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Abstract

The linear micro-instabilities driving turbulent transport in magnetized fusion plasmas (as
well as the respective nonlinear saturation mechanisms) are known to be sensitive with
respect to various physical parameters characterizing the background plasma and the mag-
netic equilibrium. Therefore, uncertainty quantification is essential for achieving predictive
numerical simulations of plasma turbulence. However, the high computational costs of the
required gyrokinetic simulations and the large number of parameters render standard Monte
Carlo techniques intractable. To address this problem, we propose a multi-fidelity Monte
Carlo approach in which we employ data-driven low-fidelity models that exploit the structure
of the underlying problem such as low intrinsic dimension and anisotropic coupling of the
stochastic inputs. The low-fidelity models are efficiently constructed via sensitivity-driven
dimension-adaptive sparse grid interpolation using both the full set of uncertain inputs and
subsets comprising only selected, important parameters. We illustrate the power of this
method by applying it to two plasma turbulence problems with up to 14 stochastic param-
eters, demonstrating that it is up to four orders of magnitude more efficient than standard
Monte Carlo methods measured in single-core performance, which translates into a runtime
reduction from around eight days to one hour on 240 cores on parallel machines.
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1. Introduction

The goal of creating “burning” plasmas in a toroidal magnetic device represents a mile-
stone on the way towards the practical realization of fusion power on Earth. Efforts are
currently underway to take this important step in the international ITER experiment, with
operation projected to begin within the next few years. One of the key physics problems in
this context is the understanding, prediction, and control of plasma turbulence. Turbulent
fluctuations of various plasma quantities induce, in particular, high levels of cross-field heat
transport, thus determining the so-called energy confinement time. The latter needs to ex-
ceed a certain threshold (according to the Lawson criterion) to achieve a burning plasma
state. The linear micro-instabilities driving this turbulent transport (as well as the re-
spective nonlinear saturation mechanisms) are known to be very sensitive with respect to
various physical parameters characterizing the background plasma and the magnetic equi-
librium. Moreover, experimental measurements of these parameters are, of course, subject
to uncertainties. Therefore, the development of a predictive capability calls for a systematic
quantification of uncertainties. However, the high computational costs of numerical simu-
lations and the potentially large number of stochastic inputs, parameters, and coefficients
make uncertainty quantification challenging for these problems [25].

1.1. Towards quantifying uncertainty in plasma turbulence problems

To overcome the challenges of quantifying uncertainty in real-world problems such as
plasma micro-turbulence simulations, we present a framework based on multi-fidelity Monte
Carlo (MFMC) sampling [34, 38, 39]. MFMC reduces the mean-squared error of standard
Monte Carlo (MC) estimators by making use of control variates [33]. Specifically, in MFMC,
the control variates are standard MC estimators given by low-fidelity models, which are
computationally cheap approximations of the underlying high-fidelity model. Examples of
low-fidelity models include reduced-physics models, e.g., coarse-grid approximations, data-fit
low-fidelity models, such as interpolation, spectral projection or regression, or projection-
based reduced models, including the proper orthogonal decomposition or the reduced basis
method; see [40] and the references therein for more details.

Control variates have been used to reduce the error of MC estimators in kinetic models
such as Boltzmann’s equation in [13]. The work [13] was generalized in [14], where multiple
control variates are employed. In addition, in [28], MFMC was employed in a benchmark
scenario prominent in plasma micro-turbulence simulations [15]. In [17, 37], a context-
aware version of MFMC is formulated, in which data-driven low-fidelity models are explicitly
constructed to being used together with the high-fidelity model; see also [1].

Besides sampling-based methods, stochastic collocation and quasi-Monte Carlo have also
been used to address the challenges of uncertainty in plasma physics. In [29], generalized
polynomial chaos and quasi-Monte Carlo methods were employed in multiscale plasma fu-
sion simulations. Moreover, [45] used nonintrusive stochastic collocation methods based on
non-uniform interpolation sequences in a drift-wave turbulence study from a linear plasma
experiment. In addition, adaptive sparse grids [5] were considered in [47] to compute the
runaway probability of electrons.
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1.2. Novelty and contribution of proposed data-driven multi-fidelity approach for uncertainty
propagation in plasma turbulence problems

In this work, we employ the well established plasma turbulence code Gene [27] which
solves the gyrokinetic Vlasov-Maxwell coupled system of partial differential equations in
5D state space, focusing on calculating the linear growth rates of the dominant micro-
instabilities. For constructing low-fidelity models, we primarily build on approximations
with adaptive sparse grids that have been shown to be effective in quantifying uncertainties
in complex applications: In [16, 17], a sensitivity-driven dimension-adaptive sparse grid
approximation method was introduced to efficiently compute quantities of interest such as
expectation, variance and Sobol’ indices for global sensitivity analysis [43]. The sensitivity-
driven approach exploits the fact that typically in most real-world problems (i) the intrinsic
stochastic dimension is lower than the ambient dimension and (ii) the uncertain inputs
are anisotropically coupled. In [16, 17], the sensitivity-driven approach was applied to two
plasma micro-turbulence test cases, including a scenario with 12 uncertain inputs based
on an ASDEX Upgrade discharge [20]. The same approach was recently used in a study
concerning turbulence stabilization via energetic particles with 21 stochastic parameters [19].

In our MFMC approach, we leverage the sensitivity-driven sparse-grid models as low-
fidelity models. Furthermore, we exploit sensitivity information to reduce the stochastic
dimension. This has also been studied in [18] in the context of multilevel stochastic collo-
cation for fluid-structure interaction simulations. In this paper, we rely on the feature that
the construction of sparse-grid models reveals detailed information about the sensitivity of
each stochastic input and use this information to additionally construct low-fidelity models
with lower input dimensions, i.e., models in which only few of the inputs are varied while
the remaining inputs are fixed to their mean value.

To summarize, the present paper is novel in at least two ways: from a methodological
perspective, we employ data-driven, structure-exploiting low-fidelity models in MFMC with
the goal to make MFMC feasible in computationally expensive, real-world problems for
which standard sampling methods are unfeasible. From an application scenario point of
view, we employ our MFMC approach in large-scale plasma micro-instability analysis, a
problem of high practical relevance.

1.3. Outline of this paper

This paper is organized as follows. In Section 2, we explain the notation and summarize
the foundations of multi-fidelity uncertainty propagation. In Section 3, we describe the
hierarchy of models used in this paper. Our numerical results in two plasma micro-turbulence
scenarios are presented in Section 4. The first scenario is a modified benchmark in which
we consider either three or eight uncertain parameters (Section 4.1). The second scenario
discussed in Section 4.2 is concerned with turbulence stabilization via energetic particles
with 14 uncertain inputs, for which one realization of the stochastic inputs requires 240
cores and a total runtime of about 3.2 hours. We close with conclusions in Section 5.
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2. Multi-fidelity uncertainty propagation

In this section, we introduce notation and provide a brief summary of the mathematical
foundations of multi-fidelity uncertainty propagation with MFMC.

2.1. Uncertainty propagation

Let f (0) : X → Y be a bounded and measurable function with respect to the Lebesgue
measure and the Borel σ-algebra on R. The domain X ⊂ Rd is the set of d-dimensional
inputs θ = [θ1, θ2, . . . , θd]

T and the domain Y ⊂ R is the range of scalar-valued outputs y =
f (0)(θ). In the following, we consider the situation where f (0) is computationally expensive
to evaluate because evaluating f (0) entails large-scale, high-fidelity numerical simulations.
Denote the computational costs of evaluating f (0) at an input θ ∈ X as w0 � 0.

Let now Θ = [Θ1, . . . ,Θd]
T be a random vector with image X and with probability

density function π. The goal of uncertainty propagation is to estimate quantities of interest
such as the expected value of the output random variable f (0)(Θ)

µ0 = E[f (0)(Θ)] =

∫
X
f (0)(θ)π(θ)dθ (2.1)

and its variance
σ2
0 = Var[f (0)(Θ)] = E[

(
f (0)(Θ)

)2
]− E[f (0)(Θ)]2. (2.2)

MC estimators of the expected value and variance of f (0)(Θ) are

Ê(0)
n :=

1

n

n∑
i=1

f (0)(θi), V̂ar
(0)

n :=
1

n− 1

n∑
i=1

(f (0)(θi)− Ê(0)
n )2, (2.3)

respectively, where θ1,θ2, . . . ,θn are n independent and identically distributed (i.i.d.) sam-

ples from Θ. The costs of the MC estimator Ê
(0)
n of E[f (0)(Θ)] are p = nw0 because f (0) is

evaluated at n realizations. The mean-squared error (MSE) of the estimator Ê
(0)
n is

MSE[Ê(0)
n ] =

σ2
0

p
w0. (2.4)

Because we consider the situation in which the evaluation costs of f (0) are large, the slow
decay of the MSE in (2.4) with respect to the budget p makes the MC estimator Ê

(0)
n

computationally prohibitive. For example, in Section 4.2, one plasma micro-turbulence
simulation requires, on average, a w0 of about 3.2 hours on 240 cores in total. A large
number of such simulations is not feasible.

2.2. Multi-fidelity Monte Carlo sampling

The MFMC method proposed in [34, 39] exploits that in many problems in science and
engineering we either have available or can construct low-fidelity models that approximate
f (0) with lower computational costs than w0. Let us assume we have available k low-fidelity
models f (1), f (2), . . . , f (k). MFMC exploits the lower computational cost of the low-fidelity
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models to obtain an estimator that has lower costs than a standard MC estimator with
the same MSE. MFMC guarantees unbiasedness even if the approximation error of the low-
fidelity models cannot be bounded rigorously. The quality of low-fidelity models for MFMC
is ascertained via their Pearson correlation coefficient with respect to f (0),

ρj =
Cov[f(0), f(j)]

σ0σj
∈ [−1, 1], j = 1, 2, . . . , k,

where σ2
j denotes the variance of model j for j = 0, 1, . . . , k and Cov is the covariance.

Let mj ∈ N for i = 0, 1, . . . , k denote the number of evaluations of model f (j) such that

1 ≤ m0 < m1 < . . . < mk. (2.5)

That is, we ensure that the high-fidelity model is evaluated at least once. Consider mk

i.i.d. realizations drawn from the input density, π(θ):

θ1,θ2, . . . ,θmk
.

Model f (j) for j = 0, 1, . . . , k is evaluated at the first mj samples θ1,θ2, . . . ,θmj
to obtain

f (j)(θ1), f
(j)(θ2), . . . , f

(j)(θmj
). (2.6)

We compute the following standard MC estimators for expectation and variance:

Ê(j)
mj

=
1

mj

mj∑
m=1

f (j)(θm), V̂ar
(j)

mj
=

1

mj − 1

mj∑
m=1

(f (j)(θm)− Ê(j)
mj

)2. (2.7)

Additionally, for the low-fidelity models f (j) with j = 1, 2, . . . , k we compute the estimators

Ê(j)
mj−1

=
1

mj−1

mj−1∑
m=1

f (j)(θm), V̂ar
(j)

mj−1
=

1

mj−1 − 1

mj−1∑
m=1

(f (j)(θm)− Ê(j)
mj−1

)2. (2.8)

Note that the estimators in (2.7) use the full set of evaluations of model f (j), while the esti-
mators in (2.8) use the first mj−1 evaluations. This makes the estimators in (2.8) dependent
on the estimators in (2.7).

The MFMC estimator for the expectation of the high-fidelity model is given by

ÊMFMC := Ê(0)
m0

+
k∑
j=1

αj(Ê
(j)
mj
− Ê(j)

mj−1
) (2.9)

and the estimator for the variance is

V̂ar
MFMC

:= V̂ar
(0)

m0
+

k∑
j=1

αj(V̂ar
(j)

mj
− V̂ar

(j)

mj−1
) (2.10)
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where α1, α2, . . . , αk ∈ R.
Let wj denote the runtime of the low-fidelity model f (j) for j = 1, 2, . . . , [w0, w1, . . . , wk]

T .

Given a budget p :=
∑k

j=0wjmj, in [39, Theorem 3.4] it is shown that if

1 =: ρ0 > ρ1 > ρ2 > . . . > ρk and
wj−1
wj

>
ρ2j−1 − ρ2j
ρ2j − ρ2j+1

, j = 1, 2, . . . , k, (2.11)

then the MSE of the MFMC mean estimator (2.9) is minimized given the budget p, and

α∗j =
ρjσ1
σj

, m∗0 =
p

wTr∗
, m∗j = r∗jm

∗
0, j = 1, 2, . . . , k, (2.12)

where r∗ := [r∗0, r
∗
1, . . . , r

∗
k]
T , r∗j =

√
w0(ρ2j − ρ2j+1)/wj(1− ρ21). Using the optimal number of

model evaluations m∗0,m
∗
1, . . . ,m

∗
k and coefficients α∗1, α

∗
2, . . . , α

∗
k, the MSE of ÊMFMC is

MSE[ÊMFMC] =
σ2
0

p

(
k∑
j=0

√
wj(ρ2j − ρ2j+1)

)2

. (2.13)

If we compare the above MSE with the MSE of the standard MC mean estimator (2.4), it
holds that MSE[ÊMFMC] < MSE[ÊMC] if and only if

γ :=

(
k∑
j=0

√
wj
w0

(ρ2j − ρ2j+1)

)2

< 1. (2.14)

The above formula gives a means to determine which low-fidelity models lead to an MFMC
estimator with a smaller MSE than the MSE of the standard MC estimator for which the
same budget, p, was used. In [39, Algorithm 1], a model selection algorithm is proposed,
which, given a set of low-fidelity models, selects the subset that leads to the MFMC estimator
with the lowest MSE.

In the specific situation of two models and that the expected value of the surrogate-
model output f (1)(θ) is known in closed form, it can be used in (2.9) directly instead of the

estimator Ê
(1)
m1 . This specific situation is investigated with control functionals in [36] and in

the context of MFMC in the asymptotic limit in [37]. However, for typical surrogate models,

a closed form of the expected value is unavailable and one has to rely on the estimator Ê
(1)
m1 .

We point out that the standard MFMC algorithm of [39] is for the estimation of the
mean of the high-fidelity model. That is, given a budget p and assuming that (2.11) holds
true, the minimization of the MSE of the mean estimator leads to the optimal parameters in
(2.12). These parameters are not necessarily optimal for estimating the variance of the high-
fidelity model with the MFMC estimator (2.10). Nevertheless, in [41], it was shown that
using the mean-optimal parameters for estimating the variance too leads to a comparable
MSE as when directly minimizing the MSE of the variance estimator, which is significantly
more challenging since the variance is a nonlinear operator. Thus, the realizations of the
model outputs can be used to compute both mean and variance estimators.
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Remark 1. The ingredients in MFMC are the correlation coefficients, ρj, and evaluation
costs, wj, of the models in the hierarchy. In some problems the quantities are readily
available from physical and theoretical insights. If the quantities are unavailable, then they
can estimated from typically a small number of pilot samples [39]. We will demonstrate with
our numerical examples in Section 4.2 that the pilot samples can be re-used in the MFMC
estimator. Re-using the pilot samples can introduce a bias; however, the mean-squared error
of the estimator is typically dominated by the limited number of samples rather than the
bias due to re-using pilot samples.

3. Plasma micro-turbulence models: high-fidelity and data-driven low-fidelity
models

In this section, we present the hierarchy of models used in our numerical experiments. In
Section 3.1, we summarize the gyrokinetic theory for plasma micro-turbulence simulations,
which is the basis for the high-fidelity model employed in this work. The main methodology
used to construct data-driven low-fidelity models via sensitivity-driven sparse grids is pre-
sented in Section 3.2. For a broader overview, we also consider a second type of data-driven
low-fidelity models based on deep neural networks, which we summarize in Section 3.3.

3.1. High-fidelity model

We build on gyrokinetic theory [4] to assess plasma micro-turbulence, which reduces
the dimension of the state space of classical kinetic models from six (three positions, three
velocities) to five (three positions, two velocities). At the same time, a number of small—
and irrelevant (for the specific scenario at hand) —space-time scales are removed from the
problem, leading to savings of several orders of magnitude in terms of computational costs.
Throughout this paper the gyrokinetic equations are solved numerically with the simulation
code Gene [27]. In the gyrokinetic code Gene each particle species, s, is characterized
by a distribution function, which is split into a static background (π0) – often assumed a
Maxwellian distribution function – and a fluctuating part (π1)

πs(t,R, v||, µm) = π0,s(R, v||, µm) + π1,s(t,R, v||, µm),

where t is time, R = (Rx, Ry, Rz) describes the position of the gyrocenter in real space,
v|| denotes the velocity parallel to the background magnetic field, and µm := msv

2
⊥/2B is

the magnetic moment, where ms denotes the mass of species s, v⊥ is the perpendicular
component of the velocity and B denotes the magnetic field. Here, it is assumed that
π1/π0 ∼ εδ � 1. The dynamics of the perturbed part of the distribution function π1,s are
modelled by the first order (in the expansion parameter εδ) gyrokinetic Vlasov equation with
collisions:

C(πs, πs′) = π̇1,s + v1,c ·
(
∇π0,s −

µm
msv||

∂π0,s
∂v||

∇B0

)
+
(
v||b̂0 + v1,c

)
·(

∇π1,s +
1

msv||

(
qsE1 − µm∇B1,||

) ∂π0,s
∂v||

+
1

msv||

(
qsE1 − µm∇

(
B0 +B1,||

)) ∂π1,s
∂v||

)
,

(3.1)
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where C(πs, πs′) is a collision operator, B0 the background magnetic field, E1 the perturbed
part of the electric field and v1,c the drift velocity due to the fields. To self-consistently
evolve the perturbed part of the distribution function π1,s, we also have to advance three
scalar quantities characterizing the electromagnetic fields by solving Maxwell’s equations:
the electrostatic potential, Φ1, the parallel component of the vector potential, A1,||, which
is linked to the perpendicular magnetic field perturbations, and the parallel component of
the magnetic field perturbations, B1,||, i.e.,

Poisson’s equation: ∇ ·E1 = −∇2Φ1 = 4π
∑
s

qsn1s,

Ampère’s law for A1,||: −∇2A1,|| =
4π

c

∑
s

n1sqsu1s,||,

Ampère’s law for B1,||: (∇×B1)⊥ =
4π

c

∑
s

n1su1s,⊥,

(3.2)

where qs is the charge, c is the speed of light, and n1s is the 0th space moment, u1s,|| the 1st
order velocity moment in v|| of πs and u1s,⊥ the 1st order velocity moment in µm of πs. The
velocity integrals of π1 are computed in the particle coordinates, while the Vlasov equation
is written in the gyrocenter coordinates [7]. The system of equations (3.1)-(3.2) defines the
partial differential Vlasov-Maxwell equations solved in Gene.

In Gene, the gyrokinetic Vlasov-Maxwell system of nonlinear PDEs is solved using
the method of lines: the spatial operators are discretized using either finite differences on
equidistant points or spectral (Fourier) decompositions, while the resulting system of ODEs
is efficiently integrated using explicit methods, such as fourth-order Runge-Kutta.

In this work, we are interested in linear (in phase space variables R, v||, µm) gyroki-
netic simulations, which can be used to characterize the underlying micro-instabilities. The
equations employed in linear simulations are obtained from the gyrokinetic Vlasov-Maxwell
system (3.1)-(3.2) by simply neglecting all nonlinear terms. In these simulations, Gene is
run in the so-called flux-tube limit, which allows having periodic boundary conditions over
the radial (x) direction [7]. The generic form of linear gyrokinetic simulations reads:

π̇s = Olin(πs),

where πs is a vector holding the discretized five-dimensional distribution function of species
s. The discrete form of the operator Olin is a matrix, Olin, which leads to

π̇s = Olinπs.

To obtain the above linear equation, Gene employs Fourier decompositions in the radial
(x) direction and equidistant points along the field line, i.e., in the z direction; in flux-
tube simulations, only one point is used in the bi-normal (ky) direction. In velocity space,
equidistant points are applied for the parallel velocity, while Gauss-Laguerre quadrature
points are used to discretize the magnetic moment.
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The high-fidelity model used in this work computes the growth rate or spectral abscissa,
i.e., the maximum real part over the spectrum, which we denote by γ1:

f (0)(Θ) = γ1(Θ) (3.3)

which characterizes the dominant micro-instability mode. The entries in Θ are parameters
characterizing the particle species, such as temperature, density and their (logarithmic)
gradients, parameters characterizing the magnetic geometry or parameters associated to
electromagnetic effects, if electrons are used in the gyrokinetic equations etc. In this work,
Θ has up to 14 components, including the safety factor, q, which describes the relationship
of the number of toroidal turns of a magnetic field line to number of poloidal turns; and
its derivative, the magnetic shear, ŝ; β, the ratio of kinetic to magnetic pressure inside the
plasma; the normalized collision frequency, νc; and parameters characterizing the underlying
species, such as their density, ns, and its negative logarithmic gradient, ωns , and their
temperature, Ts, and its negative logarithmic gradient, ωTs . For more details about the
gyrokinetic equations solved by Gene, we refer the reader to [23] and the references therein.

3.2. Low-fidelity model: Sensitivity-driven dimension-adaptive sparse grid interpolation

In this section, we summarize the sensitivity-driven dimension-adaptive sparse grid in-
terpolation approach formulated in [16, 17], which is our main methodology used to create
data-driven low-fidelity models for MFMC. Our notation is similar to [16, 17].

3.2.1. Interpolation on sparse grids

The sparse grid interpolation [5] low-fidelity model reads

UdL[f (0)] =
∑
`∈L

∆d
`[f

(0)], (3.4)

where ` = (`1, `2, . . . `d) ∈ Nd denotes a multiindex, L ⊂ Nd is a multiindex set, and

∆d
`[f

(0)] =
∑

z∈{0,1}d
(−1)|z|1Ud`−z[f (0)] (3.5)

are the so-called hierarchical surpluses, where |z|1 :=
∑d

i=1 zi. The surpluses are computed
from full-grid operators, Ud` , which are tensorizations of one-dimensional approximations:

Ud` [f (0)] =

(
d⊗
i=1

U i`i

)
[f (0)]. (3.6)

Therefore, the sparse grid interpolation low-fidelity model (3.4) is a linear combination of
hierarchical surpluses (3.5), which are computed from tensorizations (3.6) of one-dimensional
operators, U i`i . To ensure that (3.6) can be computed, we need the following two assumptions:
the image, X , of the stochastic inputs needs to have a product structure:

X :=
d⊗
i=1

Xi,
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which implies that the input density, π, needs to have a product structure as well:

π(θ) :=
d∏
i=1

πi(θi),

where Xi is the image of the density πi associated with input θi. The latter assumptions
means that the stochastic inputs need to be independent. This can be relaxed if a (possibly
nonlinear) transformation is used, e.g., a transport map [30].

In this work, U i`i are interpolation operators based on Lagrange polynomials (see, e.g.,
[2, 6, 16, 17, 35]), constructed using weighted (L)-Leja points [26, 32]. Let g : Xi → R be a
univariate function and let PP`i

be the space of univariate polynomials of degree P`i ∈ N for
i = 1, 2, . . . , d. Univariate Lagrange interpolation is defined as:

U i`i : C0(Xi)→ PP`i
, U i`i [g] :=

`i∑
n=1

g(θn)Ln(θ), (3.7)

where {θn}`in=1 are weighted (L)-Leja points computed w.r.t. the density πi:

θ1 = argmax
θ∈Xi

πi(θ)

θn = argmax
θ∈Xi

πi(θ)
n−1∏
m=1

|(θ − θm)| , n = 2, 3, . . . , `i,

and {Ln(θ)}`in=1 are Lagrange polynomials of degree n − 1 satisfying the interpolation con-
dition Ln(θm) = δnm, where δnm is Kronecker’s delta function. For improved numerical
stability, we implement (3.7) in terms of the barycentric formula (see, e.g., [2]). It follows
that the multivariate interpolation operator (3.6) is determined as

Ud` [f (0)] =
∑
p∈P`

f (0)(θp)Lp(θ), (3.8)

where Lp(θ) :=
∏d

i=1 Lpi(θi) and P` := {p ∈ Nd : 0 ≤ p ≤ P` := (`1− 1, `2− 1, . . . , `d− 1)}.

3.2.2. Sensitivity-driven dimension-adaptivity

To fully define (3.4), we need to specify the multiindex set, L. L is critical for the compu-
tational efficiency of constructing the sparse grid approximation: the larger the cardinality
of L is, the larger the cost of finding the approximation. To reduce this cost, we employ
sensitivity-driven dimension-adaptivity.

An important ingredient of dimension-adaptive algorithms [21, 24] is a refinement indi-
cator, ε(`), which is used to decide which multiindices to refine in an adaptive step. In the
sensitivity-driven procedure of [16, 17], ε(`) is computed in terms of unnormalized Sobol’
indices [43]: we first find the equivalent spectral projection representation of the multivariate
interpolation operators (3.8):

Ud` [f (0)] =
∑
p∈P`

f (0)(θp)Lp(θ) =
∑
p∈P`

cpΦp(θ), (3.9)
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where Φp(θ) :=
∏d

i=1 Φi(θi) are orthonormal polynomial w.r.t. π and cp are the spectral
coefficients. For example, if π is the uniform distribution, Φp(θ) are the Legendre polynomi-
als. To determine the spectral coefficients cp, we simply solve a linear system of equations,∑

p∈P`
cpΦp(θk) = Ud` [f (0)(θk)] for all weighted (L)-Leja points θk associated to the multiin-

dex ` (see [16, 17]). Next, we rewrite the hierarchical interpolation surpluses (3.5) in terms
of spectral projections:

∆d
`[f

(0)] :=
∑
p∈P`

∆cpΦp(θ), ∆cp :=
∑

z∈{0,1}d
(−1)|z|1cp−z, ∆c0 := c0.

It follows that∥∥∆d
`[f

(0)]
∥∥2
L2 =

∑
p∈P`

∆c2p = ∆c20 +
∑

p∈P`\{0}

∆c2p = (E`[f
(0)])2 + ∆Var`[f

(0)]. (3.10)

The first equality in (3.10) is due to Parseval’s identity, whereas the last equality follows
from the orthonormality of the spectral projection basis [46]. From (3.10), we therefore
obtain the variance corresponding to each subspace.

The variance represents global information in the underlying subspace and it therefore
does not provide any information about the individual parameters, their interaction, or
which of these are stochastically important. To obtain such information, we decompose
∆Var`[f

(0)] further by exploiting the equivalence between spectral projection and Sobol’
decompositions [44]:

∆Var`[f
(0)] =

d∑
i=1

∆Vari`[f
(0)] + ∆Varinter` [f (0)], (3.11)

where
∆Vari`[f

(0)] :=
∑
p∈Ji

∆c2p, Ji := {p ∈ P` : pi 6= 0 ∧ pj = 0, ∀j 6= i}, (3.12)

∆Varinter` [f (0)] :=
∑

p∈Jinter

∆c2p, Jinter := {p ∈ P` : |p|0 ≥ 1}, (3.13)

where |p|0 denotes the number of non-zero entries in p. Thus, we can decompose the variance
in each subspace associated to a multiindex ` into variances associated to each individual
parameters (3.12) and the variance involving all interactions between the d inputs (3.13).
Moreover, from [44], we know that the terms in (3.11) are unnormalized Sobol’ indices [43],
which ascertain the stochastic importance of each input and of their interaction. Thus, the
decomposition (3.11) allows us to have detailed information about the individual inputs as
well as their interaction.

We define the sensitivity-driven refinement indicator as ε(`) := s`, where s` is an integer
(for each subspace) called the sensitivity index [16, 17]. We compute s` as follows. Initially,
s` = 0. Based on user-defined d + 1 tolerances τ := (τ1, τ2, . . . , τd, τd+1) – one for each
individual direction (d in total) and the last one for all interactions – we compare each term
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in (3.11) with the prescribed tolerances. If the tolerance is not exceeded, we increase s` by
one. Thus, s` takes values between zero and d + 1. Denote by k the multiindex associated
with the subspace having the largest sensitivity score. In each refinement step, this subspace
is refined by adding all forward neighbors k+ei, i = 1, 2, . . . , d of k, where ei denotes the
ith unit vector in Rd, which keeps the multiindex set downward closed, i.e., without holes
[21]. If two or more sensitivity indices are equal, we select the multiindex with the largest
variance ∆Var`[f

(0)]. The algorithm stops when either (i) all tolerances τ are reached, (ii)
a prescribed maximum level, Lmax, is reached, or (iii) there are no more multiindices to be
refined. We note that the summarized refinement procedure is inherently sequential. In
each refinement step, at most d new grid points are added, i.e., at most d simulations can
be performed in parallel per refinement step. Nevertheless, for functions that are smooth,
the method is usually efficient, hence compensating for the restricted outer-loop parallelism.
In addition, for problems for which a significant amount of resources is needed for a single
simulation, performing multiple such simulations in parallel might not be feasible.

The sensitivity-driven dimension-adaptive sparse grid algorithm was originally designed
for single-fidelity uncertainty propagation settings [16] with the goal of estimating the expec-
tation, variance or Sobol’ indices for sensitivity analysis of outputs of interest. Nevertheless,
since the algorithm is based on interpolation, it implicitly provides a low-fidelity approxi-
mation of the high-fidelity model as well. Therefore, in this work we employ the sensitivity-
driven algorithm to create structure-exploiting low-fidelity models in multi-fidelity settings.
Moreover, since the algorithm provides detailed information about the stochastic parameters’
sensitivities, we exploit this information to additionally create reduced-dimension low-fidelity
models by fixing the unimportant stochastic parameters to a deterministic value, e.g., their
expectation. We illustrate the potential of the sensitivity-driven algorithm to creating full-
and reduced-dimension low-fidelity models in the following example.

3.2.3. Illustrative example

Consider a high-fidelity model f (0) : [0, 1]8 → R that depends on eight uniformly dis-
tributed random variables θ1, θ2, . . . , θ8:

f (0)(θ) = 1 + cos (π + θ1 + 0.55θ2 + 0.05θ3 + 0.8θ4 + 0.02θ5 + 0.001θ6 + 0.1θ7 + 0.0005θ8).
(3.14)

Initially, we use the sensitivity-driven algorithm to construct an eight-dimensional low-
fidelity model using tolerances τ = 10−8 ·19. To exploit the algorithm to construct reduced-
dimension low-fidelity models, we ascertain the sensitivity of the eight stochastic parameters
provided by the 8D low-fidelity model. The eight total Sobol’ indices read

ŜT1 = 0.5179, ŜT2 = 0.1542, ŜT3 = 0.0012, ŜT4 = 0.3288,

ŜT5 = 0.0002, ŜT6 = 5.8239× 10−7, ŜT6 = 0.0050, ŜT8 = 1.4559× 10−7.

Thus, we see that θ1 is the most important parameter, θ4 the second most important and
so on. Note that the sensitivity of the eight inputs is reflected by their weights too.

Based on the information provided by the total Sobol’ indices, we construct reduced
models with stochastic dimension reduced from seven down to four. We approximate the
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Pearson correlation coefficient between the original f (0) with all eight stochastic inputs (3.14)
and all sensitivity-driven interpolants using 10, 000 MC samples. The results are presented
in Table 1. In the second column, we show which subset of inputs was used to find the low-
fidelity model, in the third column, we see the estimated correlation coefficient, and in the
last column, we show the number of high-fidelity model evaluations to find the sparse grid
low-fidelity model. We see that the eight-dimensional low-fidelity model is very accurate,
having a correlation coefficient of 0.9999, and is also relatively cheap to construct, requiring
only 146 evaluations of f (0). However, when the two most unimportant parameters, θ6 and θ9,
are neglected, we see that the correlation coefficient virtually does not change. Furthermore,
even if we reduce the stochastic dimension down to three, i.e., the inputs are only θ1, θ2 and
θ4, the correlation coefficient is still close to one, i.e., 0.9960, while the cost of finding the
low-fidelity model decreases to only 49 model evaluations.

j θ ρj # high-fidelity evaluations
1 {θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8} 0.9999 146
2 {θ1, θ2, θ3, θ4, θ5, θ6, θ7} 0.9999 137
3 {θ1, θ2, θ3, θ4, θ5, θ7} 0.9999 129
4 {θ1, θ2, θ3, θ4, θ7} 0.9998 103
5 {θ1, θ2, θ4, θ7} 0.9991 74
6 {θ1, θ2, θ4} 0.9960 49

Table 1: Inputs to the low-fidelity models obtained by the dimension-adaptive sparse grid interpolation
low-fidelity model and their properties.

We remark that reduced-dimension sparse grid low-fidelity models can be directly ob-
tained from the full-dimension sparse grid low-fidelity model by fixing the unimportant in-
puts to a deterministic value. However, in this case the evaluation costs of both low-fidelity
models will be the same, thus restricting the potential of reduced-dimension low-fidelity
models in MFMC; recall that the important ingredients in MFMC are both the correlation
coefficient and the evaluation cost of low-fidelity models (see Section 2.2). To this end, in
this work we construct reduced-dimension low-fidelity model explicitly from high-fidelity
evaluations, as we did in this section. In this way, we obtain low-fidelity model with lower
evaluation times than the runtime of the full-dimension low-fidelity model.

3.3. Low-fidelity model: Deep neural network regression

We also consider a data-driven low-fidelity model based on a feed-forward deep neural
network, which is trained by solving a regression problem for a set of given training samples;
see, e.g., [3, 22].

This model is used in Section 4.1.1, in which we consider three stochastic parameters
θ1, θ2, θ3 and approximate the corresponding scalar-valued Gene output γ1(θ). We use a
fully-connected network with two hidden layers of three neurons each and ReLU activation
functions. This architecture is depicted in Figure 1. We train the model using an RMSprop
optimizer with a learning rate of α = 0.001 that minimizes the MSE of the neural network
output compared to the given training data. As training samples, we make use of existing
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data that we have available from previous numerical experiments. We construct and train
the neural network using the Keras API on Tensorflow for python.

θ1

θ2

θ3

γ1(θ)

input
layer

hidden
layer 1

hidden
layer 2

output
layer

Figure 1: The structure of the neural network used as a low-fidelity model of Gene.

4. Numerical results

In this section, we employ the proposed data-driven multi-fidelity framework for un-
certainty propagation in two plasma micro-turbulence analysis scenarios to estimate the
expectation and variance of the growth rate of dominant eigenmodes, γ1 (see Section 3.1).
In Section 4.1, we consider a modified Cyclone Base Case benchmark scenario to draw our
initial conclusions about the potential of our MFMC approach to quantify uncertainty in
plasma micro-turbulence analysis. First, in Section 4.1.1, we consider the three uncertain pa-
rameters that are usually the most important for plasma micro-turbulence simulations (the
log density and temperature gradients of the species). For a more comprehensive overview of
this scenario, we extend the number of uncertain inputs to eight in Section 4.1.2. In Section
4.2, we study turbulence suppression by energetic particles with 14 uncertain parameters.

4.1. Modified Cyclone Base Case

We first consider a modified version of the Cyclone Base Case scenario. In the original
Cyclone Base Case, which was first presented in [15], only one particle species is considered,
i.e., deuterium ions. In our modified version, we have two particle species: deuterium ions
and electrons [16, 17]. Furthermore, the magnetic geometry is described by the analytical
Miller equilibrium [31] instead of the typically considered, simpler ŝ − α model. We also
consider collisions modelled by a linearized Landau operator. In this way our setup more
closely resembles realistic plasma micro-turbulence analysis problems.

Setup. To discretize the 5D gyrokinetic state space, we employ 184, 320 := 15×24×1×32×16
degrees of freedom in total: we use 15 Fourier modes in the radial (x) direction and 24 points
along the field line, in the z direction; recall that in flux-tube simulations, only one point is
used in the bi-normal (ky) direction. In velocity space, we employ 32 equidistant symmetric
parallel velocity grid points and 16 Gauss-Laguerre distributed magnetic moment points.
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The high-fidelity Gene simulations are performed using 32 cores on two Intel Xeon E5-
2697 nodes of the CoolMUC-2 Linux cluster.2 The low-fidelity evaluations were performed on
a laptop computer with an Intel Core i5-8250U CPU running at 1.60 GHz. All calculations
were performed in double precision arithmetic.

4.1.1. Case with three uncertain inputs

First, we consider three uncertain parameters: the ion and electron logarithmic temper-
ature gradients, ωTi and ωTe , as well as their logarithmic density gradient, ωn. Note that
to ensure the quasi-neutrality assumption in plasma physics, the density gradients need to
be equal. It is known that changes in these parameters are causing the underlying micro-
instability [15] and therefore these three inputs are of interest with respect to uncertainty
propagation. We summarize the setup employed in our experiments in Table 2. The param-
eters are modelled as uniform random variables with bounds of ±25% around their nominal
value, which is their typical value used in typical plasma micro-turbulence numerical studies.

parameter symbol probability distribution
θ1 ion/electron log density gradient ωn U(1.6650, 2.7750)
θ2 ion log temperature gradient ωTi U(7.5000, 12.5000)
θ3 electron log temperature gradient ωTe U(7.5000, 12.5000)

Table 2: The three uncertain input parameters for the three-dimensional Cyclone Base Case and their
probability distributions. By U(a, b) we denote a uniform distribution on [a, b].

For this scenario, it is known [15] that around bi-normal wave-number kyρs = 0.6
there is a mode transition from an ion-temperature gradient (ITG) to a trapped electron
(TEM)/electron temperature gradient (ETG) hybrid mode. Therefore, we consider two
wave numbers in our experiments: one for which the micro-instability is driven by ITG, i.e.,
kyρs = 0.3 and another one for which we have TEM/ETG micro-instability, i.e., kyρs = 0.8.

Data-driven low-fidelity models. For both values of kyρs we construct two low-fidelity mod-
els, f (1) and f (2). One data-driven low-fidelity model is based on the sensitivity-driven
dimension-adaptive sparse grid interpolation approximation summarized in Section 3.2.
To construct it at kyρs = 0.3, we employ the tolerance τ = (10−1, 10−1, 10−1, 10−1). At
kyρ = 0.8, we set τ = (10−6, 10−6, 10−6, 10−3). We choose smaller tolerances at kyρ = 0.8
because we know from previous experiments that, compared to kyρ = 0.3, more effort is
needed to obtain sufficiently accurate low-fidelity models. Note, however, that the sparse
grid model is hierarchical, therefore one can start constructing low-fidelity models with some
initial tolerances and re-use those model evaluations if the tolerances need to be decreased.

In both cases, the maximum grid level is set to Lmax = 20. Only four high-fidelity
evaluations with Gene were needed to create the sparse grid low-fidelity model at kyρs = 0.3
and 34 Gene evaluations were needed for kyρs = 0.8. The other low-fidelity model is based

2https://www.lrz.de/services/compute/linux-cluster/
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on the deep-network model summarized in Section 3.3. To train the network, we make use
of existing Gene evaluations available from previous experiments. At kyρs = 0.3, we had
available 105 evaluations. For the second wave-number, we trained on 2.5×104 data samples.

We show the correlation coefficients, single-core runtimes and variances of the high-
and low-fidelity models in Table 3. For clarity, we use the following notation for the two
low-fidelity models: the superscripts denote the fidelity of the model and to distinguish
between the sparse grid and the machine learning models, we use the subscripts SG and
ML, respectively. At kyρs = 0.3, the first low-fidelity model in the hierarchy is the deep-

network low-fidelity model, i.e., f
(1)
ML, and the second low-fidelity model is the sparse grid

approximation, i.e., f
(2)
SG . At kyρs = 0.8, the order of the low-fidelity models is reversed

due to the values of their Pearson correlation coefficients: f
(1)
SG is the first low-fidelity model

and f
(2)
ML is the second low-fidelity model. The three quantities were estimated using 1, 000

f (j) ρj wj [sec] σ2
j

f (0) 1.0000 260.1697 0.0170

f
(1)
ML 0.9998 0.0019 0.0165

f
(2)
SG 0.9989 0.0008 0.0144

f (j) ρj wj [sec] σ2
j

f (0) 1.0000 240.5123 0.0754

f
(1)
SG 0.9819 0.0166 0.0747

f
(2)
ML 0.9708 0.0017 0.0703

(a) kyρs = 0.3 (b) kyρs = 0.8

Table 3: Correlation and costs of high-fidelity and low-fidelity models for modified Cyclone Base Case.

evaluations of the high- and low-fidelity models. The evaluation costs of the low-fidelity
models are 4 − 5 orders of magnitude smaller compared to the costs of the high-fidelity
model. At kyρs = 0.3, both low-fidelity models have correlation coefficients close to 1.0,
whereas at kyρs = 0.8, the low-fidelity models are less accurate and thus poorer correlated
to the high-fidelity model.

Estimating the expectation. We employ MFMC to estimate the expectation and variance
of the growth rate at both kyρs = 0.3 and kyρs = 0.8 for budgets p ∈ {5 × 102, 103, 5 ×
103, 104, 5 × 104} seconds. For comparison purposes, we also compute MC approximations
for the same budgets p.

We first compare the MC and MFMC expectation estimators in terms of their MSE that
is estimated from N replicates as:

eMSE(Ê(·)
n ) =

1

N

N∑
n=1

(µ̂ref − Ê(·)
n )2, (4.1)

where µ̂ref serves as the reference mean estimator and Ê
(·)
n is either an MFMC or an MC

estimator. The reference µ̂ref is obtained with MFMC using a large budget pref = 105 seconds.
At kyρs = 0.3, the reference is µ̂ref = 0.6811 and at kyρs = 0.8, we obtain µ̂ref = 0.5560.

For a broader overview, we consider two MFMC estimators: one in which we have the
sparse grid low-fidelity model only and another in which we consider both the sparse grid
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Figure 2: Analytical MSE (left) and estimated MSE (right) of standard MC and MFMC for the Cyclone
Base Case with 3 uncertain inputs and kyρs = 0.3.
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Figure 3: Analytical MSE (left) and estimated MSE (right) of standard MC and MFMC for the Cyclone
Base Case with 3 uncertain inputs and kyρs = 0.8.

and the machine-learning-based low-fidelity models. We first compute the analytic MSE
obtained via (2.4) and (2.13) based on the analysis in [39]. The analytic MSE is obtained
from the measured values in Table 3 and gives an indication what variance reduction and
speedup we expect to see in the numerical simulations. Notice that the analytical MSEs
are computed purely from the values given in Table 3 and require no additional numerical
simulations. Additional analyses of the MFMC approach to estimate how much variance
reduction one can expected before conducing numerical experiments are presented in [38].
The analytic MSEs are shown in the left panel of Figure 2 and 3. The estimated MSE,
computed via (4.1) using N = 10 replicates, are visualized in the right panel in each figure.
MFMC is around three orders of magnitude more accurate in terms of the estimated MSE
for kyρs = 0.3 and about one order of magnitude more accurate for kyρs = 0.8, compared
to the MC estimator. The results in Figure 2 for kyρs = 0.3 indicate that adding the
machine learning model to MFMC decreases the MSE further. This is explained by the high
correlation and the low evaluation costs of the two low-fidelity models as shown in Table 3.
In contrast, for kyρs = 0.8, the results in Figure 3 indicate that adding the machine learning
model leads to little improvement, which is explained by the poorer correlation coefficient
as shown in Table 3.
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We also compute the MSE of the MFMC estimator in which we explicitly account for the
construction cost of low-fidelity models. We compute the estimator which depends on the
high-fidelity and the sparse grid low-fidelity model and focus on the estimator with budget
p = 5×104. At kyρs = 0.3, four high-fidelity evaluations, i.e., 4×w0 = 4×260.1697 ≈ 1, 040

seconds were required to construct the sparse grid low-fidelity model f
(2)
SG . We subtract the

construction budget from the total budget of 5× 104 seconds and use the remaining budget
p′ = 5× 104− 1, 040 = 48, 960 seconds for MFMC sampling, i.e., around 98% of the original
budget. Analogously, at kyρs = 0.8 the budget used to construct the low-fidelity model

f
(1)
SG was 34 × w0 ≈ 5, 772 seconds. The remaining budget for MFMC sampling is therefore
p′ = 5× 104 − 5, 772 = 44, 228 seconds, i.e., roughly 88% of the original p. We visualize the
corresponding results in Figure 4 (left, kyρs = 0.3; right, kyρs = 0.8). We compare the MSE
of standard MC sampling, standard MFMC sampling (without offline cost) and MFMC
sampling in which we explicitly consider the construction cost. As expected, subtracting
the sparse grid construction cost of only four high-fidelity evaluations at kyρs = 0.3 has
a negligible effect on the MSE of the MFMC estimator. At kyρs = 0.8, subtracting the
construction cost of the low-fidelity model has an insignificant effect as well: the MFMC
estimator remains more than one order of magnitude more accurate than the standard MC
estimator despite the fact that the sampling budget was decreased by roughly 12%.
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Figure 4: MSE of mean estimators for p = 5×104 for standard MC and MFMC using the low-fidelity model

f
(1)
SG with and without considering the construction cost of the sparse grid model for the Cyclone Base Case

with three uncertain inputs and kyρs = 0.3 (left) and kyρs = 0.8 (right).

Speedup. To put the computational savings provided by our MFMC approach into per-
spective, let us take a closer look at how the obtained variance reduction translates into
computational speedups. High-fidelity simulations are performed on 32 cores, whereas low-
fidelity simulations are performed on a single core only because they are so much cheaper. At
both kyρs = 0.3 and kyρs = 0.8, the MFMC estimator with the smallest MSE was obtained
for budget p = 5 × 104 seconds, hence this will serve as reference in the following. Notice
that the budget of p = 5× 104 seconds on a single core translates into 5 × 104/60/32 ≈ 26
minutes of high- and low-fidelity simulations on 32 cores. Computing a standard MC esti-
mator with the same MSE as the MFMC estimator requires a budget of about 104, 583, 190
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seconds on a single core, which corresponds to 104, 583, 190/3, 600/24/32 ≈ 38 days of high-
fidelity simulations on 32 cores. Finally, the MFMC estimator with only the sparse grid
low-fidelity model needs a budget of about 249, 916 seconds, i.e., about 130 minutes of high-
and low-fidelity simulations in 32 cores. To summarize, at kyρs = 0.3, the variance reduction
obtained by our MFMC approach leads to a runtime reduction from 38 days to 26 minutes
on 32 cores if both low-fidelity models are used. At kyρs = 0.8, a budget of about 1, 339, 482
seconds on a single core is needed to obtain a standard MC estimator with the same MSE as
the MFMC estimator with budget p = 5×104 on a single core, which means that a standard
MC estimator would require about 12 hours of high-fidelity simulations on 32 cores. In
contrast, MFMC requires only 26 minutes of high- and low-fidelity simulations on 32 cores.
Hence, we see that even though the low-fidelity models at kyρs = 0.8 were not as accurate
as at kyρs = 0.3, using them in the context of MFMC lead to a runtime reduction from 12
hours to 26 minutes on 32 cores.

Observations. The reported results demonstrate two aspects of MFMC: first, even models
with limited accuracy can be useful for MFMC and can lead to orders of magnitude im-
provements in terms of MSE compared to standard MC estimators. Especially in the context
of plasma physics, where one high-fidelity simulation can require significant computational
resources, this MFMC feature can make the estimation of the expectation (or of other quan-
tities of interest, such as variance or Sobol’ indices for sensitivity analysis) computationally
feasible. Second, adding more than one low-fidelity model to MFMC does not necessarily
lead to a further reduction of the MSE but depends on the properties of the low-fidelity
model. Figure 5 shows the distribution of the number of samples among the models. At
most 0.0497% of the total number of samples are with the high-fidelity model in MFMC,
whereas standard MC sampling employs the high-fidelity model exclusively. This provides
a significant computational advantage compared to single-fidelity sampling MC schemes.
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Figure 5: The distribution of evaluations over the models for standard MC and MFMC with two and three
models for kyρs = 0.3 (left) and kyρs = 0.8 (right). On the logarithmic y-axis, the percentage of evaluations
of the different models is given.

Estimating the variance. Table 4 shows the variance estimates obtained in our experiments.
We used the same low-fidelity models as for the expectation estimation. To distinguish

19



between the MFMC estimators using one and two low-fidelity models, we use the superscripts
MFMC, 1 and MFMC, 2, respectively. For kyρ = 0.3, no estimate is obtained with budget
p = 500 because at least two samples are needed to estimate the variance and one evaluation
of the high-fidelity model takes already 260.1698 > p/2 seconds; cf. Table 3. Using the same
setup as for estimating the reference means, we obtain the reference variance σ̂2

ref = 0.016765
at kyρs = 0.3 and σ̂2

ref = 0.0757 at kyρs = 0.8. We observe that again MFMC yields more
accurate results than the standard MC estimator: at kyρs = 0.3, both MFMC estimators
have an extra digit of accuracy, whereas at kyρs = 0.8, the MC and MFMC estimators have
two digits of accuracy for most budgets, but the MFMC estimator with one low-fidelity
model yields a variance similar to the reference.

p V̂ar
MC

V̂ar
MFMC,1

V̂ar
MFMC,2

500 - - -
1,000 0.015314 0.017189 0.016677
5,000 0.015497 0.016826 0.016725
10,000 0.017299 0.016873 0.016762
50,000 0.017132 0.016714 0.016769

p V̂ar
MC

V̂ar
MFMC,1

V̂ar
MFMC,2

500 0.0749 0.0753 0.0724
1,000 0.0912 0.0723 0.0805
5,000 0.0695 0.0751 0.0801
10,000 0.0702 0.0738 0.0727
50,000 0.0759 0.0757 0.0750

(a) kyρs = 0.3, reference σ̂2
ref = 0.016765 (b) kyρs = 0.8, reference σ̂2

ref = 0.0757

Table 4: The estimated variance of the output of interest at kyρs = 0.3 (left) and kyρs = 0.8 (right) obtained
with MC and MFMC estimators in the Cyclone Base Case with 3 uncertain inputs. The superscripts
MFMC, 1 and MFMC, 2 refer to estimators obtained from MFMC using one and two low-fidelity models,
respectively.

4.1.2. Cyclone Base Case with eight uncertain inputs

For a broader overview of this scenario, we extend the setup from three to eight uncertain
parameters. Besides the logarithmic temperature and density gradients, we consider five
additional uncertain parameters: the ion-electron temperature ratio, Ti/Te; β, the ratio
of kinetic to magnetic pressure inside the plasma; the normalized collision frequency, νc;
the safety factor, q, which describes the relationship of the number of toroidal turns of a
magnetic field line to number of poloidal turns; and its derivative, the magnetic shear, ŝ.
We model these eight inputs as independent uniform variables with bounds of 25% around
their nominal values, as shown in Table 5.

We focus on one perpendicular wave number, i.e., kyρs = 0.3. In MFMC, we consider
only the sensitivity-driven sparse grid low-fidelity model summarized in Section 3.2. We
do not employ the deep-network-based low-fidelity model because we do not have avail-
able training data from previous experiments. Running numerical simulations to generate
sufficient training data is beyond our means for this work.

Data-driven low-fidelity model. To find the low-fidelity sparse grid model f (1), we prescribe
tolerances τ = 10−6 · 19 and a maximum level of refinement Lmax = 20. With this setup,
we need only 52 Gene evaluations to construct the low-fidelity model. Table 6 reports
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parameter symbol probability distribution
θ1 ion/electron log density gradient ωn U(1.665, 2.775)
θ2 ion log temperature gradient ωTi U(7.500, 12.500)
θ3 electron log temperature gradient ωTe U(7.500, 12.500)

θ4 plasma beta β U(0.598× 10−3, 0.731× 10−3)

θ5 collision frequency νc U(0.238× 10−2, 0.322× 10−2)
θ6 temperature ratio Ti/Te U(0.950, 1.050)
θ7 magnetic shear ŝ U(0.716, 0.875)
θ8 safety factor q U(1.330, 1470)

Table 5: The eight uncertain input parameters for the eight-dimensional Cyclone Base Case and their
probability distributions.

the correlation coefficients, single-core runtimes and variances of the high- and low-fidelity
models, obtained using 1, 000 MC evaluations from both models. We see that the low-fidelity

f (j) ρj wj [sec] σ2
j

f (0) 1.0000 257.0304 0.0168

f (1) 0.9999 0.1006 0.0169

Table 6: Overview of the high-fidelity and low-fidelity models for kyρs = 0.3 used in the MFMC estimation
in the eight-dimensional Cyclone Base Case.

model is highly correlated with a correlation coefficient of 0.9999, while achieving four orders
of magnitude cost reduction.

Estimating the expectation. We consider budgets p ∈ {5× 103, 104, 5× 104} seconds. Com-
pared to the case with three inputs, we increased the smallest budget from 500 to 5, 000
seconds to allow for at least one high-fidelity evaluation in the MFMC estimator. We com-
pare the standard MC and MFMC expectation estimators with respect to the reference
µ̂ref = 0.6794, computed using MFMC with a budget pref = 105 seconds.

In Figure 6, we compare MC and MFMC in terms of both the analytic (left) and the
estimated MSE (4.1) computed using N = 10 replicates (right). The MFMC estimate is
about three orders of magnitude more accurate than the standard MC estimate for the same
budget. This speedup is achieved because an accurate low-fidelity model is used that is much
cheaper to evaluate than the high-fidelity model.

Speedup. This translates into the following runtime reduction: to obtain an MSE similar to
the smallest MSE, i.e., the MSE of our MFMC estimator with budget 5× 104 seconds on a
single core, the standard MC estimator requires a budget of about 43, 447, 972 seconds on a
single core. Using 32 cores per high-fidelity simulation, this budget requires about 16 days
of simulations. In contrast, our MFMC approach requires only about 26 minutes of high-
and low-fidelity simulations on 32 cores.
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Figure 6: Analytical MSE of the mean estimator (left) and estimated MSE of standard MC and MFMC
results (right) for the 8-dimensional Cyclone Base Case for kyρs = 0.3.

Estimating the variance. The reference variance, obtained using the same setup as for the
expectation, is σ̂2

ref = 0.01716. We show our results in Table 7. As for the mean estimator,
the MFMC variance estimator is more accurate than the standard MC estimator for the
same budget for all investigated cases.

p V̂ ar
MC

V̂ ar
MFMC,1

5,000 0.02074 0.01719
10,000 0.01771 0.01716
50,000 0.01754 0.01715

Table 7: The estimated variance of the output of interest for the Cyclone Base Case with eight inputs.
The superscript MFMC, 1 refers to estimators obtained from MFMC using the sparse grid interpolation
low-fidelity model. The reference variance is σ̂2

ref = 0.01716.

4.2. Turbulence suppression by energetic particles

This scenario is inspired by [11, 12], which studied the effect of energetic particles such as
Neutral Beam Injection (NBI) fast deuterium and Ion Cyclotron Resonance Heating (ICRH)
Helium-3 in suppressing ITG turbulence in the Joint European Torus (JET) tokamak. It was
shown numerically in [11, 12] that the turbulence suppression observed in tokamak experi-
ments can be explained via the combination of two distinct effects: (i) a quasi-linear wave-
particle resonance interaction between fast ions and the bulk ITG-driven micro-instabilities
and (ii) a nonlinear wave-wave interaction between marginally stable energetic particle-
driven modes and ITG turbulence. Simulations supported by theoretical results have shown
that the former effect takes place when the drift-frequency of the supra-thermal particles
gets close to the frequency of the underlying ITG, thus allowing a free energy redistribu-
tion. Experimental evidence showing signatures of improved plasma confinement due to this
quasi-linear effect have been observed in tokamaks [9, 11, 12], and predicted also for opti-
mized stellarator devices [8]. The second stabilization effect involves a nonlinear wave-wave
coupling between ITG turbulence and marginally stable electromagnetic modes driven by
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fast ions, which depletes the ITG turbulent drive. In strong electromagnetic regimes, these
nonlinearly excited fast ion modes act as a catalyst of energy into axisymmetric perturba-
tions called zonal flows, which further reduce turbulent transport [10, 42].

To emphasize the effect of fast ions in stabilizing plasma turbulence, we show in Figure
7 a poloidal cut of the density fluctuations from two nonlinear simulations. The left panel
shows the case without fast ions and the right panel the case when fast ions are injected
into the plasma. Using fast ions leads to less elongated streamers and therefore less radial
transport, as a result of the combined effect of reduced turbulent drive and increased zonal
flow activity, meaning more turbulence stabilization than in the case without fast ions.
Besides the two types of energetic particles, NBI fast deuterium and ICRH 3He, and the

R [m] R [m]

Z 
[m

]

Z 
[m

]

w/o fast ions w fast ions

Figure 7: Poloidal cut (at a selected time step) of the density fluctuations in two nonlinear simulations
without (left) and with (right) fast ions. When using fast ions, the streamers are less elongated and do not
travel outward as in the case without fast ions. Therefore, there is less radial transport and hence more
turbulence stabilisation in the simulation with fast ions.

other two usual particle species in a plasma, deuterium ions and electrons, we also consider
Carbon impurities to mimic JET-like C-Wall plasma conditions. This scenario therefore has
a total of five particle species.

The study of turbulence suppression by energetic particles is therefore a problem of
high practical relevance in the fusion community, since both experiments and simulations
suggest that supra-thermal particles generated via external heating schemes might lead
to a significant improvement of the fusion output and overall plasma performances. And
since a potentially large number of parameters characterizing the properties of the magnetic
geometry, the bulk species, and the energetic particles are typically affected by e.g., noise
in the experimental measurements, it is paramount to perform numerical simulations using
an uncertainty propagation framework.
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Setup. To discretize the 5D gyrokinetic state space, we use 21 Fourier modes in the radial (x)
direction and 24 points along the field line in the z direction. In velocity space, we employ
32 equidistant symmetric parallel velocity grid points and 16 Gauss-Laguerre distributed
magnetic moment points. This gives a total of 258, 048 degrees of freedom. The magnetic
geometry is characterized by the analytical Miller equilibrium [31].

The Gene simulations were performed using 240 cores on eight Intel Xeon E5-2697 nodes
of the CoolMUC-2 Linux Cluster. The low-fidelity models were simulated on an Intel Core
i5-8250U CPU running at 1.60 GHz. As in the first scenario, all calculations were performed
in double precision arithmetic.

The parameters of interest in this problem are the ones associated to the underlying
particle species. Therefore, in our simulations, we consider 12 uncertain parameters char-
acterizing the main ions, electrons, fast deuterium and 3He, and two additional parameters
associated to the magnetic geometry, i.e., the safety factor, q, and the magnetic shear, ŝ.
This gives a total of 14 uncertain parameters. We model the uncertain parameters as uni-
form random variables with 25% bounds around their nominal values as shown in Table 8.
Throughout our simulations, the impurity parameters are kept fixed to their nominal val-
ues. Quasi-neutrality is ensured by prescribing the values for the density of the deuterium
ions and the logarithmic density gradient of electrons in terms of the values of the density
and logarithmic density gradients of the other four species, respectively. We perform our
simulations at a fixed wave number, kyρs = 0.5, which is known to be the most unstable
ITG eigenmode in flux-tube simulations [11].

parameter symbol probability distribution
θ1 safety factor q U(1.3230, 2.1705)
θ2 magnetic shear ŝ U(0.3920, 0.6533)
θ3 ion log temperature gradient ωTi U(3.4230, 5.7050)
θ4 ion log density gradient ωni

U(0.0047, 0.0078)
θ5 ion temperature Ti U(0.7500, 1.2500)
θ6 fast deuterium log temperature gradient ωTD U(0.7742, 1.2903)
θ7 fast deuterium log density gradient ωnD

U(3.5413, 5.9022)
θ8 fast deuterium density nD U(0.0450, 0.0750)
θ9 fast deuterium temperature TD U(7.3500, 12.2500)
θ10 Helium-3 log temperature gradient ωT3He

U(5.5543, 9.2573)

θ11 Helium-3 log density gradient ωn3He
U(0.3770, 0.6283)

θ12 Helium-3 density n3He U(0.0525, 0.0875)
θ13 Helium-3 temperature T3He U(9.0000, 15.0000)
θ14 electron log temperature gradient ωTe U(1.6695, 2.7825)

Table 8: Input parameters and their distributions used in the scenario of studying turbulence suppression
with 14 uncertain inputs. By U(a, b), we denote a uniform distribution on [a, b].

Data-driven low-fidelity models with full and reduced stochastic dimension. The low-fidelity
models are constructed using sensitivity-driven dimension-adaptive sparse grid interpolation.
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Initially, we compute a sensitivity-driven low-fidelity model using all 14 parameters of Table
8; this will be the first low-fidelity model, f (1), in the multi-fidelity hierarchy. We prescribe
tolerances τ = 10−6 ·115 and maximum level Lmax = 20. With this setup, we need 96 Gene
evaluations to construct the 14-dimensional low-fidelity model.

We exploit the sensitivity information provided by f (1) and construct reduced-dimension
low-fidelity models as well. To this end, we compute the associated total Sobol’ indices,
which are visualized in Figure 8. We observe that at most six parameters (θ1, θ3, θ5, θ10,
θ11 and θ14) are important in this scenario; the total Sobol’ indices of the remaining eight
parameters fall below 0, 001. In addition, the total indices corresponding to θ2, θ4, θ6 and θ7
are in O(10−4) or smaller. Therefore, the values of the total Sobol’ indices suggest decreasing
the stochastic dimension from 14 to nine or even down to six. For a more comprehensive
overview, we consider two reduced-dimension low-fidelity models: f (2), which includes the
nine most important parameters and f (3), which includes the six most important stochastic
parameters. We note that the values of the total Sobol’ indices in Figure 8 are consistent with
what is expected from a physics perspective: since we have ITG-driven micro-turbulence, the
main ions’ logarithmic temperature gradient is expected to be the most important parameter.
Additionally, for the considered parameter ranges in Table 8, the Helium−3 logarithmic
temperature gradient and its density are expected to be important as well [11, 12, 19].
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Figure 8: Total Sobol’ indices of the 14 stochastic inputs from Table 8 computed by sensitivity-driven
dimension-adaptive sparse grid interpolation.

Tables 9 and 10 report the single-core runtimes, correlation coefficients and variances of
the high-fidelity model f (0) and the three low-fidelity models f (1), f (2) and f (3) with their
respective inputs. Since the evaluation of the correlation coefficient and of the variance of
the high-fidelity model entails high-fidelity evaluations, it is important to keep the associated
cost as low as possible. To this end, we evaluate the aforementioned quantities using only
50 MC samples generated independently in an offline step. Additionally, we also consider
the case in which we generate 50 MC samples to estimate this quantities and re-use these
50 samples in the MFMC estimators. In other words, in the latter case we bias the MFMC
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estimators, the trade-off being that we do not require additional high-fidelity evaluations to
estimate the correlation coefficient and the high-fidelity variance. To distinguish between
the two strategies, we will use in the following the label “re-use” for the latter case. We
see that all low-fidelity models have a high correlation with the high-fidelity model, showing
that even the reduced-dimension models will be useful for MFMC. This is in contrast with
traditional single-fidelity approaches in which the full set of uncertain parameters is used.
At the same time, the runtime of the reduced-dimension models is much lower than that of
the 14-dimensional models. The six-dimensional model f (3) is 186 times faster to evaluate
than the 14-dimensional low-fidelity model f (1) and about 1.8 × 105 times faster than the
high-fidelity model f (0).

f (j) dj θj wj [sec]

f (0) 14D {θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9, θ10, θ12, θ13, θ14} 11574.8697

f (1) 14D {θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9, θ10, θ12, θ13, θ14} 11.6724

f (2) 9D {θ1, θ3, θ5, θ8, θ9, θ10, θ12, θ13, θ14} 0.3838

f (3) 6D {θ1, θ3, θ5, θ10, θ12, θ14} 0.0627

Table 9: Inputs of low-fidelity models and their runtimes for the turbulence suppression scenario.

f (j) ρi ρi re-use σ2
i σ2

i re-use

f (0) 1.0000 1.0000 0.004379 0.002931

f (1) 0.9978 0.9967 0.004450 0.002897

f (2) 0.9977 0.9963 0.004445 0.002885

f (3) 0.9929 0.9875 0.004415 0.002899

Table 10: Correlation coefficients and variances of the low-fidelity models for the turbulence suppression
scenario estimated from 50 independent samples and 50 samples which are also used in MFMC.

Estimating the expectation. We compare standard MC and MFMC for the expectation es-
timation for budgets p ∈ {5 × 104, 105, 5 × 105, 106} seconds, ensuring that at least one
high-fidelity model evaluation is within the budget. We consider two MFMC estimators:
one estimator that uses only the 14-dimensional low-fidelity model and another estimator
that uses all low-fidelity models. In addition, for each estimator we consider the case in
which the correlation coefficient and high-fidelity model’s variance were computed from sep-
arate high-fidelity evaluations and also the case in which the samples used to estimate the
two quantities are re-used in MFMC. The reference expectation and variance were computed
using MFMC with a budget pref = 107 seconds. We obtain µ̂ref = 0.1972.

We depict the analytic (left) and the estimated MSE obtained using (4.1) with N = 20
replicates in Figure 9. We observe that the MFMC estimator that uses the high-fidelity
model and the 14-dimensional low-fidelity model is about two orders of magnitude more
efficient than standard MC. Adding the computationally cheap reduced-dimension models
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leads to an improvement of about a factor 2 compared to the MFMC with only the full-
dimension low-fidelity model. We see therefore that adding the reduced-dimension low-
fidelity models into our data-driven multi-fidelity approach leads to more accurate results.
In addition, we see that reusing the samples used to estimate the correlation coefficient
and high-fidelity model’s variance has an insignificant effect on the MSE of the MFMC
estimators.
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Figure 9: Analytical MSE (left) and estimated MSE (right) of standard MC and MFMC for the turbulence
suppression scenario.

Speedup. The obtained variance reduction translates in the following speedup. To obtain the
smallest MSE, i.e., the MSE corresponding to the MFMC estimator with all three low-fidelity
models with budget p = 106 seconds, we need around one hour of high- and low-fidelity
simulations on 240 cores. The MFMC estimator with only the full-dimension low-fidelity
model requires about two hours of high- and low-fidelity simulations on 240 cores to yield
the same MSE. Finally, for the same task, the standard MC estimator requires a budget of
approximately 165, 630, 360 seconds on a single core. To perform the corresponding high-
fidelity simulations on 240 cores requires a total of about eight days for the standard MC
estimator. Thus, our MFMC approach reduces the total runtime on 240 cores from eight
days to one hour when using the estimator that considers both full- and reduced-dimension
low-fidelity models.

Estimating the variance. In Table 11, we show the variance estimates obtained with MC
and MFMC. The reference variance is σ̂2

ref = 0.00397, computed using the same procedure
as for the expectation reference. The MFMC estimates are more accurate than the stan-
dard MC estimates and adding the dimension-reduced models improves the accuracy of the
estimates further. We observe that between the two MFMC estimators, the most accurate
is the MFMC estimator that considers all low-fidelity models. We therefore see that adding
reduced-dimension low-fidelity models improves MFMC variance estimates in this example.
Finally, as we observed for the expected value, we see that reusing the samples used to
estimate the correlation coefficient and high-fidelity model’s variance has an insignificant
effect on the MFMC variance estimators.
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p V̂ar
MC

V̂ar
MFMC,1 V̂ar

MFMC,1

ρi re-use V̂ar
MFMC,3 V̂ar

MFMC,3

ρi re-use

5× 104 0.00274 0.00405 0.00420 0.00405 0.00406

1× 105 0.00372 0.00401 0.00404 0.00400 0.00400

5× 105 0.00392 0.00404 0.00403 0.00399 0.00399

1× 106 0.00407 0.00400 0.00401 0.00398 0.00398

Table 11: The estimated variance of the output of interest in the turbulence suppression scenario. The
superscripts MFMC, 1 and MFMC, 3 refer to estimators obtained from MFMC using one (f (1)) and three
(f (1), f (2), f (3)) low-fidelity models, respectively. The reference variance is σ̂2

ref = 0.00397.

5. Conclusions

In the present paper, we demonstrated the feasibility of uncertainty propagation in large-
scale gyrokinetic simulations by means of multi-fidelity Monte Carlo sampling together with
structure-exploiting data-driven low-fidelity models. The high-fidelity model was given by
the Gene code, while the low-fidelity models were constructed using the sensitivity-driven
dimension-adaptive sparse grid interpolation procedure which exploits that in many real-
world problems, the intrinsic dimension is smaller than the ambient dimension and that the
stochastic inputs are anisotropically coupled. In addition, we also considered a deep-network-
based low-fidelity model in a scenario where we had available a large database of numerical
experiments to train the model. In both of our numerical experiments, the MFMC esti-
mators with data-driven low-fidelity models achieved several orders of magnitude speedups
compared to standard MC estimators. Especially for the second numerical example, which
studied the role of supra-thermal particles in suppressing instabilities, the speedups achieved
with MFMC with reduced-dimension low-fidelity models allowed to perform a much more
comprehensive uncertainty propagation study than a standard, single-fidelity Monte Carlo
estimator. Thus, the present work opens the door towards studies involving a large number
of gyrokinetic simulations under real-world conditions, including uncertainty quantification
and optimization.
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