
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/358671811

Uncertainty quantification of TMS simulations considering MRI segmentation

errors

Article  in  Journal of Neural Engineering · February 2022

DOI: 10.1088/1741-2552/ac5586

CITATIONS

0
READS

37

3 authors:

Some of the authors of this publication are also working on these related projects:

Liquid Crystal Elastomers View project

Stochastic modeling and constrained spaces View project

Hao Zhang

Duke University

8 PUBLICATIONS   51 CITATIONS   

SEE PROFILE

Luis Gomez

Purdue University

53 PUBLICATIONS   400 CITATIONS   

SEE PROFILE

Johann Guilleminot

Duke University

106 PUBLICATIONS   1,251 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Hao Zhang on 19 April 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/358671811_Uncertainty_quantification_of_TMS_simulations_considering_MRI_segmentation_errors?enrichId=rgreq-52d6e14a1e68d42183bf543991d7e558-XXX&enrichSource=Y292ZXJQYWdlOzM1ODY3MTgxMTtBUzoxMTQ2NjY0OTExOTM3NTM3QDE2NTAzOTc2Mjc4NzU%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/358671811_Uncertainty_quantification_of_TMS_simulations_considering_MRI_segmentation_errors?enrichId=rgreq-52d6e14a1e68d42183bf543991d7e558-XXX&enrichSource=Y292ZXJQYWdlOzM1ODY3MTgxMTtBUzoxMTQ2NjY0OTExOTM3NTM3QDE2NTAzOTc2Mjc4NzU%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Liquid-Crystal-Elastomers-7?enrichId=rgreq-52d6e14a1e68d42183bf543991d7e558-XXX&enrichSource=Y292ZXJQYWdlOzM1ODY3MTgxMTtBUzoxMTQ2NjY0OTExOTM3NTM3QDE2NTAzOTc2Mjc4NzU%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Stochastic-modeling-and-constrained-spaces?enrichId=rgreq-52d6e14a1e68d42183bf543991d7e558-XXX&enrichSource=Y292ZXJQYWdlOzM1ODY3MTgxMTtBUzoxMTQ2NjY0OTExOTM3NTM3QDE2NTAzOTc2Mjc4NzU%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-52d6e14a1e68d42183bf543991d7e558-XXX&enrichSource=Y292ZXJQYWdlOzM1ODY3MTgxMTtBUzoxMTQ2NjY0OTExOTM3NTM3QDE2NTAzOTc2Mjc4NzU%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hao-Zhang-290?enrichId=rgreq-52d6e14a1e68d42183bf543991d7e558-XXX&enrichSource=Y292ZXJQYWdlOzM1ODY3MTgxMTtBUzoxMTQ2NjY0OTExOTM3NTM3QDE2NTAzOTc2Mjc4NzU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hao-Zhang-290?enrichId=rgreq-52d6e14a1e68d42183bf543991d7e558-XXX&enrichSource=Y292ZXJQYWdlOzM1ODY3MTgxMTtBUzoxMTQ2NjY0OTExOTM3NTM3QDE2NTAzOTc2Mjc4NzU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Duke-University?enrichId=rgreq-52d6e14a1e68d42183bf543991d7e558-XXX&enrichSource=Y292ZXJQYWdlOzM1ODY3MTgxMTtBUzoxMTQ2NjY0OTExOTM3NTM3QDE2NTAzOTc2Mjc4NzU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hao-Zhang-290?enrichId=rgreq-52d6e14a1e68d42183bf543991d7e558-XXX&enrichSource=Y292ZXJQYWdlOzM1ODY3MTgxMTtBUzoxMTQ2NjY0OTExOTM3NTM3QDE2NTAzOTc2Mjc4NzU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luis-Gomez-85?enrichId=rgreq-52d6e14a1e68d42183bf543991d7e558-XXX&enrichSource=Y292ZXJQYWdlOzM1ODY3MTgxMTtBUzoxMTQ2NjY0OTExOTM3NTM3QDE2NTAzOTc2Mjc4NzU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luis-Gomez-85?enrichId=rgreq-52d6e14a1e68d42183bf543991d7e558-XXX&enrichSource=Y292ZXJQYWdlOzM1ODY3MTgxMTtBUzoxMTQ2NjY0OTExOTM3NTM3QDE2NTAzOTc2Mjc4NzU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Purdue-University?enrichId=rgreq-52d6e14a1e68d42183bf543991d7e558-XXX&enrichSource=Y292ZXJQYWdlOzM1ODY3MTgxMTtBUzoxMTQ2NjY0OTExOTM3NTM3QDE2NTAzOTc2Mjc4NzU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luis-Gomez-85?enrichId=rgreq-52d6e14a1e68d42183bf543991d7e558-XXX&enrichSource=Y292ZXJQYWdlOzM1ODY3MTgxMTtBUzoxMTQ2NjY0OTExOTM3NTM3QDE2NTAzOTc2Mjc4NzU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Johann-Guilleminot?enrichId=rgreq-52d6e14a1e68d42183bf543991d7e558-XXX&enrichSource=Y292ZXJQYWdlOzM1ODY3MTgxMTtBUzoxMTQ2NjY0OTExOTM3NTM3QDE2NTAzOTc2Mjc4NzU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Johann-Guilleminot?enrichId=rgreq-52d6e14a1e68d42183bf543991d7e558-XXX&enrichSource=Y292ZXJQYWdlOzM1ODY3MTgxMTtBUzoxMTQ2NjY0OTExOTM3NTM3QDE2NTAzOTc2Mjc4NzU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Duke-University?enrichId=rgreq-52d6e14a1e68d42183bf543991d7e558-XXX&enrichSource=Y292ZXJQYWdlOzM1ODY3MTgxMTtBUzoxMTQ2NjY0OTExOTM3NTM3QDE2NTAzOTc2Mjc4NzU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Johann-Guilleminot?enrichId=rgreq-52d6e14a1e68d42183bf543991d7e558-XXX&enrichSource=Y292ZXJQYWdlOzM1ODY3MTgxMTtBUzoxMTQ2NjY0OTExOTM3NTM3QDE2NTAzOTc2Mjc4NzU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hao-Zhang-290?enrichId=rgreq-52d6e14a1e68d42183bf543991d7e558-XXX&enrichSource=Y292ZXJQYWdlOzM1ODY3MTgxMTtBUzoxMTQ2NjY0OTExOTM3NTM3QDE2NTAzOTc2Mjc4NzU%3D&el=1_x_10&_esc=publicationCoverPdf


Journal of Neural Engineering

PAPER

Uncertainty quantification of TMS simulations
considering MRI segmentation errors
To cite this article: Hao Zhang et al 2022 J. Neural Eng. 19 026022

 

View the article online for updates and enhancements.

You may also like
Electric field measurement of two
commercial active/sham coils for
transcranial magnetic stimulation
J Evan Smith and Angel V Peterchev

-

Coil model comparison for cerebellar
transcranial magnetic stimulation
M Kaan Çan, Ilkka Laakso, Jaakko O
Nieminen et al.

-

An optical setup for electric field
measurements in MRI with high spatial
resolution
Simon Reiss, Andreas Bitzer and Michael
Bock

-

This content was downloaded from IP address 152.3.43.49 on 19/04/2022 at 20:46

https://doi.org/10.1088/1741-2552/ac5586
/article/10.1088/1741-2552/aace89
/article/10.1088/1741-2552/aace89
/article/10.1088/1741-2552/aace89
/article/10.1088/2057-1976/aaee5b
/article/10.1088/2057-1976/aaee5b
/article/10.1088/0031-9155/60/11/4355
/article/10.1088/0031-9155/60/11/4355
/article/10.1088/0031-9155/60/11/4355


J. Neural Eng. 19 (2022) 026022 https://doi.org/10.1088/1741-2552/ac5586

Journal of Neural Engineering

RECEIVED

11 August 2021

REVISED

10 January 2022

ACCEPTED FOR PUBLICATION

8 February 2022

PUBLISHED

30 March 2022

PAPER

Uncertainty quantification of TMS simulations considering MRI
segmentation errors
Hao Zhang1, Luis J Gomez2,∗ and Johann Guilleminot1

1 Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27710, United States of America
2 Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: ljgomez@purdue.edu

Keywords: TMS simulation, non-Gaussian random field, uncertainty quantification, patient-specific brain geometry

Supplementary material for this article is available online

Abstract
Objective. Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation method
that is used to study brain function and conduct neuropsychiatric therapy. Computational methods
that are commonly used for electric field (E-field) dosimetry of TMS are limited in accuracy and
precision because of possible geometric errors introduced in the generation of head models by
segmenting medical images into tissue types. This paper studies E-field prediction fidelity as a
function of segmentation accuracy. Approach.The errors in the segmentation of medical images
into tissue types are modeled as geometric uncertainty in the shape of the boundary between tissue
types. For each tissue boundary realization, we then use an in-house boundary element method to
perform a forward propagation analysis and quantify the impact of tissue boundary uncertainties
on the induced cortical E-field.Main results. Our results indicate that predictions of E-field
induced in the brain are negligibly sensitive to segmentation errors in scalp, skull and white matter
(WM), compartments. In contrast, E-field predictions are highly sensitive to possible cerebrospinal
fluid (CSF) segmentation errors. Specifically, the segmentation errors on the CSF and gray matter
interface lead to higher E-field uncertainties in the gyral crowns, and the segmentation errors on
CSF and WM interface lead to higher uncertainties in the sulci. Furthermore, the uncertainty of
the average cortical E-fields over a region exhibits lower uncertainty relative to point-wise
estimates. Significance. The accuracy of current cortical E-field simulations is limited by the
accuracy of CSF segmentation accuracy. Other quantities of interest like the average of the E-field
over a cortical region could provide a dose quantity that is robust to possible segmentation errors.

1. Introduction

Transcranial magnetic stimulation (TMS) is a non-
invasive brain stimulation technique that is widely
used in the neurosciences for studying brain func-
tion [1–5] and to treat psychiatric and neurological
disorders [6–9]. During TMS a coil driven by brief
current pulse induces an electric field (E-field) in the
brain. The E-field is considered the ‘active ingredi-
ent’ of TMS that elicits and modulates brain activ-
ity [10]. As a result, E-field dosimetry is critical for
the development of novel TMS protocols. For E-field
dosimetry computational simulations are becom-
ing commonplace because there are no established
methods for non-invasively measuring the cortical

E-fields [7] induced during TMS. Correspondingly,
there is a need to develop a quantitative character-
ization of the accuracy of TMS simulations. Recent
studies have quantified numerical accuracy [11, 12],
sensitivity to conductivity uncertainty [13, 14], and
coil placement errors [15, 16] of TMS simulations.
This paper quantifies the magnitude of the error in
the TMS simulation predicted E-field induced in the
brain as a function of patient headmodel uncertainty.

Computational simulations for predicting the
TMS induced E-fields require a model of the sub-
ject’s head, the TMS coil and their relative place-
ment. Modeling errors in the predicted E-field can
result from limited accuracy of the head model,
which is typically derived from MRI images that are

© 2022 IOP Publishing Ltd
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segmented into individual tissue compartments [13,
17, 18]. For example, Dice coefficient, a measure-
ment of relative overlap between two segmentations,
has been used to compare automatic segmented gray
and white matter (GM and WM) outputs to manu-
ally segmented images. All of these tests consistently
have indicated Dice scores around 0.9 [19, 20]. Fur-
thermore, gray matter thickness differed from −0.79
to 0.65 mm (90% confidence interval)[21] between
automatic segmentation predictions and postmortem
gray matter thickness measurements. Finally, aver-
age Hausdorff distance, another measure of simil-
arity between two shapes, has been used to estim-
ate segmentation errors. Typically observed average
Hausdorff distance errors are in the order of mag-
nitude of 0.1 mm [19, 20]. All of these results indic-
ate that existing automatic MRI image segmentation
pipelines achieve excellent precision at segmenting
brain tissues; however, they are not perfect. Further-
more, non-brain tissues have larger errors associated
with them [22, 23]. Apart from errors, soft tissue
boundaries do not have fixed shapes. They can move
depending on posture. For example, cerebrospinal
fluid (CSF) tissue boundary shape can vary based
on the position of the subject [24]. Aside from head
model shape errors there is also tissue conductiv-
ity uncertainty. However, these have been shown to
result in negligible error relative to other sources of
uncertainty and are not considered here [13, 14].

There is evidence indicating that the E-field is
sensitive to head model uncertainty. For example, it
was found that sulci E-fields are highly dependent
to sulci width [25]. Different segmentation pipelines,
which result in distinct headmodels for the same ima-
ging data, generate significantly different E-field pre-
dictions [20, 22]. Furthermore, the effects of bias in
segmentation algorithms were studied by systemat-
ically biasing a one-vs-all tissue segmentation classi-
fier to preferentially predict a given tissue type [26].
Results showed that there is a strong dependence on
CSF, GM, and WM shape to TMS predicted E-field.
However, to date a systematic parametric study of the
dependence of head model tissue shape uncertainty
to E-field prediction uncertainty has not been done.

Random fields [27] are commonly used to model
parameter or shape uncertainties for a number of
applications including global temperature distribu-
tion [28], material parameter modeling [29, 30],
additive manufacturing of biomaterials [31], and
brain surfaces [32]. Recently, we proposed an
approach involving a stochastic partial differential
equation (SPDE) to model segmented tissue bound-
ary shape uncertainty and geometrical defects in 3D
printed structures [33]. Here, possible tissue seg-
mentation errors aremodeled as a tissue shape uncer-
tainty, and realizations of the perturbed tissue shape
are constructed by sampling a random field on the tis-
sue surface. This random field defines the magnitude

of a perturbation along the normal direction to the
nominal surface. Hence, each tissue shape realization
slightly differs from the segmentation output nom-
inal tissue boundaries and allows us to model pos-
sible segmentation errors as a tissue boundary shape
uncertainty. The goals of this paper are to quantify the
extent that tissue boundary shape uncertainty limits
the fidelity of E-field predictions, and to identify
the key tissue boundaries that contribute most to
cortical E-field prediction uncertainty. These results
will enable the determination of key E-field related
quantities that are robust to segmentation errors.
For example, we observe that averaging E-fields over
a small region provides E-field predictions that are
more robust to segmentation errors.

The rest of the paper is organized as follows. In the
methods section we describe our shape uncertainty
distribution and how to generate samples of it. Then,
we provide details of our boundary element method
(BEM) solver and head models used in this study. In
the results sections we provide validation examples
validating the accuracy of our SPDE method for gen-
erating Gaussian correlated samples relative to other
methods, and we study the effects of tissue boundary
uncertainty on predicted cortical E-field. The conclu-
sions and discussion sections summarize key findings
of our study.

2. Material andmethods

2.1. Overview
Computational frameworks for TMS E-field dosi-
metry [9, 23] typically use segmentation toolboxes to
generate head models from structural MRI images.
Commonly used head segmentation toolboxes for
generating head models from MRI images include
volume based ones (e.g. SPM [34], CondNet [35])
and surface based ones (e.g. freesurfer [36], and fast-
surfer [19]). The volume based ones employ a one-
vs-all strategy to classify each MRI image voxel into a
tissue type [26, 34]. Surface based segmentation tool-
boxes determine the boundary between different tis-
sue types [36]. Independent of segmentationmethod,
the output is then converted to surface boundary
triangle or volume tetrahedron mesh models of the
subject head for use in BEM or FEM simulation,
respectively. All of these head models will have lim-
ited accuracy because of potential errors in the seg-
mentation process resulting from low image con-
trast between tissue types, movement artifacts, partial
volume effects, noise, and others.

Due to all of these potential errors, the head
model output of the segmentation toolboxes has some
uncertainty associated with it. In this paper, we treat
each boundary surface of the head model output of
the segmentation as a nominal surface Γ, and uncer-
tainty is modeled as a random perturbation to Γ,
denoted by Γ̃ (figure 1); see [33]. The coordinates
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Figure 1. Sketches on how the geometric uncertainties are generated on brain tissue boundaries. (A) Realizations of the boundary

surface Γ̃ are generated via displacing each node location xΓ on the nominal boundary surface Γ by an amount ζ(xΓ) along the
normal direction nΓ(xΓ). The green band denotes the perturbation region with± standard deviation. (B) The correlation length
ℓ of the random field ζ(xΓ) controls the level of smoothness of each realization. The perturbations would be totally uncorrelated
within each node when ℓ= 0, while the perturbations become totally homogeneous when ℓ=∞. The smoothness of realizations
increases with increasing ℓ.

of the points defining the perturbed surface Γ̃ are
defined as

XΓ̃(xΓ) = xΓ + ζ(xΓ)nΓ(xΓ) , ∀xΓ ∈ Γ, (1)

where nΓ(xΓ) is an outward unit normal vector
and {ζ(xΓ),xΓ ∈ Γ} is a non-Gaussian random field
indexed by Γ. In practice, and following the equation
above, a realization Γ̃ of the perturbed tissue surface
is obtained by displacing each location xΓ of the ori-
ginal nominal surfaceΓ by an amount ζ(xΓ) along the
normal direction nΓ(xΓ). Hence, the central task for
perturbation generation is the definition of the non-
Gaussian field {ζ(xΓ),xΓ ∈ Γ}. To accomplish this, a
Gaussian field with a Matérn-type covariance func-
tion is first generated, and a transport map T is sub-
sequently used to map the latent Gaussian field to a
non-Gaussian field exhibiting bounded variations. In
our setting, the Matérn covariance function is para-
meterized in terms of a geodesic distance in order to
capture the curvature and complex folds exhibited by
brain tissue surfaces.

Each step of the segmentation error uncertainty
quantification process (figure 2) is explained in the
next few sections. First, the head model is gener-
ated using an automatic segmentation and meshing
framework (figure 2(A)). Here we used the Ernie
head model [22]. Then, an ensemble of head mod-
els is generated using the SPDE approach and the
head model tissue boundary meshes (figure 2(B)).
To fix the self-intersecting meshes after modifying
the boundarymeshes,a conditional samplingmethod
is employed as described in [33]. For each head
model, an E-field simulation is run (figure 2(C)).
Finally, ensemble E-field statistics are estimated.
The last methods section describes the methods
used for choosing shape uncertainty parameters (or

perturbation parameters) that result in uncertainty
that is representative of automatic segmented head
model uncertainty.

2.2. Discretization of shape uncertainty
This section briefly summarizes the main results in
[33] with an emphasis on defining the perturbation
parameters. We refer interested readers to [33] for
implementation details and further technical deriv-
ations. Below, we start by introducing the SPDE
method, which is used to construct a latent Gaussian
random field {Ξ(xΓ),xΓ ∈ Γ} with a Matérn covari-
ance structure. We then present the construction of
a transport map T that pushes forward the Gaussian
random field to a non-Gaussian random field exhib-
iting a Beta first-order marginal distribution (that is,
ζ(xΓ) = T(Ξ(xΓ))).

The latent field is chosen as a centered Gaus-
sian random field with a Matérn covariance function
given, in S2, by

C(x,y) = σ2 2
1−ν

G(ν)

(
∥x− y∥

ℓ

)ν

Kν

(
∥x− y∥

ℓ

)
,

∀x,y ∈ S2, (2)

where S2 denotes the two-dimensional manifold
embedded R3, ∥ · ∥ is the geometric distance defined
on two-dimensional manifold, σ2 is the marginal
variance of the field,G is the Gamma function, ℓ > 0
and ν > 0 are the correlation length and smooth-
ness perturbation parameters, and Kν is the modi-
fied Bessel function of the second kind (of order ν).
The parameter ν controls, in particular, the mean-
square differentiability of the field. For ν = 1/2 and
ν →+∞, the Matérn covariance function reduces
to the standard exponential and squared exponential
covariance functions, respectively. In this study, we

3
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Figure 2. The overall workflow. Firstly, some regular segmentation tools are employed to segment the MRI raw data and further
generate the brain tissue surfaces, which are used as the nominal surfaces. Then the non-Gaussian random field is defined and
sampled on the tissue boundaries, and the geometric perturbations can be generated accordingly. Finally, the BEM solver is
employed to solve the E-field by running Monte Carlo simulations.

choose ν= 1. The correlation length parameter ℓ con-
trols the rate of decay of the correlation function and
mediates the curvature of the realizations for the per-
turbed surface Γ̃. Large correlation lengths result in
slow decays and hence, yield to perturbed surfaces
that mostly have low curvatures. In contrast, small
correlation lengths lead to perturbed surfaces with
larger curvatures, owing to the fast decay of the cor-
relation function. This effect can clearly be observed
in figure 1, where cross sections of the nominal sur-
face (red curve), along with cross sections of realiza-
tions of the random field (blue curve), are shown for
different values of ℓ. It is seen, in particular, that the
realization becomes smoother as the correlation para-
meter ℓ is increased.

Following the work by Whittle [37], the Gaussian
field is defined and sampled through the SPDE

(κ2I −∆)α/2Ξ = Ẇ, (3)

where κ= 1/ℓ, ℓ denotes the correlation length para-
meter, I and ∆ are the identity and Laplacian
operators, α= (ν+ d/2), Ẇ denotes the normalized

Gaussian white noise in Rd, and equality holds in the
sense of distributions. The conditional variance of the
random field is given as

σ2 =
G(ν)

G(ν+ d/2)(4π)d/2κ2ν
. (4)

Here, the SPDE is defined and solved on the mani-
fold corresponding to the nominal surface Γ, using
the Galerkin approach proposed in [28]. This strategy
allows us to capture the geometric complexity of the
brain surfaces on the fly, so that shape uncertainties
can be generated in a consistent way. The descrip-
tion of that component is fairly technical, andwe refer
readers to [33] and the references therein for details.

Once the latent Gaussian field {Ξ(xΓ),xΓ ∈ Γ}
has been defined, the next step is to introduce a
transformation T such that the geometric perturb-
ations are bounded almost surely. Here we consider
a symmetric support [−ε,ε] for these perturbations,
where ε is the maximum magnitude of the (posit-
ive or negative) perturbation at a given location. In
order to construct an objective probabilistic model

4
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under such a boundedness constraint, the maximum
entropy principle is invoked. Considering repulsion
constraints at the boundary of the support, it can be
shown that T must be chosen such that the pushed
forward variable (at any fixed location) exhibits a Beta
distribution [33]. We therefore define T through the
relationship

ζ(xΓ) = 2 εF−1
B(α,α)

(
FN (0,1)(Ξ(xΓ))

)
− ε,

∀xΓ ∈ Γ, (5)

where F−1
B(α,β) is the inverse cumulative distribution

function of the Beta law with hyperparameters α and
β (here, we set α= β to obtain a symmetric distribu-
tion), and FN (0,1) is the cumulative distribution func-
tion of the normalized Gaussian distribution. It fol-
lows that the random field is centered, i.e.

E{ζ(xΓ)}= 0

withE the operator ofmathematical expectation, and
the variance is obtained as

σ2{ζ(xΓ)}=
ε2

1+ 2α
. (6)

From a computational standpoint, notice that we
use conditional sampling to ensure that the random
field does not contain self-intersecting meshes, as
explained in [33].

2.3. Boundary element solver
The TMS driving coil currents are J(x, t) = P(t)J(x),
where P(t) is the current pulse-waveform, J(x) is
the spatial variation of the current, t is time, and x
is a Cartesian coordinate. These currents generate a
total E-fieldEtot(x, t) = P ′(t)Etot(x), whereP ′(t) is the
time-derivative of the pulse-waveform, and Etot(x) is
the spatial variation of the E-field. Since the E-field
is trivially dependent on P(t), the BEM is used to
solve forEtot(x)using J(x) and the results are re-scaled
to obtain Etot(x, t). First, the total E-field Etot(x) is
decomposed into a primary E-field Ep(x), where x
is a Cartesian coordinate), that is the E-field gener-
ated by the coil in the absence of the head, and the
secondary E-field Es(x) that is induced by accumu-
lated charges ρ(x) on the brain tissue interfaces. The
primary E-field Ep is

Ep(x) =−µ0

4π

ˆ
J(x ′)

∥x− x ′∥
dx ′, (7)

whereµ0 is the permeability of the free space. The sec-
ondary E-field is the following

Es(x) =−∇ 1

4πϵ0

ˆ
ρ(x ′)

∥x− x ′∥
dx ′, (8)

where ε0 is the permittivity of free-space and ρ(x)
is an unknown charge density residing on tissue

boundaries. At each interface, the charge density
is determined by applying the electromagnetic
boundary condition

< n,σ+E+tot >=< n,σ−E−tot >, (9)

where n is the outward unit vector normal to the
boundary, < n,E+tot > and < n,E−tot > are the total
E-field along the normal direction an infinitesimal
away from the tissue boundary into the outer and
inner head tissue compartment, respectively, and σ−

and σ+ are the conductivities of the inner and outer
head tissue compartments, respectively. The above
boundary condition results in the following integral
equation defined on each tissue boundary

1

2
ρ(x)+

σ+ −σ−

σ+ +σ−

<
1

4π

ˆ
p.v.

ρ(x ′)
x− x ′

||x− x ′||3
dx ′,n(x)>

=−σ+ −σ−

σ+ +σ− ϵ0 < Ep(x),n(x)>, (10)

where ‘p.v.’ is used to denote Cauchy principal
value. The BEM described in [38] is used to solve
equation (10) for the charge distribution ρ(x) on
the interface. In equation (10), the charge distribu-
tion is defined on tissue interfaces and as a result,
the TMS simulation can be conducted only using the
boundary mesh of brain tissue interfaces, without
generating volume mesh in the brain, which reduces
the computation cost. The BEM solver used here is
freely-available online (see [39]), and implementa-
tion details are can be found in [38].

2.4. Shape uncertainty calibrationmetrics
The segmentation tools assign each voxel of structural
MRI image into one of five tissue types either scalp,
skull, CSF, greymatter (GM) orWM. These segment-
ations are then used to extract boundaries between
different tissues types. Each tissue surface is indicated
by its two adjacent tissues (i.e. air/scalp, scalp/skull,
skull/CSF, CSF/GM and GM/WM) as depicted in
figure 3(A). There have been variousmetrics that have
been used to measure segmentation accuracy. Here
we use the Dice score (DICE), one of the most used
metrics, defined as

DICE(A,B) =
2×A∩B

A+B
, (11)

where A,B correspond to the two separate index sets,
each set composed with Boolean values, 1 denoting
the node inside the domain, and 0 denoting the node
outside the domain. The Dice score is calculated for
each tissue compartment separately. To calculate the
Dice score for a tissue compartment we count the
number of voxels in the unperturbed and perturbed
compartment region separately, denoted as A and
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B in the above equation. Then the Dice coefficient
can be calculated as DICE= (2×Noverlap)/(Npert +
Nunpert), where Noverlap denotes the number of over-
lapping voxels in the two vertices sets, Npert and
Nunpert denotes the number of voxels in the perturbed
and unperturbed gray matter region. The closer the
Dice score is to 1, the less variations the tissue volume
has, and vice versa. To determine the approximate
perturbation ranges on the surfaces, we calculate the
Dice scores of each tissue given several different per-
turbation parameters, andmake the Dice scores com-
parable with the reference results in [20] for each tis-
sue type, i.e. the skin, skull, CSF, GM andWM. There
are two major random field parameters employed in
this work to control the variation of tissue shapes, i.e.
the perturbation heights ε and correlation length ℓ.
To make the random fields comparable, the variance
shown in equation (6) is selected such that the coef-
ficient of variation of the non-Gaussian random field
(CV= E{ζ(xΓ)}/σ{ζ(xΓ)}) is equal to 0.3.

2.5. Monte Carlo simulation parameters
For each set of perturbation parameters, we construct
1000 head models. These 1000 head models are used
to determine the distribution of the Dice scores of
the perturbation. BEM simulations are conducted on
the ensemble of head models. Then, the statistical
moments of the E-field induced mid-depth into the
GM compartment on a 40 mm × 40 mm motor cor-
tex region centered directly below the coil are com-
puted from the ensemble E-field results.We addition-
ally compute the average coefficient of variation (CV)
defined as CV= σ/µ, where σ denotes the average of
standard deviation in the domain and µ denotes the
average of the mean values in the domain.

3. Results

3.1. Individual tissue boundary shape uncertainty
First, the uncertainty in the E-field distribution
introduced individually by each tissue boundary
is investigated. Here only results for the Ernie
head model are included [22], two additional head
models with the same uncertain parameters where
also considered in this study and similar findings
where found (the additional results are included
in the supplementary material available online at
stacks.iop.org/JNE/19/026022/mmedia). Five tissue
boundaries are considered in this work, i.e. air/scalp,
scalp/skull, skull/CSF, CSF/GM, and GM/WM, as
seen in figure 3(A). To determine the perturbation
parameters on each tissue boundary, the Dice scores
for the five corresponding tissue types, i.e. scalp, skull,
CSF, GM, and WM are carefully calibrated with the
reference result in [20] (See the upper panel green
boxes in figure 3 therein). The perturbation para-
meters are given in table 1 and the corresponding
Dice scores are shown in figure 3(B). The mean
values of the Dice scores of this work is consistent

with the reference results. The variation of Dice
scores originated from the random field of perturb-
ations, while in [20] the variation originates from
the intrinsic probabilistic segmentation process. In
other words, the tissue boundary uncertainty in our
work is within the range of what is expected from
segmentation algorithms. The cortical E-field distri-
bution without any tissue boundary shape uncer-
tainty is shown in figure 3(C). The mean and stand-
ard deviation of the E-field distribution resulting
from uncertain tissue boundary shapes are shown in
figure 3(D). The mean E-fields are similar across tis-
sue types and they coincide with the nominal results.
The air/scalp or scalp/skull boundary shape uncer-
tainty results in near zero standard deviation every-
where, and amaximumstandard deviation is 0.08 and
2.92 V m−1, respectively. This indicates that the E-
field results are largely insensitive to scalp compart-
ment segmentation accuracy. Furthermore, GM/WM
boundary shape uncertainty also results in low stand-
ard deviation E-field everywhere, and has amaximum
of 1.28 V m−1. In contrast, skull/CSF or CSF/GM
boundary shape uncertainty leads to large standard
deviation of the E-field and the maximum standard
deviations are 22.8 and 25.01 V m−1, respectively.
All of these results indicate that improving the seg-
mentation accuracy of the CSF compartment is crit-
ical for reducing uncertainty in TMS simulations. In
the next section, we study the dependence of E-field
uncertainty on CSF segmentation perturbation para-
meters, thereby, quantifying the relation between the
CSF compartment segmentation fidelity and E-field
uncertainty.

3.2. Parametric study of uncertainties of skull/CSF
and CSF/GM boundary shapes
Here we study the dependence of standard deviation
of E-fields on tissue boundary perturbation para-
meters for skull/CSF and CSF/GM boundaries indi-
vidually. In particular, we consider the perturbation
height and correlation length. Again, during each run
we only perturb a single tissue boundary.

Figure 4 provides a visual guide of the smooth-
ness of the skull/CSF and CSF/GM realizations as a
function of correlation length. Specifically, it shows
realizations of the normalized random field (i.e. by
how much we perturb the surface at each point) for
various correlation lengths. As the correlation length
increases the realizations become more smooth. This
can be seen by the increasing sizes of the blue/red
regions with increasing correlation length. Corres-
pondingly, by increasing the correlation length, we
increase the smoothness of the perturbations. This
gives away to control the curvature of the realizations.

First we consider the skull/CSF boundary. The
mean and standard deviation for a fixed correla-
tion length of 1.0 cm and a perturbation height
of 1.0, 2.0 and 3.0 mm of the skull/CSF boundary
are shown in figure 5. With increasing perturbation
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Figure 3. (A) Five brain boundaries are employed as the nominal surfaces, where the perturbations are generated.
(B) Perturbation height on each tissue boundary is calibrated by calculation of Dice scores, which is comparable with the
results using conventional segmentation algorithm in [20]. (C) The nominal E-field obtained from the head model without
geometric uncertainties. (D) Contours of mean (first raw) and standard deviation (second raw) of E-fields with geometric
perturbations on each single brain boundary.

Table 1. Perturbation parameters to compute Dice scores. The perturbation parameters are carefully chosen such that the corresponding
Dice score of each tissue type is close to the results in [20].

Air/Scalp Scalp/Skull Skull/CSF CSF/GM GM/WM

Perturbation height (mm) 1 2.5 2 1 1
Correlation length (mm) 20 20 10 5 5

height, the standard deviation increases signific-
antly. Furthermore, the averaged coefficient of vari-
ation, which indicates the overall variation of the
E-field, increases by a factor of 2.6 as the uncer-
tainty height increases from 1.0 to 3.0 mm, as seen in
figure 7(A). This indicates that significant reduction

in uncertainty can be achieved from a more accur-
ate representation of the skull/CSF boundary. It can
be also observed that the high standard deviations
are all concentrated in the gyral crown regions. In
addition to the perturbation height, we further con-
sider the effects of correlation length on E-field

7
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Figure 4. Realization of the normalized random fields generated on the skull/CSF (upper panel) and CSF/GM (lower panel) with
various correlation lengths. The correlation lengths for skull/CSF (upper panel) are 5, 10 and 15 mm and the correlation lengths
for CSF/GM (lower panel) are 3, 5, and 7 mm. It can be seen that the larger the correlation length, the more homogeneous the
random field.

Figure 5. Contours of mean (first raw) and standard deviation (second raw) of E-fields with geometric uncertainties on skull/CSF
boundary. Three perturbation heights are set for the random field, i.e. 1, 2 and 3 mm respectively, and correlation lengths are set
as 1.0 cm for all. Left and right labels in color bar denote the minimum and maximum values in the corresponding contour.
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Figure 6. Contours of mean (first raw) and standard deviation (second raw) of E-fields with geometric uncertainties on skull/CSF
boundary. Three correlation lengths are set for the random field, i.e. 0.5, 1.0 and 1.5 cm respectively, and perturbation heights are
set as 2 mm for all. Left and right labels in color bar denote the minimum and maximum values in the corresponding contour.

uncertainty. The standard deviation of the E-field is
calculated under correlation length of 0.5, 1.0 and
1.5 cm, respectively, while the perturbation height
is fixed as 2.0 mm. The random field is in the
upper panel of figure 4. The corresponding E-fields
are shown in figure 6. As the correlation length
increases both of the ranges of mean and stand-
ard deviation remain unaffected. Furthermore, the
averaged coefficient of variation remains almost con-
stant with the increasing correlation lengths from
0.5 to 1.5 cm, as shown in figure 7(B). This indic-
ates that only a rough estimate of the correlation
length of the segmentation uncertainty on skull/CSF
is necessary to achieve satisfactory E-field uncertainty
estimates.

Second we consider the CSF/GM boundary. The
mean and standard deviation for a fixed correlation
length of 5mm and a perturbation height of 0.25, 0.5,
and 0.75 mm of the CSF/GM boundary are shown in
figure 8. Again, with increasing perturbation height,
the standard deviation increases significantly. In con-
trast to the sulci, where the standard deviation is
large, the gyral crown exhibits relatively low uncer-
tainty. In other words, E-field predictions on the
gyral crown are more robust to errors in the shape of
CSF/GM boundary. The averaged coefficient of vari-
ation again increases nearly linearly with increasing
uncertainty and it increases by a factor of 3 with

increasing perturbation height from 0.25 to 0.75, as
seen in figure 10(A). Finally, we consider the effects of
correlation length. The lower panel of figure 4 shows
the random fields with correlation lengths of 3, 5,
and 7 mm, respectively. The corresponding E-fields
are shown in figure 9 with perturbation heights of
0.5 mm. The three sets of results are nearly identical.
Furthermore, the averaged coefficient of variation is
unchanged as the correlation length varies from 3 to
7 mm, as shown in figure 10(B). These results indic-
ate that only a rough estimate of the correlation length
of the segmentation uncertainty on CSF/GM bound-
ary is necessary to compute satisfactory estimates of
E-field uncertainty.

3.3. CSF compartment shape uncertainty
Here we consider the combined effects of shape uncer-
tainties on skull/CSF and CSF/GM boundaries on
TMS simulation results. Results for single skull/CSF,
CSF/GM and their combined boundary uncertainty
are shown in figure 11. With increasing correlation
length the standard deviation of the E-field increases.
Furthermore, the standard deviation of the com-
bined effects is well approximated by assuming each
of the skull/CSF and CSF/GM boundaries independ-
ently affect the E-field predictions. The skull/CSF and
CSF/GMmostly introduce uncertainty in E-field pre-
dictions on the gyral crowns, and sulci, respectively.
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Figure 7. Coefficients of variation (CV) of E-fields with various perturbation heights and correlation lengths. Geometric
uncertainties are only generated on skull/CSF boundary.

Figure 8. Contours of mean (first raw) and standard deviation (second raw) of E-fields with geometric uncertainties on CSF/GM
boundary. Three perturbation heights are set for the random field, i.e. 0.25, 0.5 and 0.75 mm respectively, and correlation lengths
are set as 5 mm for all. Left and right labels in color bar denote the minimum and maximum values in the corresponding contour.
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Figure 9. Contours of mean (first raw) and standard deviation (second raw) of E-fields with geometric uncertainties on skull/CSF
boundary. Three correlation lengths are set for the random field, i.e. 3, 5 and 7 cm respectively, and perturbation heights are set as
0.5 mm for all. Left and right labels in color bar denote the minimum and maximum values in the corresponding contour.

Figure 10. Coefficients of variation (CV) of E-fields with various perturbation heights and correlation lengths. Geometric
uncertainties are only generated on skull/CSF boundary.
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Figure 11. Contours of standard deviation of E-fields for set 1 (first raw) and set 4 (second raw) in figure 12. First column denotes
the E-field standard deviation contour only using perturbed skull/CSF boundary, second column denotes the E-field standard
deviation contour only using perturbed CSF/GM boundary, and third column denotes the E-field standard deviation contour
using both perturbed skull/CSF and CSF/GM boundaries. The last column denotes the predicted E-field standard deviation
contour calculated from the first and second contours as shown in equation (12).

Figure 12. Averaged standard deviation of E-fields with geometric uncertainties on two single boundaries separately and their
combined effect. Each set consists of the averaged standard deviation of E-field with geometric uncertainties only on skull/CSF
boundary (red) and CSF/GM boundary (yellow), and geometric uncertainties on both boundaries (blue). Six sets are shown with
various perturbation heights (H) and correlation lengths (L).

In other words, the effects of each tissue boundary on
E-field are spatially separated, which partially could
explain why their effects appear to be independent.
Furthermore, the standard deviation is higher when
both boundary shapes are perturbed compared with
only one boundary perturbed.

We ran four additional scenarios and the results
are consistent with the two presented in figure 11.
Summary results for the six sets of mixed effect simu-
lations are shown in figure 12. For all sets, the stand-
ard deviation of the E-field in the mixed effects cases

are well approximated as the square root of the square
sum of the individual tissue standard deviation. In
other words, the standard deviation can be approx-
imated as:

σpred =
√

(σ2
1 +σ2

2), (12)

where σpred is the predicted standard deviation of
each node with two perturbed boundaries, σ1 and
σ2 denote the standard deviations with only single
skull/CSF or CSF/GM boundary respectively. The
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Figure 13. (A) The quantities of interest, i.e. the averaged mean and standard deviation of E-fields, are calculated in the ROI with
various sizes. (B) The averaged mean of E-fields in ROI with perturbations generated on skull/CSF and CSF/GM boundaries
separately, and (C) the averaged standard deviation of E-fields in ROI with perturbations generated on skull/CSF and CSF/GM
boundaries separately.

observed differences of E-field standard deviation
between the calculated and predicted results using
the above equation ranged between 0.45% and 2.0%
for the six sets. This gives a fast way to approxim-
ate standard deviations from combined effects using
single boundary shape uncertainty results.

3.4. Robustness of mean E-field
The above sections, we have considered the point-
wise uncertainty of the E-field distribution on a cor-
tical region. However, oftentimes the E-field is aver-
aged over a region of interest (ROI) to define the
total E-field dose delivered to it. This section studies
the uncertainty introduced in the the averaged E-field
over an ROI as a function of ROI size and perturb-
ation parameters. Note that only the perturbation
height is considered here, since the E-fields are almost
stable with the correlation lengths as shown in the

above sections. Specifically, we consider ROIs shown
in figure 13(A), with radii of 0.5, 5, 10 and 20 mm,
respectively. The averaged mean and standard devi-
ation on the E-fields in eachROI as a function of vary-
ing perturbation heights is shown in figures 13(B)
and (C), left column showing the perturbation on
skull/CSF boundary, and right column showing the
perturbation on CSF/GM boundary. The averaged
mean E-fields in ROI are stable regardless of the ROI
size or the perturbation height. Furthermore, the lar-
ger is the ROI size, the smaller is the overall vari-
ation in the E-field in the targeted ROI; this is partic-
ularly more visible for the skull/CSF boundary. For
example, assuming a skull/CSF boundary with per-
turbation height of 2 mm, ROIs of radii of 0.5, 5, 10
and 20 mm have standard deviations of 22.07, 17.06,
12.04, 7.76 V m−1, respectively. Both of the obser-
vations have indicated that the averaged E-field over
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a region is more robust to segmentation errors than
pointwise E-field estimates.

4. Discussion

During TMS the skull acts like an insulator that limits
the amount of conduction current flowing between
the skin and intracranial regions. This is consist-
ent with the low sensitivity of the cortical E-fields
to air/scalp and scalp/skull boundary uncertainty.
The skull/CSF boundary is a transition between
a low-conductivity region to a large one. Corres-
pondingly, conduction currents in the CSF compart-
ment are mostly tangential to the skull/CSF bound-
ary. The gyral crowns are closer to the skull/CSF
boundary than the sulci. The near proximity of
skull/CSF boundary could explain the large sensit-
ivity of E-fields on gyral crown regions to skull/CSF
perturbations. The skull/CSF boundary is nearly tan-
gential to the gyral crowns. As a result, there is little
charge buildup on the gyral crowns of the CSF/GM
boundary. This could explain why we observe little
uncertainty in E-field predictions on the gyral crown
resulting from uncertainty in CSF/GM boundary
shape. In contrast, the sulci are nearly perpendicular
to the skull/CSF boundary, and by proxy CSF com-
partment E-fields. Correspondingly, there is a large
charge build-up on CSF/GM boundary regions of the
sulci. This charge build-up could explain the relat-
ively large sensitivity of E-fields on sulci regions to
CSF/GM boundary shape. Note that another study
[25] considered E-field dependence on sulci width
(i.e. shape) and found similar results. Specifically, it
was found that sulci width (i.e. variations of CSF/GM
surface) results in variations in sulci predicted E-field
while the E-fields on the crown are largely unaffected.

Uncertainty quantification results have shown
that within realistic ranges, the predictions are robust
to changes in correlation length. This means that
although we do not have a precise description of
the correlation structure of the uncertainty, the res-
ults are likely still valid. For the cases studied here,
it is also observed that the standard deviation of the
E-field generated by perturbing both of the skull/CSF
and CSF/GM interfaces can be well approximated
from the single boundary perturbation results; this
is likely because of the fact that the two boundaries
largely introduce E-field uncertainty in spatially dis-
tinct regions.

For standardization of the E-field dose, and
quantitative studies of dose and response, it is import-
ant to be able to compute an E-field related quantity
that is robust to uncertainty in the TMS setup. Prelim-
inary results indicate that the average E-field on a cor-
tical ROI ismore robust to uncertainty than pointwise
estimates of the E-field. A detailed study of generaliz-
ability of these results to other brain regions and head
models is beyond the scope of this paper and could
be the subject of a future study. Furthermore, other

common ROI E-field parameters like the 99 percent-
ile E-field could have even lower uncertainties, but we
did not consider these here.

5. Conclusion

For TMS computational E-field dosimetry there are
a number of factors contributing to uncertainty
in E-field predictions. This manuscript studied the
uncertainty of cortical E-field predictions introduced
by segmentation uncertainty in the head model
geometry. Our results showed that uncertainty in
the shape of the skull/CSF and CSF/GM boundar-
ies results in significant uncertainty in the E-field
predictions. Furthermore, air/scalp, scalp/skull, and
GM/WM boundaries resulted in negligible uncer-
tainty. Finally, averaging the E-field over a small
region resulted in smaller uncertainty than was
observed for point-wise estimates of the E-field.
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