels) explicit, by introducing a small parameter ¢ Ni;nl. We
therefore consider a one-parameter family of Langevin equations

dX =F(X)dt + veG(X) dW (¢) 3)

where we define the 14-component vector X = (V; M; N) and dW (¢) represents a Wiener
(Brownian motion) process. In the governing Langevin equation (3)), the stochastic forcing
components in G dW are implicitly scaled by factors proportional to /€, with effective
numbers of Mot = Mer/€ sodium and Nigw = Nier/ € potassium channels. For comparison,
in their study of different Langevin models, Goldwyn and Shea-Brown considered a patch of
excitable membrane containing Ms = 6000 sodium channels and N = 1800 potassium
channels [23]). In this paper, we consider € € [eflo, 65], i.e., we consider ion channel popu-
lations ranging in number from 40 < M < 1.3 x 10° for Na™ and 12 < Ny < 4.0 x 107

for K channels (cf. Fig. and Tab. [1).
The deterministic part of the evolution equation F(X) = |
as the mean-field dynamics, given by

dVv. dM. dN

by, a4 48 s the same

av

CE = —InaM31(V = Waa) — g Na(V = Vi) — gu(V = VL) + Lapp, “
dM
T Ana(V)M, 5)
dN
T Ax(V)N. (6)

Here, C' (uF'/ em?) is the capacitance, Ly, (nA/ em?) is the applied current, the maximal
conductance is gi,, (mS/ cmg), Vien (mV) is the associated reversal potential, forion €

{Na, K}, and the ohmic leak current is gieak (V' — Vieak ). The voltage-dependent drift matrices
Ana and Ax given by

ANa(1)  Bm 0 0 Bh 0 0 0
3am Ana(2) 2Bm O 0 B, 0 0
0 2am Awa(3) 3Bm O 0 By 0
0 0 am Aw(4) 0 0 0 B
Axa(V) an 0 0 0 Axa(5) Bm O o | M
0 a0 0 3am Ana(6) 28m 0
0 0 an 0 0 2am Ana(7) 3Bm
0 0 0 ap, 0 0 am  Ana(8)
Ak (1) Bn(V) 0 0 0
dan(V) A(2) 26n(V) 0 0
Ay =1 0 3an(V) Ak(3) 38.(V) 0 |, ®)
0 0 20n(V) Ak(4) 48n(V)

0 0 0 an(V) Ak(5)
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with diagonal elements

Aion(i) = = Y Ain(j, 1), forion € {Na,K}.
jridi
The state-dependent noise coefficient matrix G is 14 x 28 and can be written as

01><2O 01><8
G=1 Sna 08><8
0:.20] Sk

Note that each column of Sk (respectively Sna) is proportional to the stoichiometry vector
associated with a single directed edge in the K™ channel (resp. Na™ channel) transition
graph (cf. Fig. ). Because channel state transitions preserve the total number of channels,
each stoichiometry vector sums to zero. Therefore, the columns of matrix G always sum
to zero, and thus the scaled noise model in eqn. @) ensures that M and N always remain
within the simplex.

When simulating (B) we use free boundary conditions for the gating variables M;; and
N; [46,/4953]. With free boundaries, some gating variables may make small, rare excur-
sions into negative values. To avoid inconsistencies we therefore use the absolute values
|M;;| and |N;| when calculating the edge fluxes needed to construct the matrix G. The
resulting boundary effects are insignificant for all system sizes considered [46].

All parameters, transition rates, and the coefficient matrices Sk and Sn, are given in

Appendix [A]

2.2 Stochastic Shielding

The stochastic shielding (SS) approximation was first introduced by Schmandt and Galén as
an efficient numerical procedure to simulate Markov processes using only those transitions
associated with observable states [60]]. Analysis of the SS approximation leads to an edge im-
portance measure [63] that quantifies the contribution of the fluctuations arising along each
directed edge to the variance of channel state occupancy (and hence the variance of the trans-
membrane current) under voltage clamp. The stochastic shielding method then amounts to
simulating a stochastic conductance-based model using only the noise terms from the most
important transitions. While the original, heuristic implementation of stochastic shielding
considered both current and voltage clamp scenarios [60], subsequent mathematical analy-
sis of stochastic shielding considered only the constant voltage-clamp case [62,63]).

In our previous work [53], we extended the SS approximation to the current clamp case,
where we numerically calculated the edge importance for all transitions in Fig. ] Given
the matrix G and a list of the “most important” noise sources (columns of G) the stochastic
shielding approximation amounts to setting the columns excluded from the list equal to zero
[531/63]]. Within the framework of stochastic shielding, we may ask how each column of Sk
and Sna contribute to the variability of stochastic trajectories generated by eq. (3).

In this paper, our main theorem gives a semi-analytical foundation for the edge-importance
measure under current clamp in terms of contributions to ISI variance. In §4] we will apply
the SS method to numerically test our theorem of the contribution from each edge to the ISI
variability under current clamp.

The next section defines first passage times and interspike intervals for general conductance-
based models, which are fundamental to our subsequent analysis.
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2.3 First passage times and interspike intervals

Reversal potentials Vj,, for physiological ions are typically confined to the range £150mV.
For the 4-D and the 14-D HH models, the reversal potentials for Kt and Nat are -77mv
and +50mv respectively [15]]. In Lemma[I] we establish that the voltage for conductance-
based model in eqn. is bounded. Therefore we can find a voltage range [Umin, Umax] that is
forward invariant with probability 1, meaning that the probability of any sample path leaving
the range vmin < V(t) < vmax is zero. At the same time, the channel state distribution for
any channel with k states is restricted to a (k — 1)-dimensional simplex AF=1 C R, given
by y1 + ...+ yr = 1,y; > 0. Therefore, the phase space of any conductance-based model
of the form (3) may be restricted to a compact domain in finite dimensions.

Definition 1 We define the HH domain D to be
D 2 [Vmin, Umax] X A7 x A* )

where A” is the simplex occupied by the NaTchannel states, and A? is occupied by the
K™ channel states.

We thus represent the “14-D” HH model in a reduced phase space of dimension 1+7+4=12.

Lemma 1 For a conductance-based model of the form (3), and for any fixed applied current
Lapp, there exist upper and lower bounds Umax and Vmin such that trajectories with initial
voltage condition v € [Umin, Umax] remain within this interval for all times t > 0, with
probability 1, regardless of the initial channel state, provided the gating variables satisfy
OSMij SlandOSNiS 1.

Proof See App.

Remark 1 Lemma [l implies that the per capita transition rates along a finite collection of
edges, {as (v)}5_; are bounded above by a constant cumax, s v ranges over vpin < v <
vUmax. This fact will help establish Theorem

Interspike Intervals and First Passage Times

Figure [f] shows a voltage trajectory generated by the 14-D stochastic HH model, under
current clamp, with injected current in the range supporting steady firing. The regular peri-
odicity of the deterministic model vanishes in this case. Nevertheless, the voltage generates
spikes, which allows us to introduce a well defined series of spike times and inter-spike in-
tervals (ISIs). For example, we may select a reference voltage such as v = —20 mV, with
the property that within a neighborhood of this voltage, trajectories have strictly positive or
strictly negative derivatives (dV//dt) with high probability.

The authors of [56], suggested that the stochastic (Langevin) 4-D HH model has a unique
invariant stationary joint density for the voltage and gating variables, as well as producing
a stationary point process of spike times. Here, we follow other authors in assuming the
existence of a unique stationary distribution. The ensemble of trajectories may be visualized
by aligning the voltage spikes (Figure @), and illustrates that each trace is either rapidly
increasing or else rapidly decreasing as it passes v = —20 mV.

In order to give a precise definition of the interspike interval, on which we can base a
first-passage time analysis, we will consider two types of Poincaré section of the fourteen-
dimensional phase space: the “nullcline” surface associated with the voltage variable,

V? = {(v,m,n) € D| f(v,m,n) = 0}, (10)
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Fig. 4: Example voltage trace for the 14-D stochastic HH model (eqn (3)). (A) Voltage trace
generated by the full 14-D stochastic HH model with I,,p=-10 nA; for other parameters see
§A] (B) Ensemble of voltage traces constructed by aligning traces with a voltage upcrossing
at V' = —20 mV (blue star) for 651 cycles.

where the rate of change of voltage is instantaneously zero, and an iso-voltage sections of
the form
S ={(v,m,n) € D|v=u}. (11)

(In we will define a third type of Poincaré section, namely isochrons of the mean—
return-time function 7' (v, n) [11].) Figureillustrates the projection of V° (green horizontal
line) and S for u € {—40, 10} (red vertical lines) onto the (V, dV/dt) plane.

For any voltage u we can partition the voltage-slice S into three disjoint components
S* =S¢ LS LS, defined as follows:

Definition 2 Given the stochastic differential equations (E[) defined on the HH domain D,
and for a given voltage u, the “null” surface, S§' is defined as

SE28 NV = {(v,m,n) € D|v=u& f(v,m,n) =0},
the “inward current” surface, S is defined as

Sfﬁé{(v,m,n)€D|U:U&f@7m7n) >O}7
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and the “outward current” surface is defined as

sv 4 {(v,m,n) € D|v=u& f(v,m,n) < 0}.

Figureplots dV/dt versus V for roughly 600 cycles, and shows that for certain values of
v, the density of trajectories in a neighborhood of V° is very small for a finite voltage range
(here shown as —40 to +10 mV). Indeed for any w, the intersection of the null set S§' has
measure zero relative to the uniform measure on S“, and the probability of finding a trajec-
tory at precisely V' = w and dV/dt = 0 is zero. From this observation, and because dV/dt
is conditionally deterministic, i.e., the voltage increments in our 14-D stochastic HH model
are not subject to Langevin-type forcing. Thus, although the gating variable trajectories
M(t) and N (¢) are nondifferentiable diffusions, the voltage trajectory V (¢) is continuously
differentiable. Thus, given m and n, by applying the mean value theorem, it follows that a
trajectory starting from x € S will necessarily cross S* before crossing S again (with
probability one).

First-Passage Times Based on this observation, we can give a formal definition of the first
passage time as follows.

Definition 3 Given a section S C D, we define the first passage time (FPT) from a point
x € Dto S, for a stochastic conductance-based model as

7(x,8) 2 inf{t > 0| X(t) € S&X(0) = x}. (12)

Note that, more generally, we can think of 7 as 7(x,S,w), where w is a sample from the
underlying Langevin process sample space, w € §2[|For economy of notation we usually
suppress w, and may also suppress S, or x when these are clear from context.

In the theory of stochastic processes a stopping time, T, is any random time such that
the event {7 < t} is part of the o-algebra generated by the filtration F; of the stochastic
process from time O through time ¢. That is, one can determine whether the event defining 7
has occurred or not by observing the process for times up to and including ¢ (see [45], §7.2,
for further details).

Remark 2 Given any section S C D and any point x € D, the first passage time 7(x, S) is
a stopping time. This fact will play a critical role in the proof of our main theorem.

As Figure B suggests, for —40 < v < 410 mV, the probability of finding trajectories
in an open neighborhood of S§ can be made arbitrarily small by making the neighborhood
around S( sufficiently small. This observation has two important consequences. First, be-
cause the probability of being near the nullcline S§ is vanishingly small, interspike intervals
are well defined (cf. Def. |§L below), even for finite precision numerical simulation and tra-
jectory analysis. In addition, this observation lets us surround the nullcline with a small
cylindrical open set, through which trajectories are unlikely to pass. This cylinder-shaped
buffer will play a role in defining the mean—return-time phase in @

Moreover, as illustrated in Figure[6] when V' = —40, the stochastic trajectory x inter-
sects S~19 at two points within each full cycle, where one is in 8140 and one in S”4°.
In addition, the trajectory crosses S~ before it crosses 8_140 again. This is a particular

2 For the 14 x 28D Langevin Hodgkin-Huxley model, £2 may be thought of as the space of continuous
vector functions on [0, co) with 28 components — one for each independent noise source.
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second panel. B: Projection of X () on three coordinates (V, m31, n4). Gray surface: subset
of v-nullcline with —40 mV < v < 410 mV. For this voltage range, trajectories remain a
finite distance away from V° with high probability.

feature for conductance-based models in which dV/dt is conditionally deterministic, i.e. the
model includes no current noise

Definition 4 Given any set S C D (for instance, a voltage-section) and a point x € D, the
mean first passage time (MFPT) from x to S,

T(x,8) 2 E[r(x,S)], (13)
and the second moment of the first passage time is defined as

S(x,8)2E [T(x, 5)2} . (14)

3 1In this paper we focus on a Langevin equation, rather than models with discrete channel noise. Therefore,
our trajectories are diffusions, that have continuous sample paths (with probability one). Therefore, the FPT
7(x, S) is well defined. For discrete channel-noise models, a slightly modified definition would be required.
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Fig. 6: Intersections of a trajectory (blue trace) with a voltage slice (S™2°, grey surface)
and V-nullcline (V°, cyan surface). A Trajectory X () crosses 8;20 with increasing volt-
age component (green arrow). Subsequently, the trajectory crosses S=?° with decreasing
voltage component (red arrow). The trajectory X (¢) does not intersect with the null space
for voltage in the range of [—40, 10)mV with probability 1. B A special case for A with the
null component S5 20 (black diagonal line) indicated for v = —20mV. The intersection of
the stochastic trajectory and v = —20mV is partitioned into an inward component S 20
(green arrow shows trajectory crossing with dV/dt > 0) and an outward component S~ 20
(red arrow shows trajectory crossing with dV//dt < 0). Note that the null component S; 20
does not intersect with the trajectory with probability one.
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Interspike Intervals Starting from x € S'\°, at time ¢ = 0, we can identify the sequence of
(7,x) pairs of crossing times and crossing locations as

d _d d _d
(T(l)ll :Oax’lOL :X),(’7'1,Xl),(Tf,X%),...,(Tk,Xk),(T]:;L,X’l]é),..., (15)
with0=rl <ri<rmi<ri<ri<..<ti<td ...

where 7f = inf{t > 7% ; | x € S} is the kth down-crossing time, x{! € S*° is the
kth down-crossing location, 71 = inf{t > 7{ | x € S} is the kth up-crossing time, and
X}, € 81° is the kth up-crossing location, for all k € Nt.

Under constant applied current, the HH system has a unique stationary distribution with
respect to which the sequence of crossing times and locations have well-defined probability

distributions [56]. We define the moments of the interspike interval distribution with respect
to this underlying stationary probability distribution.

Definition 5 Given a sequence of up- and down-crossings, relative to a reference volt-
age vo as above, the kth interspike interval (ISI), Ix (in milliseconds), of the stochastic
conductance-based model is a random variable that is defined as

Ix S it — 7! (16)
where 77! is the kth up-crossing time. The mean IS is defined as
1 2 E[I] (17)
and the second moment of the ISI is defined as
H2E |} (18)
The variance of the ISI is defined as
ol SE (I - 1)), (19
where k = 1,2,---.

It follows immediately that O'IQSI =H - I

2.4 Asymptotic phase and infinitesimal phase response curve

Given parameters in App. [A] with an applied current I,p, = 10 nA, the deterministic HH

model,

dx

= _F 20

P 20)
fires periodically with a period Tp ~ 14.63 msec, as shown in Fig.[/] We assume that the
deterministic model has an asymptotically stable limit cycle, vy(t) = (¢ + To). The phase

of the model at time ¢ can be defined as [[70]

t + To =) mod Tt
:(+ 05e) L

0(t) T ; 2D

where mod is the module operation, and 6(¢) = 0 sets the spike threshold for the model. The
constant ¢ € [0, 27| is the relative phase determined by the initial condition, and there is a
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Fig. 7: Sample trace on the limit cycle and its corresponding phase function 6(¢). Top:
voltage trace for the deterministic system dx = F'(x) dt showing a period of Ty ~ 14.63
ms. Bottom: The phase function of time scaled from [0, 27).

one-to-one map between each point on the limit cycle and the phase. In general, the phase
can be scaled to any constant interval; popular choices include [0, 1), [0, 27), and [0, T).
Here we take 6 € [0, 27) (see Fig.[7).

Winfree and Guckenheimer extended the definition of phase from the limit cycle to the
basin of attraction, which laid the foundation for the asymptotic phase function ¢(x) [27)
86187 For the system in Eqn. (Z0), let x(0) and y (0) be two initial conditions, one on the
limit cycle and one in the basin of attraction, respectively. Denote the phase associated to
x(0) as Op(t). If the solutions x () and y(¢) satisfy

lim [x(t) ~ y(£)] = 0, ie. lim [6(y()) ~ fo(t)] =0,

t—oc0

then y(0) has asymptotic phase 6o. The set of all points sharing the same asymptotic phase
comprises an isochron, a level set of ¢(x). We also refer to such a set of points as an iso-
phase surface [67]. By construction, the asymptotic phase function ¢(x) coincides with the
oscillator phase 0(t) on the limit cycle, i.e. 0(t) = ¢(v(t)). We will assume that ¢(x) is
twice-differentiable within the basin of attraction.

The phase response curve (PRC) is defined as the change in phase of an oscillating
system in response to a given perturbation. If the original phase is defined as 6, and the
phase after perturbation as 6,, then the PRC is the shift in phase

A(0y) = 0a — 0.

In the limit of small instantaneous perturbations, the PRC may be approximated by the
infinitesimal phase response curve (iPRC) [70,/86]. For a deterministic limit cycle, the iPRC
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Z(t) obeys the adjoint equation [6]

- 700z, @)
Z(0) = Z(Tv), (23)
2(0)7F(>(0)) = 1 4

where T is the period of the deterministic limit cycle, () is the periodic limit cycle tra-
jectory (for the HH equations 20), v(t) € R'*) and [J(t) = DF(y(t)) is the Jacobian
of F evaluated along the limit cycle. The iPRC Z(t) is proportional to the gradient of the
phase function ¢(x) evaluated on the limit cycle. For any point x in the limit cycle’s basin

. o - LA o
of attraction, we can define a timing sensitivity function Z(x) = %V,@(X). For the limit

cycle trajectory (), we have Z(t) = Z(~(t)). The first component of Z, for example, has
units of msec/mv, or change in time per change in voltage.

2.5 Small-noise expansions

Given the scaling of the noise coefficients with system size, € o< 1/2 (cf. p. , the larger
the system size, the smaller the effective noise level. For sufficiently small values of ¢, the
solutions to eq. () remain close to the determinstic limit cycle; the (stochastic) interspike
intervals will remain close to the deterministic limit cycle period To. If X(t) is a trajec-
tory of (3), and ¢(x) is any twice-differentiable function, then Ito’s lemma [43] gives an
expression for the increment of ¢ during a time increment dt, beginning from state X:

A6(X (1)) = (V6(X)) - dX + & Zijg’; 23)
= [P0 vox) + 5 2%? it + Ve (V6(X))T G(X) dW
= LX) dt+ﬁ(v¢>(x)) G(X)dW. (26)

This expression is valid for arbitrary ¢ > 0, and is asymptotically correct up to terms of
order dt. The operator £ defined by ([23)-(26) is the formal adjoint of the Fokker-Planck or
Kolmogorov operator [53]], also known as the generator of the Markov process [45], or the
Koopman operator [32].

Dynkin’s formula, which we will use to prove our main result, is closely related to
equation (Z6). Let x € D and let E* denote the probability law for the ensemble of
stochastic trajectories beginning at x. Dynkin’s theorem ([43]], §7.4) states that if ¢ is a
twice-differentiable function on D, and if 7 is any stopping time (cf. Remark Q) such that
E*[7] < oo, then

EX[¢(X(r)] = p(x) + E* { [ £lexcen ds} | e
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2.6 Iso-phase Sections

For the deterministic model, the isochrons form a system of Poincaré sections Sy, ¢ €
[0, 27], each with a constant return time equal to the oscillator period Tp. When the system
is perturbed by noise, € > 0 in (3), we consider a set of “iso-phase sections” based on a
mean-return-time (MRT) construction, first proposed by [67] and rigorously analyzed by
[11]. As shown in [11]], the MRT iso-phase surfaces S are the level sets of a function Te(x)
satisfying the MRT property. Namely, if S is an iso-phase section, then the mean time taken
to return to S, starting from any x € S, after one full rotation, is equal to the mean period,
Te.

The construction in [T1]] requires that the Langevin equation (3)) be defined on a domain
with the topology of an n-dimensional cylinder, because finding the MRT function T¢(x)
involves specifying an arbitrary “cut” from the outer to the inner boundary of the cylinder.
Conductance-based models in the steady-firing regime, where the mean-field equations sup-
port a stable limit cycle, can be well approximated by cylindrical domains. In particular,
their variables are restricted to a compact range, and there is typically a “hole” through the
domain in which trajectories are exceedlingly unlikely to pass, at least for small noise.

As an example, consider the domain for the 14D HH equations (recall Defs. [I)), namely

pAa [Umin Umax] X A" x A*. The p-dimensional simplex AP is a bounded set, and, as
established by Lemma |1} the trajectories of remain within fixed voltage bounds with
probability 1, so our HH system operates within a bounded subset of R, To identify a
“hole” through this domain, note that the set

SuéS“ﬁvoz{(v,m,n)6D|v:u&f(v,m,n):0},

which is the intersection of the voltage nullcline V° with the constant-voltage section S¥, is
rarely visited by trajectories under small noise conditions (Fig. OB).
For r > 0, we define the open ball of radius r around S§ as

&(sa‘)é{xeb\ ;gg<||x—y||><r}. 8)

For the remainder of the paper, we take the stochastic differential equation (3) to be defined
on

Do = D\B(SY). (29)

For sufficiently small > 0, Dy is a space homeomorphic to a cylinder in R To see this,
consider the annulus A = I; x B'2, where [ = [0, 27], and B3 isa simply connected
subset of R'3. That space is homotopy equivalent to a circle S* by contracting the closed
interval parts to a point, and contracting the annulus part to its inner circle.

To complete the setup so that we can apply the theory from [[11], we set boundary con-
ditions >, ;1i(GG7)i;0;Tc = 0 at reflecting boundaries with outward normal n on both
the innner and outer boundaries of the cylinder. In addition, we choose an (arbitrary) section
transverse to the cylinder, and impose a jump condition 7. — T. + T across this section,
where T'. is mean oscillator period under noise level e.

As showed in [[11], this construction allows us to establish a well defined MRT function
for a given noise level ¢, T« (x). We then obtain the iso-phase sections as level sets of Tc(x).
We give a formal definition as follows.
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Definition 6 Given a fixed noise level ¢ > 0, and an iso-phase surface S for eqn. (3), we
define the kth iso-phase interval (IPI) as the random variable

A
Ap = pi — Pk—1, (30)

where {pk }ren+ 1S @ sequence of times at which the trajectory crosses S. The mean IPI is
defined as

T. 2 E[A4] 31)
and the second moment of the IPI is defined as
S.2E [Ai] . (32)
The variance of the IPI is defined as
o} 2E[(Te - A1), (33)

The moments (3I)-(33) are evaluated under the stationary probability distribution.
It follows immediately that for a given noise level €, we have 03, =S, — AZ
Remark 3 Each iso-phase crossing time, {ix } xen+ in Definition[6] is a stopping time.

Remark 4 Because (3) is a diffusion with continuous sample paths, it is possible that when
e > 0 a stochastic trajectory X (¢) may make multiple crossings of an iso-phase section S in
quick succession. Should this be the case, we condition the crossing times f;, on completion
of successive circuits around the hole in our cylindrical domain. That is, given puy, we take
1i+1 to be the first return time to S after having completed at least one half a rotation
around the domain.

3 Noise Decomposition of the 14-D Stochastic HH Model

Ermentrout et al. [14] studied the variance of the infinitesimal phase response curve for a
neuronal oscillator driven by a white noise current, using a four-dimensional version of the
Hodgkin-Huxley model as an example. As a corollary result, they obtained an expression
for the variance of the interspike interval, by setting the size of the perturbing voltage pulse
to zero.

Stochastic shielding [60] allows one to resolve the molecular contributions (per directed
edge in the ion channel state transition graph &£, cf. Fig. |2) to the variance of ion chan-
nel currents [621/63], and provides a numerical method for accurate, efficient simulation of
Langevin models using a small subset of the independent noise forcing (only for the “most
important edges”) [53]].

Here we combine the stochastic shielding method with Cao et al.’s mean-return-time
phase analysis [[11]] to obtain an analytical decomposition of the molecular sources of timing
variability under current clamp.

Prior analysis of stochastic shielding ( [621/63]]) assumed voltage clamp conditions, un-
der which the ion channel state process is a stationary Markov process. Under current clamp,
however, fluctuations of channel state determine fluctuations in current, which in turn dic-
tate voltage changes, which then influence channel state transition probabilities, forming a
closed loop of statistical interdependence. Therefore, the variance of IST under current clamp
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becomes more difficult to analyze. Nevertheless, in this section, we seek a decomposition of
the interspike-interval variance into a sum of contributions from each edge k € £, e.g.

otsi(e) =€ Y aisii + O(€) (34)
ke&

ai(e) =€ Z Ui,k + O(e%) (35)
ke&

to leading order as € — 0.

Theorem[I]below gives the detailed form of the decomposition. As preliminary evidence
for its plausibility, Fig. [§] shows the coefficient of variation (standard deviation divided by
mean) of the ISI under the stochastic shielding approximation for Langevin model in differ-
ent scenarios: including noise along a single directed edge at a time (blue bars), or on edges
numbered 1 to k inclusive (numbering follows that in Fig. 2). For large noise (Fig. [8h.c),
the effects of noise from different edges combine subadditively. For small noise (Fig. [8p,d)
contributions of distinct edges to firing variability combine additively. Edges with small
contribution to steady-state occupancy under voltage clamp (edges 1-6 for K™, edges 1-18
for Na™, cf. Fig. [2) contribute additively even in the large-noise regime. Thus even in the
large-noise regime, stochastic shielding allows accurate simulation of ISI variability using
significantly fewer edges for both the sodium and potassium channels.

3.1 Assumptions for Decomposition of the Full Noise Model

Consider a Langevin model for a single-compartment conductance-based neuron (3). We
organize the state vector into the voltage component followed by fractional gating variables
as follows:

X:(’U,thIQ,...,qN)T. (36)
Here, N is the number of nodes in the union of the ion channel state graphs. For example,
for the HH system, N = 13, and we would write ¢1 = moo, . . ., g8 = ma31 for the sodium
gating variables, and g9 = no, ..., q13 = n4 for the potassium gating variables. Similarly,

we enumerate the K edges occurring in the union of the ion channel state graphs, and write
the stoichiometry vector ¢, € R™ ™! for transition k, taking source i (k) to destination j (k),
in terms of (N + 1)-dimensional unit vectors e ™ € RN 1 as ¢, = fei\{;')l + e;.\g;:)l. In
order to study the contributions of individual molecular transitions to spike-time variability,
we develop asymptotic expansions of the first and second moments of the distribution of iso-
phase surface crossing times (iso-phase interval distribution see Def.[6]above) in the small e
limit.

Before formally stating the theorem, we make the following assumptions concerning the
system (3):

dx

Al We assume the deterministic dynamical system %+ = F(x) has an asymptotically,
linearly stable limit cycle x = ~y(¢) with finite period 7o, and asymptotic phase function
¢(x) defined throughout the limit cycle’s basin of attraction such that w = %

along deterministic trajectories, and a well defined infinitesimal phase response curve

(iPRC), Z(t) = Vo(v(t)) I6LI512728].

A2 We assume that the (N + 1) x K matrix G has the form

K

G(x) =Y (Cerr) \/an(v) i) (37

k=1
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Fig. 8: Approximate decomposition of interspike interval (ISI) variance into a sum of contributions from
each edge for Hodgkin-Huxley model with stochastic K+ and deterministic Nat gates (a,b) or stochastic
Nat and deterministic K+ gates (c,d). Bar n shows ISI coefficient of variation (CV) when noise on edge n
is included (a,c: € = 1, large noise; b,d: € = 0.01, small noise). Blue line shows the CV of ISI when noise
on all edges numbered < n are included. Red line shows CV predicted by a linear superposition of the form

T . . . . .
where rp, = (ekK ) is an K-dimensional unit row vector with all zero components

except in the kth entry, ax(v) is the voltage-dependent per capita transition rate along
the kth directed edge, and the g;(;) denote channel state occupancy probabilities as de-
scribed above (cf. (36)).

Remark 5 The product (iry is a (N + 1) x K sparse matrix, containing zeros everywhere
except in the kth column. Each column conveys the impact of an independent noise source
on the state vector [33]. Moreover, as pointed out above (cf§|2[), the construction of G ensures
the Na™ and K™ gating variables stay in the simplex, because the components of each
stoichiometry vector (j, sum to zero.

A3 We assume that for sufficiently small noise, 0 < |e| < 1, we have a well defined joint
stationary probability distribution in the voltage V' and the gating variables Q1,...,Qn
with a well defined mean period T'c and mean-return-time phase function 7% (x). More-
over, we assume that the mean period, the MRT function, and the second moment func-
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tion all have well defined series expansions:

Te=To+ el + O(€%) (38)
Te(x) = To(x) + €T1(x) + O(€°) (39)
Se(x) = So(x) 4 €S1(x) + O(?), (40)

ase — 0.

Remark 6 Note that the expansions (38)-(40) may break down in the small-¢ limit for noise-
dependent oscillators, such as the heteroclinic oscillator [[77] or ecological quasi-cycles [40],
but should remain valid for finite-period limit cycles such as the Hodgkin-Huxley system in
the periodic spiking regime.

3.2 Noise Decomposition Theorem

Theorem 1 (Noise Decomposition Theorem) Let x = (Vo, Qo) € So be the point on the
deterministic limit cycle such that ¢(x) = 0 (i.e. assigned to “phase zero”), and let E*
denote expectation with respect to the law of trajectories with initial condition x, for fixed
€ > 0. Under assumptions Al-A3, the variance 055 of the So-isochron crossing times (iso-
phase intervals, or IPI) for conductance-based Langevin models (eqn. (3)) decomposes into
additive contributions from each channel-state transition, in the sense that

oo= Y 0ok (41)

k€Eall edges

:GXR:/OTU E* (ak(V(t))in)(t) (C;Z(X(t)))Q) dt+0 (62) . @)

as € — 0. The function X(t) = (V(t),Q1(t),...,Qn(t))T denotes a stochastic trajec-
tory of (@) with initial condition x.

Remark 7 The theorem holds independently of the choice of the initial point x on the de-
terministic limit cycle, in the sense that choosing a different base point would just shift the
endpoints of the interval of integration; since the deterministic limit cycle is periodic with
period T'o, the resulting expression for 0425 is the same. See Corollary

Remark 8 The proof relies on Dynkin’s formula, first—passage-time moment calculations,
and a small noise expansion. The right hand side of (1) leads to an approximation method
based on sampling stochastic limit cycle trajectories, which we show below gives an accurate
estimate for oi.

Remark 9 Although the interspike intervals (ISI) determined by voltage crossings are not
strictly identical to the iso-phase intervals (IPI) defined by level crossings of the function
T.(x), we nevertheless expect that the variance of the IPI, and their decomposition, will
provide an accurate approximation to the variance of the ISI. In §4] we show numerically
that the decomposition given by predicts the contribution of different directed edges to
the voltage-based ISIs with a high degree of accuracy.

Before proving the theorem, we state and prove two ancillary lemmas.
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Lemma 2 Fix a cylindrical domain Dy (as in equation (29)) and an iso-phase section So
transverse to the vector field F. If the mean period T« and MRT function T.(x) have Taylor
expansions (38) and @B9), then the unperturbed isochron function Ty and the sensitivity of
the isochron function to small noise I satisfy

F(x) VIp(x) = -1, (43)
F(x) - VTi(x) = —% > (G707 To (%), (44)
iJ
Zni(ggT)ijajTl =0, (45)
i oD

where Ty — Ti + T and To — To + To across So, and n is the outward normal to the
boundary 0D.

Note that T'1, the first-order approximation to the noise-induced shift in the mean period,
may be determined from the stationary solution of the forward equation for 0 < ¢, or through
Monte Carlo simulations (in some cases 17’1 = 0).

Proof For any noise level € > 0, the mean-return time function 7¢(x) obeys the same par-
tial differential equation as a mean—passage time function (although with an altered bound-
ary condition) [[{1l]. Therefore, for arbitrary noise level € > 0, we see from [Iﬂlﬂ that the
MRT function T¢(x) satisfies

T =F vT. + % S (GGM)i0% T = —1, (46)
iJ

together with adjoint reflecting boundary conditions at the edges of the domain D with
outward normal vector n

> ni(GGT)i0T| =0 (47)
i oD
and the jump condition is specified as follows. When x increases across the reference section
S in the “forward direction”, i.e., in a direction consistent with the mean flow in forwards
time, the function 7. — T.+71'c. Note that since Ty — To+71o, we alsohave T7 — T1+7T1

across the same Poincaré section, for consistency.
Substituting the expansion (39) into (@6) gives

1=F.V (To(x) + i (x) + 0(62)) n g (66N, (To(x) + T (x) + 0(62))
(48)

=F - VTy(x) +F-V (eTl(x) - 0(62)) + % > (GG7):507To(x) (49)

" %Z(ggT)Uagj (6T1 (x) + 0(62))

4 211, $6.6, First Exit Time from a Region (Homogeneous Processes), equation 6.6.8.
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Note that, when € = 0
F-VTh(x) = —1, (50)

consistent with 7 being equal to minus the asymptotic phase of the limit cycle (up to an
additive constant). On the other hand, for ¢ # 0, by comparing the first order term, the
sensitivity of the isochron function to small noise 77 satisfies

F Vi) =~ Y(06M)505 T, S mi(GGMud, 71| =0, (D)

i i oD

where 1 — T + T across S, and n is the outward normal to the boundary 9D, thus we
proved Lemma 2]

Our next lemma concerns the second moment of the first passage time from a point
L . . A
x € D to a given iso-phase section So, that is, Se(x) = E [r(x, So)?], cf. (T4).

Lemma 3 Suppose the assumptions of Lemma |Z| hold, and assume in addition that Se has
a Taylor expansion for small e. The second moment, So(x), of the first passage time
7(X,8) from a point x to a given isochron section So = {Te(x) = const}, and its first
order perturbation, S1(x), satisfy

F.VSy =—-2Tp (52)
1
F VS + 3 > (GG7)i;0780 = —2Th. (53)

ij

Proof Continuing to follow the calculations of [21ﬂ the second moment Se(x) of the first
passage time from a point x to a given isochron T¢(x) = const, satisfies

L[S == F-VS. + %Z(ggT)ija?jsg — _9T..
i

Substituting in the Taylor expansions (38)-(@0), we have to order O (e)
F-V(So+eSh) + ; S (667197 (S0 + €S1) = —2(To + €Th) + O(e).  (54)
ij
Setting e = 0, we see that
F-VSy=—-2Tp. (55)
For € > 0, the first order terms yield
1
F.VSi+ 5 Z(ggT)ijafjso = —2T1. (56)
i

Therefore, we complete the proof of Lemma@

5 [21ll, Chapter 6.6, First Exit Time from a Region (Homogeneous Processes), equation 6.6.11.
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3.3 Proof of Theorem[]

Proof We divide the proof of the Theorem into three steps.
1. First, we will calculate the infinitesimal generator for the variance of the iso-phase in-
terval (IPI).
For fixed noise level € > 0, the variance of IPI, o¢ is equal to the expected value of
Ve = Se 6 , evaluated at the isochron T = const + T Note that when ¢ = 0,
the system is deterministic and the iso-phase interval has a zero variance, i.e., Vo = 0.
Expanding Se = So + €S1 + O(e?) and Vi = €V; + O(e?) to first order in ¢ < 1, then

Ve=Vo+eV1 + O(E ) (57)
=8, -T2 (58)
2
— So+ €81+ O(?) — (To(x) +eTi(x) + 0(62)) (59)
= S0 — T4 + €(S1 — 2T0T1) + O(€%), (60)
thus,

So =1 (61)

S1 =V1+2T0Th. (62)

Plug the above results into equation (56) (Lemma[3), we can obtain that
1
F-V(Vi+200T) + 5 > (GG7)i;05,T5 = —2Th. (63)
iJ
By the product rule and use equations (30), and (31),
F.V(2IyT1) = 2T1F - V(To) + 200F - V(T1) (64)
= —2T1 —Tp Y _(GG")i;05Th. (65)
iJ
Therefore,
F-VVi — 211 = Tp > (GG7)i;05To + Z GG)i;05Ts = —2T1.  (66)
ij

Since 03,15 = 9;(2T00;Tb) = 20;Tod;To + 2T062 To, it follows that
F-VVi-To},; (GGT):,07 510 +32,;(6G7)i;0:T00;To + 3, (QQT)IJTO@%-TO =0

F.-VvV1 = Zij (6G7)i;0:T00;T0 67)
Finally,
LYV = LT[Vo + €Vi + O(e2))] (68)
= eLTVi] + 0(€%) (69)
—c|F VWi + gz(ggT)ija?jvl +0(e%) (70)
¥
=¢e(F-VVi) 4 0(%) (71)

—€ Z(ggT)ijaiTOajTO + 0(62)7 (72)

ij
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where we used Vo = 0 and applied equation (67).

2. Secondly, we will show that for first-order transition networks underlying the molecular
ion channel process, the decomposition GGT =, - GG}l is exact.
To see this, note that G can be written as a sum of 29 sparse matrix with one zero matrix
and 28 rank one matrix. The kth rank one matrix consists of the transition due to the kth
edge and there are 28 edges in the 14-D HH model. The kth column of the kth rank one
matrix equals to a stoichiometry vector times the square root of the corresponding state
occupancy and zeros otherwise. For example, the kth column of G is given by

G = G/ (V) Xy,

where (j, is the stoichiometry vector, oy, is the voltage-dependent per capita transition
rate, and X; ) is the population vector component at the source node (k) for transition

number k.

GGT = (Gi + G2+ -+ Gas)(G1 + Ga + -+ + Gos)T (73)

28
=Y G.q] 74

k=1

28
=3 ()X Gl 3

k=1

where holds because G;G] = 0 when i # j.
Note that 9;T00;To = w ™ 20;4(x)dj¢(x) = Zi(x)Z;(x), withw = 27 /T, because
¢ is normalized to range from O to 27, and 7 ranges from O to 1.

Z(ggT)ijaiToajTO = Z(QQT)U'Z@'Z;' (76)
29 o

=Y (GrG])i;ZiZ; (77)
k=2 1ij
28 o

=> (ak(v)xi(k) Z(Ck(l)z‘jziza) (73)
k=1 i
28 L, L, o

=Y an(0)Xiw [Ziey + Zjn) — 2ZiiyZ v (79)
k=1
28 R R

= > )X [Ziwy ~ Zim]” (80)
k=1
28 .2

= >~ a0 Xiw) (C1Z) 81)
k=1

where (k) and j(k) are the source and sink nodes for transition number k. Equation
holds because the kth edge only involves two nodes.
3. Finally, we will apply Dynkin’s formula to complete the rest of the proof.
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For a stopping time 7(x) with E* (1) < oo, by Dynkin’s formula (27), the expected IPI
variance starting from x is

E* (V. (X(r)) = Vi (x) + E* ( [ e m<X<s>>1ds) (82)

The first return time 7 is the time at which the trajectory X(t) first returns to the
isochron Sp, therefore X (7) € Sg and the time left to reach Sp from the random loca-
tion X (7) is guaranteed to be zero. That is, V(X (7)) = 0 with probability 1. Hence,
E* (Ve(X(7))) =0 forall x € So.

Fix a mean-return-time isochron Sp, the mean return time from any initial location x €
So back to Sp, after completing one rotation is exactly 7', by construction. However, in
principle, the variance of the return time might depend on the initial location within the
isochron. We next show that, to leading order in e, this is not the case, that is, the MRT
isochrons have uniform first and second moment properties.

Using equations (72), (81) and [82), we obtain

Ve(x) = —E* (/OT £ VaX(s))] ds) (83)
— X /OT €D _(G67)i;0:T00; Tods | + 0 (62) (84)

28 . 5
— ey EX ( / (@)X ((12) ds) +0(e), (85)
k=1 0

where the integrals are evaluted along a stochastic trajectory X (¢) with X(0) = x and
X(1) € So, one rotation later. Holding the deterministic zero-phase isochron Sy fixed,
and choosing an arbitrary point y € D, we have, by definition,

EY[r(y)] = Te(y) = Toy) + €Ti(y) + O (). (86)
Therefore, starting from an initial condition x € Sp one period earlier, we have
x T ~\2 x TO ~\ 2
E (/ ar(©)Xi (¢12) ds> —E / ()X (12) ds | +0(e).
0 0

87)

This relation follows immediately from our assumptions, because, for x € So,

_ | < /T " (V(5)Xug(s) (ggZ(s))QdSN (88)
< C1 [EX(r(x) — To)| = C1 |E*(7(x)) = E*(To)| = C1 |Te — To (89)
— O\ Ty + O (62) . (90)

. 2
Here C1 is a positive constant bounding the integrand o (v(t)) Xy (%) (n,lZ(t)) .
From Remarkm ar < amax. By definition, 0 < X; < 1 for each ¢. For each edge k,

E* ( /O ’ o (V () Xk (s) (C;IZ(s))st) —E* < /0 o ar(V(8)Xir)(s) (ggz(s)f ds)’
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|Cx| = /2. Since Z is continuous and periodic, |Z| is bounded by some constant Zmax.
Therefore setting C1 = V/20tmax Zmax satisfies .

Because the initial point x € Sp was located at an arbitrary radius along the specified
mean-—return-time isochron, the calculation above shows that ai =E[Ve(x)|x € Solis
uniform across the isochron Sy, to first order in €. Thus, for small noise levels, the MRT
isochrons enjoy not only a uniform mean return time, but also a uniform variance in the
return time, at least in the limit of small noise.

Finally, we note that O'i (equivalently, and V¢(x)) combine a sum of contributions over
a finite number of edges. From equations (83)) and (§7), the variance of the inter-phase
interval is given by

o = Esz ( / " (V) Xy ) (4,12<s>)2ds) +o(e). oy

To complete the proof, note that (2) follows from (92) by exchange of expectation E* ]
with (deterministic) integration fOT °[-] dt. This completes the proof of Theorem (TJ).

The choice of the initial reference point x or isochron Sp in was arbitrary and the
variance of IPI is uniform to the first order. Therefore, the inter-phase-interval variance may
be uniform (to first order) almost everywhere in D. We can then replace the integral around
the limit cycle in (92) with an integral over D with respect to the stationary probability
distribution. Thus we have the following

Corollary 1 Under the assumptions of Theorem|l| the inter-phase-interval variance satis-

fies
o 28 B 2
02 =Ty S E (ak(V)Xi(k) (dzx) > +0(e), 92)
k=1

as € — 0, where E denotes expectation with respect to the stationary probability density for

@).

Remark 10 Because the variance of the IPI, 055, is uniform regardless the choice of the
reference iso-phase section, we will henceforth refer it as oy throughout the rest of this
paper.

Now we have generalized the edge important measure introduced in [63]] for the voltage-
clamp case to the current clamp case with weak noise. In the next section we leverage The-
orem [T to estimate the inter-phase interval variance in two different ways: by averaging
over one period of the deterministic limit cycle (compare (91))) or by averaging over a long
stochastic simulation (compare (92)). As we will see below, both methods give excellent
agreement with direct measurement of the inter-phase interval variance.

4 Numerical Results

Theorem [I] and Corollary [T] assert that for sufficiently weak levels of channel noise, the
contributions to inter-phase interval variance made by each individual edge in the channel
state transition graph (cf. Fig. [Z) combine additively. Moreover, the relative sizes of these
contributions provide a basis for selecting a subset of noise terms to include for running
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efficient yet accurate Langevin simulations, using the stochastic shielding approximation
[53]. In this chapter, we test and illustrate several aspects of these results numerically.

First, we confront the fact that the inter-phase-intervals and the inter-spike-intervals are
not equivalent, since iso-voltage surfaces do not generally coincide with isochronal surfaces
[I84]. Indeed, upon close examination of the ISI variance in both real and simulated nerve
cells, we find that the voltage-based 01231 is not constant, as a function of voltage, while
the phase-based o/ remains the same regardless of the choice of reference isochron. Nev-
ertheless, we show that the voltage-based ISI variance is well approximated — to within a
few percent — by the phase-based IPI variance, and therefore, the linear decomposition of
Theorem [T]approximately extends to the ISI variance as well.

Second, after showing that the linear decomposition of the ISI variance holds at suffi-
ciently small noise levels, we explore the range of noise levels over which the linear su-
perposition of edge-specific contributions to ISI variance holds. Consistent with the basic
stochastic shielding phenomenon, we find that the variability resulting from noise along
edges located further from the observable transitions scales linearly with noise intensity, €
even for moderate noise levels, while the linear scaling of eqn. (9)) breaks down sooner with
increasing noise for edges closer to observable transitions.

Finally, we explore the accuracy of a reduced representation using only the two most im-
portant edges from the K™ channel and the four most important edges from the Na™ channel,
over a wide range of noise intensities. Here, we find that removing the noise from all but
these six edges still gives an accurate representation of the ISI variance far beyond the weak
noise regime, despite the apparent breakdown of linearity.

In this section, the variance of ISIs and IPIs are calculated to compare with the predic-
tions using Theorem I} First, we numerically show that there is a small-noise region within
which Theorem [T]holds, for each individual edge, as well as for the whole Langevin model
(cf. (3)). We have two numerical approaches to evaluating the theoretical contributions. The
first method involves integrating once around the deterministic limit cycle while evaluating
the local contribution to timing variance at each point along the orbit. This approach derives
from the theorem, cf. (@2) or (9I), which we refer as the “limit cycle prediction”. The sec-
ond approach derives from the corollary, (92): we average the expected local contribution
to timing variation over a long stochastic trajectory. More specifically, equation gives
a theoretical value of the average leading-order contribution mass function, Py, for the Eth
edge, as

Pri=E {ak(V)Xi(k) (C;Z(X)ﬂ , 93)

where E(-) is the mean with respect to the stationary probability distribution of the stochastic
limit cycle. Given a sample trajectory X(t), we approximate the iPRC near the limit cycle,
Z(X(t)), by using the phase response curve of the deterministic limit cycle

) ; (94)

where 7 is a point on the deterministic limit cycle and Z is the infinitesimal phase response
curve on the limit cycle (cf. . The predicted contribution of the k*" edge to the IPI
variance with average period Tg, is therefore

From Corollary|l|we have

Z(X(t) ~ Z(X(t) 2 Z (arg;nin

(v -x00) 209

oipr ~ €T0 Y P (95)
k
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We call Py, the point mass prediction for the contribution of the kth edge to the inter-phase
interval variance.

For small noise, both approaches give good agreement with the directly measured IPI
variance, as we will see in Fig.

To numerically calculate the contribution for each directed transition in Fig. 2] we apply
the stochastic shielding (SS) technique proposed by [60], simulating the Langevin process
with noise from all but a single edge suppressed. Generally speaking, the SS method approx-
imates the Markov process using fluctuations from only a subset of the transitions, often the
observable transitions associated to the opening states. Details about how stochastic shield-
ing can be applied to the 14 x 28D Langevin model is discussed in our previous paper
[53]].

All numerical simulations for the Langevin models use the same set of parameters,
which are specified in Tab. 2] with given noise level € in eqn. (B). We calculate the fol-
lowing quantities: the point mass prediction Py, using exact stochastic trajectories (93)); the
predicted contributions by substituting the stochastic terms in (91)) with the deterministic
limit cycle; the variance and standard deviation of the interspike intervals (01251); and the
variance and standard deviation of the isophase intervals (O’IQPI).

In addition to numerical simulations, we will also present several observations of exper-
imental recordings. Data in Fig.[9]and Fig.[T0|were recorded in vitro in Dr. Friel’s laboratory
from intact wild type Purkinje cells with synaptic input blocked (see §D|for details). We an-
alyzed fourteen different voltage traces from cerebellar Purkinje cells from wild type mice,
and seventeen from mice with the leaner mutation. The average number of full spike os-
cillations is roughly 1200 for wild type PCs (fourteen cells) and 900 for leaner mutation
(seventeen cells).

Numerical steps to calculate the inter-phase-intervals:

— Given a sample trajectory X (t), we approximate the iPRC near the limit cycle, Z(X(t)),
by using the phase response curve of the deterministic limit cycle
) ; 96)

where v is a point on the deterministic limit cycle and Z is the infinitesimal phase
response curve on the limit cycle (LC).

— To calculate the inter-phase interval, we first set up an iso-phase section (Sp) that in-
tersects the deterministic limit cycle at the point (7o), such that for all X(¢) € So,
Z(X(t)) = Z(70). Given a specific initial condition, there is a one to one correspon-
dence between points on the deterministic limit cycle, the time before it reaches the end
of limit cycle, and the phase response curve. We select the iso-phase section as a set of
points that share the same iPRC value, which guarantees the same return time for all
points on the same iso-phase section.

— Similarly as the one-dimension case, the times that a trajectory crosses a given iso-phase
section is recorded, and the time between consecutive crossing times are recorded as the
inter-phase intervals (IPIs). Numerically to do so, we assign an index for each point on
the LC, starting from 1 at the initial point. When we use eqn. to estimate the iPRC,
we also return the index of the point on LC. Note that the iso-phase section (Sp) can
be identified either by the phase response curve (Z (o)) on the LC, or its corresponding
index on the LC. Here, we are collecting the indices of iPRC (i.e., index of s in eqn.
on the LC) for each point on the sample trajectory. In each full oscillation, we mark the
first-time that the indices recorded for the trajectory cross a specific index (this is the

Z(X(t) ~ Z(X(t)) 2 Z (arginin

(v - x0) 202
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threshold) as the time for the IPIs, and linear interpretation is used to approximate the
exact threshold-crossing time.

4.1 Observations on oy and o

When analyzing voltage recordings from in vitro Purkinje cells (PCs) and from simulation
of the stochastic HH model, we have the following observations. First, given a particular
(stochastic) voltage trace, the number of interspike intervals (cf. Def. [5) varies along with
the change in voltage threshold used for identifying spikes. Second, within a range of voltage
thresholds for which the number of ISIs is constant, the variance of the interspike interval
distribution, of%; (cf. Def. , which is obtained directly from the voltage recordings, nev-
ertheless varies as a function of the threshold used to define the spike times. Thus the ISI
variance, a widely studied quantity in the field of computational neuroscience [[29.34./44.[71,
73], is not invariant with respect to the choice of voltage threshold. To our knowledge this
observation has not been previously reported in the neuroscience literatureE]

Fig. 0] plots the histogram of voltage from a wild type PC and number of spikes cor-
responding to voltage threshold (Vi) in the range of [—60, —10] mV. Setting the threshold
excessively low or high obviously will lead to too few (or no) spikes. As the threshold
increases from excessively low values, the counts of threshold-crossing increases. For ex-
ample, when Vj, is in the after hyper-polarization (AHP) range (roughly —58 < Vi, < —48
mV in Fig.0) the voltage trajectory may cross the threshold multiple times before it finally
spikes. As illustrated in Fig.[9] the number of spikes is not a constant as the threshold varies,
therefore, the mean and variance of ISI are not well-defined in the regions where extra spikes
are counted. To make the number of spikes accurately reflect the number of full oscillation
cycles, in what follows we will only use thresholds in a voltage interval that induces the cor-
rect number of spikes. Note that, for a given voltage trace and duration (7i), if two voltage
threshold generate the same number of spikes (Nypike), the mean ISI would be almost identi-
cal, approximately Tio/ Npike- This observation holds for both experimental recordings and
numerical simulations.

Next we address the sensitivity of the interspike interval to the voltage threshold, within
the range over which the number of ISIs is invariant. (By “threshold” we refer throughout to
the voltage level used to detect the occurrence and measure the timing of an action potential,
rather than a physiological threshold associated with a spike-generation mechanism.)

From the earliest days of quantitative neurophysiology, the extraction of spike timing in-
formation from voltage traces recorded via microelectrode has relied on setting a fixed volt-
age threshold (originally called a Schmitt trigger, after the circuit designed by O.H. Schmitt
[[64]). To our knowledge, it has invariably been assumed that the choice of the threshold or
trigger level was immaterial, provided it was high enough to avoid background noise and
low enough to capture every action potential [22142]. This assumption is generally left im-
plicit. Here, we show that, in fact, the choice of the trigger level (the voltage threshold used
for identifying spike timing) can cause a change in the variance of the interspike interval for
a given spike train by as much as 5%.

Fig. provides evidence both from experimental traces recorded in vitro, and from
numerical simulations, that o is sensitive to the voltage threshold defining spike times. In
Fig.[I0] A, we superimpose ISI standard deviations from fourteen wild type Purkinje cells,

6 Throughout this section, we use the term “threshold” in the data analysis sense of a Schmitt trigger [64],
rather than the physiological sense of a spike generation mechanism.
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Fig. 9: Histogram of voltage and number of spikes as a function of voltage threshold (Vi)
for one wild type Purkinje cell (same data as in Fig.[TA & C). The number of ISIs is found
by counting up-crossing times as defined in Def. EI For this particular trajectory, the AHP
phase locates roughly in the interval [—58, —48] mV. The trajectory has 1248 full oscillation
cycles. When Vj,, is near —60 mV, it captures fewer spikes than the true value, and when
Vin € [—57, —48], it tends to overestimate the number of spikes. For Vi, € [—48, —10], the
number of spikes is a constant (1248) that matches the number of full oscillations.

plotted as functions of the the trigger voltage Vi,. We rescale each plot by the standard
deviation of the ISI for each cell at Vi, = —20 mV, which we define as . As shown in
Fig.[T0] A, the cells recorded in vitro have a clear variability in the standard deviation as the
voltage threshold changes. Specifically, the standard deviation of ISI gradually increases as
voltage threshold increases and then remains constant as the threshold approaches the peak
of the spikes. Two of the cells have larger variations in the standard deviation, with roughly a
3% — 4% change; nine of them have a 1% — 3% change; and three of them show 0.1% — 1%
change.

We applied a similar analysis to seventeen PCs with the leaner mutation [81]. In this
case, one cell had a variation of roughly 1% in the standard deviation, five cells with vari-
ations around 0.2%, and the remaining without an obvious change (data not shown). This
difference between cells derived from wild type and leaner mutant mice is an interesting
topic for future study.

We observe a similar variability of 01251 in numerical simulations using our stochastic
Langevin HH model (cf. eqn. (3)). Fig.[T0]B and C plots two examples showing the change
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Fig. 10: Standard deviation of the interspike intervals (\/%, cf. Def. [5) and standard de-
viation of the iso-phase intervals (\/ﬁ, cf. Def. EI) as a function of voltage threshold. A:
Rescaled ISI standard deviation (5) obtained from experimental data recordings from 14
wild type Purkinje cells. For experimental methods see §|§l For each cell, \/% is cal-
culated using voltage threshold ranging from -55 mV to -20 mV, and scaled by dividing
the stand deviation at voltage=-20 mV. B, C: standard deviation of ISI when ¢ = 1 and
V€ = 0.028 in equation (3), respectively. For each voltage threshold, 500 different traces
are generated with each trace containing roughly 1000 interspike intervals. Error bars in-
dicate the 95% confidence interval of \/% at each threshold. Note the vertical axis is in
usec. In C, each value of ob; is calculated for the mean—return-time isochron intersecting
the deterministic limit cycle at the voltage specified.

in o7 as voltage threshold varies. For a given noise level (¢) and a voltage threshold (Vi,),
a single run simulates a total time of 9000 milliseconds (ms), with a time step of 0.008 ms,
consisting of at least 600 ISIs, which was collected as one realization for the corresponding
oisi(€, Vin). The mean and standard deviation of the oisi(€, Vi) is calculated for 1,000 real-
izations of the aforementioned step for each pair of € and Vi,. The error bars in Fig. @ B
and C indicate 95% confidence intervals of the standard deviation. As illustrated in Fig. B
and C, the standard deviation gradually increases as the trigger threshold increases during
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the AHP, and this trend is observed for both small and large noises. When € = 1, the noisy
system in eqn. (@) is not close to the deterministic limit cycle, and there is not a good ap-
proximation for the phase response curve. When /e = 0.028, the system eqn. (B) can be
considered in the small-noise region and thus we can find a corresponding phase on the limit
cycle as the asymptotic phase. As shown in Fig.[T0|C, unlike the variance of ISI, the variance
of IPI is invariant with the choice of the phase threshold (¢).

4.2 Numerical Performance of the Decomposition Theorem

. - . 2 _
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Fig. 11: Variance of ISIs (o) and IPIs (o) with only K edges included using the
stochastic shielding method. Cyan dots: point mass prediction (cf. eqn. (94)). Solid blue line:
limit cycle prediction. 1000 repeated simulations are plotted and for each of the simulation,
more than 1000 ISIs (or IPIs) are recorded. Each sample point in the plot represents the vari-
ance of ISIs and IPIs for one realization. A1-4: Voltage threshold Vi, = —55, —50, —20,0
mV, with noise level \/e = 0.028 (effective number of K™ channels N ~ 2.30 x 10°). B:
Iso-phase section is the mean-return-time isochron intersecting the deterministic limit cycle
at Vin = —50 mV.
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In this section, we will apply estimation methods based on Theorem [T]and Corollary|[T|to
the decomposition of variance of interspike intervals (ISIs, o7g;) and variance of inter-phase
intervals (IPIs, o), and numerically test their performance.

Fig. presents a detailed comparison of the predicted and measured values of 01251 and
oy, when the simulations only include noise from the K™ channels. The channel noise
generated by the Na™ edges is suppressed by applying the stochastic shielding (SS) method
to eqn. (3)). For each plot in Fig. 1000 repeated trials are collected and each trial simulates
a total time of 15,000 milliseconds which generates more than 1000 ISIs or IPIs. Given our
previous observation that o5 depends on the choice of voltage threshold, we selected four
different voltage thresholds for comparison.

In Fig. red dots in panels A1-A4 mark the ISI variance measured directly from
simulated voltage traces, using the indicated Vi, as the trigger voltage. Green stem-and-
line marks show the mean and 95% confidence intervals of the direct ISI variance measure,
calculated from all 1000 samples. The blue dotted line shows the ISI variance predicted
from the limit cycle based estimate of the IPI variance (eq. (91)), and cyan squares show
individual estimates using the point-mass prediction (eq. (93)). Note each point mass is an
independent random variable; these estimates cluster tightly around the limit cycle based
estimate. Panel B shows the variance of the inter-phase intervals calculated directly from
the same 1000 trajectories (as described below), marked in black circles. Green stem-and-
line marks show the mean and 95% C.I. for the IPI variance. The blue dotted line and cyan
squares represent the same LC-based and point mass based IPI variance estimates as in
Al-A4.

As shown in Fig. (A1, A2, A3, A4 and B) the point mass prediction and the LC
prediction of the IPI variance give almost the same result. Specifically, the LC prediction ~
3.84 x 10~2 and the mean of the point mass predictions ~ 3.83 x 10~ with a variance of ~
6.3 x 101, Therefore, the LC prediction based on Corollary 1| gives a good approximation
to the point mass prediction based directly on Theorem [I| For a given edge (or a group
of edges) the LC prediction depends linearly on the scaling factor, €, and can be easily
calculated for various noise levels. Throughout the rest of this section, we will use the LC
prediction as our predicted contribution from the decomposition theorem.

The asymptotic phase is calculated using equation for each point on the stochastic
trajectory. For a given voltage threshold, Vi, the corresponding iso-phase section is the
mean-return-time isochron intersecting the deterministic limit cycle at V4. As previously
observed, the variance of the IPIs is invariant with respect to the choice of the reference
iso-phase section. As shown in Fig. B, the prediction of variance of IPIs (=~ 3.83 x 1073
msQ) has a good match with the mean value of numerical simulations (= 3.85 X 1073 msQ).
The 95% confidence interval of the IPIs are also plotted in Fig.[T1]B, which further indicates
the reliability of the prediction.

As shown in Fig. (Al, A2, A3 and A4), with Vi, € [—55, 0] mV, the numerical real-
izations of 01251 are close to the predictions from the main theorem. However, the accuracy
depends on the choice of the voltage threshold. As noted above, when the trigger voltage
Vin is set below —50mV (for example, —55mV in Fig. [[TJA1), the measured variance of
ISIs falls below the value predicted from the IPI variance. When Vi, =~ —50mV, the empir-
ically observed value of 01251 gives the best match to the IPI variance (cf. Fig. C). When
the trigger voltage Vi, exceeds —50mV (for example, —20mV in Fig. [[T}A3, and OmV
in Fig. [TT]A4), the empirically observed variance of the ISIs is consistently higher than
the IPI variance. Nevertheless, although the empirically observed numerical values of 0'1251
(~ 4.00 x 1073 msQ) overestimate the [PI-derived value when Vi, > —50mV, they remain
close to the IPI value. Fig.[TT|panels A1-4 show that even though the IPI-based prediction of
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the ISI variance works best when the trigger voltage is set to Vi, =~ —50mYV, the IPI-based
variance falls within the 95% confidence interval of o, regardless of the value of V{, cho-
sen. Therefore, we can conclude that Theoremmand Corollarym give a good approximation
to the value of o, at least at noise level /e = 0.028.

Practically, the voltage-based interspike interval variance, ory;, is a more widely used
quantity [29.[34|44\[711[75]] because it can be calculated directly from electrophysiological
recordings. The inter-phase interval variance, 012])1, however, can not be directly measured or
calculated. Even given the stochastic model with its realizations, calculating the asymptotic
phase and finding the IPIs are numerically expensive. Despite its lack of consistency, as
shown in Fig.|11{(A3 and A4), the 01251 can approximately be decomposed using Theorem
and Corollary (1} which offer predicted values that fall in the 95% confidence interval of of;.
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Fig. 12: Numerical performance of the decomposition for the ISI variance for Nat and
K™ kinetics. A&C: o7 for individual K™ (A) and Na™ (C) edges. E, marks the kth edge,
ke {l,...,8} for KT and k € {1,...,20} for Na*. B&D: Linearity of superposition
for KT (B) and Nat (D) channels. See text for details. 01251 with noise from all K+ (Na™t)
edges included (black line), with only the most significant edges using stochastic shielding
(red line) included, and the linear prediction from Theoremm(blue dashed line).
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Fig. [I2] summarizes the overall fit of the decomposition of variance of ISIs to the pre-
diction from Theorem [1f and Corollary |1} We applied the stochastic shielding method by
including each directed edge separately in the transition graph (cf. Fig.[2). In Fig.[I2](B and
D), the variance of the ISIs is compared with the value obtained with the limit cycle based
prediction from eqn. (OT).

Fig.|12[(A and C) shows the log-log plot for the ISI variance (0'1231) of each individual
edge as a function of the noise level, ¢, in the range of [e ', %], measured via direct
numerical simulation using Vi, = —20 mV. The color for each edge ranges from red to blue
according an ascending order of edge numbers (1-8 for K+ and 1-20 for Na™). The total
effective number of Nat channels is Mio; = Mt/ € and of KT channels is Ny = Nret/ €,
where the reference channel numbers are M, = 6000 and N = 1800 (described in §2.5).
That is, we consider ranges of channel numbers 40 < M < 1.3 X 10® for Na™ and

~

12 < Nt < 4.0 x 107 for K*. Thus, we cover the entire range of empirically observed
single-cell channel populations (cf. Tab.[T).

As shown in Fig. [12[ (A and C), the linear relation between 01251 and e predicted from
Theoremis numerically observed for all 28 directed edges in the Na™ and K™ transition
graphs (cf. [2) for small noise. The same rank order of edge importance discussed in [33]
is also observed here in the small noise region. Moreover, the smaller the edge importance
measure for an individual edge, the larger the value of ¢ before observing a breakdown of
linearity.

Fig. |12 (B and D) presents the log-log plot for the ISI variance (01251, black solid line)
when including noise only from the K™ edges and Na™ edges, respectively. As in panels A
and C, the noise level, ¢ is in the range of [e'°, €®]. The LC prediction for eqn. (OT)) from
Theorem when including noise from only the K™ (or Na™) channels is plotted in dashed
blue. For example, the linear noise prediction for the potassium channels alone is

Ex
2 2
Ois1 ~ Z OIS,k 7
k=1

where &g = 8 (similarly, Exa = 20), and 0’1251) & 1s the LC prediction for the k" edge. As
shown in Fig.[I2]panel B, the linear prediction matches well with the numerically calculated
o up to In(e) ~ —3.0 (indicated by the blue arrow) which corresponds to approximately
36,000 K™ channels. For Na™, the theorem gives a good prediction of the numerical o7y up
to In(e) ~ —1.9 (indicated by the blue arrow) which corresponds to approximately 40,000
Na™ channels. These channel population sizes are consistent with typical single-cell ion
channel populations, such as the population of Na™ channels in the node of Ranvier, or the
Na™ and K* channels in models of the soma of a cerebellar Purkinje cell (cf. Tab. .

Finally, we apply stochastic shielding (SS) to both the K™and Na™channels by only
including noise from the edges making the largest contributions in Fig.[I2]panels A and C.
For the KT channel, we include edges 7 and 8, and for N at, we include edges 17, 18, 19 and
20. As shown in Fig.[T2] panels B and D, the SS method (solid red line) gives a good match
to the overall oy for all noise intensities € € [e~'?, 5], with numbers of K™ channels
> 12 and Na™ channels > 40.

Fig. [13| shows the overall performance of the prediction of ¢ based on Theorem m
when noise from all 28 directed edges are included (black line). The theorem is stated as an
asymptotic result in the limit of weak noise. The predicted ISI variance using the theorem
(dashed blue curve) matches the ISI variance obtained from the full numerical simulation
for modest noise levels, up to In(e) < —3.9, corresponding to > 90,000 K™ channels and
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Fig. 13: Numerical performance of the decomposition for the ISI variance of the full sys-
tem. A: Log-log plot of ofg; for € € [e™ 7, e®]. ISI variance contribution ofg; with noise
from all 28 edges included (black line), only from 8 K edges (dashed grey), only from 20
Na™ edges (solid grey), and SS using noise from six edges (red line, see text for details). The
linear prediction from Theorem [T] for the whole system is plotted for comparison (dashed
blue line.) B: Coefficient of variation (C.V.), or mean ISI divided by \/?251, vs. log(€). Same
color scheme as A. Compare Fig. [T] which shows data from two cerebellar Purkinje cells, a
wild-type cell with C.V. = 0.039 and a cell from a leaner mouse with C.V. = 0.30.

2 300,000 N a™ channels. These population sizes are at the high end of the range of typical
numbers of channels neurons (cf. Tab.[T).

For smaller ion channel populations (larger noise levels), the linear approximation breaks
down, but the stochastic shielding approximation remains in good agreement with full nu-
merical simulations. Fig. shows 01251 from simulations using the SS method including only
noise from the six most important edges (edges 7-8 in K™ and 17-20 in Na™), plotted in solid
red. For In(€) 2 —3.5, both the full simulation and the SS simulation show a rapid increase
in of%; with increasing noise level. This dramatic increase in timing variability results when
increasing noise causes the neuron to “miss” spikes, that is, to generate a mixture of regular
spiking and small subthreshold oscillations [57]]. Including noise from all 20 Na™ channel
edges (gray line) or all eight K™ channel edges (gray dashed line) shows a similar jump,
albeit delayed to higher values of e for the Na™ channel. Note also the Na* channel alone
has a quantitatively smaller contribution to ISI variability for the stochastic HH model than
the K+ channel for all noise levels in the linear region.

For larger noise levels (In(e) = —2), all simulations become sufficiently noisy that
In(o%;) collapse to a similar level, approximately 3. As the interspike interval is a nonnega-
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tive random quantity with a constrained mean (bounded by the reciprocal of the firing rate),
once the spike train has maximal variability, further increasing the strength of the channel
noise does not drive the ISI variance appreciably higher. However, although the ISI vari-
ance appears approximately to saturate with increasing noise, the coefficient of variation
(C.V, \/% /) continues to increase (Fig. ), because the mean ISI (I) decreases with
increasing noise (the firing rate increases with increasing noise, data not shown).

5 Discussion

We prove in that the numerically calculated edge importance can be quantified from
the molecular-level fluctuations of the stochastic Hodgkin-Huxley (HH) kinetics. Specifi-
cally, we combine the stochastic shielding approximation with the re-scaled Langevin mod-
els (eqn. (3)) of the HH model to derive analytic results for decomposing the variance of
the cycle time (the iso-phase intervals) for mean—return-time isochrons of the stochastic HH
models. We prove in theory, and confirm via numerical simulations, that in the limit of small
noise, the variance of the iso-phase intervals decomposes linearly into a sum of contributions
from each edge. We show numerically that the same decomposition affords an efficient and
accurate estimation procedure for the interspike intervals, which are experimentally observ-
able. Importantly, our results apply to current clamp rather than to voltage clamp conditions.
Under current clamp, a stochastic conductance-based model is an example of a piecewise-
deterministic Markov process (PDMP). We show in that our theory is exact in the limit
of small channel noise (equivalently, large ion channel population size); through numerical
simulations we demonstrate its applicability even in a range of small to medium noise levels,
consistent with experimentally inferred single-cell ion channel population sizes. In addition,
we present the numerical performance of the SS method under different scenarios and argue
that the stochastic-shielding approximation together with the 14 x 28D Langevin represen-
tation give an excellent choice of simulation method for ion channel populations spanning
the entire physiologically observed range.

Our 14 x 28D Langevin model (eqn. (3)) can be shown to be pathwise equivalent to a
class of Langevin models on a 14D state space [53]]. The first such model was introduced by
Fox and Lu [20] and subsequently investigated by [25]]. Pathwise equivalence of two models
implies that they have the same distribution over sample paths, hence identical moments
including moments related to first-passage and return times. One could undertake the same
investigation into the variability of spike timing as in this paper using Fox and Lu’s for-
mulation, however the 14 x 28D representation lends itself to an elegant application of the
stochastic shielding approximation [601/63./62] that would be cumbersome to apply to other
formulations. Moreover, as shown in [53]], the 14 x 28D formulation is at least as fast or
faster than its pathwise equivalent alternatives, while having (necessarily) the same accuracy
(cf. Fig[13). Thus we concur with the assessment of [46]] that the best combination of speed
and accuracy for Langevin-type simulation of stochastic conductance based models is given
by the diffusion approximation simulations [46]], while we treat each edge as an independent
noise source, combined with stochastic shielding.

Initially stochastic shielding was introduced for both voltage clamp and current clamp
scenarios [60], but rigorous investigation of the method [63Ll62] were restricted to voltage
clamp. Stochastic conductance-based models under current clamp comprise hybrid or piece-
wise deterministic systems (cf. Fig[2] C), while systems under fixed-voltage-clamp corre-
spond to time-invariant discrete-state Markov chains, for which the theory is well established
[63].
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5.1 Number of Channels in Different Cell Types

Estimated numbers of NaT and KT channels in different cell types

Ton Type of cell Number of channels | Reference
chromaffin cells 1,800-12,500 L7761
cardiac Purkinje cells | 2325,000 [39)°
node of Ranvier 21,000-42,000 [74]¢

Na® | squid axon (1mm)¢ | >18,800 (16
pyramidal cell >17,000 [y
Purkinje cell? 47,000-158,000 [T9l73]% f-9
pre-BotC neurons” 56-5,600 lig)d:fh
squid axon (1mm)? | >5,600 [16)?

K+ | pyramidal cell >2,000 [
Purkinje cell9 3,000-55,000 [T9lf73] -9
pre-BotC neurons” 112-2,240 [o11g|d-e:"

Table 1: Details of the data sources:

(a) Nat density: 1.5-10 channels/um2[17], the average diameter of rounded chromaffin
cells is d ~ 20pm, Area=md? [[76].

(b) Nat density: 260 channels/ qu [39], and diameter of roughly 20m [39].

(c) Number of Na™ channels in Tab. 1 from [[74].

(d) Na™ density: 60 channels/pm2 in squid axon, and 68 channels/pm2 in pyramidal axon
(Tab. S1 in [16])). KT density: 18 channels/pm? in squid axon, and 8 channels/pm? in
pyramidal axon (Tab. S1 in [16]). Membrane area: squid axon: 0.1 um diameter and
Imm length (Fig. S2 in [16]); pyramical cell: 0.08um diameter with 1 mm length
(Fig. S1in [16]). Single voltage-gated ion channel conductance is typically in the range
of 5-50 pS, and 15-25 pS for Na™ (p. 1148 [16]).

(e) Single K™ channel conductance ([[73]]): inward rectifier in horizontal cells (20-30 pS in
62-125 mM K, 9-14°C); skeletal muscle (10 pS in 155 mM Kt, 24-26°C); egg cells
(=6 pS for 155 mM KT, 14-15°C); heart cells (27 pS for 145 mM KT at 17-23°C; 45
pS for 150 mM K™ at 31-36°C).

(f) Single Na™ channel conductance is ~14 pS in squid axon, other measurements under
various conditions show results in the range of 2-18 pS (Tab. 1 in [4]).

(g) Maximal conductance for different K™ channels (Tab. 1 in [19]): SK Kt (10 mS/cm?),
highly TEA Kt (41.6 mS/cm?) sensitive BK KT (72.8 mS/cm?); membrane area (1521
pwm?). Maximal conductance for resurgent Na® (156 mS/cm?). Note that the range of
K™ channels provided here is for each type of KT channel, not the total number of
K™ channels.

(h) Maximal conductance (g,,,) in pacemaker cells of the pre-Botzinger complex (pre-
BotC) [9]: Gnap = 2.8 nS for persistent Na™ current, gy, = 28 nS for fast Na™ current,
and gy € [5.6, 11.2] nS for different types of K™ channels (p. 384-385).

Channel noise arises from the random opening and closing of finite populations of ion
channels embedded in the cell membranes of individual nerve cells, or localized regions
of axons or dendrites. Electrophysiological and neuroanatomical measurements do not typ-
ically provide direct measures of the sizes of ion channel populations. Rather, the size of
ion channel populations must be inferred indirectly from other measurements. Several pa-
pers report the density of sodium or potassium channels per area of cell membrane [161[17}
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39]. Multiplying such a density by an estimate of the total membrane area of a cell gives
one estimate for the size of a population of ion channels. Sigworth [74] pioneered statistical
measures of ion channel populations based on the mean and variance of current fluctua-
tions observed in excitable membranes, for instance in the isolated node of Ranvier in axons
of the frog. Single-channel recordings [43] allowed direct measurement of the “unitary”,
or single—channel-conductance, gy, or gg. Most conductance-based, ordinary differential
equations models of neural dynamics incorporate maximal conductance parameters (gy, or
gk) which nominally represents the conductance that would be present if all channels of
a given type were open. The ratio of g to g° thus gives an indirect estimate of the num-
ber of ion channels in a specific cell type. Tab. |[l| summarizes a range of estimates for ion
channel populations from several sources in the literature. Individual cells range from 50
to 325,000 channels for each type of ion. In §@] of this thesis, we will consider effective
channel populations spanning this entire range (cf. Figs LT} [[2).

5.2 Different Methods for Defining ISIs

There are several different methods for detecting spikes and quantifying interspike intervals
(ISIs). In one widely used approach [2212911341/42/441[71[75]], we can define the threshold
as the time of upcrossing a fixed voltage, which is also called a Schmitt trigger (after O.H.
Schmitt [64]]). We primarily use this method in this thesis.

As an alternative, the time at which the rate of change of voltage, dV//dt, reaches its
maximum value (within a given spike) has also been used as the condition for detecting
spikes [3]]. However, in contrast with the voltage-based Schmitt trigger, using the maximum
of dV//dt to localize the spike does not give a well-defined Poincaré section. To see this,
consider that for a system of the form (3) we would have to set

d*V

d
a2 %f(va N) 98)
dMs1 dNy
dt 9Na(V - VNa) - WQK(V - VK)

= FvN) oL v -

equal to zero to find the corresponding section. The difficulty is evident: for the Langevin
system the open fraction M31 (resp. N4) of sodium (resp. potassium) channels is a diffusion
process, and is not differentiable, so “dM31 /dt” and “d N4 /dt” are not well defined. More-
over, even if we could interpret these expressions, the set of voltages V' and gating variables
N for which equals zero depends on the instantaneous value of the noise forcing, so
the corresponding section would not be fixed within the phase space. For a discrete state
stochastic channel model, the point of maximum rate of change of voltage could be deter-
mined post-hoc from a trajectory, but again depends on the random waiting times between
events, and so is not a fixed set of points in phase space. For these reasons we do not fur-
ther analyze ISIs based on this method of defining spikes, although we nevertheless include
numerical IST variance based on this method, for comparison (see Fig. [[4] below).

As a third possibility, used for example in [29], one sets the voltage nullcline (dV/dt =
0), at the top of the spike, as the Poincaré section for spike detection. That is, one uses
a surface such as Speax = {(v,n) | f(v,n) = 0} N {v > —40}. This condition does
correspond to a well-defined Poincaré section, albeit one with a different normal direction
than the voltage-based sections.

In contrast to the ISI variance, which depends to some degree on the choice of spike-
timing method used, the mean ISI is invariant. Both in numerical simulations and from
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experimental recordings, the mean interspike interval using any of the three methods above
is very stable. But the apparent ISI variance changes, depending on the method chosen.

We observe in both real and simulated voltage traces that the ISI variance, 01251, de-
pends not only on the method for identifying spikes, but also on the voltage used for the
Schmitt trigger. To our knowledge this sensitivity of ISI variance to trigger voltage has not
been previously reported. Generally speaking, from analyzing both simulation and recorded
data from in vitro studies, the ISI variance is not a constant, but increases slightly as the
voltage threshold defining a “spike” is increased (cf. @) Thus the ISI variance is not an
intrinsically precisely invariant quantity for model or real nerve cells.

A: experimental data

791 .
(2]
%} 7.88 1
5786 1
o)
2784 .
8
g 7.82[ |
1.8l g
-55 -50 -45 -40 -35 -30 -25
i %1078 B: numerical simulations (/e = 0.028)
@
O 4.2 6650560600800000060000——0———6—0——¢——f———p—b——
0
Lasr .
8 36 —+—voltage as threshold
9 S - = dvdt=0 as threshold
© 34 —e—var(IPl)
g —o—max(dvdt) as threshold
3.2 1 1 | L | |
-55 -50 -45 -40 -35 -30 -25
Voltage threshold (mV)

Fig. 14: Variance of interspike intervals using different threshold conditions. A: O'IQSI of
spikes from a single trace of a wild type Purkinje cells comprising 785 ISIs. 01251 = 7.9151
when setting dv/dt = 0 as the threshold (dashed red), and o, = 7.9146 when maxi-
mum dv/dt is set to be the threshold condition (blue). Different voltage thresholds show
increasing 0125 with voltage (gray). For experimental methods see §|§l B: ISI variance from
a Langevin HH (cf. eq. [3) simulation with small noise (/¢ = 0.028) comprising ¢. 1000
ISIs. Labels as in A. The variance of the inter-phase intervals is constant regardless of the
particular isochron chosen (black).
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Fig. [14] shows o; obtained empirically from electrophysiological recordings of Purk-
inje cells in vitro (upper plot) and from simulations of the stochastic Hodgkin-Huxley system
(lower plot) with a small noise amplitude (/e = 0.028) using the three methods for spike
time extraction described above, for a single voltage trace comprising 785 interspike inter-
vals. The ISI variance as a function of trigger voltage increases steadily from below 7.8 ms?
to above 7.9 ms? as the trigger voltage increases from -50 mV to -20 mV. In contrast, the
ISI variance obtained from the peak voltage (dV/dt = 0, obtained using linear interpola-
tion of the first-order voltage difference) or the maximum slope condition (d*V/dt* ~ 0
and dV/dt > 0, obtained using linear interpolation of the second-order voltage difference)
give nearly indistinguishable values (red and blue superimposed traces in Fig. [T4A) that lie
slightly above the largest value of 01251 at the upper range of the trigger voltage.

A similar phenomenon occurs for Langevin simulations of the HH model with small
noise (Fig. @B). In this case, the ISI variance based on maximum slope falls slightly below
the variance based on the spike peaks; both are similar to the variance obtained with a
Schmitt trigger close to —20 mV. This similarity at higher trigger voltages probably occurs
because the inflection point of each spike occurs at nearly the same voltage (at least, for
small noise).

As shown in §E|and @ the inter-phase interval (IPI, also refered as iso-phase interval),
based on the crossing time of iso-phase sections, provides a uniform o for all choices
of reference iso-phase sections (cf. Fig. ﬂ;f[) Fig. @B shows the IPI variance (in black)
for different mean—return-time isochronal sections, each passing through the limit cycle
trajectory at the specified voltage.

For experimental voltage recordings, we cannot specify the interphase variables without
a measurement or estimate of the entire state vector. Fortunately, the sensitivity of ISI vari-
ance to voltage threshold, while statistically significant, is relatively small (a few percent),
as voltage is the practical measure available for marking spike times. Moreover, as shown

Theorem [T]and Corollary [T|can be is well suited to approximating the variance of ISIs
(ois1) despite its threshold-dependence.

For moderate to large noise Langevin model traces (e ~ 1), we also see a systematic
shift in o, with increasing Schmitt-trigger voltage. However, the size of the shift is an
order of magnitude smaller than the variability of the variance across trials. Fig[I3] plots
01251 versus trigger voltage, as well as the ISI variance based on the peak voltage and the
maximal slope conditions, for ten different samples of the Langevin HH model with € = 1,
each comprising > 1000 interspike intervals. In each case o7y is a smoothly increasing
function of the trigger voltage, but the range of the increase in variance is approximately
0.25 ms2, while the sample variance of the ISI variance itself is approximately 3.5 ms?
across the ten trials, an order of magnitude larger. For comparison, the sample variance of
o across c. 4000 trials, cf. Fig. [11} is approximately 3 x 10~7 ms?. The source of the
variance for the larger noise value may involve the introduction of extra or missing spikes
from the regular spiking pattern, cf. Fig. Thus, although 01251 based on the standard
Schmitt trigger approach is sensitive to the trigger value, the IPI variance estimate given by
Theorem [I] lies within the range of this sensitivity, which for realistic noise levels is small
compared to the intrinsic variability of the variance across trials.

5.3 Alternative definitions of oscillator phase

Guckenheimer established two ways of defining the “phase” of a stable limit cycle oscillator
[27]; one method constructs sets of initial conditions that converge together to a unique
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Fig. 15: Model simulation of ofg; for the Langvin model (eqn. [3) using different thresholds
when € = 1. Ten repeated simulations are plotted, with each containing roughly 1000 ISIs.
Solid plus: oty using different voltages as threshold. Dashed: dV//dt = 0 as the spike
condition. Diamonds: maximal dV//dt condition. Each color represents a different sample
with independent noise. Variance is in units of ms?.

limit cycle trajectory with identical timing (“isochronal sets”). The other method constructs
a system of Poincaré sections with the property that the return time from each section to
itself is equal to the oscillator period, independent of starting position along the section.
Both of these notions break down when the oscillator dynamics is perturbed by stochastic
fluctuations. Schwabedal and Pikovsky introduced a generalization of the uniform return
time isochron [67], and sought a family of Poincaré sections with a uniform mean return
time property. In [I1]], Cao et al. showed this family of isochrons could be obtained as the
level sets of a timing function 7'(x) that solves a partial differential equation related to a
first-passage time problem

LT = -1 (99)

(cf. (30)) subject to a jump boundary condition. The Schwabedal/Pikovsky/Cao/Lindner/Thomas
mean—return-time phase is the basis of our results in the present paper.

An alternative notion of asymptotic phase for a stochastic oscillator, based on a spectral
decomposition of the Markov process generator, was introduced in [77], prompting dis-
cussion of the relative merits of the two notions [311[78]]. The spectral asymptotic phase is
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obtained from the slowest-decaying complex eigenfunction pair of the generator
LNQ+] = (n+iw)Q (100)

where 1 < 0 is the rate of decay and w > 0 is the frequency of oscillation. Writing the
eigenfunction in polar form, Q(x) = |Qle™*¥*9, one defines the asymptotic phase function
1) analogous to the deterministic asymptotic phase. This “spectral asymptotic phase” allows
one to treat consistently the asymptotic phase of systems both with an underlying limit cycle
oscillations as well as fluctuation-dependent systems that would not oscillate in the absence
of noise, such as a heteroclinic oscillator [[77] and an quasicycle oscillator (noisy spiral sink)
(791

For deterministic limit cycle oscillators, the two notions of phase established by Gucken-
heimer are equivalent. For stochastic oscillators, they are generally not equivalent although
in many examples they appear numerically quite similar. A detailed analysis is given in [10],
where it is shown that, in the case of planar oscillators, the mean—return-time phase and the
spectral asymptotic phase are equivalent if the eigenfunction @ is complex analytic, that
is, if its real and imaginary parts satisfy the Cauchy-Riemann equations. To the best of our
knowledge, a generalization of this result to higher dimensional state spaces has not been
established, and the relative merits of the two notions of phase remains an open question.

5.4 Relation to Other Methods

Ermentrout and colleagues [14] developed an asymptotic treatment of the interspike interval
variance as part of their analysis of the variance of phase response curves; the variance of the
phase response in the absence of a perturbing input is simply the ISI variance. Our analysis
was inspired in part by the approach of [14] in that we study the accumulation of variance
of the timing variable (the asymptotic phase function for the unperturbed system) over a
single period. Our approach differs from that of [14] in several key respects. While [14]]
used an additive Gaussian white noise current to obtain stochastic trajectories, in our model
the fluctuations arise from channel noise based on a detailed 14 x 28 D Langevin descrip-
tion of the Hodgkin-Huxley system. In addition [14]] truncated the small-¢ expansion of the
phase dynamics at first order, i.e. they neglected terms at 0(62) and higher orders. However,
their expression for the ISI variance begins with a term that is O(e?), suggesting a possibly
inconsistency in their result. In contrast, we retain terms through O(e?), and demonstrate
excellent agreement between full numerical and semi-analytic results in the small-e regime.
Finally, we explicitly construct the ISI variance as a first-passage time problem, allowing us
to leverage Dynkin’s theorem, which goes beyond the treatment given in [[14].

There is a rich literature on the variability of interspike intervals in low-dimensional
neural models, such as integrate and fire models with or without an adaptation current [34}
[68I72I[18]. In this literature, there is significant interest in serial correlation structure of
successive interspike intervals [12331[69]]. However, to our knowledge, the literature since
[14] has not further addressed analytical treatment of interspike interval variance for higher
dimensional models such as the Hodgkin-Huxley system.

Jan-Hendrik Schleimer’s thesis [39] addresses the moments of the interspike interval
through a different approach. In his thesis, Schleimer assumes an a prior reduction from
physical coordinates (voltage and gating variables) to a one-dimensional phase description
¢ € [0, 1). He formulates a stochastic Langevin equation for ¢ using Linaro’s model [33]]
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which is similar (but not pathwise equivalent) to [20,46/[53]] of the form (eqn. (5.1) on page
47)

do

L =+ 2(6)VD(DE(),
where £ is a delta-correlated Gaussian white noise disturbance vector, Z is the infinitesimal
phase response curve of the deterministic limit cycle system, and D(¢) is a noise coefficient
matrix. If Z is n-dimensional then £(t) is assumed to be n-dimensional as well, and D is
n X n. Using the Stratonovich interpretation, he derives a local phase-specific increment of
the timing variability of the form (eqn. (5.3) on page 47)

o*(¢) = Z(¢)TD($)Z().

Implicitly, | 01 o (¢) de gives the ISI variability. To compare our approach with Schleimer’s,
we give an explicit expression for o2 (¢) as a sum of contributions from each directed edge,
at each phase of the limit cycle:

1

o’(s) = (Z ar (V(5) Xiew) (S)C;IZ(S)ZT(S)Ck) T (101)
k

where the sum runs over directed edges in the ion channel transition graph(s), and the factor
of T, ! reflects changing the range of phase from [0, Tp] to [0, 1].

Two other recent papers independently established results distinct from, but related to,
the results proved in our main theorem. In [24]], Giacomin et al. consider a one-parameter
family of strong solutions of the (Ito) stochastic differential equation

dX§ = F(X{)dt +¢G(X§) dBy, (102)

where the vector field F' has a limit cycle solution in R, The set up and assumptions are
similar to those we make here, except that we scale Brownian motion increments by /€
rather than by . The authors show that under a certain time rescaling, the “lift” of the
asymptotic phase function éi obeys a stochastic differential equation such that

0y ~ 0(z0) — e 2t + oW; + bt. (103)

See Appendix [E] for details. In (TO3), W is a standard univariate Brownian motion, and the
variance term obeys

f:%ﬂ<m%ﬁ@wwawmmwﬁ (104)

where ¢ is the T-periodic deterministic limit cycle solution, and the noise-induced shift in
frequency is given by

T

b= | w(G@)G@)D0(a)) ds (105)

where D20 is the Hessian of the asymptotic phase function 6 of the deterministic limit cycle.
As we show in Appendix [E} when we substitute " and G from a stochastic conductance
based model with Langevin channel noise into (T04), we obtain an expression identical to
our main result. Moreover, the frequency shift given by (T03) plays no role in the variance
of the isophase-interval variance.
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In [0, Aminzare et al. consider an autonomous system x = F(x), x € R", with an
asymptotically stable hyperbolic limit cycle x7 (¢) with period 7" and frequency w = 27 /7.
They incorporate white noise forcing, giving an Ito stochastic differential equation

dx = F(x)dt + o B(x) dW (t). (106)

Aminzare’s noise parameter o corresponds to Giacomin’s &, which corresponds to our /€.
Aminzare et al. make the simplifying assumption that the noise coefficient matrix B(x) is
square and diagonal, i.e. that each component of x is driven by independent white noise. Un-
der these assumptions, Aminzare et al. derive expressions for the first and second moment
of the first passage time for the one-dimensional phase variable. Given the first and second
moment, calculation of the variance is immediate. As we show in App. @ we obtain equiv-
alent expressions to leading order in the noise parameter, if we adopt the more restrictive
assumptions from [

5.5 Limitations

Like other approaches in the literature, our calculations are based on a linear approximation
to the effects of the noise. However, Ito’s formula @ includes terms both of order /e
and e. The latter weights the Hessian matrix of the asymptotic phase function, 8%— ¢. In our
main result (#I) we neglected the contribution of this higher order term. Similar truncations
of either Taylor’s expansion or Ito’s formula are seen throughout the literature, for example
eqn. (3.2.8) in [30], eqn. (120) in [70]}, and eqn. (2) in [14]]. These authors favor an immediate
phase reduction when ¢ is small, setting X (¢) =~ Xo(0(t)) and

dp 1 T

L =1+ VE(VH(X)T - G(X) - dW(2) (107)
([70.30]). As in Kuramoto’s original phase reduction approach [30]], we also evaluate the
infinitesimal phase response curve Z on the limit cycle throughout this paper. This omission
of the Hessian term could possible cause additional discrepancies. Recent advances in the
theory of nonlinear oscillators have provided means to obtain the asymptotic phase Hessian
[1L/831[83] but we have not attempted to implement these calculations for our 14D HH model.
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Appendices

A Model Parameters, Common Symbols and Notations

Symbol | Meaning Value
C Membrane capacitance 1 uF/cm?
INa Maximal sodium conductance 120 11S/em?
JK Maximal potassium conductance 36 1S/cm?
Jleak Leak conductance 0.3 uS/cm?
WNa Sodium reversal potential for NaT 50 mV
Vk Potassium reversal potential for KT 77T mV
Vieak Leak reversal potential 544 mV
Tapp Applied current to the membrane 10 nA/cm?
A Membrane Area 100 pym?
Mot Total number of NaT channels 6,000
Niot Total number of KT channels 18,00

Table 2: Parameters used for simulations in this paper.

Subunit kinetics for Hodgkin and Huxley parameters are given by

0.1%(25—V)
exp(2.5-0.1V) -1
Bm(V) = 4 x exp(=V/18)
ap(V) = 0.07 x exp(—V/20)

am (V) =

1
An(V) = exp(3—0.1V) + 1
(V) = 0OLx (10— V)

exp(1—-0.1V) -1
Bn (V) = 0.125exp(—V/80)

Di(1) Bn(V) 0 0 0
4an(V) D1(2) 28.(V) 0O 0
Ag(V) = 0  3an(V) Di(3) 3B.(V) 0 |,
0 0 2an(V) Di(4) 4B8,(V)
0 0 0  an(V) Di(5)
[D2(1) B 0O 0 Bn O 0 0
3am D2(2) 2Bm O 0 fBn O 0
0 2am D2(3) 3Bm O 0 Bn O
Ao | O 0 am D24) 0 0 0 B
M= a0 0 0 Da5) Bm O 0
0 an O 0  3am D2(6) 28m 0
0 0 an 0 0  2am D2(7) 3fm
| 0 0 0 ap 0 0 am  D2(8)]

(108)

(109)
(110)

(111)

(112)

(113)
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where the diagonal elements

Dy(i) = =Y Ain(j,i), k€{1,2} ione {Na,K}.
J#i

B Diffusion Matrix of the 14D Model

Define the state vector for Na™ and KT channels as
M = I
= [moo, M10, M20, M30, Mo1, M11,M21,M31]",

and N = [ng, n1, n2,n3, na]7, respectively.
The matrices Sk and Sn, are given by

—VAanno V/Bnny 0 0
) Vaanno —/Bani —V3Banni 2B8nn2
Sk = 0 0 V3apni —/2Bpng -
Vet 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
o —V2ann2 /3Bnns 0 0 ;
V2anna —+/3Bnns —y/amnz /4Bnna
0 0 Jams —vABm
and
[ —anmoo v/Brmor —v/3ammoo \/Bmmio 0
0 0 V3ammoo —v/Bmmio —y/anmio
0 0 0 0 0
g1 0 0 0 0 0
M VM | anmoo —v/Brmot 0 0 0
—v/Brmit 0 0 0 0
0 0 0 anm20 —v/Brma
0 0 0 0 0
[0 0 0 0 0 ]
VBrmi1 —v2ammio vV2Bmmao 0 0
V2ammio —v/2Bmmao0 —\/anpmzo /Brmat
(6:10) 1 0 0 0 0 0
N = 0 0 0 0 0
ref
- mau 0 0 0 0
0 0 0 Vanmao —/Brmai
0 0 0 0 0o |
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Symbol Meaning
X & x state vector (random variable & realization value)
M & m eight-component state vector for the Na™ gates (random variable & realization value)
N&n five-component state vector for the Kt gates (random variable & realization value)
C membrane capacitance (1 uF/cm?)
Tapp applied current (10 nA/cm?)
Tion maximal conductance for ion € {Nat,K+}
Vion reversal potential of ion € {Nat Kt}
e & X ith standard unit vector in R® & R®

ion _ jion __ _ion
Gk" = €ik) T Citk)

stoichiometry vector for the kth edge, for ion € {Na®™,K+}

ak(v) voltage-dependent per capita transition rate along kth edge, 1 < k < 28
i(k) & j(k) source & destination nodes for kth edge
M1y fractional occupancy of source node for kth edge
F(X) & f(x) deterministic part of the evolution equation (mean-field)
G, SNas Sk noise coefficient matrix for the the 14 x 28D Langevin model, Na™ gates and K+ gates, resp.
AF k-dimensional simplex in R¥t1 given by y1 + ... + Ye+1 = Ly; >0
D domain of the (stochastic) differential equation
Vo “nullcline” surface associated with the voltage variable, where f(v, m,n) =0
S arbitrary section transverse to the deterministic limit cycle
S isovoltage Poincaré section (where voltage is a constant u)
S§, Si, & S® “null”, “inward current” & “outward current” surface for voltage u
and f(v,m,n) =0, f(v,m,n) > 0& f(v,m,n) < 0, resp.
7(x,8) first passage time (FPT) from a point x € D to section S
T(x,S) mean first passage time (MFPT) from point x € D to set S
S(x,S) the second moment of the FPT from a point x € D to section S
e & Tg kth voltage surface upcrossing & downcrossing time
I kth interspike interval (ISI), for some reference voltage vg
I,H& 01251 mean, 2nd moment, and variance of ISI
Wk kth iso-phase crossing time
Ag kth iso-phase interval (IPI), for some reference phase ¢o
Te, S, O'IQPI mean, 2nd moment, variance of iso-phase interval (for noise level €)

2 2
9%k & 911,k

contribution of kth edge to the IPI variance and the ISI variance, resp.

~(t) deterministic limit cycle trajectory
To period of deterministic limit cycle
P(x) asymptotic phase function for deterministic limit cycle
Z(t) = Vo(v(t)) infinitesimal phase response curve (iPRC) for deterministic limit cycle
T. mean period for noise level set to €
T, = aaTE < sensitivity of the mean period to increasing noise level, in the small-noise limit
e=0
Te(x) mean-return-time (MRT) phase function for noise level set to €

sensitivity of the phase function to noise in the small-noise limit

MRT phase function for ¢ = 0. Note Tp(x) = const — T'o % for an arbitrary constant

Table 3: Table of Common Symbols and Notations.
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[0 0 0 0 0o |
0 0 0 0 0
—vammazo V/3Bmmao 0 0 0
51%1:15) __ 1 | Vamma —V3Bmmao —y/anmzo /Brms1 0
Mies 0 0 0 00
0 0 0 0 V3ammor
0 0 0 0 0
i 0 0 Vvarmso —+/Brmai 0 |
[ 0 0 0 0 0 |
0 0 0 0 0
0 0 0 0 0
syem0 _ 1 0 0 0 0 0
VMt | —Bammor  VBmmit 0 0 0
—/Bmmii —V2ammi1 V2Bmma1 0 0
0 V2ammi1 —2Bmma1 —/ammar /3Bmms1
0 0 0 VOmmar —v/3Bmms1 |

where Sﬁf;ﬂ is the ith—jth column of Sya.

Note that each of the 8 columns of Sk corresponds to the flux vector along a single
directed edge in the K™ channel transition graph. Similarly, each of the 20 columns of Sna
corresponds to the flux vector along a directed edge in the Na™ graph (cf. Fig. . Factors
M = 6000 and Nyer = 1800 represent the reference number of Kt and Na™ channels
from Goldwyn and Shea-Brown’s model [25]].

C Proof of Lemmal[I]

For the reader’s convenience we restate

Lemma(ll For a conductance-based model of the form (B)), and for any fixed applied current
Lapp, there exist upper and lower bounds Umax and Vpin such that trajectories with initial
voltage condition v € [Umin, Umax] remain within this interval for all times t > 0, with
probability 1, regardless of the initial channel state, provided the gating variables satisfy
0<M;; <land0 < N; <1

Proof Let Vi = min{Vion} A Vieak, and Va2 = max{Vion} V Vieak, where ion € {Na+, K*}.
1on mon

Note that by assumption, for both the Na' and KT channel, 0 < M3; < 1,0 < Ny < 1.
Moreover, g; > 0, gieak > 0, therefore when V' < V;

dv 1
ﬁ = 6 {Iapp(t) — gNa]\'[Sl (V — VNa) — EKN4 (V - VK) - gleak(v - ‘/leak)} (114)

v

& an®) = g M (V = V3) = giNa (V = Vi) = geac(V =)} (115)

v

é{japp(t) = Ina X 0xX (V= V1) = g x 0x (V = V1) = giea(V — V1) } (116)

= 2 () — gea(V = V1)) (117
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Inequality (TT3) holds with probability 1 because Vi = Irél%{Vl} A Vieak, and inequal-
1

ity (TT6) follows because V. — Vi < 0, g; > 0 and M31 > 0, Na > 0. Let Viyin :=

min {ﬁ + Vi, } When V' < Viin, % > 0. Therefore, V' will not decrease beyond

min-

Similarly, when V' > V5

aVv 1
E = 6 {Iapp(t) - §Na]\/[31 (V - VNa) - gKN4 (V - VK) - gleak(V - Vieak)} (118)
1
<G {Lapp(t) — Gna M1 (V = V2) = gg Na (V = V2) — grea(V — V2) } (119)
1
< bl {Lapp(t) = Gna X 0X (V = V2) — gg x 0x (V = V2) — giea (V' — V2)} (120)

1
=C {Lapp (t) — Greak(V — V2) }. (121)
Inequality (TT9) and inequality (T20) holds because V> = ma%({Vi}v Vieak, V= V2 > 0,
1€

gi > 0and My > 0, Ny > 0. Let Viax = max{ﬁ—i-Vz,Vz}. When V' > Vinas,

Gleak
% < 0. Therefore, V' will not go beyond Vijax.
We conclude that if V' takes an initial condition in the interval [Viin, Vinax], and if 0 <
M;j;, N; < 1 for all time, then V' (¢) remains within this interval for all ¢ > 0. Thus we
complete the proof of Lemmam

D Experimental Methods

Whole-cell current-clamp recordings of Purkinje cells from in vitro cerebellar slice prepara-
tions taken from wild type and leaner mice were performed in the laboratory of Dr. David
Friel (Case Western Reserve University School of Medicine), as described in [47]. Experi-
mental procedures conformed to guidelines approved by the Institutional Animal Care and
Use Committee at Case Western Reserve University. Voltage signals were sampled at a fre-
quency of 20kHz, filtered at 5-10 kHz, digitized at a resolution of 32/mV, and analyzed
using custom software written in IgorPro and Matlab.

E Comparison of our Main Theorem with Related Literature
E.1 Comparison with Giacomin et al. (2018).

Giacomin et al. [24] considered a one-parameter family of strong solutions of the (Ito)
stochastic differential equation

dX§ = F(X{)dt + eG(X{) dBy, (122)

where the parameter € > 0, F(-) is a locally Lipschitz vector field on R?, G(-) is a locally
Lipschitz function on R¢ with values in the d X m matrices, and B. is a standard m dimen-
sional Brownian motion. Note that in our formulation of the Langevin system (3), we use
y/€ where Giacomin et al. use . Consequently, our expressions involving GGT scale as e,
whereas the analogous expressions scale as 2 in [24].
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If the deterministic asymptotic phase is 0(x) then, evaluated along a trajectory 0(X7y)
the phase obeys Ito’s formula:

2

di(w) = | Fi(2)2if(x) + 5 Dij()050(x) | dt + £(0:6(x))Gin () dWi(t),  (123)
where D = GGT and we use Einstein’s summation convention. Given their definition of
the asymptotic phase function and their Theorem 2.1 on page 1024, F;(x)9;0(x) = 1. As a
result of their Theorem 2.3 (page 1026 in [24]), if € is small, then over long times, we can
establish that (since X stays “close to” the deterministic limit cycle solution q; = X7 for
times on the order of ¢/ £2) approximately

dO ~ 1+ %b+ eo dW; (124)

for some constants a and b that one may calculate in terms of F' and G for any particular
system. The notation 6 refers to the “lift” of  from the circle § € St = [0,7) to § € R,
i.e. the integral of (T24) without the jumps induced by taking  mod the period T". For small
noise ¢, integrating up to time ¢, we have (provided ¢ is 0(5_2), and setting zo = X§),

0(X5) ~ 0(x0) + t(1 4 £°b) + e0 Wi, (125)

where W; is now a 1D standard Brownian motion (with ~ signifying convergence in distri-
bution, after rescaling time). Upon rescaling time, the authors establish that

N 5 t
0(X¢)<2) = 0(x0) + =t th + o Wy. (126)

Therefore the accumulated variance of é(X ¢ ) during one (deterministic) period 7" is

VOt +T)—0(t) ~ V (T + 0T + co(Wesr — W) (127)
=20’T (128)
T
—2 [ (041G (a)G @) D0 @) ds,. (129
0

Equation (T28) holds because the variance of the Wiener process increment over time 7" is
exactly 7', and because the limit cycle period T is a deterministic quantityﬂ Equation (T29)
holds by virtue of the authors’ formula, eqn. (2.20) on page 1026 in [24].

Finally, we note that, for a conductance-based channel noise model of the type we consider
in this paper, the expression D0(qs)G(gs)G"(gs)DO" (gs) in [24] corresponds exactly with

N2

our expression ;. (GG7)i;0:T00;To and Ziil ar(v) Xk (C,IZ) , as in our Theorem
and Corollary [I} To see the correspondence, note that D6(qs), the gradient of the phase
function evaluated along the limit cycle, is none other than the infinitesimal phase response

curve, and is identical to the gradient of the zero-noise timing function V7p; the rest follows
from the structure of G as shown in the proof of our main theorem.

7 Note that the factor b, representing the shift in mean frequency due to noise, does not appear in the ex-
pression for the variance of the phase after one period. Similarly, the term 7'y appearing in our assumption A3,
eqn. (38), represents the first-order shift in mean period of the stochastic oscillator upon introducing nonzero
noise. Observe that 7' does not appear in our expression for the inter-phase-interval variance, consistent with
the results in [24]].
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E.2 Comparison with Aminzare et al. (2019)

In Aminzare et al. [[I], the authors consider the scaled Langevin model (eqn. (10) on
page 4718)

dx = F(z)dt + o B(z)dW (). (130)

The authors consider the special case in which B(x) = diag(81, . .., Bn). Our correspond-
ing matrix G is not diagonal, due to the biophysical origin of channel noise, so direct com-
parison of our results is somewhat limited. Nevertheless, the authors consider the moments
of the stochastic period, defined as the time to complete one oscillation, and arrive at an
expression for the variance of the stochastic period that we can compare with the result
of our theorem m In particular, in Proposition 3 on page 4721 in [I], the authors calcu-
late the first and second moments of the stochastic return time 7" for system (I30) with

B(x) = diag(f1,...,0n) as

21t 0_2 2m 5
E[T) = e A II(a) da+ o(07), (131)
and
9 47'('2 202 27 20_2 27
E[T]_F_F ; (27T—0¢)H(a)da+? ; ¢(a) do
20_2 27 2m
-2 / I () da d€ + o(0?), (132)
w 0 3
where
1 - 2 1 - 2 2
11(00) = 5 ;ﬁi Hyi(0), and ((60) = 5 ;Bi Zi(00)", (133)

H(0) is the “second order” PRC (the Hessian of the asymptotic phase function) and Z(0)
is the infinitesimal phase response curve. Note that because []] scales phase from 0 to 2,
their expression (6o ) has units of radians/time. In contrast, our infinitesimal phase response
curve Z(t) has units of time; we may convert by multiplying by To /27 (. Although G is
not diagonal for conductance-based neural oscillators driven by channel noise (cf. eqn. (3))
we can still express the term ((6p) as

28
C(60) = 2% (GGT) i B Tod;To = 272 > i (v) X (gg2)2 . (134)

ij k=1
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Given the first and second moments of the time period in [I], the variance is given by

V[T] =E[T”] - (E[T])® (135)
4% 20 T 20 2 202 2m o r2m
_4r® 207 _ 207 27 dod
2, o) (@)da + — Sl )do: — —5 /0 . 11 (o) doud
2 2 ror
- 4% 4”2 I(e)do + o(c?) (136)
w w 0
27 27 2
_ M(a)da + 2% 20 (a)da + 21 C(a)da
0 0
27 27
2“3 f(e)dads + 7% [* H(a)da + o(o?) (137)
w3 Jo €
20_ 27 2 20_ 27
=5 I (a)da + — ((a)da - I (a)dadg. (138)
0 0 o Je
By Tonelli’s Theorem [58]],
27 27
/ 11()dadé (139)
JO JE
- [ H@de (140)
¢E<a<2m

(a,€)€[0,27] % [0,27]

/%/ 1(a)de¢da (141)
/02” (/0 n(a)dg) da (142)

2m
= / all(a)da. (143)
Jo

Therefore eqn. (I38) reduces to

V[T) = % O " (@) (144)
9 T 28
_ % x ‘L x 2m /O Zak )X i) (gk ) (145)
28 T
- U2TZ/O (V)X k) (c;Z)th (146)
k=1

which is consistent with our main result, because 02 = ¢, w = 27 /T, and da ~ w dt.
References

1. Aminzare, Z., Holmes, P., Srivastava, V.: On phase reduction and time period of noisy oscillators. In:
2019 IEEE 58th Conference on Decision and Control (CDC), pp. 4717-4722 (2019)

2. Anderson, D.F., Ermentrout, B., Thomas, PJ.: Stochastic representations of ion channel kinetics
and exact stochastic simulation of neuronal dynamics. Journal of Computational Neuroscience
38(1), 67-82 (2015). DOI 10.1007/s10827-014-0528-2. URL http://dx.doi.org/10.1007/
s10827-014-0528-2


http://dx.doi.org/10.1007/s10827-014-0528-2
http://dx.doi.org/10.1007/s10827-014-0528-2

55

10.

11.

15.
16.

17.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

. Azouz, R., Gray, C.M.: Dynamic spike threshold reveals a mechanism for synaptic coincidence detection

in cortical neurons in vivo. Proceedings of the National Academy of Sciences 97(14), 8110-8115 (2000)

. Bezanilla, F.: Single sodium channels from the squid giant axon. Biophysical Journal 52(6), 1087-1090

(1987)

. Bressloff, P.C., Newby, J.M.: Path integrals and large deviations in stochastic hybrid systems. Physical

Review E 89(4), 042701 (2014)

. Brown, E., Moehlis, J., Holmes, P.: On the phase reduction and response dynamics of neural oscillator

populations. Neural Comput 16(4), 673-715 (2004). DOI 10.1162/089976604322860668

. Brunel, N., Latham, P.E.: Firing rate of the noisy quadratic integrate-and-fire neuron. Neural Computa-

tion 15(10), 2281-2306 (2003)

. Buckwar, E., Riedler, M.G.: An exact stochastic hybrid model of excitable membranes including spatio-

temporal evolution. Journal of Mathematical Biology 63(6), 1051-1093 (2011)

. Butera Jr, RJ., Rinzel, J., Smith, J.C.: Models of respiratory rhythm generation in the pre-botzinger

complex. i. bursting pacemaker neurons. Journal of Neurophysiology 82(1), 382-397 (1999)

Cao, A.: Dimension reduction for stochastic oscillators: Investigating competing generalizations of phase
and isochrons. Master’s thesis, Case Western Reserve University, Cleveland, Ohio (2017)

Cao, A., Lindner, B., Thomas, PJ.: A partial differential equation for the mean—return-time phase of
planar stochastic oscillators. STAM Journal on Applied Mathematics 80(1), 422447 (2020)

. Chacron, M.J.,, Lindner, B., Longtin, A.: Noise shaping by interval correlations increases information

transfer. Physical Review Letters 92(8), 080601 (2004)

. Dorval, A.D., White, J.A.: Channel noise is essential for perithreshold oscillations in entorhinal stellate

neurons. Journal of neuroscience 25(43), 10025-10028 (2005)

. Ermentrout, G.B., Beverlin 2nd, B., Troyer, T., Netoff, T.I.: The variance of phase-resetting curves. J

Comput Neurosci (2011). DOI 10.1007/s10827-010-0305-9

Ermentrout, G.B., Terman, D.H.: Foundations Of Mathematical Neuroscience. Springer (2010)

Faisal, A.A., White, J.A., Laughlin, S.B.: Ion-channel noise places limits on the miniaturization of the
brain’s wiring. Current Biology 15(12), 1143-1149 (2005)

Fenwick, E.M., Marty, A., Neher, E.: Sodium and calcium channels in bovine chromaffin cells. The
Journal of physiology 331(1), 599-635 (1982)

. Fisch, K., Schwalger, T., Lindner, B., Herz, A.V., Benda, J.: Channel noise from both slow adaptation

currents and fast currents is required to explain spike-response variability in a sensory neuron. Journal
of Neuroscience 32(48), 17332-17344 (2012)

. Forrest, M.D.: Simulation of alcohol action upon a detailed Purkinje neuron model and a simpler surro-

gate model that runs>400 times faster. BMC Neuroscience 16(1), 27 (2015)

Fox, Lu: Emergent collective behavior in large numbers of globally coupled independently stochastic
ion channels. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 49(4), 3421-3431 (1994)
Gardiner, C.W.: Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences, 2nd
edn. Springer Verlag (2004)

Gerstein, G.L.: Analysis of firing patterns in single neurons. Science 131(3416), 1811-1812 (1960)
Gerstner, W., Kempter, R., Van Hemmen, J.L., Wagner, H.: A neuronal learning rule for sub-millisecond
temporal coding. Nature 383(6595), 76-78 (1996)

Giacomin, G., Poquet, C., Shapira, A.: Small noise and long time phase diffusion in stochastic limit cycle
oscillators. Journal of Differential Equations 264(2), 1019-1049 (2018)

Goldwyn, J.H., Shea-Brown, E.: The what and where of adding channel noise to the Hodgkin-Huxley
equations. PLoS Comput Biol 7(11), €1002247 (2011). DOI 10.1371/journal.pcbi.1002247. URL
http://dx.doi.org/10.1371/journal.pcbi.1002247

Goldwyn, J.H., Shea-Brown, E., Rubinstein, J.T.: Encoding and decoding amplitude-modulated cochlear
implant stimuli — a point process analysis. Journal of Computational Neuroscience 28(3), 405-424
(2010)

Guckenheimer, J.: Isochrons and phaseless sets. Journal of Mathematical Biology 1, 259-273 (1975).
URLhttp://dx.doi.org/10.1007/BF01273747. 10.1007/BF01273747

Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector
Fields, Applied Mathematical Sciences, vol. 42, third edn. Springer-Verlag (1990)

Gutkin, B.S., Ermentrout, G.B.: Dynamics of membrane excitability determine interspike interval vari-
ability: a link between spike generation mechanisms and cortical spike train statistics. Neural Computa-
tion 10(5), 1047-1065 (1998)

Kuramoto, Y.: Chemical Oscillations Waves and Turbulence. Dover (2003)

Kurtz, T.G.: Strong approximation theorems for density dependent Markov chains. Stochastic Processes
and their Applications 6(3), 223-240 (1978)

Lasota, A., Mackey, M.C.: Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, Applied Math-
ematical Sciences, vol. 97. Springer-Verlag New York (1994)


http://dx.doi.org/10.1371/journal.pcbi.1002247
http://dx.doi.org/10.1007/BF01273747

56

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.
59.

60.

61.

Linaro, D., Storace, M., Giugliano, M.: Accurate and fast simulation of channel noise in conductance-
based model neurons by diffusion approximation. PLoS Computational Biology 7(3), 1001102 (2011)
Lindner, B.: Interspike interval statistics of neurons driven by colored noise. Physical Review E 69(2),
022901 (2004)

Lindner, B., Chacron, M.J., Longtin, A.: Integrate-and-fire neurons with threshold noise: A tractable
model of how interspike interval correlations affect neuronal signal transmission. Physical Review E
72(2), 021911 (2005)

Llinds, R., Sugimori, M.: Electrophysiological properties of in vitro Purkinje cell dendrites in mam-
malian cerebellar slices. The Journal of physiology 305(1), 197-213 (1980)

Llinds, R., Sugimori, M.: Electrophysiological properties of in vitro Purkinje cell somata in mammalian
cerebellar slices. The Journal of physiology 305(1), 171-195 (1980)

Mainen, Z.F., Sejnowski, T.J.: Reliability of spike timing in neocortical neurons. Science 268(5216),
1503-1506 (1995)

Makielski, J.C., Sheets, M.F., Hanck, D.A., January, C.T., Fozzard, H.A.: Sodium current in voltage
clamped internally perfused canine cardiac Purkinje cells. Biophysical Journal 52(1), 1-11 (1987)
McKane, A.J., Newman, T.J.: Predator-prey cycles from resonant amplification of demographic stochas-
ticity. Physical review letters 94(21), 218102 (2005)

Moiseft, A., Konishi, M.: The owl’s interaural pathway is not involved in sound localization. Journal of
Comparative Physiology 144(3), 299-304 (1981)

Mukhametov, L., Rizzolatti, G., Tradardi, V.: Spontaneous activity of neurones of nucleus reticularis
thalami in freely moving cats. The Journal of physiology 210(3), 651-667 (1970)

Neher, E., Sakmann, B.: Single-channel currents recorded from membrane of denervated frog muscle
fibres. Nature 260(5554), 799 (1976)

Netoff, T., Schwemmer, M.A., Lewis, T.J.: Experimentally estimating phase response curves of neurons:
theoretical and practical issues. In: Phase Response Curves in Neuroscience, pp. 95-129. Springer (2012)
(Oksendal, B.: Stochastic Differential Equations: An Introduction with Applications, 6th edn. Springer
(2007)

Orio, P., Soudry, D.: Simple, fast and accurate implementation of the diffusion approximation algorithm
for stochastic ion channels with multiple states. PLoS One 7(5), €36670 (2012)

Ovsepian, S.V.,, Friel, D.D.: The leaner P/Q-type calcium channel mutation renders cerebellar Purkinje
neurons hyper-excitable and eliminates Ca?*-Nat spike bursts. European Journal of Neuroscience
27(1), 93-103 (2008)

Pakdaman, K., Thieullen, M., Wainrib, G.: Fluid limit theorems for stochastic hybrid systems with ap-
plication to neuron models. Advances in Applied Probability 42(3), 761-794 (2010)

Pezo, D., Soudry, D., Orio, P.: Diffusion approximation-based simulation of stochastic ion channels:
which method to use? Frontiers in Computational Neuroscience 8, 139 (2014)

Pietrobon, D.: Ca v 2.1 channelopathies. Pfliigers Archiv-European Journal of Physiology 460(2), 375—
393 (2010)

Pikovsky, A.: Comment on “asymptotic phase for stochastic oscillators”. Phys. Rev. Lett. 115, 069401
(2015). DOI 10.1103/PhysRevLett.115.069401. URL https://link.aps.org/doi/10.1103/
PhysRevLett.115.069401

Pu, S.: Noise decomposition for stochastic Hodgkin-Huxley models. Ph.D. thesis, Case Western Reserve
University, Cleveland, Ohio (2020)

Pu, S., Thomas, P.J.: Fast and accurate Langevin simulations of stochastic Hodgkin-Huxley dynamics.
Neural Computation 32(10), 1775-1835 (2020)

Rajakulendran, S., Kaski, D., Hanna, M.G.: Neuronal P/Q-type calcium channel dysfunction in inherited
disorders of the CNS. Nature Reviews Neurology 8(2), 86 (2012)

Risken, H.: The Fokker-Planck Equation: Methods of Solution and Applications, 2nd edn. Springer
Series in Synergistics. Springer (1996)

Rowat, P.: Interspike interval statistics in the stochastic Hodgkin-Huxley model: Coexistence of gamma
frequency bursts and highly irregular firing. Neural Computation 19(5), 1215-1250 (2007)

Rowat, PF., Greenwood, P.E.: Identification and continuity of the distributions of burst-length and inter-
spike intervals in the stochastic Morris-Lecar neuron. Neural computation 23(12), 3094-3124 (2011)
Saks, S.: Theory of the integral. http://eudml.org/doc/219302 (1937)

Schleimer, J.H.: Spike statistics and coding properties of phase models. Ph.D. thesis, Humboldt-
Universitit zu Berlin, Mathematisch-Naturwissenschaftliche Fakultit I (2013)

Schmandt, N.T., Galan, R.F.: Stochastic-shielding approximation of Markov chains and its application
to efficiently simulate random ion-channel gating. Physical Review Letters 109(11), 118101 (2012)
Schmid, G., Goychuk, L., Hinggi, P.: Stochastic resonance as a collective property of ion channel assem-
blies. EPL (Europhysics Letters) 56(1), 22 (2001)


https://link.aps.org/doi/10.1103/PhysRevLett.115.069401
https://link.aps.org/doi/10.1103/PhysRevLett.115.069401

57

62.
63.
64.
. Schneidman, E., Freedman, B., Segev, I.: Ion channel stochasticity may be critical in determining the
66.
67.
68.

69.

70.
71.

72.

73.
74.

75.
76.

77.

78.

79.
80.
81.
82.
83.
84.
85.

86.
87.

Schmidt, D.R., Galan, R.F., Thomas, P.J.: Stochastic shielding and edge importance for Markov chains
with timescale separation. PLoS Computational Biology 14(6), €1006206 (2018)

Schmidt, D.R., Thomas, P.J.: Measuring edge importance: a quantitative analysis of the stochastic shield-
ing approximation for random processes on graphs. The Journal of Mathematical Neuroscience 4(1), 6
(2014)

Schmitt, O.H.: A thermionic trigger. Journal of Scientific instruments 15(1), 24 (1938)

reliability and precision of spike timing. Neural Computation 10(7), 1679-1703 (1998)

Schwabedal, J., Pikovsky, A.: Effective phase dynamics of noise-induced oscillations in excitable sys-
tems. Phys Rev E Stat Nonlin Soft Matter Phys 81(4 Pt 2), 046218 (2010)

Schwabedal, J., Pikovsky, A.: Phase description of stochastic oscillations. Phys. Rev. Lett. 110, 4102
(2013)

Schwalger, T., Fisch, K., Benda, J., Lindner, B.: How noisy adaptation of neurons shapes interspike
interval histograms and correlations. PLoS Comput Biol 6(12), e1001026 (2010)

Schwalger, T., Tiana-Alsina, J., Torrent, M., Garcia-Ojalvo, J., Lindner, B.: Interspike-interval correla-
tions induced by two-state switching in an excitable system. EPL (Europhysics Letters) 99(1), 10004
(2012)

Schwemmer, M.A., Lewis, T.J.: The theory of weakly coupled oscillators. In: Phase response curves in
neuroscience, pp. 3-31. Springer (2012)

Shadlen, M.N., Newsome, W.T.: The variable discharge of cortical neurons: implications for connectiv-
ity, computation, and information coding. Journal of Neuroscience 18(10), 3870-3896 (1998)

Shiau, L., Schwalger, T., Lindner, B.: Interspike interval correlation in a stochastic exponential integrate-
and-fire model with subthreshold and spike-triggered adaptation. Journal of Computational Neuroscience
38(3), 589-600 (2015)

Shingai, R., Quandt, F.N.: Single inward rectifier channels in horizontal cells. Brain Research 369(1-2),
65-74 (1986)

Sigworth, F.: Sodium channels in nerve apparently have two conductance states. Nature 270(5634),
265-267 (1977)

Stein, R.B.: A theoretical analysis of neuronal variability. Biophysical Journal 5(2), 173-194 (1965)

T O’Connor, D., Mahata, S.K., Mahata, M., Jiang, Q., Hook, V.Y., Taupenot, L.: Primary culture of
bovine chromaffin cells. Nature protocols 2(5), 1248-1253 (2007)

Thomas, P.J., Lindner, B.: Asymptotic phase for stochastic oscillators. Physical review letters 113(25),
254101 (2014)

Thomas, PJ., Lindner, B.: Thomas and lindner reply. Physical review let-
ters in  press (2015). URL |http://journals.aps.org/prl/accepted/
77075Y£dS0cX7d1d103d9905a890720141484£d68, (A reply to “Comment on Asymp-
totic Phase for Stochastic Oscillators” by A. Pikovsky, same journal.)

Thomas, P.J., Lindner, B.: Phase descriptions of a multidimensional ornstein-uhlenbeck process. Physical
Review E 99(6), 062221 (2019)

Vilela, R.D., Lindner, B.: Are the input parameters of white noise driven integrate and fire neurons
uniquely determined by rate and CV? Journal of Theoretical Biology 257(1), 90-99 (2009)

Walter, J.T., Alvina, K., Womack, M.D., Chevez, C., Khodakhah, K.: Decreases in the precision of Purk-
inje cell pacemaking cause cerebellar dysfunction and ataxia. Nature Neuroscience 9(3), 389-397 (2006)
White, J.A., Rubinstein, J.T., Kay, A.R.: Channel noise in neurons. Trends in Neurosciences 23(3),
131-137 (2000)

Wilson, D., Ermentrout, B.: Greater accuracy and broadened applicability of phase reduction using
isostable coordinates. Journal of mathematical biology 76(1-2), 37-66 (2018)

Wilson, D., Ermentrout, B.: An operational definition of phase characterizes the transient response of
perturbed limit cycle oscillators. STAM Journal on Applied Dynamical Systems 17(4), 2516-2543 (2018)
Wilson, D., Ermentrout, B.: Augmented phase reduction of (not so) weakly perturbed coupled oscillators.
SIAM Review 61(2), 277-315 (2019)

Winfree, A.: The Geometry of Biological Time, second edn. Springer-Verlag, New York (2000)
Winfree, A.T.: Patterns of phase compromise in biological cycles. Journal of Mathematical Biology 1,
73-95 (1974)


http://journals.aps.org/prl/accepted/77075YfdS0cX7d1d103d99b5a890720141484fd68
http://journals.aps.org/prl/accepted/77075YfdS0cX7d1d103d99b5a890720141484fd68

	Introduction
	Definitions, Notation and Terminology
	Noise Decomposition of the 14-D Stochastic HH Model
	Numerical Results
	Discussion
	Acknowledgments
	Appendices
	Model Parameters, Common Symbols and Notations
	Diffusion Matrix of the 14D Model
	Proof of Lemma 1
	Experimental Methods
	Comparison of our Main Theorem with Related Literature

