Characterization of mitigation schemes against
timing-based side-channel attacks on PCle hardware

Usman Ali
usman.ali@uconn.edu
University of Connecticut

Abstract—PCI-e connected peripheral devices are
prevalent in distributed embedded systems. Peripheral
devices, such as a GPU connected to a host CPU
via PCle hardware brings massive performance gains
for artificial intelligence applications. However, sharing
the network hardware resources bring security chal-
lenges. The literature shows that timing side-channel
attacks on shared PCI-e hardware leak security critical
information and covert communication. These attacks
are mitigated with performance implications at the
algorithm, system, and hardware levels. This paper
uses information theory concept of differential signal-
ing and demonstrates that noise injection (a system-
level mitigation scheme) is inadequate for practical
purposes, and software or hardware level mitigation is
required. Oblivious algorithm (at software level) and
time-division multiplexing (TDM at hardware level)
mitigations strategies are evaluated using a machine
learning workload. Our evaluation shows that at vary-
ing level of load at the PCI-e, the oblivious algorithms
always perform worse than hardware-based TDM.

I. INTRODUCTION

Modern distributed embedded systems consist of a host
machine (CPU) and memory units interconnected with a set
of attached peripheral devices, such as GPUs and FPGAs.
The peripheral devices connect to the host CPU using
PCI-Express (PCI-e) interconnect infrastructure. The host
machine manages all applications and offloads computation-
intensive workloads to specialized peripheral devices. For
example, a PCl-e interconnect-based Al accelerator by
Google [1] is 30x performance efficient compared to its
execution on the host machine. The peripheral devices
exploit direct access to host machine resources (i.e., memory
systems) to maximize performance gains. Technologies such
as Intel’s DDIO [2] and RDMA [3] enable resource sharing
in distributed embedded systems for performance gains.
Although resource sharing brings performance benefits, this
creates opportunities for co-located adversarial software
to leak security-critical information using timing-based
side-channel attacks (SCA).

Shared hardware resources are broadly classified into
persistent and non-persistent side-channels. The persistent
channels are used to store data for a temporary but long
time period. Cache memory and main memory are an
example of persistent channels. The non-persistent channels
aid the data movement between hardware modules and

978-1-6654-9466-3/22/$31.00 ©2022 IEEE

Salman Abdul Khaliq
salman.abdul _khaliq@uconn.edu
University of Connecticut

476

Omer Khan
khan@uconn.edu
University of Connecticut

do not store the data. PCl-e interconnect hardware is an
example of non-persistent channels. The PCI-e interconnect
hardware consists of root-complex and memory controller.
The SCA on persistent channels such as caches [4], main
memory [5], TLBs [6], and buffers [7] are well explored in
literature. Contrary, the non-persistent channels are less
explored and relatively new targets for security researchers
[8] [9].

Recent prior work [8] proposed an attack setup consisting
of a host CPU and two peripheral devices, including a
GPU and an FPGA. The attack targets non-persistent
PCl-e interconnect hardware for SCA, and exploits timing
variations due to resource contention in the PCl-e root
complex and memory controller hardware. It uses an
information-theory concept of repetition codes to improve
the attack setup, and demonstrates a high speed covert-
communication and information-leakage SCA. It discusses
the isolation-based scheme for mitigating SCA attacks
on PCl-e hardware. A hardware-based time-division mul-
tiplexing (TDM) scheme is proposed to eliminate the
SCA attacks. The TDM scheme is explored for security
implications, but a study on the performance impact of
TDM on real-world workloads is missing. Although TDM
is a hardware-based scheme, software and system based
mitigation schemes [10] [11] [12] are also explored in the
literature to mitigate timing-based SCAs. The software-
level schemes such as oblivious algorithms [11] attempt to
eliminate timing patterns by making applications resilient
to timing-based SCA. Whereas, the system-level schemes
include injection of random noise [10] to eliminate timing
variations. The literature characterizes these schemes in
the context of security and performance for a single CPU
setting, but a study on performance impact in distributed
embedded system settings is missing.

This paper implements state-of-the-art mitigation
schemes against timing-based SCA that targets PCl-e
interconnect hardware in distributed embedded systems.
The noise injection scheme uses the operating system
to inject random noise on PCI-e hardware to obfuscate
timing variations. This system-level random noise injection
based mitigation scheme is shown to be inadequate for
practical purposes since it can be de-noised using an
information theoretic technique of differential signaling
[13]. The software-level mitigation scheme is evaluated

23rd Int'l Symposium on Quality Electronic Design

using an oblivious algorithm that modifies application code
to eliminate the critical input-sensitive timing patterns,
and create an oblivious execution to mitigate timing-
based SCA. The hardware-level TDM mitigation scheme
temporally isolates PCl-e traffic originating from different
nodes to enforce strong isolation and remove contention
at PCl-e hardware. Both software- and hardware-level
schemes mitigate timing-based SCA, but their performance
evaluation using a real-world machine learning algorithm
is evaluated in this paper.

Our evaluation of the SCA attack setup under low,
medium, and high noise injection shows a decline in true
positive rate from >90% to 74%, 66%, and 55%, respec-
tively. When the SCA attack is evaluated with differential
signaling, the true positive rates improve to >90% for low
and medium, and 82% for high noise levels. We conclude
that de-noising of the noise injection mitigation scheme
makes it inadequate for practical purposes.

Next, we evaluate the oblivious algorithm and TDM
schemes for performance implications using a machine
learning (LeNet) workload. The CPU communicates the
LeNet model and a batch of inputs for processing at the
peripheral device (GPU) using the PCI-e shared hardware.
The evaluation is done by keeping the total work constant
but vary the batch size. When batch size is small, frequent
communication is required via the PCl-e interconnect.
However, the amount of computation performed at the
GPU is kept low. On the other hand, when batch size
is increased, the communication traffic reduces, but the
amount of work done at the GPU increases. The evaluation
shows that at small batch size (of 16), the oblivious
algorithm shows ~47%, and TDM scheme shows a ~30%
performance degradation. For the oblivious algorithm,
performance degradation primarily originates from the
additional work performed at the GPU. Whereas, in the
TDM scheme, the performance degradation is primarily
attributed to the additional communication overheads for
temporal isolation of traffic via the PCI-e hardware.

The overall performance of the machine learning work-
load improves when the batch size is increased (to 128). In
this setting, the increase in work performed at the GPU
overwhelms the oblivious algorithm’s execution, leading
to over 2x performance overhead due to over-utilization
of GPU computational capabilities. This overhead is
eliminated by the TDM scheme. However, the TDM scheme
suffers a small ~6% performance penalty due to the
temporal isolation overheads for communicating the LeNet
model, but much less frequently as compared to the small
batch size scenario.

We conclude that oblivious algorithms are easier to
deploy due to their software-only modifications, but they
are efficient for workloads that frequently use PCl-e
hardware. In contrast, the TDM scheme requires hardware
modifications, but it is efficient for workloads that optimally
utilize the peripheral devices.

II. BACKGROUND & RELATED WORK
A. Timing-based Side-Channel Attack (SCA)

In timing-based SCA, an adversary performs software
operations and measures the completion time of operations
under different scenarios. For example, the data movement
on a contended resource takes more time when compared to
readily available resources. These timing variations are used
to leak security critical information in shared hardware
resources. Prior work [4] [9] [5] shows that adversaries
are able to develop covert-channel capabilities and leak
sensitive information, including RSA and AES private keys.
Timing-based SCA has also been shown to leak kernel
weights and security-critical model specific information for
machine learning workloads [14].

B. Mitigation Schemes

In timing-based SCA, the adversary infers critical infor-
mation from the patterns of timing variations on shared
hardware resources. Successful mitigation requires either
the elimination or detection of timing variation patterns.
The literature shows that timing-based SCAs are mitigated
using isolation or obfuscation-based schemes. In isolation-
based schemes, the security-critical data is temporally or
spatially isolated from non-critical data, thus eliminating
the timing variations. KASLR [15] is a temporal kernel
address space isolation scheme that is implemented in the
operating system, whereas TDM [8] is a temporal isolation
scheme implemented at the hardware level. Contrary, the
obfuscation schemes attempt to hide timing variations, thus
protecting against SCA. Obfuscation-based mitigations
are implemented at the software, system, and hardware
levels. [10] proposes the idea of noise injection to obfuscate
timing variations at the system and hardware level in the
context of a single CPU. Whereas, [11] uses the concept of
oblivious executions at the software level, and proposes the
inclusion of dummy instructions to corrupt timing patterns
to mitigate the attack.

III. PCI-E ATTACK

The PCl-e interconnect hardware enables high-speed
communication between many connected peripheral devices,
and PCl-e bandwidth is distributed among these peripheral
devices for maximum performance. A device with high
PClI-e demand can occupy all hardware resources of PCl-e
interconnect, and cause contention for other devices that
results in latency variations for other peripheral devices.
Figure 1 shows latency variations on PCI-e hardware with
and without contention in distributed embedded systems.
An increase in contention on PCl-e hardware increases
the latency for data movement. An adversary can exploit
these latency variations to create covert communication
and information leakage timing-based SCA. In a covert
communication attack, a malicious PCl-e peripheral device
intentionally occupies all shared hardware resources to gen-
erate bit 1, and does nothing to generate bit 0. Other devices
can monitor contention on PCI-e hardware by measuring

Timing histogram on PCl-e hardware

2 160 . !
e = without contention
© 140 . .

» m with contention

S 120

_8 100 TP Rate: 92%

= DI: 0.4

£ 80

S 60

o 40

& o el 11T 1P e

“6 0 0 00 O 0O 0 0 0 O O W O O 0 O W O O ©
g T OONOIOON®DTOONDT O ©N®D
o O T T OO OMMNMNMNMOOWODOODOO — T ANOMMIT I
Z T T T v A NNNNNNN

Fig. 1. Timing histogram with and without contention on PCl-e
hardware in distributed embedded systems

latency variations, and convert it into useful information.
A repeated contention and no-contention pattern is used
to covertly leak information (i.e., a document or image
data). Contrary, in an information-leakage attack, a secure
PCl-e device involuntarily generates a timing pattern that
reveals secret information (i.e., private keys for crypto-
systems, or weights for a machine learning model). The
accuracy of PCl-e attacks depends on the correct detection
of contention patterns based on timing variations. The prior
attack [8] uses information theory concept of repetition
code to increase the timing variations, but at the cost of
lower speed for the SCA attack.

IV. MiTiGATING THE PCI-E SCA ATTACK

The timing-based SCA on PCl-e interconnect is enabled
by shared hardware between multiple peripheral devices,
and information leakage patterns in real-world applications
(such as machine learning or cryptography algorithms).
This section discusses software, system, and hardware
level mitigation schemes to mitigate the SCA attack.
The system-level mitigation schemes use external noise
to obfuscate latency variations on shared PCl-e hardware,
and we demonstrate that the information theory techniques
can successfully de-noise the SCA attack. The de-noising
approach makes system-level mitigation inadequate for
practical situations. Thus, the remaining techniques focus
on software-based oblivious algorithms and hardware-based
TDM mitigation schemes. Oblivious algorithms and TDM
schemes are proven to protect against timing attacks in
literature. However, a performance study on practical
machine learning workload is evaluated in this paper.

A. System: Noise Injection

An adversary in timing-based SCA uses timing variations
to leak security-critical information. For example, a high
contention on PCl-e causes an increase in data read
latency, and vice versa. A random or controlled noise
injection is used as a mitigation scheme to obfuscate latency
variations between contention and no-contention situations.
For example, an adversary may transmit bit 0 by creating
a no-contention situation. Although the receiver expects
a low latency for its data read, it observes higher latency

when random noise is injected in the PCI-e hardware. This
approach drastically reduces the capability of an adversary
to leak secret information. However, an adversary equipped
with information theory capability of differential signaling
can de-noise the PCI-e channel, and increase the attack
accuracy to leak secret information.

1) De-noising of attack: Prior work uses information
theory concepts of repetition codes [8], whereas this work
adds differential signaling [13] to de-noise the attack setup.
In the context of communication systems, the differential
signaling technique requires a simultaneous transmission
of two signals for each bit of information, an original signal
and a reference signal (i.e., bit 0 or low signal). Later a
difference between the original signal and the reference
signal is used to infer original information. In the PCl-e
attack, we have two cases, the contention case (bit 1) and
the no-contention case (bit 0). We use bit 0 as a reference
signal for this work. For example, the adversary application
creates contention on PCl-e hardware for ¢ time followed
by a no-contention situation for ¢ time to transmit a secret
bit 1. Whereas bit 0 is transmitted by creating two no-
contention cases on the PCl-e hardware. Our evaluation
shows a successful de-noising of attack in the presence
of low, medium, and high levels of noise on the PCl-e
hardware.

Original Weights Oblivious Weights o time_,

°0 00000 o |
o Q00000

088800 Q00000 GPU

9000006 900000 Request
oooooo':>°oooooo cpy

OOOO 9900000 Activity

o Q00000

0° 00000 Roauest | | I

FPGA l I I I
Activity

b) TDM

@ Original kernel @ Dummy kernel @ kernel padding

a) Oblivious Algorithms

Fig. 2. Software and hardware mitigation schemes including a)
Oblivious algorithm, and b) Time Division Multiplexing (TDM)

B. Software: Oblivious Algorithms

The oblivious execution techniques eliminate the tim-
ing variation patterns to protect critical information. A
common technique used to eliminate patterns of timing
variations is to include dummy instructions to hide input-
sensitive parameters. For example, in machine learning
algorithms, the repeated access to varying length kernels
(i.e., weights) in different layers of computations reveals the
weights and the structural details of the machine learning
model. Figure 2-a shows an example of original kernels and
oblivious kernels that includes original weights and dummy
weights. A dummy instruction that involves computations
on dummy kernels corrupts the timing patterns for the
attacker, thus protecting critical information of the machine
learning algorithm. These additional dummy instructions
protect against information leakage, but increase the
computation time for the workload. This work uses a

dummy instruction approach, and characterizes perfor-
mance overhead using different configurations.

C. Hardware: Time Division Multiplezing (TDM)

The timing-based SCA on PCl-e hardware exploits
the demand-based resource distributed policy, and suc-
cessful elimination of attack requires temporal isolation
of hardware resources to avoid contention. TDM is a
temporal isolation scheme that temporally distributes PCI-
e hardware between peripheral devices. Figure 2-b shows a
temporal distribution of overall PCl-e resources among
two devices. The total bandwidth is allocated to each
peripheral device for a short time quanta (i.e., ¢ time
slice). For example, TDM on a system with two peripheral
devices (i.e., a GPU and an FPGA) will work as follows.
At time quanta (i.e., t=1), the GPU is allowed to use
PCl-e resources, irrespective of the demand for GPU, and
in next time quanta (i.e., t=2), the FPGA is allowed to
use all PCI-e hardware resources. This temporal isolation
ensures a contention-free communication between different
peripheral devices.

V. METHODOLOGY
A. System Setup

The representative embedded system setup consists of a
host CPU and two peripheral devices, a GPU and an FPGA.
The host CPU uses the Intel Core i7 - 4709 processor
and Ubuntu 20.04 LTS operating system. The host CPU
consists of four main memory modules, where each module
has a memory of 4GB. The onboard PCl-e root complex
consists of three connecting ports, with each port consisting
of 16 lanes. An NVIDIA GeForce 1030 GT GPU is attached
to the host CPU on an onboard PCl-e port. The GPU has
on-chip memory of 2GB. The GPU is programmed with
OpenCL library and uses clEnqueueReadBuffer() APT calls
to make read accesses from the host CPU memory. The
FPGA is attached to the host CPU PCl-e port using an
extension cable. The Xilinx development board VCU118
uses the Virtex ®UltraScale+™ FPGA. The VCU118
board has an onboard memory module of 4GB. The FPGA
is programmed using Xilinx DMA subsystem for PCI
express 1P, and accessed by the host CPU using XDMA
driver provided by Xilinx for performance monitoring and
debugging.

B. SCA attack implementation

The adversary (i.e., a receiver) application uses XDMA
APT and rdtsc() to measure timing variations. In the setup,
XDMA API calls are used to write data on the VCU118

memory module, and a memory read request is initiated.

Later data arrival time is measured using the cycle-accurate
counter rdtsc() on the host CPU. Similarly, the GPU
is loaded with a program that involves data reading
from the host CPU. The GPU loads data from the host
CPU main memory using OpenCL clEnqueueReadBuffer()
APT calls. In the no-contention scenario, only FPGA is

active to the host CPU, and multiple samples of timing
measurements are collected. For the contention case, the
adversary application measures the data arrival latency
from FPGA, while the GPU initiates data read operations
from the host CPU’s main memory.

1) Noise and de-noising: The noise generation appli-
cation is co-located with the transmitter application on
the GPU. The noise application makes random memory
accesses using OpenCL clEnqueueReadBuffer() API calls
to the host CPU at random intervals. The noise level is
controlled using data access size and interval timing. The
transmitter application is modified to create contention
followed by no-contention for bit 1 transmission, and no-
contention followed by no-contention for bit 0 transmission
on the PCl-e hardware to implement differential signaling.

C. Performance modeling

The performance impact of mitigation schemes studied
on the host CPU, and attached GPU using machine
learning LeNet-5 [16] workload with 54,000 images from
MNIST [17] dataset. The LeNet-5 is a convolution neural
network that includes seven layers, with three of them
being convolution layers. Each convolution layer uses a
kernel (i.e., weight matrix) size of 5x5. The LeNet-5 is
used in security-critical applications, such as identifying
vehicle registration numbers.

1) Oblivious algorithm: The LeNet-5 algorithm is modi-
fied to make its execution timing oblivious. Prior work [14]
shows that the timing patterns that reveal the length of
memory accesses to kernels are exploited to leak weights.
The inclusion of dummy instructions corrupts the timing
patterns, thus protecting against leakage of weights. In
oblivious LeNet-5, two dummy convolution layers are added
on top of the original three layers.

2) TDM: The performance modeling of the TDM scheme
is studied using LeNet-5 implementation on the TensorFlow
GPU framework. The overall completion time of LeNet-5
is divided into 1) time to load kernels into GPU and 2)
perform computations. Loading kernels into GPU requires
PClI-e hardware. For TDM, PCl-e results in doubling of its
latency. Thus, to model the performance impact of TDM,
we double the kernel load time into the GPU.

D. Evaluation metrics

The accuracy and reliability of the SCA attack is evalu-
ated using the True Positive (TP) rate and Discrimination
Index (DI) metrics. The TP rate is a correct inference
of contention or no-contention situation on the PCl-e
hardware. For example, if a transmitter application creates
contention on the PCI-e hardware, the receiver application
successfully classifies it as contention based on timing
variations. The TP rate is calculated using TP = fzif:,
where d. is total correct inferred contention cases, and
d, is the correctly inferred no-contention case. The t. is
the total number of contention cases, and t,, is the total
number of no-contention cases. The timing variations are

distributed for contention and no-contention situations, and
TP is not sufficient to measure the attack reliability. The
DI metric quantifies the difference between two timing
distributions. DI includes the statistical mean of each
distribution and the variance of each distribution. The DI is

calculated using DI = —£ethn_ where pu, is the statistical
VoZ+o? ’

mean of distribution under contention situation, and pu,,
is the statistical mean of distributed under no-contention
situation. The o2 and o2 are the variance values under
contention and no-contention situations, respectively.

The workload performance is measured using the
completion-time metric. The overall completion time is
reported using breakdowns of the program loading time
from the host CPU to GPU, and the computation time
spent in the GPU.

VI. EVALUATION

This section evaluates information theory attack with
TP rate and DI metrics in the presence of noise. Later,
performance implications of software-level oblivious algo-
rithm and hardware-level TDM schemes are evaluated using
three configurations (i.e., batch size 16, 128, and 256) of
the LeNet-5 algorithm executing 54,000 images.

A. System-level mitigation & Information theory attack

To evaluate the system-level mitigation scheme, low,
medium, and high levels of noise is generated using 128
bytes, 1024 bytes, and 4096 bytes data size random access
from GPU to the host CPU memory. This unwanted traffic
on PCl-e hardware obfuscates timing variations for receiver
application to mitigate the SCA attack. Figure 3 shows
that the TP rate for attack drops to 74%, 66%, and 55%
and DI reduce to 0.22, 0.12 and 0.02 under low, medium,
and high noise configurations. Next, the same study is
performed for the attack with differential signaling enabled.
The attack shows a TP rate of 82% and DI of 0.25 for
high noise scenario, while the TP rate increases to >90%
for low and medium noise scenarios. These results show
that random noise as a mitigation strategy is inadequate
for practical situations, and other more robust mitigation
schemes are needed.

Attack characteristics under system-level mitigation
m Without DS = With DS
100 DI 0.35
DI0.25

DI 0.29
80 DI0.22
DI0.12
60 DI10.02
40
20
0

Low (128 bytes) Medium (1024 bytes) High (4096 bytes)

True Postive Rate (%age)

Fig. 3. Attack with system level mitigation and information theory
de-noising

B. Performance of software € hardware mitigation schemes

The LeNet-5 algorithm performance is evaluated using
16, 128, and 256 batch sizes for total images of 54,000,
where each image is 28x28 pixels. The LeNet-5 algorithm
completes computation in m‘% steps, where each step
uses PCl-e hardware to load images and kernels in the GPU
device. For example, for batch size 16, the PCI-e hardware
is used 3375 times in single execution of an algorithm. The
overall completion time of the algorithm is divided into the
time to load data, and then perform computations. Figure
4-default shows that for small batch size of 16, the LeNet-5
algorithm spends ~30% of overall time loading kernels and
data into peripheral devices out of a total of 128 seconds.
The LeNet-5 takes 30 seconds to complete the algorithm
for a batch size of 128 and spends 15% time loading data.
The drastic decrease in overall completion time for the
batch size of 128 is due to two reasons 1) 6x lower usage
of PCI-e hardware, and 2) efficient utilization of GPU’s
parallel computations on 128 images. For 256 batch size,
the total execution time increases to 43 seconds. A larger
batch size results in lower PCl-e utilization (6% of overall
execution time), but the increased number of images cause
over-utilization of GPU parallel resources, leading to an
increase in overall completion time. The evaluation shows
that the LeNet-5 works most efficiently for a batch size
of 128. Figure 4 also shows the performance implications
using the TDM and oblivious algorithm mitigation schemes
that are discussed next.

LeNet Performance Characterization for mitigation schemes

200
160
120
80
40 I
. nl
0'2“\\\ 5 o° 0‘“

& /\Q® ©
§

Completion Time (seconds)

fb° 0®

Batch Size 256

S S5

Batch Size 16 Batch Size 128

mKernal Load Time = Compute Time

Fig. 4. Completion time for LeNET using sofware and hardware level
schemes

1) Oblivious Algorithm: The oblivious algorithm scheme
is also evaluated using the LeNet-5 algorithm with batch
sizes 16, 128, and 256. The inclusion of two dummy layers
results in a small increase in kernel and input image load
time, but a significant increase in compute time. Figure 4
shows that for 16 batch size configuration, the load time
increases by ~20% and compute time ~40%. For a larger
batch size of 128 and 256, the load time becomes negligible
but compute time increases more than two times.

2) TDM: The performance implication of the TDM
scheme is evaluated on the LeNet-5 algorithm with batch

sizes 16, 128, and 256. The TDM scheme impacts the load
time of the GPU, which uses the PCl-e hardware. Figure
4 shows that for small batch size, where the algorithm
frequently accesses PCl-e hardware, the load times takes
~50% of the overall completion time. The computing time
remains constant for a large batch sizes of 128 and 256.
TDM shows up to ~6% performance degradation in overall
completion time due to the increase in the load time.

VII. CONCLUSION

This paper characterizes software, system, and hardware
mitigation schemes against timing-based SCA that targets
non-persistent PCl-e hardware in distributed embedded
systems. A timing-based SCA setup with an information
theory concept of differential signaling is implemented on
the host CPU, GPU, and FPGA devices connected over
PCI-e hardware. This setup de-noises the system-level noise
injection scheme on PCI-e hardware and improves the
accuracy of the attack setup. Based on these observations,
we conclude that the noise-injection mitigation scheme
is inadequate for practical purposes. The performance
impact of oblivious algorithm and TDM mitigation schemes
is characterized using a representative machine learning
workload. We conclude that the oblivious algorithm scheme
is easier to implement and efficient for workloads requiring
frequent use of PCI-e hardware. Contrary, the TDM scheme
requires hardware changes and is efficient for algorithms
that fully utilize peripheral devices.

VIII. ACKNOWLEDGMENTS

This research was supported by the National Science
Foundation under Grants No. CNS-1929261 and CNS-
1916756.

REFERENCES

[1] T. Norrie, N. Patil, D. H. Yoon, G. Kurian, S. Li, J. Laudon,
C. Young, N. P. Jouppi, and D. A. Patterson, “Google’s training
chips revealed: Tpuv2 and tpuv3.,” in Hot Chips Symposium,
pp. 1-70, 2020.

A. Farshin, A. Roozbeh, G. Q. M. Jr., and D. Kosti¢, “Reexam-

ining direct cache access to optimize I/O intensive applications

for multi-hundred-gigabit networks,” in 2020 USENIX Annual

Technical Conference (USENIX ATC 20), pp. 673-689, USENIX

Association, July 2020.

[3] A. Kalia, M. Kaminsky, and D. G. Andersen, “Design guidelines
for high performance RDMA systems,” in 2016 USENIX Annual
Technical Conference (USENIX ATC 16), (Denver, CO), pp. 437—
450, USENIX Association, June 2016.

[4] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low
noise, 13 cache side-channel attack,” in 28rd USENIX Security
Symposium (USENIX Security 14), (San Diego, CA), pp. 719-
732, USENIX Association, Aug. 2014.

[5] Y. Wang, A. Ferraiuolo, and G. E. Suh, “Timing channel
protection for a shared memory controller,” in 201 IEEE
20th International Symposium on High Performance Computer
Architecture (HPCA), pp. 225-236, 2014.

[6] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation leak-
aside buffer: Defeating cache side-channel protections with TLB
attacks,” in 27th USENIX Security Symposium (USENIX Secu-
rity 18), (Baltimore, MD), pp. 955-972, USENIX Association,
Aug. 2018.

[2

[7] S.van Schaik, A. Milburn, S. Osterlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “Ridl: Rogue in-flight data
load,” in 2019 IEEE Symposium on Security and Privacy (SP),
pp- 88-105, 2019.

[8] S. A. Khaliq, U. Ali, and O. Khan, “Timing-based side-channel
attack and mitigation on pcie connected distributed embedded
systems,” in 2021 IEEE High Performance Extreme Computing
Conference (HPEC), pp. 1-7, 2021.

[9] U. Aliand O. Khan, “ConNOC: A practical timing channel attack
on network-on-chip hardware in a multicore processor,” in IEEE
International Symposium on Hardware Oriented Security and
Trust (HOST), 2021.

[10] Y. Zhou, S. Wagh, P. Mittal, and D. Wentzlaff, “Camouflage:
Memory traffic shaping to mitigate timing attacks,” in 2017
IEEFE International Symposium on High Performance Computer
Architecture (HPCA), pp. 337-348, 2017.

[11] S. Tople and P. Saxena, “On the trade-offs in oblivious exe-
cution techniques,” in Detection of Intrusions and Malware €
Vulnerability Assessment (DIMVA), July 2017.

[12] H. Omar and O. Khan, “Ironhide: A secure multicore that effi-
ciently mitigates microarchitecture state attacks for interactive
applications,” in 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp. 111-122, 2020.

[13] Y. Massoud, J. Kawa, D. MacMillen, and J. White, “Modeling
and analysis of differential signaling for minimizing inductive
cross-talk,” in Proceedings of the 38th Annual Design Automation
Conference, DAC ’01, (New York, NY, USA), p. 804-809,
Association for Computing Machinery, 2001.

[14] W. Hua, Z. Zhang, and G. E. Suh, “Reverse engineering convo-
lutional neural networks through side-channel information leaks,”
DAC ’18, (New York, NY, USA), Association for Computing
Machinery, 2018.

[15] C. Canella, M. Schwarz, M. Haubenwallner, M. Schwarzl, and
D. Gruss, “Kaslr: Break it, fix it, repeat,” in Proceedings of the
15th ACM Asia Conference on Computer and Communications
Security, ASIA CCS 20, (New York, NY, USA), p. 481-493,
Association for Computing Machinery, 2020.

[16] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

[17] L. Deng, “The mnist database of handwritten digit images
for machine learning research [best of the web],” IEEE Signal
Processing Magazine, vol. 29, no. 6, pp. 141-142, 2012.

