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Forecasting the dynamics of large, complex, sparse networks from previous time series data is important
in a wide range of contexts. Here we present a machine learning scheme for this task using a parallel
architecture that mimics the topology of the network of interest. We demonstrate the utility and scalability
of our method implemented using reservoir computing on a chaotic network of oscillators. Two levels of
prior knowledge are considered: (i) the network links are known, and (ii) the network links are unknown
and inferred via a data-driven approach to approximately optimize prediction.
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Machine learning (ML) has played a vital role in recent
scientific advances in many disciplines. A key problem in
these contexts is time series prediction of a dynamical
system for which a first-principles, knowledge-based
description is unavailable [1]. By using ML in combination
with measured time series data, one can hope to construct a
faithful model of a system’s dynamics and to then use this
model to predict the future evolution of the system’s state.
Our aim in this Letter is to address this goal for large
systems of interacting components with complex connec-
tivity and dynamics—a system type of enormous technical
and scientific interest in many fields, ranging, e.g., from
neuroscience to power grids. However, straightforward
application of the standard ML prediction schemes
becomes problematic when applied to forecasting the
dynamics of large networks. Leveraging the typical preva-
lence of sparse network topology in such systems, we
introduce a parallel method for forecasting node dynamics.
The key oft-occurring enabling system characteristic that
our method requires is that the number of network nodes
providing inputs to any node is small relative to the total
number of nodes in the network. In our approach, we
construct a ML architecture that mimics the topology of the
network. Each node of the network to be predicted is
assigned an individual small ML device and these indi-
vidual ML devices are linked to each other based on the
underlying connectivity of the network (either known
a priori or inferred from the available time series data).
We demonstrate and test this method by applying it to a
network of Kuramoto oscillators [2,3] constructed to
exhibit chaotic dynamics. Our method is motivated in part
by previous work on parallel ML prediction of large
spatiotemporally chaotic systems [4,5].
We consider two scenarios: (a) the connectivity of the

network is known, and (b) the connectivity of the network
is unknown a priori, yet may be approximately inferred

from node time series data. Scenario (a) serves two
purposes: first, as preparation for the more challenging
situation presented by scenario (b) and, second, as a method
applicable to cases where the connectivity is, in fact,
known. The main conclusion of our Letter is that our
proposed parallel ML scheme enables data-based network
dynamics prediction in cases that would otherwise (i.e.,
without parallelization) be unattainable.
In order to demonstrate and test our approach, we

consider the well-studied Kuramoto model of N net-
work-coupled oscillators,

_θi ¼ ωi þ K
XN
j¼1

Aij sinðθj − θiÞ; ð1Þ

where θi is the phase angle of oscillator i, ωi is the natural
frequency of oscillator i when uncoupled,K is the coupling
strength, and Aij is the adjacency matrix that specifies the
structure of the oscillator network (Aij ¼ 1, if there exists a
network link from node j to node i with i ≠ j, and Aij ¼ 0

otherwise). Here we consider an undirected (Aij ¼ Aji),
frequency assortative Kuramoto network [6]. By “frequency
assortative” we mean that two nodes are more likely to be
linked if their natural oscillation frequencies are numerically
close. The resulting frequency assortative system has
chaotic dynamics for certain choices of parameters [7],
hence serving as a good example of complex network
dynamics whose evolution is challenging to predict. Each
node is taken to have the same number of connections (this
number is called the node’s degree). The oscillator natural
frequencies ωi are drawn from a uniform random distribu-
tion from −π=2 to π=2. The frequency assortative network
(i.e., the set ofmatrix elementsAij) is constructed by starting
with N0 unlinked nodes, each with its assigned frequency
(ωi for node i) and then successively adding links, as
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follows. After randomly choosing a node i that still requires
additional links, we next randomly pick another node j (not
already connected to node i) that also still requires additional
links, and then, with probability pij, we link nodes i and j,
where

pij ∝
δγ

δγ þ jωi − ωjjγ
: ð2Þ

We continue in this way to make links until all nodes have
the desired degree d. Because of the form of pij [Eq. (2)],
nodes with similar natural frequencies are connected with a
higher probability (see Supplemental Material, Fig. 1 [8]).
We use the global order parameter R as a metric to measure
the dynamics of the oscillator network, where

RðtÞ ¼
P

N
i;j¼1 Aijeiθj

Nhdi : ð3Þ

For our frequency assortative network, with N ¼ 50, a
fixed nodal degree d of 3, δ ¼ 0.8, γ ¼ 5, and K ¼ 0.5 (our
standard parameter set for most of out subsequent numeri-
cal experiments), we observe chaotic behavior, which is
confirmed by the positive value of λmax, the largest
Lyapunov exponent of the system (Fig. 1).
Background on nonparallel reservoir computing pre-

diction.—In this Letter, we use reservoir computing (RC)
[9,10] as our ML scheme, because of its demonstrated
utility for time series prediction [1,11,12]. We consider a
reservoir computer constructed with an artificial high-
dimensional dynamical system, known as the reservoir,
which is coupled to an input through an input layer,
specified by a matrixWin, which maps the Nu-dimensional
input vector u at discrete time t to the reservoir state
variables, which are collectively expressed as the scalar
components of the reservoir state vector r. In our RC
implementation, the reservoir is a network [not to be
confused with the network, e.g., Eq. (1), whose state we
desire to predict], and the kth component of the vector r is
the scalar state of reservoir node k. The RC network is
directed, sparse, and random with Nr nodes having average
input degree, κ ¼ 3. The RC adjacency matrix is denoted B,

with matrix elements Bkk ¼ 0 and Bkl for k ≠ l chosen
randomly and uniformly from [−β, β], where β is chosen to
yield a maximum eigenvalue of B denoted ρ (known as the
spectral radius). Each input to the reservoir is sent to
Nr=Nin reservoir nodes, where Nin is the number of
inputs to the RC (note that Nr is chosen to be an integer
multiple of Nin). The input matrixWin is then an Nr × Nin-
dimensional matrix. The elements ofWin are chosen so that
every node in the reservoir receives exactly one input from
uðtÞ, while each input in uðtÞ is connected toNr=Nin nodes
in the reservoir network (see Supplemental Material for
further discussion [8]). The nonzero elements are drawn
from a uniform random distribution from ½−σ; σ�, where σ
is the input scaling. The reservoir state rðtÞ is taken to
evolve according to

rðtþ ΔtÞ ¼ αrðtÞ þ ð1 − αÞ tanh½BrðtÞ þWinuðtÞ�; ð4Þ

where the tanh function is applied componentwise to its
vector argument. Here α is the leak rate that controls the
timescale of the reservoir nodes. The output of the system ũ
is obtained through the Nr × Nu-dimensional output layer
matrix Wout,

ũðtÞ ¼ WoutrðtÞ: ð5Þ

For the task of time series prediction, the reservoir
computer is used in two different modes: a training mode
and a prediction mode. In the training mode, the reservoir
computing system, represented by Eqs. (4) and (5), is run
for the time interval over which training data uðtÞ ¼
uðnΔtÞðn ¼ −nt; ð1 − ntÞ; ð2 − ntÞ;…; 0Þ are available,
rðnΔtÞ is computed, and the output matrixWout is adjusted
(“trained”) so that the output of the reservoir computer ũðtÞ
best approximates uðtÞ. This is done through a ridge
regression procedure, wherein we minimize the error
summed over the training times t ¼ nΔt for n running
from 1 − nt to 0,

min
Wout

nX
½kWoutrðtÞ − uðtÞk2� þ βTrðWoutWT

outÞ
o
: ð6Þ

Here β is the Tikhonov regularization parameter that is used
to prevent overfitting. The quantities (Nr, ρ, σ, α, and β),
referred to as hyperparameters of the reservoir computing
setup, are collectively used to control the performance of
system. In this Letter we chose the hyperparameters by a
subsequent iterative process approximately maximizing the
valid prediction time [see Eq. (8)] over the hyperparameters
via a coarse grid search (see Supplemental Material, Sec. III
[8]). In the prediction mode, the reservoir state now evolves
autonomously in “closed-loop” mode; i.e., the output at
time t now serves as the input at time tþ Δt,

rðtþ ΔtÞ ¼ tanh½BrðtÞ þWinWoutrðtÞ�: ð7Þ
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FIG. 1. Largest Lyapunov exponent as a function of the
coupling constant K. The dashed line represents the chosen
value of K for our studies.
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This procedure generates a predicted time series ûðnΔtÞ ¼
WoutrðtÞ that is assumed to approximate the true future
evolution of the state of the system uðtÞ at a time nΔt for
n > 0 [we choose Δt small compared to the timescale for
variation of u so that uðnΔtÞ essentially specifies the
continuous time function uðtÞ].
Parallel ML scheme for network prediction.—In order to

address the high computational complexity of predicting
large networks, we introduce a parallel network RC
architecture (see the schematic in Fig. 2; for code see
Ref. [13]). Each node i in the predicted network is assigned
its own reservoir Ri. The inputs to this reservoir are the
signal of node i itself, as well as that of the nearest network
neighbors of node i. The number of such neighbors is equal
to the network degree. The reservoir Ri is then trained on
these inputs to predict the signal of node i. Because each Ri
predicts just one node, its size Nr can be relatively small. In
addition, since our parallel scheme uses an interconnected
network of independently trained reservoirs, we can effi-
ciently parallelize our training process, making the system
scalable to large networks.
Tests.—Tocompare theparallel RCschemewith the single

RC approach, we use anN0 ¼ 50 node frequency assortative
Kuramoto oscillator [δ ¼ 0.8, γ ¼ 5, Eq. (2)] network with a
coupling constant of K ¼ 0.5 (see Supplemental Material,
Sec. VI for results using a coupled Lorenz system [8]). We
study the magnitude of the global order parameter jRj [see
Eq. (3)] which tells us about network-level activity (see
Fig. 3) and the prediction of the evolution of individual node
states (see Supplemental Material, Fig. 3 [8]), both of which
show the same main qualitative behavior. For the purpose of
forming inputs to the reservoir, we specify the state of the
oscillator i as [sin θiðtÞ; cos θiðtÞ]. The input matrix is
generated as described above and in the Supplemental
Material, Sec. II [8]. The degree of the test Kuramoto
network is three links per node. This method works best
for networks with low in-degrees. Large in-degrees and/or
the addition of in-hubs can reduce predictive performance
(see Supplemental Material, Secs. V and VI [8]). These
effects may be mitigated in part by increasing the number of
nodes Nr in the parallel reservoirs.

Single nonparallel reservoir prediction.—The single
reservoir computer prediction can fail as the size of the
network we want to forecast increases. This is clearly
demonstrated in Fig. 3(a), where the prediction breaks
down in a fraction of a Lyapunov time λmaxt. We quantify
the duration of an accurate prediction by a metric that we
call the “valid prediction time.” This metric is defined as the
amount of time elapsed before the normalized root-mean-
squared prediction error EðtÞ exceeds some chosen value f,
0 < f < 1, for the first time, where

EðtÞ ¼ kuðtÞ − ũðtÞk
hkuðtÞk2i1=2 : ð8Þ

The valid prediction time for f ¼ 0.1 is marked in Fig. 3 by
a vertical dotted lines. Even for the very large reservoir
(Nr ¼ 10 000), close to the limit of our computer resources,
that is used in Fig. 3(a), the system is still not able to predict
past a fraction of a Lyapunov time.
Parallel scheme with known links.—In cases where the

network structure is known a priori, such as in certain
social networks, we can construct our parallel reservoir
architecture by using the known network links. In the case
of our Kuramoto oscillator network, we demonstrate our
results on the 50 node network by using 50 separate parallel

...
...

FIG. 2. A schematic diagram for the parallel network ML
architecture. Here we show reservoir 2 (R2), which receives input
from its assigned node (node 2), plus inputs from nodes
connected to node 2 (i.e., nodes 1 and 3). R2 is then trained
to predict its assigned node (node 2). This process is the same for
each node in the network, such that the connectivity among the
reservoirs mimics the network to be predicted.
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FIG. 3. Prediction of the order parameter in three different cases
of ML implementations. The blue curves are the data (the truth)
and red curves are predictions. The dotted lines in each plot
denote the valid prediction time. (a) Single, nonparallel RC
prediction using a large reservoir (Nr ¼ 10 000). (b) Parallel
prediction with known network links, using 50 separate reser-
voirs each having modest size (Nr ¼ 200). (c) Parallel prediction
with unknown network links, using 50 separate reservoirs each
having modest size (Nr ¼ 200). The network structure is esti-
mated by using transfer entropy as a metric to draw network
edges.
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reservoirs of relatively modest size [Nr ¼ 200 as compared
to Nr ¼ 10 000 for Fig. 3(a)], each having the same set of
hyperparameters [see Fig. 3(b)]. The predictive perfor-
mance of this architecture could potentially be enhanced by
individually optimizing hyperparameters for each of the 50
reservoirs, but this would considerably increase both the
time and computational resources required for this task. As
seen from Fig. 3(b), our parallel scheme does exceedingly
well for multiples of the Lyapunov time λmaxt. This is
particularly clear from a comparison of valid prediction
time (vertical dashed lines) in Fig. 3(a) versus those in
Fig. 3(b), the latter being ≳10 times larger, while at the
same time being much less computationally demanding
(mainly due to the difference in Nr, Nr ¼ 10 000 for the
nonparallel case versus Nr ¼ 200 in the parallel case).
Parallel scheme with unknown links.—In many cases of

interest, one may not have information about the under-
lying network structure. Using nodal time series data for
finding links in networks, such as metabolic [14] and gene-
regulatory networks [15], is an active area of current
research. Many heuristic- [16] and statistics-based tools
like conditional mutual information [17] and correlation
[18], as well as recent nonlinear dynamics- [19] and
machine-learning-based techniques [20], have been used
for link inference and might give useful approximations of
the underlying network structure. These methods could
then potentially be used in our parallel network scheme.
Link inference methods, like the ones discussed above,

typically use past nodal time series measurements to assign
a score between each ordered pair of nodes in the network
reflecting the likelihood of a directed link existing from the
source to the target node. As we decrease this threshold, we
draw more links and hence increase the average number of
inferred neighbors for each node. Initially, decreasing the
threshold, or in other words increasing the number of
inferred neighbors, increases the number of true positive
links and improves the predictive performance of our
reservoir scheme. However, if the threshold is decreased
too much, the number of false positives increases substan-
tially and significantly degrades the predictions. Since our
goal is prediction, we view the link inference threshold as
an additional hyperparameter and choose it (along with the
other hyperparameters), so as to optimize the valid pre-
diction time. By this procedure, we effectively bootstrap
our prediction process to determine the link threshold
criterion. An example set of results for transfer entropy
[21] for Nr ≈ 200 (see Supplemental Material, Sec. II for
details [8]) is shown in Fig. 3(c). Again, in marked contrast
with the results in Fig. 3(a) for a large single RC
(Nr ¼ 10 000), we obtain good predictions, e.g., a valid
time between three and four Lyapunov times for jRj.
Dependence on the size of the predicted network.—

Considering the case where the links are unknown, we test
the performance of our parallel approach as a function of
network size using two different link inference methods:

first, we use the frequently employed method based on
transfer entropy [21], implemented via a MATLAB package
[22] and, second, we use a method called Algorithm for
Revealing Network Interactions (ARNI) [19] using code
available online [23]. Figure 4 shows a plot of the valid
prediction time as a function of the oscillator network size
N0. As we increase the size of the oscillator network, the
prediction using a single reservoir (Nr ¼ 10 000) quickly
degrades and becomes unable to capture the network
dynamics at all. Since the parallel method assigns a
reservoir to each oscillator in the network, for the case
with known links, as expected, it maintains constant
performance to within the estimated uncertainty of the
valid times. In the case of link inference using transfer
entropy (TE), the performance is far better than for the
single reservoir, but not nearly as strong as for the case of
link inference using ARNI. For a small oscillator network
size of N0 ¼ 10, TE has a true positive rate of 100% and a
false discovery rate of 37.5%. ARNI, on the other hand, has
a true positive rate of 100% and a false discovery rate of
3.3%. When we increase the network size to N0 ¼ 500, TE
has a true positive rate of 96% and a false discovery rate of
69.6%. ARNI gives us improved performance with a the true
positive rate of 96% and a false discovery rate of only 7.3%.
The parallel approach can tolerate imperfect link inference
with a significant false discovery rate, as long as the true
positive rate is high enough. The false negative inference of
a link to node i deprives reservoir Ri of vital information
needed for prediction of the state of node i. In contrast,
reservoir Ri can compensate for a false positive link from
node j to node i by learning, through its training, to ignore
its time series input from node j.
We emphasize that we have not tried to determine an

optimal link inference method and other methods may yield
longer prediction times. We use transfer entropy as a
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FIG. 4. Performance of the different reservoir computing
methods as a function of the Kuramoto oscillator network size.
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relatively standard link inference method with which to
demonstrate our network parallel approach and ARNI as an
appealing link inference choice for further investigation in
other contexts.
Conclusion.—We are able to construct accurate, data-

driven forecasts for the dynamics of large complex net-
works using a parallel ML architecture that reflects the
topology of the network to be predicted. We demonstrate
our approach using a chaotic network of oscillators, but we
believe it should be widely applicable in a variety of
contexts. In cases for which a nonparallel approach with
comparable resources fails, our scheme is successful when
the network links are either known or unknown a priori.
The parallel nature makes our approach scalable for
extremely large networks, creating potential applications
to many fields.
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