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Abstract

Phylogenomic studies of prokaryotic taxa often assume conserved marker genes are

homologous across their length. However, processes such as horizontal gene transfer or

gene duplication and loss may disrupt this homology by recombining only parts of genes,

causing gene fission or fusion. We show using simulation that it is necessary to delineate

homology groups in a set of bacterial genomes without relying on gene annotations to define

the boundaries of homologous regions. To solve this problem, we have developed a graph-

based algorithm to partition a set of bacterial genomes into Maximal Homologous Groups

of sequences (MHGs) where each MHG is a maximal set of maximum-length sequences

which are homologous across the entire sequence alignment. We applied our algorithm to a

dataset of 19 Enterobacteriaceae species and found that MHGs cover much greater propor-

tions of genomes than markers and, relatedly, are less biased in terms of the functions of

the genes they cover. We zoomed in on the correlation between each individual marker and

their overlapping MHGs, and show that few phylogenetic splits supported by the markers

are supported by the MHGs while many marker-supported splits are contradicted by the

MHGs. A comparison of the species tree inferred from marker genes with the species tree

inferred from MHGs suggests that the increased bias and lack of genome coverage by

markers causes incorrect inferences as to the overall relationship between bacterial taxa.

Author summary

Assuming genes to be the basic evolutionary unit has been commonplace in bacterial
genomics. For example, when quantifying the extent of horizontal gene transfer it is com-
mon to infer gene trees and reconcile them against a species tree to account for recombi-
nation-based processes. We have developed a new method which challenges this
assumption by identifying contiguous regions of true homology without regards to gene
boundaries and applied it to Enterobacteriaceae, a family of bacteria containing several
important human pathogens. Our results show that genes are composed of distinct
homologous regions with conflicting phylogenetic histories. We further demonstrate that
failing to take account of this conflict, together with the functional biases we show exist
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among single-copy marker genes, significantly changes the consensus evolutionary tree of
Enterobacteriaceae.

This is a PLOS Computational Biology Methods paper.

Introduction

Studying prokaryote evolution through the lens of comparative genomics has been conducted
using one set of approaches at deep timescales and another set at shallow timescales. At deep
timescales where genes and genomes are highly diverged, copies of marker genes which tend
to be conserved across many species are identified in the genomes being studied. A marker
gene is defined as a protein-coding gene which ideally occurs as a single-copy gene in every
studied genome. Multiple sequence alignments (MSAs) of each marker gene may be analyzed
individually [1], or concatenated into a supermatrix and be analyzed together [2].

While early phylogenetic studies relied on one or two marker genes such as SSU rRNA [3],
the advance of sequencing technologies including next generation sequencing and more
recently single molecule real time sequencing has enabled the transition to phylogenomics and
the construction of datasets with hundreds of genes from entire genome assemblies [1, 2, 4].
Despite the availability of whole genomes, it remains the default assumption to work with
functional genes as the basic evolutionary unit for studying evolution [5]; in a typical phyloge-
nomic analysis where a species evolutionary history is inferred from the genealogies of individ-
ual loci, a central mathematical assumption is that the evolutionary history of each locus is
recombination free.

However, when functional genes are used as loci, this ignores the possibility that recombi-
nation may break up the phylogenetic history of different segments within a gene. This prob-
lem is well known with regards to eukaryotes, where meiotic recombination breaks up these
histories with each generation. In that case, functional genes are known as “m-genes” and
maximal segments which share a common phylogenetic history are known as coalescence
genes or “c-genes” [6, 7]. These c-genes are defined as “a segment of the genome for which
there has been no recombination over the phylogenetic history of a clade” [6], and it has been
previously shown that the species phylogeny can be incorrectly inferred when concatenating
multiple c-genes [8]. Identifying c-genes can be very challenging [9], which has led to the com-
mon phylogenomic practice of using loci that are individually short and are far apart, even if
this practice does not guarantee that the loci constitute c-genes. When the genomes or geno-
mic regions under analysis are collinear and alignable, methods such as coalescent hidden
Markov models can be used to delineate c-genes [10], though these methods suffer from scal-
ability issues [11].

While prokaryotes do not undergo meiotic recombination, they experience many other
forms of recombination such as horizontal gene transfer and gene duplication/loss. These
events are often non-homologous, disrupting even looser assumption of homology along the
entire length of functionally equivalent genes. It has been shown that genomic regions with
different lengths can be impacted, from a single nucleotide [12], multiple nucleotides [13, 14],
a gene [15, 16], an operon [17–20], to even an entire chromosome [21]. Therefore, it is impor-
tant both not to treat a gene as an evolutionary unit, and to identify homology groups without
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relying on marker gene annotations (homology groups were referred to as “module families”
in [22]).

To understand the potential for erroneous phylogenomic inferences when “m-genes” are
used instead of “c-genes” for inferring prokaryotic phylogenies, we conducted a simulation
study where markers were simulated from multiple c-genes differing slightly along their
length. Our results will show that this leads to extremely high bootstrap support for incorrect
clades. Work on this problem has been done, but is based on proteomes derived from genome
annotations rather than whole genomes. Both the methods of Wu et al. [22] and Leonard and
Richards [23] are based on processing BLASTp queries to identify MHG boundaries within
protein sequences, and will truncate MHGs that extend past coding regions, and may be inac-
curate where errors exist in genome annotations, or where mutations are present that disrupt
the coding sequences such as frameshifts or changes to stop codons.

Whole genome aligners may be used at shallow timescales to align as many homologous
pairs of nucleotides as possible across input genomes. This approach reveals the relationship
between different strains within a species or species complex, and the forces of molecular evo-
lution shaping their genomes [24, 25]. While much more of the input genomes are used in this
approach compared with marker genes, due to the high degree of divergence between bacteria
species, state-of-the-art whole genome aligners all have difficulties at deeper timescales. For
example, Parsnp [26] aligns only core genomes defined as orthologous sequences conserved
by all input genomes. ProgressiveMauve [27] is extended from mauve [28] utilizing k-mer
based locally collinear blocks, which is significantly slower and consumes more space when
faced with highly divergent genomes. Progressive Cactus [29] requires a guide tree and per-
forms well when aligning different samples of the same species, however its performance is
questionable when aligning bacterial genomes of different species, which will be much more
divergent than genomes of different primates or other mammals. SibeliaZ [30] is a de Bruijn
based whole genome aligner that is faster than Progressive Cactus but has an even smaller tol-
erance of divergent input genomes.

Here we introduce a method that identifies groups of sequences that share common ances-
try along their entire length. It is based on constructing an graph of intervals connecting seg-
ments of different genomes which have evidence for local homology at the nucleotide level,
initializing each segment as a “MHG,” and walking the graph to merge and partition MHGs.
The end result is a set of MHGs where each MHG contains a set of homologous sequence seg-
ments. Sequences assigned to each MHG using our method may be orthologous or paralogous,
in the latter case due to hidden paralogy and because we incorporate every sequence identified
as homologous from each genome, which necessarily includes gene duplications. Gene losses
may result in zero sequences being included from a given genome.

Compared with the marker gene approach for deep timescales, our method has the advan-
tage of using more of the input genomes when the divergence is low enough for sequence
homology to be identifiable at a nucleotide level. The selection of marker genes is biased
towards slow evolving genes, since genes with frequent point mutations will be difficult to
align, and genes with structural variations should not be aligned as a single unit. These slow
evolving markers may not be representative of the whole genome in terms of their structure
and function, and we report evidence for this bias in our study and show how our MHGs com-
piled by our method by contrast are more broadly representative.

Another advantage over marker gene studies is that our algorithm does not rely on any
existing genome annotation to define the boundaries of the sequences (e.g., by referring to pre-
viously inferred boundaries of domains, coding sequences or operons). This compares with a
previously published method for compiling MHGs which takes protein sequences as input
instead of a genome assembly [22]. That method was also targeted at Drosophila, a genus of
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eukaryotes, where evolution is much slower and hence the difficulty of the problem is easier
than for prokaryotes.

To analyze the performance of our method, we applied it to a select subset of Enterobacter-
iaceae genomes. We found that our algorithm is able to cover most of the genes with MHGs
for free-living bacteria other than the presumptive outgroup taxon, especially compared with
the limited number of marker genes. A further analysis of gene ontology (GO) terms associ-
ated with marker and MHG-covered genes showed that MHGs are less biased in their associ-
ated functions than marker genes are. Finally, a phylogenetic analysis revealed concerning
levels of conflict between the marker genes and associated MHGs, suggesting that marker
genes are an inappropriate unit for phylogenomic studies and may infer false evolutionary
relationships. Our new method for the preparation of more reliable MHG-based collation of
phylogenomic data is available at https://github.com/NakhlehLab/Maximal-Homologous-
Groups.

Materials and methods

Algorithm for delineating maximal homologous groups of sequences

Given a set of genomes, we define a maximal homologous group of sequences (MHG) as a
maximal set of maximum-length sequences (substrings of the genomes) whose evolutionary
history is a single tree and involves no rearrangements. The set is maximal in that adding more
sequences to it violates the single-tree assumption and the sequences are of maximum lengths
in that including more nucleotides in them also violates the single-tree assumption (e.g., hav-
ing fused genomic regions). MHGs are defined for any set of two or more genomes, with no
regard to functional annotations.

A high-level description of the algorithm is described below and illustrated in Fig 1. A full
implementation of the algorithm is available at https://github.com/NakhlehLab/Maximal-
Homologous-Groups.

Our algorithm uses graphs in two key ways. Firstly, the alignment graph is used to store the
connections between genome segments identified using BLASTn in an efficient way, and since
segments from different connected components of the graph will never be merged into the
same MHGs, the partition and merge step may be parallelized by connected component, or
flushed to storage after each connected component is traversed to reduce memory usage. Sec-
ondly, MHGs are stored as graphs in order to propagate boundaries between genomes while
taking into account indels, as described below. Starting from a set of genomes:

1. All-versus-all BLASTn to find pairwise local alignments (Fig 1B) All versus all BLASTn
queries are filtered based on the bit score values [1]. For each genome, the maximum possi-
ble bit score is calculated from the set of results obtained by querying the genome against
itself using BLASTn. All versus all BLASTn results are subsequently excluded if their bit
score falls below a certain threshold of the maximum bit score obtained for the genome the
query sequence derived from.

2. Sequence pile-up (Fig 1C) Given every pairwise alignment call by BLASTn, the algorithm
piles up alignments that cover overlapping regions on the same genome.

3. Initial MHGs and alignment graph construction (Fig 1D and 1E) For piled-up align-
ments in every genome, the algorithm takes the union of overlapping alignments result-
ing in a set of non-overlapping ranges in all genomes. An alignment graph is constructed
from adding the range set as nodes, and an edge is added for each local alignment to con-
nect the two nodes that the subject and query ranges of the local alignment correspond to
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(There could be multiple edges between two nodes). The alignment graph serves to effi-
ciently split up a big problem to a few subproblems where each connected component in
the alignment graph can be traversed independently. In other words, A MHG can only
include subsequences of nodes from the same connected component. Encountering a

Fig 1. Algorithm for delineating maximal homology groups of sequences (MHGs). (a): The input consists of a set of two more genomes. (b):
Pairwise local alignments are computed. (c): The input to our algorithm is a set of pairwise local alignments (b) found in whole genomes of related taxa
(a). Our algorithm piles up the segments within each genome corresponding to the pairwise local alignments (c) to construct a set of initial MHGs, each
with a single sequence (d). An alignment graph (e) is constructed where the edges correspond to pairwise local alignments, connecting nodes
corresponding to initial MHGs. As each connected component of the graph is traversed, MHGs are merged based on being connected by pairwise
alignments, and partitioned based on the boundaries of those alignments, and the boundaries of the MHG they are being merged with. Traversal of one
of the connected components (f) is illustrated by the edges being traversed (left), the resulting partitioning (center) and merged MHGs (right). Once the
traversal is complete, the final set of MHGs (g) can be used to annotate the genome sequences with homology groups (h). Dashed arrows show the data
input and output relationship between stages.

https://doi.org/10.1371/journal.pcbi.1010216.g001
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new pairwise alignment mapping, the algorithm only needs to check and partition
MHGs generated from the same connected component instead of searching around full
set of MHGs.

4. Alignment graph traversal (Fig 1F) Starting from the the alignment graph, every edge is
visited using a depth-first search (DFS) of every connected component. Whenever a new
breakpoint is inserted, MHGs containing segments which include that breakpoint will be
split into two at the breakpoint, and pairs of post-split MHGs connected by the local align-
ment edge will be merged. For example, when visiting edge A:B:1 in Fig 1F, encountering a
first breakpoint carried by B1, MHG A1 is partitioned into A11, A12, and A11 is merged with
B1 because edge A:B:1 connects A11 and B1. The split and merged MHGs will contain direc-
tions for all sequences based on the relative directions of the subject and query sequences in
the local alignment (i.e. in the same direction on both genome assemblies, or opposite
directions, relative to the strand represented by those assemblies). And after visiting all
edges in the alignment graph, the output MHGs will contain the homology groups for the
input whole genomes.

When a new breakpoint is added to an existing MHG after processing a local alignment, we
use the pairwise local alignment estimated by BLASTn to ensure the new breakpoint is inserted
at accurate locations. Our algorithm converts the pairwise local alignments to two bit arrays
where 1 means a match, and 0 means a gap. We first locate the correct location of the break-
point in a pairwise alignment by counting 1s from the beginning of the bit array for the source
genome (for which already know the breakpoint location), to match the difference between
the breakpoint coordinate in the source genome and the starting coordinate of that local align-
ment. Second, for the destination genome (where the breakpoint location is unknown), we
count 1s in its bit array, going backwards from the breakpoint location (which is the same as
identified in the source bit array) until we reach the beginning of the bit array. This then gives
us the difference in position between the starting coordinate of the local alignment in the desti-
nation genome and the breakpoint.

The first stage, all-vs-all BLAST search has a time complexity O(n2) where n is the number
of genomes, since every genome is queried by every genome. In a hypothetical scenario where
all genes are present as single-copy orthologs in every genome, the alignment graph to be
walked in the second stage will have O(n2) edges. Since every edge is traversed once, this stage
also has a time complexity of O(n2). When an edge is visited that leads to an ortholog from a
new species being added to an existing MHG, this genome will be segmented at that locus and
the ortholog incorporated into the MHG through backtracking. A new R-tree [31], used to
store the segmentation of each genome, will need to be constructed which in the worst case
takes O(s � log(s)) time where s is the number of segments, which will be proportional to the
number of single-copy orthologs. The backtracking process is of time complexity O(m) where
m is the number of sequences in the MHG, which will grow with n. However, as n increases,
an increasing proportion of edges will not lead to the incorporation of new sequences, hence
R-tree construction and backtracking can be discounted.

For any edge visited, the R-trees of the source and destination genomes are queried. The
time complexity of these queries is bounded by O(log(s)) and O(s), but since this will not
depend on the number of genomes in this hypothetical scenario, the overall time complex-
ity relative to the number of genomes is O(n2). Under more realistic conditions, the time
complexity becomes much more difficult to analyze as the number of segments in each
genome will depend on both the number of genomes and multifarious evolutionary
processes.
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A prokaryotic dataset

We applied our method to a set of 19 bacterial species, each from a different genus of γ-proteo-
bacteria; 18 from within Enterobacteriaceae and one outgroup. We chose the specific genome
assemblies from a previously compiled dataset of 10,575 bacterial and archaeal genomes [2].
The assembly we used for the outgroup taxon has the RefSeq identifier GCF_001887595.1,
which in the analysis of Zhu et al. [2] was mislabelled as Klebsiella michiganensis when it actu-
ally is Luteibacter rhizovicinus [32]. The genome assembly GCF_001022135.1 that we used for
Phytobacter ursingii was originally identified as Kluyvera intermedia when it was first pub-
lished but has since been reclassified [33, 34]. The species names and NCBI reference IDs used
in our analysis are: Blochmannia endosymbiont (GCF_000973545.1), Candidatus Doolittlea
endobia (GCF_900039485.1), Candidatus Gullanella endobia (GCF_900048035.1), Candidatus
Hoaglandella endobia (GCF_900044015.1), Candidatus Ishikawaella capsulata
(GCF_000828515.1), Candidatus Riesia pediculicola (GCF_000093065.1), Candidatus Tachi-
kawaea gelatinosa (GCF_000828815.1), Cedecea neteri (GCF_000757825.1), Citrobacter freun-
dii (GCF_000648515.1), Cronobacter sakazakii (GCF_000982825.1, Enterobacter lignolyticus
SCF1 (GCF_000164865.1), Escherichia coli (GCF_000299455.1), Luteibacter rhizovicinus
(GCF_001887595.1), Phytobacter ursingii (GCF_001022135.1), Kosakonia sacchari
(GCF_000300455.3), Pluralibacter gergoviae (GCF_000757785.1), Salmonella enterica
(GCF_000195995.1), Shigella flexneri (GCF_000006925.2), and Shimwellia blattae
(GCF_000262305.1).

A marker gene is defined in an ideal sense as a single copy gene which occurs in every stud-
ied genome. In practice this requirement is too strict to construct a useful data-set with, and is
relaxed from “every” to “most” genomes. In this paper, marker genes were previously identi-
fied protein-coding genes [2], and we used the best tBLASTn [35] hit from the proteome
translated from the corresponding genome to identify the marker gene for that species, but
only where it was identified as present in that species in the original study. Reference IDs for
each marker gene from the original publication were used to retrieve the query protein
sequences from UniProt [36]. And in order to calculate whether a marker gene is covered by
any MHG, we used the best hit from tBLASTn to locate the nucleotide sequence in each
genome corresponding to every known marker gene protein sequence. Marker coverage of
each genome and its genes was calculated based on the full lengths of the specific genes identi-
fied in that genome, as above.

We constructed a nucleotide BLAST database from all 19 genomes to conduct the all verses
all BLASTn search. For the search, we used a word size of 9, a gap open penalty of -1, and a gap
extend penalty of -1. These parameter values were chosen so that our method will work even
for very divergent genomes. A shorter word size than the default enables BLASTn to align
regions sharing shorter exactly matched k-mers, and choosing the smallest possible mismatch
and gap penalties should maximize the lengths of locally homologous alignments identified by
BLASTn.

Next, we used the algorithm described above to infer the set of MHGs for those 19 genomes.
Coverage of genomes and genes by MHGs was computed using BEDtools [31]. Since MHGs
are non-overlapping, base pair coverage refers to the proportion of a genomic sequences cov-
ered by any MHG.

Simulation of marker genes

To simulate marker genes with internal recombination we began with the species phylogeny
previously inferred by concatenating marker genes [2] which was pruned to contain the above
19 bacteria. For each of 10 replicate marker genes, the first component tree was obtained by
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performing a single nearest-neighbor interchange (NNI) operation on the initial tree, the sec-
ond component tree was obtained by performing a single NNI operation on the first compo-
nent tree, and so on. We chose NNI as a reasonable and conservative facsimile of horizontal
recombination, since it will only exchange segments between closely related taxa.

We simulated 15 such component trees, generated 100bp sequence alignments with equal
transition rates and base frequencies using Seq-Gen [37] on each component tree, and
concatenated them to produce the marker MSA for a total length of 1,500bp, chosen because it
is close to the average length of marker genes included in our study, which we calculated as
being 1,503bp. The choice of 100bp was made to ensure phylogenetic histories of each segment
were to an extent still resolvable while simulating a substantial number of recombination
events within each gene, and equal rates and frequencies used since this study does not focus
on the effects of varying substitution models or parameter values.

IQ-TREE [38] was used to infer maximum likelihood trees with bootstrap support for the
100bp non-recombining segments and the simulated markers with internal recombination.
We pre-specified the HKY substitution model for IQ-TREE, of which the true model is a spe-
cial case. Robinson–Foulds (RF) distances between known and inferred trees were calculated
using phangorn [39].

Phylogenetic analysis

For each marker and for each MHG containing at least 4 segments, we ran the FFT-NS-i [40]
algorithm implemented in MAFFT with 500 maximum iterations. For each resulting MSA,
IQ-TREE [38] was run with default settings to build a gene tree. Finally we used ASTRAL-Pro
[41] to infer a species tree from the marker gene trees, and another species tree from the MHG
gene trees, because this method accounts for gene duplication and our MHGs may contain
more than one sequence per genome, and it has been shown to be robust to duplication and
loss rates [42].

Because methods for quantifying phylogeny conflict are based on comparing trees with
uniquely labeled tips, we excluded MHGs with more than one sequence derived from any sin-
gle genome. For the nucleotide sequences of marker genes and overlapping MHGs with at
least four taxa, an original tree and 100 bootstrap trees are inferred using the IQ-TREE maxi-
mum-likelihood method [38]. MHGs with an internal branch length less than 0.0005 in their
original trees were regarded as unresolved and filtered out. This threshold value is smaller than
the reciprocal of the average marker gene length of 1,503bp, so branch lengths below this
threshold imply no mutations occurred along this branch (at least under a Jukes–Cantor
model) and the relationship between the four subtrees adjacent to this branch is impossible to
resolve. After removing ambiguities, every bootstrap tree in every marker and MHG will yield
a set of bipartition splits for each internal node. We used DendroPy [43] to calculate biparti-
tions, which DendroPy encodes as bitmasks. Since a marker and its overlapping MHGs may
consist a different set of taxa, a bitwise normalization operation is performed to ensure each
bipartition is represented by the same bitmask, and by exactly one bitmask, for the marker and
all overlapping MHGs.

Functional annotation

To classify genes—either marker genes, or a gene associated with a MHG because they are
overlapping—by function, we used a GO slim. This aggregates gene classifications into a small
enough set of categories to be interpretable and reveal any bias in the distribution of gene func-
tion. We used a custom script to traverse the GO hierarchy, and categorized genes based on
whether any of their GO terms had an “is_a” or “part_of” relationship to any one of the
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Alliance for Genome Resources (ARG) GO slim terms [44]. We allowed multiple categories
per gene when their GO terms mapped to multiple ARG slim terms.

Results

Simulation study

To understand whether it is better to use marker genes or MHGs as the basic unit of evolution-
ary inference, we inferred maximum likelihood trees from simulated marker genes, their non-
recombining segments, along with bootstrap trees for both. The typical bootstrap support for
branches inferred from simulated markers was much higher than component trees (Fig 2A
and 2D) due to the longer length and higher information content. However this is deeply mis-
leading, as the normalized Robinson-Foulds (RF) distance between the inferred marker gene
tree and the true component trees is centered around 0.5, meaning about half the branches are
incorrect (Fig 2C). This is worse than the accuracy of the trees inferred individually for each
non-recombining component, which was typically below 0.5 (Fig 2F). For the non-recombin-
ing segments, bootstrap support for true branches was higher than incorrect branches, suggest-
ing that bootstrap support values for inferred MHG trees can be used to identify true splits in
the local phylogeny, as opposed to the clonal frame (Fig 2B and 2E).

MHG occurrence across genomes

The dataset we analyzed consists of both free-living and endosymbiotic bacteria. Severe gene
loss is common among endosymbionts [45], and as a result relatively few MHGs contain
sequences from those species (Fig 3). In addition to the explicitly labeled Blochmannia endo-
symbiont, these species include all Candidati.

In terms of the coverage of genomes by MHGs at a nucleotide level, a substantial fraction of
genes were covered by MHGs, even when we limited the MHGs to those with sequences from
at least eight species (Fig 4). The difference between gene length and genome size was roughly

Fig 2. Support for branches in simulated marker genes and component trees. (a): Bootstrap supports for internal branches
of inferred marker trees. (b): Bootstrap supports for correctly inferred component tree branches. (c): Normalized RF distances
for every component tree and the corresponding inferred marker tree. (d): Bootstrap supports for internal branches of inferred
component trees. (e): Bootstrap supports for incorrectly inferred component tree branches. (f): Accuracy of inferred
component trees computed as normalized RF distances from the true component trees.

https://doi.org/10.1371/journal.pcbi.1010216.g002
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proportional across genomes, and the gap between the two corresponds to the amount of
intergenic sequence in each genome. Unlike eukaryotes, prokaryotes have diminutive genomes
with consistently high gene density [46, 47].

Intergenic coverage was also good for free living bacteria other than Luteibacter rhizovici-
nus, but not for endosymbionts, indicating that endosymbionts have undergone substantial
disruption to their genomes between as well as within genes. Because of the gene loss among
endosymbionts, many genes in free living bacteria bear no homology to genes in endosymbi-
onts, and therefore relatively few genes in free living bacteria are covered by MHGs with
sequences from 16 or more species (Fig 4).

Fewer MHGs contained sequences from L. rhizovicinus, although the proportion of genic
sequences covered by MHGs converged with other taxa for MHGs with more genomes
included (Figs 3 and 4). By contrast, there was almost no intergenic coverage, even for MHGs

Fig 3. Occurrence of MHGs by species. Diagonal cells show the number of MHGs containing at least one sequence
from the genome assembly for that species. Off-diagonal cells show the number of MHGs containing at least one
sequence from the genome assemblies of both species, i.e. the pairwise occurrence.

https://doi.org/10.1371/journal.pcbi.1010216.g003
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with 2 or more genomes represented. This is due to the fact that L. rhizovicinus is highly diver-
gent from the other genomes in our analysis, being from an entirely different family (Rhoda-
nobacteraceae) within γ-proteobacteria. Nonetheless, the substantial coverage of genic
sequences demonstrates the suitability of using MHGs for interfamilial analysis.

Escherichia coli gene functionality analysis

In order to explore whether marker genes or genes which overlap MHGs are biased towards
specific functions, we analyzed the functional categorization of both those kinds of genes in
Escherichia coli. We observed substantial over and under-representation among many gene
categories by the set of marker genes (Fig 5). The three categories of gene function most over-
represented among marker genes were catalytic activity, small molecule binding, and carbohy-
drate derivative binding. The three categories most under-represented were plasma mem-
brane, establishment of localization, and transporter activity. While genes overlapping highly
conserved MHGs (those with sequences from 16 or more species) saw similar biases, the repre-
sentation of all categories was mostly unbiased among fuller subsets of MHGs (Fig 5).

Conflict between markers and MHGs

MHGs inferred using our algorithm should be homologous across the entire length of every
sequence in the MHG, indels excepted. In contrast, marker genes may have undergone rear-
rangements. Our method inferred multiple MHGs for each marker gene (S1 Appendix) and
since our simulation study showed that conflicting phylogenetic histories within a gene can

Fig 4. Proportion of genes and intergenic regions covered by MHGs and genomic coverage by marker genes. In
subfigures a, b, c and d, gene coverage refers to the percentage of sites annotated as belonging to a UTR or coding
sequence that is covered by a MHG, and intergene coverage refers to the percentage of all other sites covered by a
MHG.

https://doi.org/10.1371/journal.pcbi.1010216.g004
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produce misleadingly high bootstrap support values, we compared the support values of splits
from each MHG overlapping a marker gene with the support value of that split from the corre-
sponding marker gene.

MHGs with fewer than four sequences were excluded because they contain no splits other
than the tip branches, which are uninformative. Additionally, MHGs with more than one
sequence for a single genome were excluded as this would make the analysis of support for
phylogenetic splits intractable. Only 20.6% of MHGs with four or more sequences were
excluded on that basis, and the remaining 79.4% of MHGs we term “single-locus informative
MHGs.”

For each marker-overlapping MHG, we considered the full set of splits observed in the
entire bootstrap distribution for that MHG and the corresponding marker gene. Since the
number of possible splits grows exponentially with the number of taxa, but only a few will be
well-supported by the actual sequence alignments, a very long tail of splits with low MHG and/
or marker gene support results (Fig 6). More interesting is that strong split support by marker
gene alignments is not a good predictor of strong support by MHGs. When considering the
marker genes with greater than 90% support, there appears to be almost no correlation with
MHG support across the entire range of MHG support values (Fig 6). This is consistent with
the aforementioned simulation study findings, further supporting the notion that high boot-
strap support values derived from marker gene alignments may be misleading.

We also quantified phylogenetic (in)congruence using the extended quadripartition inter-
node certainty (EQP-IC) metric [48]. Comparing to other statistics, EQP-IC aims at measuring
the correctness of a given branch. It is robust when there are errors in the input reference tree.

Fig 5. Escherichia coli gene functionality coverage by marker genes and MHGs with� x number of unique genomes. We aggregated GO terms by
AGR slim annotation, and only show percentages for terms that map to� 1% of E. coli genes. The total number of E. coli genes, and number of genes
covered by markers, and the numbers of genes covered by MHGs with� x number of unique genomes is given in brackets in the figure legend.

https://doi.org/10.1371/journal.pcbi.1010216.g005
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And in our case, EQP-IC values were calculated for each marker gene tree split, based on sup-
port by overlapping MHG gene trees. The modal value was around zero, indicating either a
lack of information or a balanced mix of phylogenetic congruence and incongruence (Fig 7).
However, given our observations of the number of highly supported splits, a lack of informa-
tion is more likely (Fig 6).

Fig 6. Conflicting support for splits between markers and MHGs. Bootstrapping was used to compute support. Each
unique split from the MHG and marker gene tree bootstrap distributions, from each pair of MHG and corresponding
marker gene, was counted once towards the frequency.

https://doi.org/10.1371/journal.pcbi.1010216.g006

Fig 7. Extended quadripartition internode certainty (EQP-IC) of MHGs overlapping marker genes. Values closer
to 1 indicates concordant phylogenetic histories between markers and MHGs, values closer to -1 indicate discordant
histories, and values around 0 indicate either a lack of information, or a mix of concordance and discordance.

https://doi.org/10.1371/journal.pcbi.1010216.g007
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While very few marker splits were well supported by their overlapping MHGs according to
this metric, a substantial number of splits were highly contradicted by those MHGs, with a
spike in EQP-IC values observed around -1 (Fig 7). Values close to -1 indicate strong phyloge-
netic incongruence.

Species tree comparison

There are many approaches to problems in comparative genomics, but a central concept that
many other tools rely on, and which is used to explain and communicate the relationship
among a set of species, is the species phylogeny. To understand whether the lack of coverage of
genomes by marker genes, observable bias in functionality, and phylogenetic conflict with
associated MHGs would impact the species phylogeny estimated from marker genes, we com-
pared a species tree inferred from marker gene trees with a species tree inferred from MHG
gene trees. For this analysis, we used all markers to build the marker species tree, but only used
MHGs� 400bp to build the MHG species tree. This was to exclude the effects of random
error in shorter MHGs, as we found the distribution of bootstrap support for the branches of
MHG gene trees� 400bp was similar to markers, but the bootstrap support for the branches
of more inclusive sets of MHG gene trees was generally lower (Fig 8). Again only MHGs with
at least four taxa were included.

The method we used to infer species trees (ASTRAL-Pro) is able to use gene trees with mul-
tiple gene copies as input. Unlike markers genes, MHGs are not restricted to single copy
sequences, so to understand if this changes the species tree result we ran ASTRAL-Pro with all
MHGs� 400bp and also with only single-locus informative MHGs� 400bp, but the same
topology was returned for both sets of MHGs (Fig 9).

Fig 8. Bootstrap support for splits. The culmulative density distribution of bootstrap support is shown across all non-
trivial splits from the maximum likelihood trees inferred from the original marker gene sequence alignments (blue).
The same distribution is shown for the splits inferred from the original MHG sequence alignments (orange). In
addition, the distribution of split bootstrap support from two restricted sets of MHG sequence alignments are shown;
those with a length of at least 100bp (green) and those with a length of at least 400bp (red).

https://doi.org/10.1371/journal.pcbi.1010216.g008
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However, the MHG-based species tree topology differed in two ways from the marker-
based topology. The more substantial difference is the placement of the endosymbiont Candi-
datus Ishikawaella, which the marker-based analysis groups with Candidatus Riesia and Tachi-
kawaea. The EQP-IC support from marker genes for this grouping is strongly positive (0.66)
indicating most marker genes containing relevant taxa provide support for this clade, but the
EQP-IC support from MHGs is the most negative possible value (-1), indicating that virtually
all MHGs containing relevant taxa reject it.

In addition, Pluralibacter gergoviae and Enterobacter lignolyticus are a clade in the marker-
based species tree but not in the MHG-based species tree. The difference in EQP-IC support is
however minor, with 0.06 support among markers and -0.03 support around MHGs, indicat-
ing a lack of signal or consensus for this grouping among both methods (Fig 9).

Intergenic MHG analysis

Beside the potential bias introduced by an unrepresentative distribution of gene function, it is
known that gene and intergenic sequences are subject to different evolutionary processes. For
example, the rate of point mutations leading to non-synonymous amino acid changes may be
substantially higher or lower than the rate for synonymous changes, depending on whether
loci are under predominantly positive or negative selection [49]. This does not apply to inter-
genic sequences which definitionally do not encode for proteins even if they are functionally
important. Marker genes do not include intergenic sequences, whereas our method does not
exclude them, so we studied the possible effects of their inclusion.

We inferred species trees with EQP-IC support values from two subsets of MHGs. The first
subset was restricted to MHGs which only contained sequences from inside genes, and the sec-
ond subset was restricted to MHGs which only contained intergenic sequences. Because

Fig 9. Tanglegram showing the difference between the species tree inferred from MHGs�400bp in length compared
with the species tree inferred from marker genes. (a) Marker-based species tree. (b) MHG-based species tree. Support values
are the extended quadripartition internode certainty (EQP-IC) from marker gene trees followed by the EQP-IC from� 400bp
MHG gene trees. Values closer to 1 indicates concordant phylogenetic histories between the gene and species trees, values
closer to -1 indicate discordant histories, and values around 0 indicate either a lack of information, or a mix of concordance
and discordance.

https://doi.org/10.1371/journal.pcbi.1010216.g009

PLOS COMPUTATIONAL BIOLOGY Annotation-free delineation of prokaryotic homology groups

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010216 June 8, 2022 15 / 21

https://doi.org/10.1371/journal.pcbi.1010216.g009
https://doi.org/10.1371/journal.pcbi.1010216


homology is more difficult to identify between genomes at intergenic loci we reduced the
MHG length threshold for this analysis from 400bp to 100bp. Still, the outgroup taxon L. rhizo-
vicinus and all but one of the endosymbionts had no representation within intergenic-only
MHGs. Furthermore, the remaining endosymbiont Candidatus Doolittlea was only included
in two intergenic-only MHGs. For this reason, we excluded the outgroup and endosymbionts
when estimating the intergenic-only MHG species tree and EQP-IC values.

After reducing the length threshold and excluding the two intergenic-only MHGs with
Candidatus Doolittlea sequences, there were 3485 MHGs included in the first subset and 172
in the second, a similar ratio to the overall ratio of gene to intergenic genome content. The dif-
ference in topology between the gene and intergenic trees was an exchange of the Phytobacter
and Kosakonia clade with the Enterobacter and Pluralibacter clade (Fig 10). This a “nearest-
neighbor” interchange and as such is a minor difference. The support values for either arrange-
ment is close to zero, indicating this change is likely sampling noise than a genuine difference
between gene and intergenic evolutionary histories (Fig 10).

Reducing the length threshold appears to have reduced EQP-IC support, presumably
because shorter MHGs have a lower information content and there is greater conflict between
their splits. For either�100bp tree, the only non-endosymbiont clade supported by EQP-IC
values was the Escherichia and Shigella sister relationship (Fig 10). Furthermore, empirically
sound rooting of the intergenic-only tree was impossible since the outgroup was excluded, so
we choose the root that best matches the gene-only MHG species tree, and this rooting should
not be considered reliable.

Discussion

The rapid advance in throughput and availability of sequencing technology has led to a deluge
of genomic data. For bacteria, more than 430,000 assembled genomes were available as of
April 2020 [50]. Studying the history of bacterial genome evolution offers an understanding of
both the history of individual genes and operons, as well as broader evolutionary processes
[51–54]. A medically significant implication is the acquisition of antibiotic resistance, both de
novo and from other species [55, 56].

The complexity of genome evolution in bacteria is due to rampant horizontal gene transfer
[57–60], gene duplication and loss [61], and de novo sequence evolution. Existing methods of

Fig 10. Species trees inferred from gene-only and intergenic-only subset of MHGs. (a) Species tree inferred from only MHGs entirely inside genes.
(b) Species tree inferred from only MHGs entirely outside genes, which should be treated as unrooted since no outgroup taxa are present. Support
values are the extended quadripartition internode certainty (EQP-IC) from marker gene trees followed by the EQP-IC from� 100bp MHG gene trees.
Values closer to 1 indicates concordant phylogenetic histories between the gene and species trees, values closer to -1 indicate discordant histories, and
values around 0 indicate either a lack of information, or a mix of concordance and discordance.

https://doi.org/10.1371/journal.pcbi.1010216.g010
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whole genome alignment work well at shallow timescales, but methods for studying evolution
at deeper timescales in bacteria are hindered by this complexity, and rely on the assumption of
non-recombination within marker genes. We have shown that this assumption, when broken,
is not detectable or mitigated by low support values for branches affected by recombination.
Not only that, marker gene methods rely on the accuracy of existing genome annotations. For
newly sequenced genomes, annotations may not even be available [62].

By applying our method to 19 bacteria from a diversified sampling of Enterobacteriaceae,
we have demonstrated its practical utility and more advantages over marker genes. Our
method uses more sites from each genome, and is less biased in the functions of the corre-
sponding genes that are included. Given a genome that is highly divergent from the rest, a fam-
ily-level difference can be accurately captured by MHG. Instead of being limited by the
constraint of high conservation as a marker gene, an MHG-based analysis is able to properly
classify homologous relationships from any subset of the input genomes. We have shown that
many highly supported splits from inferred marker trees are not supported by corresponding
MHGs, concordant with our expectations from our simulation study where components have
different phylogenetic histories. The EQP-IC measure provides evidence for where intragenic
conflict affects the support for various taxonomic hypotheses, and for which clades are
robustly inferred regardless of this conflict.

Of particular interest is our findings on the evolution of Enterobacteriaceae endosymbionts.
Both marker and MHG phylogenies strongly support the monophyly of this group, in contrast
to a previous concatenation analysis which claimed it has multiple origins [63]. These vertically
transmitted endosymbionts provide essential amino acids to their insect hosts, and transmis-
sion may occur externally after oviposition [64, 65]. Neither marker nor MHG phylogeny is
compatible with pure vertical transmission however, with the mealybug endosymbionts Can-
didatus Hoaglandella, Doolittlea and Gullanella being paraphyletic or polyphyletic. Based on
the placement of those taxa, we hypothesize that this symbiotic relationship originated in
mealybugs before diversifying to other insects. The major difference between phylogenies is
that the MHG phylogeny is incompatible with this diversification occurring within a single
lineage, as the EQP-IC measure strongly rejects a clade containing the four non-mealybug
endosymbionts.

While the alignment graph enables some parallelization and space efficiency, improved
scalability will be an important future direction for this algorithm and our implementation.
The bottleneck of the current MHG tool is the polynomial (under ideal conditions) growth in
runtime with the number of genomes. One avenue for alleviating this is replacing the all-vs-all
BLAST with a subset of pairwise (genome by genome) BLAST queries, since MHGs are transi-
tive in nature, complete connectivity between genomes is not required. This could use a phylo-
genetic guide tree, although rigorous study is needed to determine the best approach of
choosing the subset of pairwise queries to minimize any loss of sensitivity. As with many algo-
rithms, a divide-and-conquer strategy may also improve walltime performance, although not
overall CPU time or power consumption. Beyond scalability, due to the stochasticity and heu-
ristic nature of BLASTn, using the boundaries of BLASTn queries to define MHG boundaries
may cause inferred MHGs to be shorter than necessary. This may be addressed in the future
through post-processing, or by reconciling BLASTn query boundaries before or simulta-
neously with the partition and merge step.

Our work here demonstrates the fundamental problems of existing methods for prokary-
otic phylogenetics at deeper timescales. Not only is it immediately useful on smaller, but still
whole-genome, datasets, it provides the starting point for improved and scalable phylogenomic
algorithms and implementations that are coherent with the actual complexity of the evolution-
ary histories across bacterial genomes.
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Supporting information

S1 Appendix. Maximal homology group overlap of marker genes. Each marker gene is
labeled with the UniProt accession number of its reference protein. MHG sequences are
drawn as colored arrows overlapping the sequences from each species for each marker gene.
MHG sequences drawn with the same color belong to the same MHG, although colors are
repeated when more than 20 MHGs overlap a marker gene. Arrowheads indicate the relative
orientation of MHG sequences to show inversions.
(PDF)
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