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Abstract

Partial differential equations (PDEs) with spatial derivatives of order higher than two are receiving increasing attention,
partially due to the current popularity of the phase-field method. In the finite element community, the growth of Isogeometric
Analysis and other discretization schemes that employ approximation spaces with high-order continuity has fostered the use of
variational formulations that avoid the use of auxiliary unknowns representing derivatives of the solution. However, one of the
caveats of this approach is the accurate and efficient imposition of boundary conditions, especially on complex geometries. This
paper proposes a new method to impose boundary conditions naturally in the weak form of higher-order PDEs. Our method is
based on a specially-designed weak form in which the boundary conditions to be imposed are weighted by derivatives of the
weight functions. This requires multiple integrations by parts which are allowed due to the smoothness of the basis functions.
The Cahn-Hilliard equation and the isothermal Navier—Stokes—Norteweg equations are used as examples to demonstrate the
proposed method. We show that if the solutions of the PDEs are smooth enough, the proposed variational equations and the
original PDEs are equivalent. We discretize the variational equations using Isogeometric Analysis. Convergence results of the
proposed method agree with the best approximation errors of the basis functions. Numerical examples illustrate the applicability
of the approach to mapped geometries with non-conformal grids.
©2021 Elsevier B.V. Allrights reserved.

Keywords: Higher-order PDEs; Contact angle boundary condition; Phase-field; Cahn—Hilliard; Navier—Stokes—Korteweg

1. Introduction

Partial differential equations (PDEs) with spatial differential operators of order higher than two are receiving
increasing attention in the computational mechanics community. Higher-order PDEs have traditionally been used for
plate and shell analysis [1], strain-gradient elasticity [2,3], higher-order continuum descriptions of fluid flow like the
Burnett equations [4,5], reduced-dimensionality flow models like the thin-film equations [6], plasma physics [7,8],
and stream-function formulations of the Stokes problem [9,10].

More recently, higher-order PDEs have received renewed attention due to the emergence of phase-field theory —
a modeling paradigm for problems that involve moving interfaces [11-13]. In many cases, the phase-field approach
allows to reformulate a moving boundary problem for second-order PDEs as a problem on a fixed domain for a
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higher-order PDE. For example, the flow of two immiscible fluids with surface tension can be represented as a
moving boundary problem in which we solve the flow equations on two time-dependent domains coupled through
boundary conditions at the interface (note that the interface motion is also an unknown here) or by the so-called
Navier—Stokes—Cahn—Hilliard (NSCH) equations, which are a system of PDEs that needs to be solved on a fixed
domain. When the two fluids have constant density, the unknowns in the NSCH equations are the velocity, the
pressure and a phase-field which is related to the composition and identifies the location of the two fluids. Under
equilibrium conditions, the phase field transitions smoothly between two constant values. The smooth (but steep)
transition occurs at the interface between the two fluids, which becomes diffuse with controllable thickness. The
theory of I'-convergence [14] can be used to show that the NSCH equations converge to the classical moving
boundary problem when the thickness of the interface approaches zero.

From a computational perspective, the use of the phase-field method significantly simplifies the treatment of
interface problems because all computations can be performed on a fixed mesh. In addition, the singularities that
occur in the moving boundary approach when the interface changes topology are not present in the phase-field
formulation. For example, in the context of fluid flow, the merging or breakup of droplets can be studied without any
complication arising from singularities. These advantages have made the phase-field approach increasingly popular
in a number of applications, including multiphase flows [15], multicomponent flows [16], crack propagation [17],
bio-membranes [18], surface PDEs [19], fluid—structure interaction [20], fluid—solid phase transitions [21], and
others [22].

While the use of higher-order PDEs may dramatically simplify the computational analysis of an interface problem
by allowing us to perform the computations on a fixed mesh, the discretization of higher-order operators is more
difficult than the discretization of second-order operators, especially on complex geometries. In fact, the most widely
used approach in the finite element community for higher-order PDE:s is the reformulation of the PDE as a system of
lower-order PDEs [23-29]. For example, the bi-harmonic equation can be split into two Poisson equations, which
can be discretized using standard finite element methods — this is usually referred to as the split method. The
direct discretization of the bi-harmonic equation (usually referred to as direct method) requires the use of basis
functions that are at least C'-continuous across the element boundaries, which is extremely difficult with traditional
finite elements on complicated three-dimensional geometries. The appearance of Isogeometric Analysis (IGA) [30],
however, has opened new opportunities to discretize higher-order equations through the direct method [31] due to the
higher-order continuity of splines across the element boundaries even on mapped geometries. IGA, thus, facilitates
the use of the direct method which is in principle preferable because it does not introduce additional unknowns that
increase the size of the algebraic problem. Perhaps even more importantly, in some cases, the split method cannot
be used. For example, in the field of plate analysis, it is known that the original bi-harmonic equation for a simply
supported Kirchhoff plate on a non-convex polygonal domain is not equivalent to the second-order system of two
Poisson equations [32].

Although the appearance of IGA has reinvigorated the use of the direct method, the imposition of boundary
conditions remains problematic in some cases. From a conceptual point of view, the most straightforward approach to
impose boundary conditions for a higher-order PDE in the direct method requires enforcing non-trivial constraints on
the finite element spaces [33,34]. For example, we may need to impose constraints on the degrees of freedom of the
solution to strongly enforce the value of the derivative of the solution in the direction normal to the boundary, which
can be very difficult to do on complicated geometries with non-conformal mappings. Therefore, some alternatives
to this approach have been proposed, including the penalty method [35,36], Nitsche’s method [37] or the method
of Lagrange multipliers [38]. However, none of these methods are completely satisfactory. The use of Lagrange
multipliers increases the size of the algebraic system and induces a saddle-point structure in the problem which
precludes an arbitrary choice of the interpolation of the main unknown and the Lagrange multipliers. The penalty
method is not consistent, results in sub-optimal convergence rates even with a judicious choice of the penalty
parameter and leads to ill-conditioned algebraic problems. Nitsche’s method is an improvement of the penalty
method that restores consistency to the variational formulation and optimal convergence rate, but still requires
adjusting a parameter and may lead to ill-conditioned problems. The imposition of boundary conditions is currently
a significant limitation of the direct method, and indeed, some publications resorted to the split method just because it
is easier to impose boundary conditions when we split the higher-order PDE into a system of lower-order equations.
For example, contact angle boundary conditions in multiphase or multicomponent flows appear naturally in the weak
form of the split method [39,40].
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Here, we propose a new algorithm to impose general boundary conditions in the direct method. The proposed
algorithm can be used on non-conformal grids and mapped geometries. We illustrate the approach using relevant
problems of multiphase and multicomponent flows, imposing dynamic and static, non-trivial contact angle boundary
conditions. The Cahn-Hilliard equation and the isothermal Navier—Stokes—Korteweg equations are used for
illustration. We show that if the solutions are smooth enough, the proposed variational equations and the PDEs
are equivalent. IGA is adopted to discretize the variational equations. We present several numerical examples that
indicate that the proposed method achieves optimal rates of convergence. We believe this work offers a general,
simple and efficient solution to the imposition of boundary conditions in the direct discretization of higher-order
PDEs.

2. Problem formulation

In this section, we introduce two examples of higher-order PDEs, namely, the Cahn—Hilliard equation and the
isothermal Navier—Stokes—Korteweg equations. We use the following notation for the rest of the paper. The spatial
dimension is denoted as d. Let £2 C R be an open, bounded domain with Lipschitz boundary, which is denoted
as I' := d{2. The vector n represents the unit outward normal to I'. A finite time interval of interest is denoted as
Iy =(,T), for T > 0.

2.1. The Cahn—Hilliard equation

The Cahn—Hilliard equation is a fourth-order PDE, which is widely used to describe phase separation of two
immiscible fluids [41,42].

2.1.1. Strong form

We define c(x, t) : {2 x Iy — R as the difference between the mass fraction of the two components in a binary
mixture. In what follows, we will simply refer to ¢ as concentration or phase field for simplicity. We consider the
following initial and boundary value problem associated with the Cahn—Hilliard equation:

dc

o= MA(f'(c) — € Ac), in 2 x Ir, (la)
V(f'(c)—€*Ac)-n=0,0n I xIr, (1b)
Ve-n=g(), on I xIr, (Ic)

c(x,0) =co(x), in 2 x {0}, (1d)

where M > 0 is the mobility, which we assumed constant; € > 0 represents the length scale of the diffuse interface;
f'(c) is the first derivative of a double potential, f(c); co is the initial concentration; and Eq. (Ic) represents a
dynamic contact angle boundary condition [43-45], i.e.,

1, ac
gle) = _Efw(c)_DwE’ )
where f,,(c) is proportional to the specific wall energy, and D,, is a constant obtained from experiments or molecular
kinetic theory. If D,, = 0, Eq. (2) reduces to the form of the static contact angle boundary condition, namely,

Ve-n=—fl(c)/e.

2.1.2. Dimensionless form

All physical quantities in the Cahn—Hilliard equation can be described using fundamental units in the time and
length measurement class. The scaling constants that we choose here (scaling the units of length and time by L
and Ty = L3/M, respectively) are slightly different from those used in [31]. We will use an overhat to denote
non-dimensionalized quantities. After scaling, Eq. (1) becomes

d N A A
a_; = A(f'©) —&Ac)., in & x1;, (3a)
@(f’(c)—@zﬁc»nzo, infx]lf, (3b)
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Ve-n=gc), in I x I, (3¢)
c(®,0) = co(®), in 2 x {0}, (3d)

where € = ¢/L and bw = D, M/L are the dimensionless groups that determine the solution. Note that we did
not use the overhat for quantities that were already dimensionless before scaling. The dimensionless form of Eq. (2)
is

0=~ 10— 5,2 witn fuier = LE 3 e 4

¢)=—=f () — Dy—, wi ¢) = ————=cosb,

& exw "ot v 32
where 0 is the equilibrium contact angle between the mixture interface and the boundary [46]. The double well
potential is given by

2
fle)= 0—8). 5)
2.2. The isothermal Navier—Stokes—Korteweg equations

The second example of higher-order PDE is given by the Navier—Stokes—Korteweg equations, which are a system
of third-order PDEs used to model the flow of a two-phase single-component system that undergoes liquid-vapor
transformations [47], such as, boiling [48] and cavitation [49].

We can scale the original model equations using fundamental units of mass, length, time and temperature. We use
the dimensionless form of the equations presented in [50]. Denoting the density of the fluid as p : 2% I; — R* and
the velocity field as @ : 2 x I; — RY, we write the dimensionless form of the Navier—Stokes—Korteweg equations
as

§+V(ﬁa)=o,inf2x11f, (62)

3 (pi) . 1 . A .
(apf)+V~(,612®f4+131)——V~f—WezV~§=f,6,in(Zx]If, (6b)
i=0,in " x I, (6¢)
Vi -n=35p), in I x I, (6d)
A&, 0) = po(®), in 2 x {0}, (6e)
(%, 0) = @y(®), in 2 x {0}, (6

where p is the thermodynamw pressure, I is the d x d identity tensor, R, and W, are the Reynolds number and the
Weber number respectively, 7 represents the viscous stress tensor, £ is the Korteweg stress tensor, f denotes the
body force per unit mass and is neglected for the rest of the work, Eq. (6d) is the contact angle boundary condition,
and pg and @ are the initial data for the fluid density and velocity respectively.

The expression of the thermodynamic pressure p depends on the choice of equation of state. We consider the
van der Waals equation, which is widely used for liquid-vapor phase transformations,
SO0 _ )
271 —-p

>

where O represents the dimensionless absolute temperature. Assuming the Stokes hypothesis [50] is satisfied, we
have the viscous stress tensor as

A N 2 A
= (va + VTﬁ) SEOAUNE (8)
The Korteweg stress tensor is defined by
A RO BN A AL
= pA,0+§|Vp| I-Vp®Vp. €))
We adopt the following dimensionless static contact angle boundary condition, given in [47],

5(p) = —|V | cosb. (10)
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In what follows we will use the dimensionless form of the Cahn—Hilliard Eq. (3) and the isothermal Navier—
Stokes—Korteweg Eqs. (6). To simplify the notation, we omit the overhat henceforth. We remark that the major
contribution of this work is proposing a novel method to impose the nontrivial dynamic and static contact angle
boundary conditions, i.e., Egs. (4), (4) and (3c) for the Cahn-Hilliard equation, and Eqs. (10) and (6d) for the
Navier—Stokes—Korteweg equations.

3. Variational formulations

In this section, we propose novel variational formulations of the two example model equations introduced in the
previous section, the Cahn—Hilliard equation and the isothermal Navier—Stokes—Korteweg equations. Compared to
the traditional direct method, the proposed variational formulations involve one more step of integration by parts.
This permits the natural implementation of realistic contact angle boundary conditions. For comparison purposes, we
also present more traditional variational formulations based on the idea of splitting a high-order PDE into multiple
lower-order PDEs. We refer to this approach as split method.

We start by introducing more notations that are used for the remainder of the paper. Let U € % be the solution
or trial function to the PDEs of our interest and the corresponding test function is V € ¥/, for some functional
spaces % and ¥. The functions U and V are subject to change for different PDEs and variational formulations,
and thus may contain one or multiple components. We further assume U(¢) € C(I7). Thus we drop the dependence
on t and only work in the spatial functional spaces. We denote (-, -) the standard L? inner product over {2, and use
(-, -) to represent the duality pairing over .

3.1. Variational formulations of the Cahn—Hilliard equation

We introduce the variational formulations of the Cahn—Hilliard equation using the proposed and the split methods.
3.1.1. Proposed method

In this subsection, we let U = {c¢} € % and V = {v} € ¥, for % = H*(2) and ¥ = H3(12). Because there is
only one unknown, ¢, for the proposed method, we can use ¢ and U, or v and V interchangeably. Suppose U € %

satisfies Eq. (3), then VV € ¥,

0= (a—L - A(f’(c)—ezAc),v>

dt
= (%, v) + (V£/(c), Vv) — (€?Ve, V (Av)) (11)
— (ezAc, Vo - n) + <e2g(c), Av)
=B (U, V).

The above equation has shown the following.

Proposition 3.1. Let U € H*(2) be a solution to the Cahn—Hilliard Eq. (3). Then,
U € % satisfies BS" (U, V) =0, VYVeV. (12)

Remark 3.2. The methods employed in [31,34], which use a variational formulation different from Eq. (12), only
considered periodic and trivial contact angle boundary conditions, with the latter one being imposed strongly on
a rectangular mesh through algebraic constraints on the degrees of freedom. The last term in the third line of
Eq. (11) enables the implementation of the general contact angle boundary conditions shown in Eq. (3c) on general
geometries with non-conformal grids. As a consequence, the regularity requirement of the test functions in Eq. (12)
is higher than that in [31,34].

Next, we show that the solution of the variational formulation Eq. (12) also satisfies Eq. (3), which includes the

general contact angle boundary condition, Eq. (3¢).

Proposition 3.3. Assume U € H*(12) satisfies the initial condition, Eq. (3d), and U solves the variational Eq. (12).
Then U satisfies Eq. (3).
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We need an intermediate result before we can prove Proposition 3.3.
Lemma 3.4 (Fourier’s Lemma [51]). Let m € L*(£2), such that,

(m,v) =0, VYveDU), (13)

where D({2) is the set of C*°({2) functions with compact support in (2, then m = 0 in (2.

Proof. Because D({2) is dense in L?({2), there exists a Cauchy sequence v, € D({2), such that v, — m in L*(12),
where m € L%(12) is the complex conjugate of m. Then, we have

(m, vy) — (m,m) = f Im|* =0, (14)
2
which implies m = 0. O

Now, we are ready to show the proof of Proposition 3.3.

Proof of Proposition 3.3. Using integration by parts and moving all derivatives to the trial function, we can rewrite
the variational formulation Eq. (11) into the following,

BSMU, V) = (&, v) + (B1,v) + (B2, Av) =0, VYV eV, (15)
where
ac , 2
a:E—A(f(c)—e Ac), (16a)
B =V (f'(c)—€Ac) - n, (16b)
Br=€*(Ve-n—glo), (16¢)

then, it is sufficient to show that Eq. (15) implies « = 0 in {2, and 8; = B, = 0 on I'. Recall that for any v € D({2)
and any integer j > 0, the jth derivative of v vanishes on I, i.e., D/v|r = 0. Now taking V € D(f2) C ¥, we
have

0= B"U,V)=(a, ). (17)
Thus, Lemma 3.4 implies @ = 0. Next, we choose v € ¥ such that v|p = 1 but Av|p =0, and arrive at
0=BJ" U, V)= (B v), (18)

which implies 8|y = 0. Finally, we can show S| = 0 using a similar argument. [

3.1.2. Split method

The high-order derivatives in the variational formulation of the proposed method Eq. (11), can be troublesome
for the traditional finite element method which normally uses C O_continuous basis functions. Thus, an alternative
approach is to split Eq. (3) into a system of two second-order PDEs by introducing an auxiliary unknown,

w= f'(c)—e*Ac. (19)

Consequently, the trial and test functions become U = {c,u} € % and V = {v,q} € ¥, respectively, with
U = H*(2) x H*(2) and ¥ = H'(£2) x H'(12). Then Eq. (3) can be recast into the following variational
formulation: find U € %, such that,

. aJc
B (U, V) = (5, v) + (Vie, Vo) + (1, q)

—(f' (). q) - (GZVC‘, Vq) + (62g(c), q)=0, VVe7.

Compared with Eq. (11), the regularity requirement of the trial and test function spaces in Eq. (20) is reduced.
However, the discretization of Eq. (20) is more computationally expensive than that of Eq. (11) because of the
additional unknown, .

(20)
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3.2. Variational formulation of the isothermal Navier—Stokes—Korteweg equations

Following a similar strategy as in Section 3.1, we introduce the variational formulations of the isothermal
Navier—Stokes—Korteweg equations using the proposed and the split methods.

3.2.1. Proposed method

We first introduce a space, ﬁz((}) = HOI(Q) N H*($2), and let U = {p,u} € % and V = {w, v} € ¥, for
U = HX(2) x [HX(2)]%, and ¥ = H'(2) x [HX(2)]°. If U € % solves the isothermal Navier—Stokes—Korteweg
Eq. (6), then U satisfies the following, VV € ¥,

d (pu)
ot

. 3
B (U, V) = (-’O

Bt’w> — (pu,Va))—i—(

,v) — (puQ@u, Vv)

—(p(p), V-v)+ (Rit Vv) — (W2pVp, V(V 1))

e 1)
- (%ijpﬁ, V. v) —(W;Vp®Vp, Vo)
+(W2ps(p), V - v) = 0.

Note that the contact angle boundary condition, Eq. (6d), is imposed weakly in Eq. (21). Using a similar argument
as in the proof of Proposition 3.3, we have the following.

Proposition 3.5. Assume U € H*(2) x [ﬁz(.(?)]d satisfies the initial data, Egs. (6e) and (6f), and U solves
Eq. (21). Then U satisfies Eq. (6).

3.2.2. Split method
Similar to the split of the Cahn—-Hilliard equation, the isothermal Navier—Stokes—Korteweg equation can be
rewritten into a system of second-order PDEs by introducing an additional unknown,

v = Ap. (22)

The augmented trial and test functions are U = {p,u,v} € % and V = {w,v,q} € ¥, for % = H*() x
[H>* (DY x H'(2) and ¥ = H' () x [HOI(Q)]d x H'(£2). Then, Eq. (6) can be reformulated as: find U € % such
that, VV € ¥,

B (U, V) = <8—p,a)> — (ou, Vo) + (8 (ou) v) ~ (ou ® u, Vo)

at at
T w2

—(p(p), V-v)+ (R—, Vv) + (W2pv, V-v) + <7€|Vp|2, V- v) (23)

— (WZVp ® Vp, Vo) + (v.q) + (V. V) — (s(p). q)

=0.

Finally, we remark that the test function space of v, in the proposed method, Eq. (21), is [ﬁ 2()]4, while that
of the split method, Eq. (23), is [H(2)]".

4. Space and time discretization

In this section, we discuss the space and time discretization used in this work. For simplicity, we use the
Cahn—Hilliard equation with the proposed method, namely, Eq. (11), to demonstrate the spatial and temporal
discretizations. The approximations of Egs. (20), (21) and (23) follow a similar procedure, but they are not presented
here for conciseness.
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Fig. 1. Comparison of Lagrangian polynomials and B-spline basis functions. (Left) H'-conforming cubic Lagrangian polynomial basis
functions with equally spaced nodes. (Right) H?3-conforming cubic B-spline basis functions with equally spaced knots and C? inter-element
continuity.

4.1. Spline basis

The proposed variational formulations, Eqs. (11) and (21), require H>- and H?-conforming test spaces respec-
tively, which eliminates the use of traditional Lagrangian elements (H'-conforming) for spatial discretization. IGA
uses spline basis functions which offer high-order continuity properties at the element boundary [30]. Splines of
order p may be constructed with continuous derivatives of order (p — 1). Fig. 1 shows a comparison between
Lagrangian polynomials and C2-continuous B-splines of degree three. IGA with p = 3 and p = 2 or higher makes
the discretization of Eqs. (11) and (21) possible, respectively. Following the works in [34,50], we construct the
finite element space ¥}, using IGA.

A generic spline basis function is denoted as N4 where the subscript “A” represents the control point index.
In this paper, the weights of all the control points are set to be 1, thus NURBS reduce to B-splines in the usual
tensor-product format; more discussion on IGA can be found in [30].

4.2. The semidiscrete formulation

We use the Galerkin method to approximate the variational formulation, Eq. (11). Let ¥, be a finite element
subspace of 7, i.e.,

Yy = span{Na}}o_, C 7, (24)

where n,, is the dimension of %#},. An element ¢, € ¥}, can be expressed as
np
cn =Y _caNa, (25)
A=l

where c4 is the coefficient of the basis function N4. Then, the approximation of Eq. (11) can be recast into the
following: find U, = {c,} € ¥}, such that,

B (U, Vi) =0, VYV, € %,. (26)
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4.3. Temporal discretization
The generalized-o method [52] is used for the temporal discretization. We define the residual vector as R¢ =
{R4Y)_, such that
RS == BY" (Uy, Nx), for Na € %,. (27)

Let V and V denote the vector of global degreqs of freedom, {cA}Z": 1> and its time derivative respectively. The
generalized-« algorithm can be stated as: given V,,, V,, and A, = t,41 — t,, find V11, Viy1, Vg, and Vg ;
such that

R* (Vn+am7 Vn-‘ra_/) =0, (28a)
Vi1 = Vot AV, + y Aty (Vg = Vo), (28b)
Visan = Vi + (Vg — Vo), (28¢)
Vitay = Vo +ap(Varr — Vi), (28d)

where the subscript (-), denotes the respective value at the time instance #,, At, is the time-step size between
fhy1 and #,, and o, oy and y are real-valued parameters that are selected based on accuracy and stability. For a
first-order linear ordinary differential equation system, second-order accuracy [53] is obtained if

1
J/=§+am—af, (29)

while unconditional stability requires

Oy = (%3 = 5 (30)
The parameters «,, and oy can be further parametrized in terms of the spectral radius, p € [0, 1], as follows
1/3— 1
am:—< p°°>, wp = . G1)
2\ 14 poo 1+ po

As a consequence, Eq. (30) is satisfied. We choose p, = 1/2 for all the numerical simulations in this paper. The
nonlinear system of equations is solved using Newton’s method with both relative and absolute tolerances being
107'9. The resulting linear system is solved using the preconditioned GMRES method [54]. Finally, the discrete
systems are implemented using the PETSc package [55-58] and PetIGA [59].

5. Convergence results

In this section we perform convergence analyses of the proposed variational formulations and compare the
convergence results with the split methods. For both the Cahn-Hilliard equation and the Navier—Stokes—Korteweg
equations, a two-dimensional (d = 2) rectangular domain, 2 = (0,5) x (0, 1), is considered. The convergence
analyses are performed using six uniform meshes with element size h = 27", forn = 2, 3, ..., 7, in each direction.
For each mesh, we solve Eqs. (11), (20), (21) and (23) using B-splines of degree p = 1,2, ..., 5, which may vary
depending on the variational formulations.

The equilibrium contact angle 6 in Eqgs. (4) and (10) is 60° for all simulations in this section. Because the
contact angle is nontrivial (6 # 90°), neither analytical solutions or manufactured solutions [60] are available.
Alternatively, the numerical solution obtained using the finest mesh (2 = 277) is considered as the reference solution.
The convergence results for different meshes are obtained by comparing against the reference solution. A uniform
time step Az = 0.001 is used throughout the rest of the work, so that the temporal discretization errors are negligible
compared to the spatial discretization errors.

5.1. Best approximation error of B-splines

The error analysis of higher-order nonlinear PDEs is rather difficult and is beyond the scope of this work. We
instead present the best approximation error of B-splines [61-64].

9
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(a) t = 0.0 (b) t =10.2

Fig. 2. The concentration field (¢) at t =0 and # = 0.2 of the Cahn-Hilliard Eq. (3). The results are obtained using the proposed method
with p =3, and h =276,

Theorem 5.1. For B-splines of order p > 0 and 0 < r < p+ 1, the best approximation error of any z € HP*(12)
is given by

Iz = zullar ) < QR N1zl o1 ), (32)

where Q > 0 is independent of h.
5.2. The Cahn—Hilliard equation

We choose € = 0.3 and D,, = 0.05 for the Cahn—Hilliard equation. The total simulation time is 7 = 0.2. At
the initial time (¢ = 0), we place a slab of one of the components immersed in the other component; see Fig. 2(a).
The slab is centered at C; = (2.5, 0.5) and has a width of 2. We regularize the interface using a hyperbolic tangent
profile. The initial concentration is given by

d(x) — 1)
V2e )’

where d(x) is the Euclidean distance between x and Cjy in the x direction, where x is the first component of x. The
range of the concentration, c, is from —1.0 (blue) to 1.0 (red), where each extremum represents one component of
the mixture. For the split method, the initial condition of the auxiliary parameter w is obtained using Egs. (19) and
(33).

Fig. 2(a) shows the initial condition, Eq. (33), where the slab is attached to the wall with a 90° contact angle.
The concentration at the final time is shown in Fig. 2(b) where the contact angle becomes 60° as we have imposed
in Eq. (11) through the dynamic contact angle boundary condition given by Eqs. (4) and (3c).

The convergence results using the proposed (Eq. (11)) and the split (Eq. (20)) methods are presented in Fig. 3.
For both formulations, (p + 1)-th order convergence rates of the concentration in the L? norm (see Fig. 3(a)) are
obtained for B-splines of order p, and this agrees with the best approximation error presented in Theorem 5.1.

Fig. 3(b) shows the convergence results for the auxiliary parameter © defined in Eq. (19) using the proposed and
split methods. The L? norms of the error using the two approaches are very different. Such discrepancy is expected
because the split method uses the same order (p) of approximation for both ¢ and u, while, for the proposed
method, w, which consists of the Laplacian of the concentration field, is obtained through postprocessing as shown
in Eq. (19). However, the obtained convergence rates of 4 in the L? norm, (p — 1)-th order for the proposed method
and (p + 1)-th order for the split method, are in good agreement with the best approximation error.

Performing a detailed cost comparison of the two methods is challenging and out of the scope of this paper. We
found, however, that using identical algebraic solver and basis functions, the average computational cost for the
split method is 1.9 (serial) and 2.8 (parallel) larger than that of the proposed method in our implementation.

co (x) = tanh < (33)

5.3. The isothermal Navier—Stokes—Korteweg equations

For the isothermal Navier—Stokes—Korteweg equations, the following model parameters are used: © = 0.85,
W, = 1/12 and R, = 24. The total simulation time is 7 = 50. The initial density field is plotted in Fig. 4(a) and
can be expressed as

dx)—1
0o (x) = 0.35 + 0.25tanh (T) , (34)
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Fig. 3. Convergence results for the Cahn-Hilliard equation using the proposed (Eq. (11)) and split (Eq. (20)) methods with p =2, 3, and 4.
Notice for p = 2, only the results of the split method are shown, because the proposed method requires p > 3. For the proposed method,
w is calculated using Eq. (19). For the split method, p is an additional variable.

(a)t =0 (b) t = 50

Fig. 4. Density field (p) at + = 0 and # = 50 obtained from the Navier-Stokes—Korteweg Eqs. (6). The results are computed using the
proposed method with p =3 and h = 276.

where d(x) is the same as in Section 5.2. In Eq. (34), the two extrema of py, 0.1 (blue) and 0.6 (red), represent the
Maxwell vapor and liquid density of water, respectively. We assume the initial velocity field is zero, i.e., uy (x) = 0.
For the split method, the initial condition of the auxiliary unknown v can be obtained using Eqs. (22) and (34).

As shown in Fig. 4(a), the initial density profile given in Eq. (34) is close to the equilibrium state with a 90°
contact angle. At the end of the simulation (¢ = 50), the equilibrium contact angle (6 = 60°) is observed in Fig. 4(b).
Again, this verifies that the proposed method is effective in imposing the contact angle boundary condition.

The convergence results for the density p and velocity u using the proposed and the split methods are presented
in Fig. 5. For both methods, (p + 1)-th order convergence rates are obtained for pth order B-splines. Therefore, we
have recovered the optimal convergence rates as presented in Theorem 5.1.

Fig. 6 shows the convergence results of the auxiliary variable v. For the proposed method, v is calculated by
taking the Laplacian of the density. We observe (p — 1)-th order convergence rates for p = 2, 3, and 4. For the split
method, v is a primary variable. B-splines of the same order (p) are used for the density p, the auxiliary parameter
v, and the velocity v. Even though, as presented in Fig. 5, the optimal convergence rates are observed for p and v,
Fig. 6(b) indicates that the convergence rates of v are different for even and odd p using the split method. When
p = 2 and 4 (the top figure in Fig. 6(b)), we obtain (p + 1)-th order convergence rates which are expected as
presented in Theorem 5.1. When p = 1,3 and 5 (the bottom figure in Fig. 6(b)), the convergence properties of v
are difficult to characterize.
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Fig. 5. Convergence results for the Navier-Stokes—Korteweg equations using the proposed (Eq. (21)) and split (Eq. (23)) methods with
p =2,3, and 4. The convergence rates are shown to the right of the slope.
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Fig. 6. Convergence results for the auxiliary unknown in the Navier—Stokes—Korteweg equations. For the proposed method (Eq. (21)), v is
calculated using Eq. (22). For the split method (Eq. (23)), v is an additional variable.

The sub-optimal convergence properties of the auxiliary parameter v using the split method and p = 1, 3, and 5
are due to oscillations as shown in Fig. 7 (Left). Oscillations occur for p = 1, 3, and 5 (results for p = 1 and 5 are
not shown) throughout the entire domain. For p = 2 and 4 (results for p = 4 are not shown), the auxiliary parameter
is oscillation free. The origin of such oscillations using the split method deserves more thorough investigation but
is beyond the scope of this work. In our implementation, using identical algebraic solver and basis functions, the
split method is about 1.7 times slower than the proposed method, for both serial and parallel calculations.
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Fig. 7. (Left) The top plot shows the contour plot of v over the whole domain for p = 2. The bottom plots show the value of |v| at
x = 2.5 (bottom left) and x = 4.5 (bottom right) for p =2 and 3. All results shown are obtained at r = 50. (Right) Time evolution of the
convergence rates of the density p for the Navier—Stokes—Korteweg equations using p =2, 3, and 4.
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Fig. 8. Mesh generation for the Cahn-Hilliard equation. (Left) Initial control points n and the corresponding geometry with knots vector
Z1=5,=100,00,0,1,1,1,1, 1] and degree p = 4. The resulting basis functions are H4—conf0rming. (Right) Rotationally distorted
(ap = 45°) and refined mesh consisting of 256 x 256 elements. For every four knot lines, only one is plotted for the sake of clarity.

Finally, it is worth noting that the convergence rates reported in this section for the Navier—Stokes—Korteweg
equations are obtained by allowing sufficient number of time steps for both methods (proposed and split). As shown
in Fig. 7 (Right), the convergence rates of the density are sub-optimal at the beginning of the simulation. Optimal
convergence rates are recovered only after sufficient number of time steps.

6. Numerical examples on mapped geometries

In this section, we use numerical examples for both problems to show that the proposed variational formulations
(Egs. (11) and (21)) are effective in imposing dynamic and static contact angle boundary conditions in more practical
problems. To emphasize the generality of the proposed method, we adopt non-rectangular geometries with non-
conformal grids. The domain of interest is a subset of (0, 1) x (0, 1) with non-rectangular shape. To generate the
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Initial Condition t = 0.002610

t = 0.259248 t = 0.553930

t = 1.155613 = 1.640043 Steady state

Fig. 9. Evolution of the concentration (c¢) for a randomly perturbed initial concentration profile with a mean value ¢ = 0.2.

desired meshes, we first give a set of control points 5 and knot vectors =, =,, which determine the geometry
and the global continuity of the basis functions. Then, we rotate the interior control points counter-clockwise by
an angle o with respect to the center of the domain, (0.5, 0.5). This step distorts the meshes without changing
geometries. Finally, we insert non-repeating knots uniformly to refine meshes without reducing the continuity of
the basis functions. The meshes used for the Cahn—Hilliard and Navier—Stokes—Korteweg equations are plotted in
Figs. 8 and 10, respectively. Those two figures are visualized using NLIGA [65]. Unless otherwise specified, the
model parameters of the Cahn—Hilliard equation and the isothermal Navier—Stokes—Korteweg equations are the same
as in Sections 5.2 and 5.3, respectively. The contact angle, 6, is 45° in this section.
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Fig. 10. Mesh generation for the isothermal Navier—Stokes—Korteweg equations. (Left) Initial control points 5 and the corresponding geometry
with knots vector &1 = =, =1[0,0,0,1/3,2/3,1, 1, 1]. The resulting basis functions are H2—conf0rming and have degree p = 2. (Right)
Rotationally distorted (g = 30°) and refined mesh consisting 256 x 256 elements. For every four knot lines, only one is plotted for the
sake of clarity.

6.1. The Cahn-Hilliard equation

For the Cahn-Hilliard equation, we simulate spinodal decomposition of a binary system. The length scale of the
diffuse interface is € = 0.01. The initial control points and the distorted mesh are shown in Fig. 8. For the initial
condition, a stochastic concentration distribution ¢y = ¢ + r is considered with a mean value ¢ = 0.2 and a random
perturbation r.

Fig. 9 shows snapshots of the phase evolution. From its initial concentration distribution, the system separates into
two phases whose composition is determined by the minima of the bulk free energy Eq. (5). During the evolution,
the inclusions interact locally in order to minimize the gradient energy by reducing their number while increasing
their characteristic lengths. The circular shape of a single inclusion is the outcome of this minimization procedure.
It is also clear that the inclusions are attached to the wall with the specified contact angle, 6 = 45°, both during
the coarsening process and at steady state.

6.2. The isothermal Navier—Stokes—Korteweg equations

We simulate the evolution of five vapor bubbles immersed in a liquid pool for the isothermal Navier—Stokes—
Korteweg equations. The initial control points and distorted mesh are shown in Fig. 10. The model parameters are
given as follows: W, = 1/128, R, = 256 and © = 0.85. At t = 0, there are five circular vapor bubbles in the
domain. The centers of the bubbles are located at C; = (0.41, 0.35), C, = (0.125,0.40), C; = (0.40, 0.75),
Cs = (1.00,0.50) and Cs = (0.00,0.00) respectively, with corresponding radii of R, = 0.10, R, = 0.15,
R; =0.125, R4 = 0.20 and Rs = 0.20. Then, the hyperbolic tangent density profile becomes,

> di(x) — R:

1 1
£0 (X) = —0.65+0.25 igzl tanh (2—m> s (35)
where d;(x) is the Euclidean distance between x and C;, for i = 1,2,...,5. Eq. (35) preserves the dimensionless

density of the Maxwell equilibrium vapor (p ~ 0.1) and liquid (p =~ 0.6). In addition, the velocity is zero everywhere
at the initial time.

Fig. 11 shows the time evolution of the density field. At the beginning of the simulation, the designated contact
angle (f = 45°) is quickly enforced for all vapor bubbles attached to the wall regardless of their initial contact
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Fig. 11. Evolution of the density (p) for five separated vapor bubbles. The mesh consists of 128 x 128 elements, and quadratic B-splines
are used (p = 2).

angles at t = 0. The two bubbles located at the lower left corner gradually coalesce into a single large bubble, and
evolve toward static equilibrium. The other three smaller bubbles eventually condense. This result is expected and
can be explained as follows. The outer pressure that equilibrates a larger bubble is higher than the outer pressure
that equilibrates a smaller bubble. Thus, smaller bubbles shrink and eventually condense in the system.

7. Conclusion

In this work, we have proposed a novel method to impose boundary conditions for higher-order PDEs. The
Cahn—Hilliard equation and the isothermal Navier—Stokes-Norteweg equations are used as examples to demonstrate
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the proposed method. Realistic (dynamic or static) contact angle boundary conditions can be imposed directly in the
variational formulations, which have been shown to be equivalent to the original form of the PDEs if the solutions
are smooth enough. Our proposed method avoids the addition of an auxiliary variable, which is inevitable in the
classical split method. Our algorithm also avoids complications of other alternative approaches, such as the selection
of a constant in Nitsche’s method or the use of a stable pair of spaces in the method of Lagrange multipliers.

Although the proposed algorithm can be used with any weighted residual discretization that uses basis functions
with high-order continuity, we illustrate it using IGA. Convergence analyses are conducted by comparing numerical
solutions against a reference solution. Same order of convergence rates for the Cahn—Hilliard and isothermal Navier—
Stokes—Korteweg equations are obtained for the proposed method and the split method using A-refinement. The
convergence results agree with the best approximation errors of B-Spline basis functions. Finally, the effectiveness
and generality of the proposed method in imposing static and dynamic contact angle boundary conditions is shown
using numerical examples on mapped geometries and non-conformal grids.

There are many challenging problems not yet addressed in this work. It is necessary to show rigorous convergence
analysis of the discrete problems. In addition, the auxiliary parameter of the Navier—Stokes—Korteweg equations
using the split method exhibits oscillations if B-splines of odd order are used. The origin of such oscillations
should be carefully studied.
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