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Abstract

A critical problem in deep learning is that systems learn
inappropriate biases, resulting in their inability to perform
well on minority groups. This has led to the creation of mul-
tiple algorithms that endeavor to mitigate bias. However, it
is not clear how effective these methods are. This is because
study protocols differ among papers, systems are tested on
datasets that fail to test many forms of bias, and systems
have access to hidden knowledge or are tuned specifically to
the test set. To address this, we introduce an improved evalu-
ation protocol, sensible metrics, and a new dataset, which
enables us to ask and answer critical questions about bias
mitigation algorithms. We evaluate seven state-of-the-art
algorithms using the same network architecture and hyper-
parameter selection policy across three benchmark datasets.
We introduce a new dataset called Biased MNIST that en-
ables assessment of robustness to multiple bias sources. We
use Biased MNIST and a visual question answering (VQA)
benchmark to assess robustness to hidden biases. Rather
than only tuning to the test set distribution, we study robust-
ness across different tuning distributions, which is critical
because for many applications the test distribution may not
be known during development. We find that algorithms ex-
ploit hidden biases, are unable to scale to multiple forms
of bias, and are highly sensitive to the choice of tuning set.
Based on our findings, we implore the community to adopt
more rigorous assessment of future bias mitigation methods.
All data, code, and results are publicly available'.

1. Introduction

Deep learning systems are trained to minimize their loss
on a training dataset. However, datasets often contain spuri-
ous correlations and hidden biases which result in systems
that have low loss on the training data distribution, but then
fail to work appropriately on minority groups because they
exploit and even amplify these spurious correlations [71, 35].
For example, in systems trained to infer hair color on the
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Figure 1: Current bias mitigation systems are tested on simple
datasets that are easy to analyze, but do not offer challenges present
in realistic cases. Addressing this, we propose the Biased MNIST
dataset which is easy to analyze, yet is reflective of real world
challenges since it contains multiple sources of biases. We find
that methods fail on Biased MNIST even when all the biases are
explicitly labeled. We also test on GQA-OOD, where the sources of
biases are not very obvious and, thus the methods fail to generalize.

CelebA dataset [43], the majority group of non-blond males
occurs 50 times more than the minority group of blond males,
resulting in systems incorrectly predicting non-blond as hair
color for the minority group.

While this is a toy problem, in the real world, hidden mi-
nority patterns are common and failing on them can have dire
consequences. Systems designed to aid human resources,
help with medical diagnosis, determine probation, or loan
qualification could be biased against minority groups based
on age, gender, religion, sexual orientation, ethnicity, or
race [54, 8, 16, 13, 48]. Systems can exploit correlated vari-
ables even if they are not directly a part of the input e.g.,
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through inferred zip codes [
on minority groups.

], failing to work effectively

Recently, many methods have been proposed to make neu-
ral networks bias resistant. These methods can be grouped
into two types: 1) those that assume the bias variables e.g.,
the gender label in CelebA, are explicitly annotated and can
be accessed during training [55, 55, 69, 37] and, 2) those
that do not require explicit access [46, 50]. Assuming ex-
plicit access requires extra annotations in addition to the
actual target, and for many tasks it may not be immediately
clear what the bias variables are e.g., biases may only be
discovered years later [51, 50]. Methods that do not assume
access to these bias variables have only recently been pro-
posed [46, 65, 50].

So far, there is no study comparing methods from either
group comprehensively. Often papers fail to compare against
recent methods and vary widely in the protocols, datasets,
architectures, and optimizers used. For instance, the widely
used Colored MNIST dataset, where colors and digits are
spuriously correlated with each other, is setup differently
across papers. Some use it as a binary classification task
(class 0: digits 0-4, class 1: digits: 5-9) [5, 50], whereas
others use a multi-class setting (10 classes) [37, 40]. For
CelebA, [46] uses ResNet-18 whereas [50] uses ResNet-50,
but the comparison was done without taking this architectural
change into account. These discrepancies make it difficult to
judge the methods on an even ground.

Methods are typically highly sensitive to hyperparameter
choices, and papers report numbers on systems in which
the hyperparameters were tuned using the test set distribu-
tion [18, 50, 64]. In the real world, biases may stem from
multiple factors and may change in different environments,
making this setup unrealistic. Furthermore, tuning on the test
distribution can lead to methods that are right for the wrong
reasons. When this is done, systems can perform well just by
exploiting the biases they are supposed to overcome [62, 64],
and they will then fail once deployed because they have not
really learned to solve the task.

In addition, we posit that the commonly used benchmarks
are not challenging enough to test generalization to realistic
scenarios. For example CelebA and Colored MNIST, two
of the most widely used benchmarks, contain a single bias
variable to mitigate: gender and color respectively. It is un-
clear how well methods would fare in presence of multiple
types of bias, e.g., position or co-occurring objects/patterns,
which are commonly present in real-world datasets. For
some tasks it can be impossible to exhaustively enumerate
all bias variables. For example, in visual question answering
(VQA), where a system answers questions about images,
biases can stem from: object-context co-occurrences, visual
concept/language correlations, question type/answer distri-
butions, and more. Annotating all such sources of bias is
unrealistic. Even when the bias variables are explicitly la-

beled, it is still unclear if the methods can remain robust
to all of the bias sources, since this entails generalization
to a large number of dataset groups e.g., hundred thousand
groups for GQA-OQOD [36].

We address the above issues via these contributions:

1. We describe our new Biased MNIST dataset and corre-
sponding evaluation protocol for measuring resistance
to multiple forms of bias. It measures resistance to
spuriously correlated background/foreground color, tex-
ture, co-occurring distractors, position, and more.

2. We compare seven state-of-the-art bias mitigation meth-
ods on classification tasks using Biased MNIST and
CelebA, measuring generalization to minority patterns,
scalability to multiple sources of biases, sensitivity to
hyperparameters, etc. We ensure fair comparisons by
using the same architecture, optimizer, and performing
grid searches for hyperparameters.

3. To go beyond image classification, we measure the per-
formance of these methods on the biased GQA bench-
mark for VQA.

4. We provide concrete recommendations for future stud-
ies, so that comparisons among algorithms are mean-
ingful and reflective of real-world challenges.

2. Problem Statement

To properly study bias mitigation, it is necessary to pro-
vide a definition of biased data and biased behavior in a
model. We study bias in supervised classification i.e., the
goal is to learn a function f : X — Y which outputs a cate-
gorical target y € Y given x € X. Each z is itself a mixture
of a signal s that we wish the system to use for inference and
bias b that is spuriously correlated with y. Since the spurious
correlations between y and b do not always hold, systems
exploiting b to infer y fail to generalize.

We can measure the robustness to such tendencies by
intentionally introducing covariate shift e.g., with a test
dataset distribution that differs from training or a metric
that balances performance across groups. For our study, we
use the mean per group accuracy/unbiased accuracy, which
weighs all the groups equally. Furthermore, we focus on the
cross-bias setting defined by [6] where the same set of bias
variables are present in both train and test sets.

3. Bias Mitigation Strategies

Without bias mitigation mechanisms, standard models
(StdM) often use spurious bias variables for inference, rather
than developing invariance to them, which often results in
their inability to perform well on minority patterns [27, | 1,

, 01]. To address this, several bias mitigation mechanisms
have been proposed, and they can be categorized into two
groups: 1) methods that access explicit bias labels during
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training, and 2) methods that do not assume such access.
We briefly review methods from these categories, with an
emphasis on the methods assessed in our studies.

3.1. Explicit Bias Mitigation Methods

Explicit bias mitigation techniques directly access the
bias variables: b, during training to develop invariance to
them. Based on the way these variables are utilized during
training, we choose five different explicit methods for our
study. We refer to them as explicit methods for conciseness.

Re-sampling/Re-weighting: These approaches balance
out the spurious correlations. The classical approach is
to re-balance the class distribution by adjusting the sam-
pling probability/ loss weight for majority/minority sam-

ples [14, 26, 41,72, 20]. This includes synthesizing minor-
ity instances too [ 14, 26]. Moving beyond class imbalances,
REPAIR [40] proposed learning dynamic weights to miti-

gate representation bias [39]. However, [55] have shown
promising results by using static weights to upweight minor-
ity patterns. We choose this method due to its simplicity.

Group Upweighting (Up Wt) [55] attempts to mitigate the
correlations between y and b, by upweighting the minor-
ity patterns. Specifically, each sample (x, y) is assigned to
a group: g = (y, b1, be, ..,bg), where E is the total number
of variables contained in b..p;. and the loss is scaled by N%],
where N is the number of instances in group g. Up Wt
requires the models to be sufficiently regularized, i.e., be
trained with low learning rates and/or high weight decays to
be robust to the minority groups.

Distributionally Robust Optimization (DRO):
DRO [22] minimizes the worst-case expected loss over
potential test distributions. Often, such distributions are
approximated by sampling from a uniform divergence ball
around the train distribution [10, 23, 47]. However, this
lacks structured priors about the potential shifts, and instead
hurts generalization [32].

Group DRO (GDRO) [55] provides DRO with the nec-
essary prior that it must generalize to all groups. Similar to
Up Wt, GDRO also uses y and b,y to create groups and
has been shown to work well with sufficiently regularized
models. However, unlike Up Wt, it performs weighted sam-
pling from each group and has an optimization procedure to
minimize the loss over the worst-case group.

Ensembling Approaches: Ensembling approaches [28,

, 12] have a two-branch setup: a) a bias-only branch f; that
predicts y from b alone to identify the bias-prone samples,
and b) a de-biased branch f;(.) that is trained to focus on
samples that fj, finds difficult so that it learns richer features
that work on difficult samples too. The two branches can
be ensembled in different ways. DRiFt [28] uses product-
of-experts [3 1] and LearnedMixin [17] extends this through
learned weights and entropy constraints that control f3.

Reduction of Unimodal Biases (RUBi) [/2] multiplies

the outputs from fy(.) with sigmoided outputs from f(.),
thereby assigning higher loss weights to samples that cannot
be predicted through biases alone. RUBi was the previous
state-of-the-art on VQA-CP [3], a testbed for measuring
robustness to biases in VQA. For the bimodal problem of
VQA, the original implementation focused on linguistic bi-
ases, training f; on question features only. For our studies,
we instead train f, on bezy,. directly, to control the type of
biases captured by f,. We assess RUBI [12] over others
since it performed better in the preliminary studies.

Adversarial Debiasing: These techniques impair the
ability of the representation learner to encode biases [69,

, 52, 25]. Like ensembling methods, they also employ a
two-branch setup, with the representation encoder in the
main branch being penalized if the bias-only branch: f;() is
successful at predicting biases from them [69]. Alternately,
f»() may be trained to predict the class label from the biased
features [52, 25], but in either case, the gradient from f()
is reversed during backpropagation for debiasing.

Learning Not to Learn (LNL) [37] uses an adversarial
setup derived from minimization of mutual information be-
tween representation and bias. In addition to the gradient
reversal, the mutual information formulation introduces an
entropy regularization on the bias predictions.

Invariant Risk Minimization (IRM): The goal of IRM
is to extract representations that are invariant across environ-
ments: £ = {ej, eq,...eg}, each encoding different spuri-
ous correlations [5, 63, 15]. Such representations enable the
same classifier to be simultaneously optimal over all £. For
this, [5] propose to regularize the gradient norm of a fixed
linear classifier. More recent variants include regularization
of variance of risks [38, 67]. However, [53] have shown
that such objectives can fail to recover the invariant features
in practice. Despite this negative result, we still compare
against IRM since it is a promising research direction.

IRMv1 [5] is an efficient approximation of an otherwise
computationally expensive bi-level IRM objective. It con-
sists of a regularization constraint on the gradient norm with
respect to a fixed scalar 6, = 1.0:

. e/ n e ~\12
min Y 19(§) + Al[Vo,jo,-1.0l (0c-9)| 1%,

e€yy

where, [° is loss on environment e, y is the logit vector
yielded by the model parameterized by 6 and A balances be-
tween the empirical risk and invariance. In our experiments,
we use the previously defined explicit data groups as the
training environments for IRM.

3.2. Implicit Bias Mitigation Methods

Since explicit access to bias variables is an undesirable
requirement in practice, some recent methods have proposed
to mitigate biases without such assumptions. We call them
implicit methods for conciseness and describe them below.
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Limited Capacity Models: Most implicit methods as-
sume that easy-to-learn biases can be captured by limiting
the capacity of the models [65, 57, 46]. The capacity of
such bias-prone models: f;() can be limited by using a
small subset of train instances for a few epochs [65], us-
ing fewer model parameters [57], attaching a classifier to
intermediate layers, instead of using the final representation
layers [ 8], using bias-prone architectures [7] or amplifying
biases [46]. Main network: f; is then debiased by assigning
higher weights to the harder samples, so that it generalizes
to samples that cannot be predicted through biases alone.

Learning From Failure (LFF) [46] amplifies the bias in
fv using the generalized cross entropy loss [70]:

GOB(s(r:0).y) = -2 5O
v

where s, is the softmax score for the ground truth class and
~ determines the degree of bias amplification. Samples with
high f; loss are then assigned higher weights while training
fa- While v seems critical, the original paper does not
discuss a way to tune it and instead fixes it to a default value
of v = 0.7. In fact, the paper does not provide details on
model selection at all; however, this is an important question,
which we discuss in Sec. 6.4.

Gradient Starvation Mitigation: Different from the
limited capacity methods, spectral decoupling [50] aims to
overcome the issue of gradient starvation [ 9], which is the
tendency to only rely on statistically dominant features. This
is related to the simplicity bias exploitation, where models
exploit the simplest features despite having access to more
predictive features [59, 30], which are more complex.

Spectral Decoupling (SD) [50] aims to decouple the learn-
ing dynamics between features. The authors show that regu-
larizing the network outputs () as:

A
5Hy—’v|\§,

where, A and 7y are hyperparameters, provably decouples the
learning dynamics, enabling learning of better features.

4. Datasets

We use datasets that enable probing existing methods
with critical questions regarding their robustness. We test on
datasets with varying scales and types of biases, allowing us
to perform highly controlled studies that analyze scalability
to a large number of hidden groups.

4.1. Biased MNIST

Existing datasets for assessing bias mitigation methods
do not enable analysis of multiple bias sources, e.g., Colored
MNIST only tests for color versus class bias. To address
this, we created the Biased MNIST dataset, which requires

| N N N

RN N

| N N N

Figure 2: Biased MNIST requires the methods to classify the target
digit while remaining invariant to multiple sources of biases.

recognizing digits while remaining robust to multiple sources
of biases i.e., other factors which are also correlated with
the target variable. Specifically, the dataset consists of 3 x 3
grids of cells, where the target digit is placed at one of
the grid cells and is correlated with multiple bias variables
{b;} including: a) background color, b) digit color, c) digit
position in the grid, d) distracting shapes present in other
cells, e) color of the distracting shapes, f) texture type and
g) texture color (see Fig. 2). Each variable can take one of
ten discrete values: each variable takes the majority/biased
value corresponding to the target digit with a probability
of pyiqs, otherwise takes one of the remaining nine values
with uniform probability. For instance, if py;,s = 0.7, then
70% of 1’s are colored as green, 70% of 2’s are colored red
and so on. This applies to all the variables e.g., 70% of
1’s placed on a purple background, while 70% of 2’s are
placed on a green background. The bias level: py;,s can be
specified for each variable to control the types and degrees
of biases. For convenience, pp;qs 1S set to 0.7 in the train set,
unless otherwise specified. The test set is unbiased i.e., has
Pbias = 0.1.

4.2. CelebA

The CelebA dataset [43] of celebrity faces is widely used
to assess bias mitigation techniques [55, 56, 46, 50]. Follow-
ing earlier work, it is used for binary hair color classification
(blond or non-blond), which is correlated with gender. There
are two major bias sources: a) class imbalance, with non-
blond occurring 5.7 times more than blond hair color, and
b) presence of a rare group, i.e., blond male celebrities only
account for 0.86% of the training instances.

4.3. GQA-OOD

We use the GQA visual question answering dataset [33]
to highlight the challenges of using bias mitigation meth-
ods on real-world tasks. It has multiple sources of biases
including imbalances in answer distribution, visual concept
co-occurrences, question word correlations, and question
type/answer distribution. It is unclear how the explicit bias
variables should be defined so that the methods can gener-

1946



alize to all minority groups. GQA-OOD [36] divides the
evaluation and test sets into majority (head) and minority
(tail) groups based on the answer frequency within each
‘local group’ (e.g., colors of bags), which is a unique com-
bination of ‘global group’ or answer type (e.g., objects or
colors) and the main concept asked in the question (e.g.,
‘bag’, ‘chair’, etc.). The head/tail categorization makes anal-
ysis easier; however, it is unclear how one should specify
the explicit biases so that the models generalize even to the
rarest of local groups. Therefore, we explore multiple ways
of defining the explicit bias variable in separate experiments:
a) majority/minority group label (2 groups), b) answer class
(1833 groups), c¢) global group (115 groups) and d) local
group (133328 groups). It is unknown if bias mitigation
methods can scale to hundreds and thousands of groups in
GQA, yet natural tasks require such an ability.

5. Network Architecture & Tuning Procedure

For each dataset, we assess all bias mitigation methods
with the same neural network architecture. For CelebA, we
use ResNet-18 [29]. For Biased MNIST, we use a convo-
lutional neural network with four ReLU layers consisting
of a max pooling layer attached after the first convolutional
layer. For GQA-OOD, we employ the UpDn architecture [4],
which is widely used for VQA [58, 36, 66].

For each dataset, we use the class label y and the explicit
bias variables b.,;;. to define explicit groups for Up Wt,
GDRO and IRMv1. For instance, for CelebA, hair color
and gender result in four explicit groups while for Biased
MNIST, the number of groups: |G| depends on the number
of explicit bias variables: |begp |, With |G| = 10/bear.l We
will specify the exact by, for each experiment in Sec. 6.
For GQA, we use head/tail, answer class, global and local
groups as explicit variables. For all datasets, RUBi uses
beapi. to predict y, whereas LNL trains the adversarial branch
to predict beyyp;. from representations. Of course the implicit
methods: StdM, LFF and SD are invariant to the choice of the
explicit biases during training. Unless otherwise specified,
results from Biased MNIST are averaged across 3 random
seeds, but due to computational constraints, we ran models
on CelebA and GQA-OQOD only once.

Hyperparameters for each method were chosen using a
grid search with unbiased accuracy on each dataset’s vali-
dation set. To make this tractable, we first ran a grid search
for the learning rate over {1073,107%,107°} and weight
decay over {0.1,1073,1075,0}. After the best values were
chosen, we searched for method-specific hyperparameters.
Due to the size of GQA-OQOD, hyperparameter search was
performed by training on only 10% of instances, and then
the best selected hyperparameters were used with the full
training dataset. The exact values for the hyperparameters
are specified in the Appendix.

Table 1: Unbiased accuracies Acc(a = 0) on all datasets for
all methods. We format the @, second and third best results.
Methods that do not access explicit biases have gray background.

Methods/" | bA  Biased MNIST ~GQA
Datasets

StaM 80,3 420 448
Up Wt[56] 874 30.1 30.0
GDRO[55] 88.5 272 26.4
RUBi[17] 872 38.9 24.1
LNL [37] 79.2 40.6 28.6
IRMvl [5]  79.8 38.7 39.3
LEF [46] 77.8 56.6 45.1
SD [50] 88.6 41.3 46.9

6. Questions Posed and Answered

In this section, we probe the existing methods with critical
questions regarding their robustness. For each question, we
first describe the empirical setup to explore the question, and
then present the results.

6.1. Head-to-Head Comparisons

Question 1: Are there clear winners in a head-to-head
comparisons across datasets?

We first present the mean per group accuracy for all eight
methods on all three datasets in Table. | to see if any method
does consistently well across benchmarks. For this, we used
class and gender labels as explicit biases for CelebA. For
Biased MNIST, there are multiple ways to define explicit
biases, but for this section, we simply use each of the seven
variables as explicit biases in different runs and average
across the runs. We study combinations of multiple explicit
variables in Sec. 6.3. We set pp;qs = 0.7 for this section,
and present results across different py;,s in the Appendix.
Similarly for GQA, we consider each of the four variables
described in Sec. 4.3 as explicit bias in separate runs and
present the average.

Results. As shown in Table. 1, no method performs
universally well across datasets; however, the implicit meth-
ods LFF and SD obtain high unbiased accuracies on most
datasets. This shows that implicit methods can deal with
multiple bias sources without explicit access. Explicit meth-
ods work well on CelebA but fail on Biased MNIST and
GQA. Specifically, Up Wt, GDRO and RUBI obtain 7-8%
improvements over StdM on CelebA, which requires gen-
eralization to only 4 groups. However, all explicit methods
perform worse than StdM on Biased MNIST and GQA, sig-
nifying their inability to deal with multiple bias sources.
LNL and IRMv1 were comparable to StdM even on CelebA,
demonstrating lack of generalization even on simple set-
tings. Despite being a simpler method, Up Wt outperformed
GDRO on both Biased MNIST and GQA, but both were
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Figure 3: Boxplots of majority/minority difference (MMD) on
Biased MNIST over: a) bias variables, and b) different methods.

worse than StdM. These results show that implicit methods
can outperform explicit methods.

6.2. Bias Exploitation

Question 2: Do methods show robustness to both explicit
and implicit biases?

In this set of experiments, we compare the resistance to
explicit and implicit biases. We primarily focus on the Bi-
ased MNIST dataset, reserving each individual variable as
the explicit bias in separate runs of the explicit methods,
while treating the remaining variables as implicit biases. To
ease analysis, we compute the accuracy gap between the ma-
jority and minority groups i.e., majority/minority difference
(MMD). Majority/minority groups are defined per variable
e.g., for foreground color, green 1’s, red 2’s etc are placed
in the majority group and the rest in the minority group and
MMD simply computes the accuracy difference between
the two groups for each variable. High MMDs indicate that
the methods rely heavily on spurious patterns favoring the
majority groups and thus fail on the minority groups.

Results. In Fig. 3a, we present the MMD boxplots for all
bias variables, comparing cases when the label of the variable
is either explicitly specified (explicit bias), or kept hidden
(implicit bias) from the methods. Barring digit position, we
observe that the MMD values are higher when the variables
are not explicitly labeled for the methods, indicating that the
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Figure 4: Unbiased accuracy as a function of number of explicit
bias variables. StdM, LFF and SD are invariant to the choice of
explicit bias variables.

Table 2: Mean of head and tail accuracies on GQA, considering
different variables as explicit biases.

Head/Tail Answer  Global Local
Methods @ Class Group Group
(1833 (115 (133328
groups) groups)  groups)  groups)
StdM 44.8
Up Wt [56] 43.3 26.0 26.4 24.2
GDRO [55] 46.9 28.6 10.8 19.4
RUBI [12] 44.1 N/A 5.6 22.6
LNL [37] 42.9 N/A 324 10.7
IRMv1 [5] 47.2 35.8 40.4 33.8
LFF [46] 45.1
SD [50] 46.9

explicit methods in general fail to mitigate implicit biases.
Fig. 3b breaks down exploitation of explicit and implicit
biases for each method. UpWt, GDRO and RUBi have low
MMD values for explicit biases, but high MMD values for
implicit biases, showing that they mitigate the explicit biases
to some extent, but are not robust to the implicit biases.
LNL and IRMv1 seem to be equanimously affected by both
explicit and implicit biases, and thus fail to improve upon the
baseline as previously shown in Table 1. LFF has a relatively
low range of MMDs and as shown by the improvements in
Table 1, the method outperforms others on Biased MNIST.

Interestingly, MMD was low for digit position. We hy-
pothesize this is because CNNs are unable to use position
information for inference [42]. To confirm this, we add Co-
ordConv layers [42] before and after the maxpooling layer
in CNN to enable usage of position information. This re-
sulted in methods exploiting digit position too, showing
larger MMD values of 11.1%-25.6% as compared to the
2.2%-8.7% without the CoordConv layers. Such inductive
biases affect whether or not methods exploit certain dataset
biases, and we discuss this in Sec. 7.
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6.3. Scalability of Methods

Question 3: Do methods scale up to multiple types of
biases and a large number of dataset groups?

It is unknown how well the methods scale up to multiple
sources of biases and large number of groups, even when
they are explicitly annotated. To study this, we train the
explicit methods with multiple explicit variables for Biased
MNIST and individual variables that lead to hundreds and
thousands of groups for GQA and compare them with the
implicit methods. For Biased MNIST, we first sort the seven
total variables in the descending order of MMD (obtained by
StdM) and then conduct a series of experiments. In the first
experiment, the most exploited variable, distractor shape,
is used as the explicit bias. In the second experiment, the
two most exploited variables, distractor shape and texture,
are used as explicit biases. This is repeated until all seven
variables are used”. Note that conducting the seventh exper-
iment entails annotating each instance with every possible
source of bias. While this may not be realistic in practice,
such a controlled setup will reveal if the explicit methods
can generalize when they have complete information about
every bias source.

To test scalability on a natural dataset, we conduct four
experiments per explicit method on GQA-OOD with the
explicit bias variables: a) head/tail (2 groups), b) answer
class (1833 groups), c¢) global group (115 groups), and d)
local group (133328 groups). Unlike Biased MNIST, we do
not test with combinations of these variables since the last
three variables already entail generalization to many groups.

Results. We find that implicit methods either improve or
are comparable with StdM, but most explicit methods fail
when asked to generalize to multiple bias variables and a
large number of groups, even when the bias variables are
explicitly provided. As shown in Fig. 4, all explicit methods
are below StdM on Biased MNIST. Barring LNL and Up
Wt, other explicit methods exhibit degraded accuracy as the
number of explicit bias variables increases. Because the
implicit methods do not rely on the choice of explicit biases,
we simply repeat the same accuracy across x-axis. Among
the implicit methods, LFF obtains the highest improvement,
whereas SD is close to StdM.

Results for GQA-OQOD are similar, with explicit methods
failing to scale up to a large number of groups, while implicit
methods showing some improvements over StdM. As shown
in Table 2, when the number of groups is small, i.e., when
using a head/tail binary indicator as the explicit bias, explicit
methods remain comparable or even outperform StdM, but
when the number of groups grow to hundreds and thousands,
they fail. IRMv1 and GDRO obtain the highest improve-
ments of 2.4% and 2.1% over StdM, respectively, with the
binary head/tail bias, but they show large drops when using

2The exact order is given in the Appendix.
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Figure 5: Improvement Over the Standard Model (IOSM) for each
group of CelebA.

answer class, global group or local group as explicit bias
variables. Some drops are extreme, e.g., RUBi drops 39%
when using global group as the explicit bias variable.

Results on a simpler setting. We further study bias ex-
ploitation on CelebA. For this, we plot improvement over
the standard model (/O.S M) in Fig. 5, which is the accuracy
gain over the standard model on each dataset group. The im-
provements in blond (minority group) incur degradation in
non-blond (majority group). The methods tilt predictions ei-
ther in the favor of minority or majority groups, which shows
the inability to learn the signal even on simple settings.

6.4. Robustness to Model Selection Criteria

Question 4: Can the methods generalize to the test set
without being tuned on the test distribution? Do they exhibit
robustness across a wide range of hyperparameters?

Assuming access to the test distribution for model selec-
tion is unrealistic and can result in models being right for
the wrong reasons [64]. Rather, it is ideal if the methods can
generalize without being tuned on the test distribution and
we study this ability by comparing models selected through
varying tuning distributions. To control the tuning distri-
bution, we define a generalization of the mean per group
accuracy (MPG) metric, that can interpolate within as well
as extrapolate beyond the train and test distributions:

Gl o
2 pYAce
Acc(a) = 729 ‘1G|g - g
Zg:lpg

Here, p, denotes the ratio of samples present in group g, |G|
is the total number of groups and « is used to control the
group prior. When o = 0, Ace(a = 0) yields the MPG i.e.,
a balanced distribution where all groups are weighed equally.
When « = 1, then the weights reflect the train priors/biases.
When 0 < a < 1, it interpolates between biased (train)
priors and unbiased group weights. When a < 0, minority
groups are weighed more and when a > 1, majority groups
are weighed more i.e., it amplifies the train bias.

Ideally, methods should yield robust models regardless of
the tuning distribution i.e., the value of . To test this ability,
we train a set of candidate models for model selection, with
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Figure 6: Range of minority (blond haired males) and majority
(mean over rest of the groups) test accuracies on CelebA when
varying the validation distribution from o« = —1 (inverted train
bias) to o = 2 (increased train bias).

different sets of hyperparameters. Specifically, we train nine
different models with learning rate € {1072,10=4,107°}
and weight decay € {1071,1073,1075} for CelebA and
Biased MNIST and, then perform model selection by com-
puting Acc(e) at a € {—1.0,—0.5,0.0,0.5,1.0,1.5,2.0}
on the validation sets.

Results. For CelebA, methods generally show large vari-
ance on the minority patterns (blond haired male celebrities),
and lower variance on the majority patterns (mean over rest
of the groups), whereas for Biased MNIST, we find that
methods only work for certain set of hyperparameters and
show degraded results on both majority/minority patterns
if the hyperparameters change. As illustrated by the violin
plots of CelebA’s unbiased test accuracies in Fig. 6, LNL and
IRMv1 have the lowest variance, but neither improves over
StdM. Up Wt, GDRO and RUBI show the largest variances
for the minority group, indicating they are highly sensitive
to the choice of tuning distribution. For LFF, we found high
variance for both majority and minority patterns. In fact,
we were unable to replicate the published LFF results, with
~ = 0.7 yielding a high accuracy (86%) on the rarest group,
but low accuracies on the rest. After tuning it, we found that
v = 0.1 gave the best unbiased test accuracy.

Interestingly, for Biased MNIST we found that
learning rate = 1073 and weight decay = 10~° worked
best for all methods. Even though Up Wt and GDRO are
known to generalize to minority groups when using a low
learning rate and high weight decay [56], we did not observe
this for Biased MNIST. We hypothesize that when multiple
sources of bias are present, as in Biased MNIST, methods
have multiple ways of predicting the classes, some of which
maybe easier to learn than the others. When the hyperpa-
rameters are suitable to exploit these biases, methods obtain
their best accuracies, which are still lower than StdM.

7. Discussion

Our study demonstrates that systems are highly sensitive
to the tuning distribution, that explicit methods cannot handle
multiple bias sources, and that more rigorous analysis is

critical for bias mitigation algorithms for future progress.
Based on our results, we argue that the community should
focus on implicit methods, rather than explicit, not only
because explicit methods require additional annotations, but
also because they perform worse on realistic settings.

We make the following recommendations:

1. Compare against multiple state-of-the-art methods under
fair settings.

2. Test on datasets that enable control over the number and
degrees of biases, including realistic datasets.

3. Analyze generalization to both explicit and implicit
sources of bias.

4. Be forthcoming about whether test distribution was used
for model selection and compare robustness to tuning
distributions that differ from the test.

If these guidelines are adopted, we believe significant
progress can be made so that bias mitigation algorithms
can have real-world benefit for deployed systems.

An interesting observation was that a weaker architecture,
CNNs, were able to ignore position bias, whereas a more
powerful architecture, CoordConv, resorted to exploiting this
bias resulting in worse performance. While the community
has largely focused on training procedures for bias mitiga-
tion, an exciting avenue for future work is to incorporate
appropriate inductive biases into the architectures, perhaps
endowing them with the ability to choose the the minimal
computational power to do a task so that they are less sen-
sitive to unwanted biases. This will essentially enable the
algorithms to use Occam’s razor to determine the minimal
capabilities required to do a task to reduce their ability to
utilize biases.

We have pointed to issues with the existing bias mitiga-
tion approaches, which alter the loss or use resampling. An
orthogonal avenue for attacking bias mitigation is to use
alternative architectures. Neuro-symbolic and graph-based
systems could be created that focus on learning and ground-
ing predictions on structured concepts, which have shown

promising generalization capabilities [68, 44, 34, 24, 60].
Causality is another relevant line of research, where the goal
is to uncover the underlying causal mechanisms [49, 45, 9, 2].

Discovery and usage of causal concepts is a promising direc-
tion for building robust systems. These areas have not been
explicitly studied for their ability to overcome dataset bias.
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